
Published as a conference paper at ICLR 2024

EFFICIENT BACKPROPAGATION WITH
VARIANCE-CONTROLLED ADAPTIVE SAMPLING

Ziteng Wang, Jianfei Chen1, Jun Zhu
Dept. of Comp. Sci. and Tech., Institute for AI, BNRist Center, THBI Lab,
Tsinghua-Bosch Joint ML Center, Tsinghua University
wangzite23@mails.tsinghua.edu.cn; {jianfeic, dcszj}@tsinghua.edu.cn

ABSTRACT

Sampling-based algorithms, which eliminate “unimportant” computations dur-
ing forward and/or back propagation (BP), offer potential solutions to accelerate
neural network training. However, since sampling introduces approximations to
training, such algorithms may not consistently maintain accuracy across various
tasks. In this work, we introduce a variance-controlled adaptive sampling (VCAS)
method designed to accelerate BP. VCAS computes an unbiased stochastic gradi-
ent with fine-grained layerwise importance sampling in data dimension for acti-
vation gradient calculation and leverage score sampling in token dimension for
weight gradient calculation. To preserve accuracy, we control the additional vari-
ance by learning the sample ratio jointly with model parameters during training.
We assessed VCAS on multiple fine-tuning and pre-training tasks in both vision
and natural language domains. On all the tasks, VCAS can preserve the original
training loss trajectory and validation accuracy with an up to 73.87% FLOPs re-
duction of BP and 49.58% FLOPs reduction of the whole training process. The
implementation is available at https://github.com/thu-ml/VCAS.

1 INTRODUCTION

0 10000 20000 30000
steps

0.2
0.4
0.6
0.8
1.0

Tr
ai

n
Lo

ss

Exact
SB
UB
VCAS

Figure 1: VCAS mirrors the conver-
gence trajectory with exact training with
FLOPs redution of 41.56%. Other
methods like SB (Jiang et al., 2019) and
UB (Katharopoulos & Fleuret, 2018)
fail with a similar FLOPs reduction.

Training neural networks can be computationally inten-
sive. Contemporary networks typically employ stochastic
gradient methods (Bottou et al., 2018) for training, which
iteratively process batches of data to compute stochas-
tic gradients through forward propagation (FP) and back
propagation (BP) techniques (Rumelhart et al., 1986).
FP+BP are costly, as they need to process every datum
in the batch and every connection in the network, result-
ing in a multiplicative time complexity of batch size and
model size. Such a time complexity becomes increasingly
problematic in the era of big data and big models.

Data samples are not equally important. Some might be
easy for the network to learn, while others might be ex-
tremely hard. Training can be accelerated by utilizing this
disparity, focusing the available computational resources
on more pivotal samples. At a high level, this can be
achieved by further sampling the batch with higher keep
probability of more important samples. The computa-
tional overhead is consequently diminished, in proportion
to the quantity of retained samples. Various methods are
proposed to assess the importance of samples, including
meta-learning methods (Fan et al., 2017; Coleman et al., 2019; Mindermann et al., 2022), loss-based
methods (Loshchilov & Hutter, 2015; Chang et al., 2017; Jiang et al., 2019; Ouyang et al., 2022),

1Corresponding author.

1

https://github.com/thu-ml/VCAS

Published as a conference paper at ICLR 2024

and gradient norm based methods (Needell et al., 2014; Zhao & Zhang, 2015; Alain et al., 2015;
Johnson & Guestrin, 2018; Katharopoulos & Fleuret, 2018).

While such methods seem promising, one core concern of sampling-based methods is their robust-
ness. Misjudging the importance can hamper convergence, potentially leading to degraded accuracy
and even longer training time than uniform sampling. Moreover, the optimal sample ratio is influ-
enced by data distribution, which differs between tasks and is challenging to determine in advance.
In general, there is a “no-free-lunch” phenomenon (Kaddour et al., 2023), where aggressive sam-
pling often comes at the cost of reduced robustness.

In this work, we propose a robust variance-controlled adaptive sampling (VCAS) algorithm for
deep learning under the stochastic optimization framework. VCAS computes a cost-effective ap-
proximated stochastic gradient (ASG) by partially conducting backpropagation for specific data and
tokens. This ASG is unbiased, and we have developed an adaptive sampling method to meticulously
control the variance of the ASG, aligning it with the original stochastic gradient’s variance. Con-
sequently, convergence remains largely unaffected, with our method mirroring the progression of
exact algorithms, as delineated in Fig. 1.

Unlike previous methods, VCAS construct the ASG in a fine-grained manner. Rather than dropping
samples one-time in a whole, VCAS gradually drops more samples when backpropagating from
topmost to bottommost network layers, as the gradient getting sparser. Furthermore, VCAS also
more aggressively drops data in finer granularity of tokens rather than samples when computing the
weight gradients. VCAS can achieve smaller variance under a given computational budget compared
to coarse grained sampling on the data dimension.

We evaluate VCAS on multiple finetuning and pre-training tasks of language models and vision
transformers. VCAS can preserve the original training loss trajectory and the validation accuracy on
all tasks, while adaptively determining the computational saving depending on the difficulty of the
task. VCAS can reduce the computational cost of backpropagation by up to 73.87%, and reduce the
overall training computation by up to 49.58%.

2 RELATED WORK

Methods focusing on the difference of data, known as online batch selection (Loshchilov & Hutter,
2015), can be mainly categorized into three classes: meta learning methods, loss based methods and
gradient norm based methods. In this section we will discuss these three ways separately and briefly
introduce other orthogonal efficient training methods.

Meta Learning Methods. Some works formulate data sampling into an optimization problem and
train a separate meta predictor to solve it. Fan et al. (2017) use deep reinforcement learning to train
an agent for data selection. Coleman et al. (2019) and Mindermann et al. (2022) train a separate
cheaper model with similar architecture for guidance. However, training a meta predictor will intro-
duce further overhead and it’s a non-trivial learning task with more uncertainty introduced for weak
theoretical guarantee.

Loss Based Methods. Loss is a natural indicator of the importance of different data. Loshchilov
& Hutter (2015) maintains a history of losses and develops a sophisticated distribution based on
the value or rank of loss. Jiang et al. (2019) and Ouyang et al. (2022) simplify it with sampling
distribution proportion to the percentile of loss in the history. Chang et al. (2017) broadens the
history to every datum and proposes to sample by the variance of prediction probability directly
linked with previous losses. Dong et al. (2021) provides another method of minimizing the L2 norm
between the sampled loss and the exact counterpart. Shah et al. (2020) samples the smallest loss for
robustness to outliers. Zhang et al. (2023) ensembles several loss methods with a preset sample ratio
and varies the weights assigned to these methods adaptively. Simple and effective as they may be,
the loss based methods are heuristic and always need a hyperparameter of sample ratio to tune for
different tasks, violating the goal of efficient training.

Gradient Norm Based Methods. Previous works have proved that the optimal data sampling dis-
tribution for SGD is proportional to the gradient norm(Needell et al., 2014; Zhao & Zhang, 2015).
But calculating the gradient norm is prohibitive since it needs a full process of backpropagation. To
solve this problem, Alain et al. (2015) applies distributed training with many workers calculating

2

Published as a conference paper at ICLR 2024

Layer 𝑙 1 Layer 𝑙 1

𝑁

𝐾

𝑇
𝑆𝑎𝑚𝑝𝑙𝑒𝐴 ,

𝑆𝑎𝑚𝑝𝑙𝑒𝑊 ,

ℎ

𝑔

Layer 𝑙

∇ ∇ ∇

∇
∇

𝑁𝑇

Figure 2: The computing diagram of backpropagation with VCAS in every layer. We use light blue
squares to represent small gradient entries and orange for large ones. White squares are discarded
by sampling. The upper line calculates activation gradient and the lower for weight gradient. Please
refer to Sec. 4 for notations.

this importance score in parallel. Johnson & Guestrin (2018) uses a second-order approximation of
gradient norm with history maintained. Closely related to our work, Katharopoulos & Fleuret (2018)
develops a pure online algorithm by constructing an upper bound of gradient norm to sample with
much cheaper computation. These methods are usually more expensive but have relatively strong
theoretical guarantees. So we follow this way in our activation sampling.

Orthogonal Efficient Training Methods. Data pruning (Paul et al., 2021; Fayyaz et al., 2022) fo-
cuses on filtering less informative data before the whole training. Architecture pruning like layer
dropping (Huang et al., 2016; Zhang & He, 2020) and token dropping (Hou et al., 2022; Yao et al.,
2022; Li et al., 2022) modifies the architecture to make models faster to train with modest affect
to performance. Mixed precision training and quantization (Micikevicius et al., 2018; Chen et al.,
2021; Liu et al., 2022) change the training procedure to use low-precision in calculation for accel-
eration. Sparsity(Hoefler et al., 2021) focuses on pruning near-zero values in weights, activations,
or gradients to achieve a low FLOPs(Raihan & Aamodt, 2020) and low memory footprint(Nikdan
et al., 2023), yet is usually hard to bring a wall-clock time reduction like us due to the lack of
hardware support(NVIDIA, 2021). All these works are orthogonal to our work since we focus on
the computation approximation of a certain model architecture on a certain dataset with a certain
training procedure to bring real training acceleration.

3 VARIANCE-CONTROLLED SAMPLING AS STOCHASTIC OPTIMIZATION

In this section, we present a high-level overview of our sampling algorithm as stochastic opti-
mization. Consider the learning problem of a model f(X; θ) parameterized by θ on a dataset
D = {(Xi, yi)}|D|

i=1 with a loss function ℓ(·, ·). Define the learning objective as

L(θ) = EB [ℓ(f(X; θ), y)] , (1)

where the expectation is taken over all possible batches B = (X, y) from D. The model parameters
can be learned by stochastic optimization algorithms (Bottou et al., 2018) with a stochastic gradient
(SG) g(θ;B) := ∇θℓ(f(X; θ), y), which is an unbiased approximation of∇θL(θ).
However, computing the stochastic gradient can be still too expensive, since it requires the full for-
ward and back propagation, which iterate over all model parameters and all data in the batch. We
build a cheap stochastic approximation g(θ;B, ϵ) of the SG, which we refer as approximated stochas-
tic gradient (ASG). ASG only computes the backpropagation partially, and is therefore cheaper than
the SG. The randomness in the computing procedure of ASG is captured by ϵ. We ensure that ASG
is unbiased: Eϵ[g(θ;B, ϵ)] = g(θ;B).

3

Published as a conference paper at ICLR 2024

0246810
Layer Index

0
5

10
15
20
25
30

Da
tu

m
 In

de
x

Backpropagation

(a) 100-th iter.

0246810
Layer Index

0
5

10
15
20
25
30

Da
tu

m
 In

de
x

Backpropagation

(b) 300-th iter.s

0246810
Layer Index

0
5

10
15
20
25
30

Da
tu

m
 In

de
x

Backpropagation

1

1e-2

1e-4

1e-6

1e-8

1e-10grad norm
 proportion

(c) 3000-th iter.s

Figure 3: Gradient distribution over different layer and iterations of BERT-base finetuning on SST2
(6315 iterations in total). The normalized gradient norm of each datum is shown in the heatmaps.
Black solid lines are the 95% percentile. Data above the lines are likely to be dicarded by VCAS.

With an unbiased SG, stochastic optimization algorithms are guaranteed to converge to a stationary
point of Eq. (1), while the converge speed depends on the variance (cf. Bottou et al. (2018)). There-
fore, if the variance of the ASG can be controlled to the similar variance level of SG, substituting
the SG with ASG should have little impact to the convergence behavior. In fact, by the law of total
variance (Chung, 2001), the variance of ASG can be decoupled as

Var [g(θ;B, ϵ)] = Var [g(θ;B)] + EB [Varϵ [g(θ;B, ϵ)]] ,
where the first term is the intrinsic variance of SG caused by subsampling batches from the dataset,
and the second term is the additional variance incurred by ASG. In the subsequent sections, we will
discuss our constructions of the ASG, which incurs negligible additional variance compared to SG.

4 FINE-GRAINED SAMPLING

Here we present variance-controlled adaptive sampling (VCAS), a specific construction of the ASG.
We compute ASG by approximating the backpropagation in a fine-grained manner, and speed up
matrix multiplications with importance sampling on the data dimension.

Assume a batch X of shape N × T × K, where N is the batch size, T is the number of
tokens of each datum, and K is the dimensionality. For an L-layer network , the model
f(X; θ) can be described by the following forward propagation procedure: Z(0) = X,Z(l) =
f (l)

(
Z(l−1); θ(l)

)
, f(X; θ) = Z(L), where Z(l) and θ(l) are the activation and parameters of the

l-th layer, and θ = (θ(l))Ll=1. The SG can be computed by back-propagation in the following form:
∇Z(l−1) = h(l)

(
∇Z(l) ;Z(l−1), θ(l)

)
,∇θ(l) = g(l)

(
∇Z(l) ;Z(l−1), θ(l)

)
, where ∇Z(l) and ∇θ(l) de-

note the activation / weight gradient, h(l) and g(l) denote the function that calculates input / weight
gradient of layer l with the output gradient, layer input and weight. The SG g(θ;B) = (∇θ(l))Ll=1.

As illustrated by Fig. 3, the activation gradients ∇Z(l) are sparse: the gradient (∇Z(l))i is close to
zero for most sample i, except for a few important samples. Such sparsity becomes more prominent
as backpropagating to lower layers and as the training progresses. To speed up computation, we add
samplers in the backpropagation graph:

∇̂Z(l) = SampleAϵ,ρl
(∇Z(l)) , ∇Z(l−1) = h(l)

(
∇̂Z(l) ;Z(l−1), θ(l)

)
,

∇̃Z(l) = SampleWξl,νl

(
∇̂Z(l) , Z(l−1)

)
, ∇θ(l) = g(l)

(
∇̃Z(l) ;Z(l−1), θ(l)

)
. (2)

The sampler SampleAϵ,ρl
(·) randomly filter out unimportant data from the activation gradient, the

keep ratio is ρl, with the randomness captured by ϵ. The sampler is applied for each layer, so the
activation gradient becomes increasingly sparse when backpropagating from the L-th layer to the
first layer. The sampler SampleWξl,νl

(·) filters (data, token) pairs specifically for weight gradient
calculation, with a keep ratio νl and the randomness ξl. With these samplers, we only need to
compute backpropagation for the retained data / token, so the computational cost is reduced. The
sampling procedure is illustrated in Fig. 2, which constructs an unbiased ASG g(θ;B, ϵ, ξ, ρ, ν) =
(∇θ(l))Ll=1, with∇θ(l) defined as Eq. (2), and ξ = (ξl)

L
l=1, ρ = (ρ)Ll=1, ν = (νl)

L
l=1.

4

Published as a conference paper at ICLR 2024

4.1 ACTIVATION GRADIENT

We apply unbiased low-variance approximation to the activation gradient to speed up subsequent
computation. For an activation gradient tensor G of shape N × T ×K, we sample

Ĝ = SampleAϵ,ρ (G) = G ◦ (m(ϵ, ρ)⊗ 1⊗ 1),

where ◦ is element-wise product, and ⊗ is tensor outer product. The mask m ∈ RN is a random
Bernoulli vector: m(ϵ, ρ)i = Bern(pi; ϵ)/pi , where

∑N
i=1 pi = Nρ, and Bern(p; ϵ) denotes a

Bernoulli random number generator with probability p and randomness ϵ. Since E[m(ϵ, ρ)i] = 1,∀i,
the approximation is unbiased: E[Ĝ] = G. The sampler zeros out the gradient for all the data whose
m(ϵ, ρ)i = 0. The amount of retained data is Nρ in expectation. With the sampler, we only need to
compute backpropagation for retained data, so the cost is ρ times lower.

The variance of the approximation is Var
[
Ĝ
]
=

∑N
i=1

1−pi

pi
∥Gi∥2F , where we define the variance

of a random tensor element-wise as Var
[
Ĝ
]
=

∑
ijk Var

[
Ĝijk

]
, and Gi denotes the i-th matrix of

G in the N dimension. We compute the keep probability (pi) to minimize the variance, deriving a
distribution proportional to the gradient norm of each datum: pi ∝ ∥Gi∥F . Minimizing the variance
of the activation gradient not necessarily minimize the variance of ASG, which is the gradient of
parameters. Nevertheless, this is a useful heuristic which empirically achieves low variance as is
revealed by Katharopoulos & Fleuret (2018), and the ASG variance will be carefully controlled by
our adaptive algorithm, as we shall see soon in Sec. 5.

4.2 WEIGHT GRADIENT

We can accelerate the computation of weight gradient for linear layers by sampling in both data and
token dimensions. Consider the approximate back propagation of a linear layer Z(l) = Z(l−1)θ(l)

⊤
:

∇̂Z(l) = SampleAϵ,ρl
(∇Z(l)) , ∇̃Z(l) = SampleWξl,νl

(
∇̂Z(l) , Z(l−1)

)
, ∇θ(l) = ∇̃⊤

Z(l)Z
(l−1)

in matrix form, where we reshape the activation/gradients to NT×K, and ∇̂Z(l) is already a sampled
matrix with only NTρl non-zero rows in expectation. However, ∇̂Z(l) is only sampled in the data
dimension. In fact, even (∇̂Z(l))i is retained for some datum i, it might still have some rows (i.e.,
tokens) which are close to zero. We can further sample

∇̃Z(l) = SampleWξl,νl

(
∇̂Z(l) , Z(l−1)

)
= ∇̂Z(l) ◦ (m(ξ, ν)⊤1),

where the mask m ∈ RNL is a random Bernoulli vector, and 1 is an all-one vector: m(ξ, ν)i =

Bern(qi; ϵ)/qi, where
∑NT

i=1 qi = NTρlνl. The variance is

Var
[
∇̃θ(l)

]
=

NT∑
i=1

1− qi
qi

∥∥∥∇̂Z(l)
i

∥∥∥2
2

∥∥∥Z(l−1)
i

∥∥∥2
2
. (3)

The minimal variance solution is qi ∝
∥∥∥∇̂Z(l)

i

∥∥∥
2

∥∥∥Z(l−1)
i

∥∥∥
2
. This sampling method is also known

as leverage score sampling in randomized numerical linear algebra (Drineas & Mahoney, 2018).

5 ADAPTING SAMPLE RATIOS

The question remained is how to set the sample ratios (ρl)
L
l=1 and (νl)

L
l=1. There is a tradeoff:

lowering the sample ratio reduces the computational cost, but increases the variance. As discussed in
Sec. 3, this ratio should be set to ensure that the additional variance of ASG is marginal compared to
the original variance of SG. Adapting the sample ratio is nontrivial since the gradient sparsity pattern
vary across layers and vary over time during training. In this section, we present an adaptation
algorithm to control the variance during the entire training trajectory.

First, we introduce a single hyperparameter s to control the sample ratios (ρl)
L
l=1 for all layers.

Intuitively, when the gradient norm (∥Gi∥F)
N
i=1

becomes sparser, we can more aggressively utilize

5

Published as a conference paper at ICLR 2024

smaller keep ratio ρl to maximize speedup. Therefore, we compute ρl based on the sparsity pl of the
gradient norm sequence:

pl(s) = min{n/N |
n∑

i=1

∥Gi∥F ≥ s

N∑
i=1

∥Gi∥F }, ρl(s) = max
j≤l

pj(s) (4)

where s ∈ [0, 1] is a hyperparameter on how much gradient norm is preserved. It’s shown in Fig. 3
that gradient norm grows sparser with layer, yielding a descending trend of pl for l from L to 1.
Thus it’s reasonable to construct a monotone increasing sequence of {ρl}Ll=1 based on {pl}Ll=1.

By law of total variance, we can decompose the variance of ASG as

Var [g(θ;B, ϵ, ξ, ρ, ν)] = Var [g(θ;B)] + EB[Varϵ [g(θ;B, ϵ, ρ(s))]] + EB,ϵ[Varξ [g(θ;B, ϵ, ξ, ρ, ν]],

where we write g(θ;B, ϵ, ρ) := Eξ[g(θ;B, ϵ, ξ, ρ, ν)] to be the ASG without the sampler for weight
gradient computation. The three variance terms are the SG variance, the variance introduced by
approximately computing activation gradient, and the variance introduced by approximately com-
puting weight gradient, respectively. Our algorithm adaptively tunes s and ν during train to control
the last two variance terms to be fractional comparing to the first variance term.

Controlling EB[Varϵ [g(θ;B, ϵ, ρ(s))]]: We adopt a zeroth order method to adapt the hyperparam-
eter s to keep EB[Varϵ [g(θ;B, ϵ, ρ(s))]] = τactVar [g(θ;B)], where τact ≪ 1 is a small constant.
That is, the additional variance raised by approximately computing activation gradient is only τact
times the SG variance itself. Since larger s increases the keep ratio and decreases the variance, we
adopt the update:

s← s+ α sign (EB[Varϵ [g(θ;B, ϵ, ρ(s))]]− τactVar [g(θ;B)]) , (5)

where sign(x) = +1 when x ≥ 0 and sign(x) = −1 when x < 0, and α is a step size. We
approximate the expectation and variance with empirical ones with M Monte Carlo repetitions.
Therefore, each update requires O(M2) FP+BPs, and we run the update every F SGD iterations,
where F ≫M2.

Controlling EB,ϵ[Varξ [g(θ;B, ϵ, ξ, ρ, ν]]: As the variance sums up for each parameter θ(l), we
can further decompose the variance as

EB,ϵ[Varξ [g(θ;B, ϵ, ξ, ρ, ν]] =
L∑

l=1

EB,ϵ

[
Varξ

[
g(l)(θ;B, ϵ, ξl, ρ, νl

]]
, (6)

where g(l) is the gradient of the l-th layer (i.e., ∇θ(l)). We control the variance of each layer sepa-
rately to keep EB,ϵ

[
Varξ

[
g(l)(θ;B, ϵ, ξl, ρ, νl)

]]
= τwVar

[
g(l)(θ;B)

]
. Again, this is achieved by

a zeroth-order algorithm:

νl ← νlβ
sign(EB,ϵ[Varξ[g(l)(θ;B,ϵ,ξl,ρ,νl)]]−τwVar[g(l)(θ;B)]), (7)

where Varξ
[
g(l)

]
can be computed analytically by Eq. 3, and β is a multiplier.

Now we are fully prepared to present the whole picture of VCAS in Alg. 1. Please refer to Ap-
pendix. D for more details about the algorithm.

6 EXPERIMENTS

6.1 TRAINING FLOPS REDUCTION

We assessed VCAS on multiple fine-tuning and pre-training tasks in both vision and natural language
domains. We compare our algorithm with the exact training and two previous works in BP sampling:
a loss based method SB(selective backprop) in Johnson & Guestrin (2018) and a gradient norm based
method UB(upper bound) in Katharopoulos & Fleuret (2018). We choose these two methods since
they are entirely online and need little modification to the original training pipeline like us. The
results are shown in Tab. 1. All results are the average of 3 different seeds except for BERT-base
pretraining and ViT finetuning on ImageNet-1k which we use 1.

6

Published as a conference paper at ICLR 2024

Algorithm 1 Variance controlled adaptive sampling(VCAS) for backpropagation
Require: update frequency F , Monte-Carlo repetition number M , variance tolerant ratio for activation τact,

for weight τw, s step size α, weight ratio multiplier β

s← 1, activation sample ratio schedule {ρl}Ll=1 ← 1, weight sample ratios {νl}Ll=1 ← 1
t← 0
while not converge do

if t mod F = 0 then
for i in 1, . . . ,M do

(Xi, yi)← batch selected randomly
SGD gradient Gs,i ← exact backward using (Xi, yi)
for j in 1, . . . ,M do

activation gradient Gact,i,j ← backward using (Xi, yi) with SampleA only
calculate weight variance Vw,i,j analytically with Eq. 3 and Eq. 6

end for
end for
SGD variance Vs ← 1

M−1

∑M
i=1

∥∥∥Gs,i − 1
M

∑M
i=1 Gs,i

∥∥∥2

F

activation variance Vact ← 1
M

∑M
i=1

(
1
M

∑M
j=1 ∥Gact,i,j −Gs,i∥2F

)
weight variance Vw ← 1

M

∑M
i=1

(
1
M

∑M
j=1 Vw,i,j

)
update s with Vact and Vs according to Eq. 5
update {ρl}Ll=1 with new s according to Eq. 4
update {νl}Ll=1 with Vw and Vs according to Eq. 7

end if
backward with SampleA and SampleW
t← t+ 1

end while

Note that to avoid falling into the pitfall of unfair comparison with baseline which is not tuned
under efficient settings as is pointed out by Dehghani et al. (2021) and Kaddour et al. (2023), for
all these experiments we use the same conservative setting of τact = τw = 0.025, α = 0.01, β =
0.95,M = 2. We preset all these values heuristically without any tuning or prior knowledge. The
only hyperpamater we modified among different tasks is the variance calculation frequency F , which
can be defined easily according to the total training steps.

In fact, all the hyperparameters introduced by VCAS have explicit meanings and are insensitive.
We show experimentally that though extra tuning may achieve a slightly better result, overall VCAS
is robust to these hyperparameters with reasonable values. Please refer to Appendix. A for details
about ablation studies on these insensitive hyperparameters.

For SB and UB, we both adopt a sample ratio of 1/3, since it’s the recommended setting in the
original papers and it can achieve a FLOPs reduction of 1 − (1 + 2 ∗ 1/3)/3 = 44.44% which is
close to the results we get in most tasks. An exception is BERT-base pretraining task where we find
the FLOPs reduction achievable is low so we manually set the sample ratio of SB and UB to get
the same FLOPs reduction as VCAS, so that they can still give a decent result. Nevertheless we are
indeed favoring these methods by helping them to define a reasonable sample ratio, which can not
be done themselves.

From the table we can see that overall VCAS is better than SB and UB with the least impact on final
train loss and final evaluation accuracy. With FLOPs reduction of up to 49.58%, VCAS can still
achieve nearly the same results with the exact counterpart.

6.2 WALL-CLOCK TIME REDUCTION

We record the wall-clock time of BERT-large finetuning on MNLI and ViT-large finetuning on
ImageNet-1k with NVIDIA 3090Ti, the results are depicted in Tab. 2 and Tab. 3.

From these tables, we can find that VCAS can translate FLOPs reduction into wall-clock time re-
duction as effectively as simpler online batch sampling methods like UB and SB that drop part of

7

Published as a conference paper at ICLR 2024

Table 1: Comparison of VCAS with other methods. Data format is Final Train Loss / Final Eval Acc.(%) for
exact, SB and UB, and Final Train Loss / Final Eval Acc.(%) / FLOPs reduction ratio(%) for VCAS. The
FLOPs reduction of SB and UB is 21.58% for BERT pretraining and 44.44% for other tasks. VCAS’s FLOPs
take account of the adaptation overhead. For BERT pretraining, accuracy=average performance on GLUE.
Bold indicates the best result of each metric except for exact. Underline means Eval Acc less than 0.1% off
the exact training.

Task Dataset exact SB UB VCAS

BERT-base
pretraining

C4 2.099 / 78.37 2.133 / 77.53 2.106 / 77.96 2.134 / 78.36 / 21.58

BERT-base
finetuning

MNLI-m 0.2372 / 84.33 0.3833 / 83.71 0.2957 / 83.82 0.2428 / 84.23 / 41.56
QQP 0.1143 / 91.00 0.1441 / 90.76 0.1964 / 89.53 0.1189 / 90.92 / 47.10
QNLI 0.1014 / 91.67 0.2017 / 90.58 0.1441 / 91.23 0.1056 / 91.29 / 44.45
SST-2 0.0559 / 92.59 0.0727 / 92.63 0.0743 / 92.82 0.0600 / 93.04 / 48.28

BERT-large
finetuning

MNLI-m 0.1439 / 86.58 0.2492 / 85.18 0.2266 / 86.09 0.1619 / 86.63 / 44.17
QQP 0.0885 / 91.64 0.1308 / 91.20 0.1751 / 90.51 0.0962 / 91.57 / 49.50
QNLI 0.0877 / 92.02 0.1436 / 91.50 0.1325 / 91.98 0.0640 / 92.15 / 46.19
SST-2 0.0537 / 93.60 0.1136 / 91.81 0.0838 / 93.40 0.0593 / 93.67 / 49.24

ViT-base
finetuning

CIFAR10 0.1868 / 98.92 0.2367 / 98.82 0.1923 / 98.94 0.1873 / 98.90 / 45.90
CIFAR100 0.8760 / 91.19 2.248 / 89.60 1.175 / 89.68 0.8811 / 91.08 / 29.32

ImageNet-1k 0.6032 / 82.27 0.6533 / 82.09 0.6109 / 82.28 0.6089 / 82.27 / 45.29

ViT-large
finetuning

CIFAR10 0.1359 / 99.24 0.1439 / 99.21 0.1378 / 99.17 0.1393 / 99.28 / 48.37
CIFAR100 0.4590 / 93.56 0.5983 / 93.07 0.5170 / 93.36 0.4649 / 93.64 / 38.67

ImageNet-1k 0.4135 / 82.04 0.4637 / 82.21 0.4242 / 82.21 0.4228 / 82.27 / 49.58

Table 2: Wall-clock time of BERT-large finetuning on MNLI.

Method Train Loss Eval Acc.(%) Wall-clock Time(h) FLOPs↓(%) Time↓(%)

exact 0.1439 86.58 5.478 - -
SB 0.2492 85.18 4.320 44.44 21.14
UB 0.2266 86.09 4.266 44.44 22.12

VCAS 0.1619 86.63 4.437 44.17 19.00

Table 3: Wall-clock time of ViT-large finetuning on ImageNet-1k.

Method Train Loss Eval Acc.(%) Wall-clock Time(h) FLOPs↓(%) Time↓(%)

exact 0.4135 82.04 52.29 - -
SB 0.4637 82.21 42.56 44.44 18.61
UB 0.4242 82.21 41.92 44.44 19.83

VCAS 0.4228 82.27 41.28 49.58 21.06

data one-time in a whole, while enjoying mirrored performance with the exact training under theo-
retical guarantee.

The success of VCAS comes in two ways. One is the fine-grained sampling strategy that samples
activation and weight jointly, which enables us to achieve much lower FLOPs given the variance
budget. The other is the variance controlled framework combined with the self-adaptation algorithm,
with which we are able to learn the proper sample ratios of different training phases. In the following
two subsections, we will experimentally show the effectiveness of these two folds.

6.3 EFFECTIVENESS OF FINE-GRAINED SAMPLING

We compare VCAS that samples activation and weight jointly with strategies that solely sampling
activation or weight. Specifically, we keep an equal extra variance for BERT-base finetuning on
MNLI. We set τact = τw = 0.025 for VCAS, τact = 0.05 for activation sampling only and τw =
0.05 for weight sampling only. We find that under the preliminary that τact, τw ≪ 1, the results

8

Published as a conference paper at ICLR 2024

0 10000 20000 30000 40000
steps

0.0

0.1

0.2

0.3

0.4

0.5

FL
OP

s r
ed

uc
tio

n
ra

tio 0.4156

0.2219

0.3406
VCAS
activation only
weight only

Figure 4: FLOPs reduction ratio of
VCAS vs. sampling activation or
weight solely with equal variance.

0 5000 10000 15000 20000 25000 30000 35000
steps

10 2

10 1

100

101

102

103

va
ria

nc
e

SGD_var
SGD_var * threshold

VCAS_act_var
VCAS_weight_var

UB_var
SB_var

Figure 5: Gradient variance of different methods.

of these sampling strategies show no significant difference due to controlled variance. While as is
shown in Fig. 4, VCAS can achieve a much greater FLOPs reduction with the same total variance
introduced. It’s reasonable since we can utilize more sparsity in both data and token dimensions
with a fine-grained sampling strategy of VCAS.

6.4 EFFECTIVENESS OF VARIANCE CONTROL AND SELF-ADAPTATION

In Fig. 5 we plot the variance of different methods during training process of BERT-base finetuning
on MNLI. We can find that VCAS is able to control the extra sampling variance introduced to our
preset threshold, while for other variance-unaware algorithms like UB and SB, the extra variance is
out of control with a similar FLOPs reduction.

With carefully controlled variance, a similar convergence with exact training is guaranteed as we
mentioned in the introduction. As is depicted in Fig. 1 and Fig. 6 for BERT-base finetuning on
MNLI, VCAS shares nearly the same convergence trajectory with the exact training with reduced
FLOPs, while UB converges slightly slower due to uncontrolled variance, and SB converges in an
entirely different trajectory with variance introduced far larger than exact.

0 10000 20000 30000
steps

0.4

0.6

0.8

1.0

Ev
al

 L
os

s

Exact
SB
UB
VCAS

(a) Validation loss

0 10000 20000 30000
steps

0.76
0.78
0.80
0.82
0.84

Ev
al

 A
cc

(b) Validation accuracy

0 10000 20000 30000
steps

0.4

0.6

0.8

1.0

Fl
op

s p
er

 it
er

at
io

n

(c) FLOPs per iteration

Figure 6: Convergence comparison of different sampling methods. FLOPs is normalized by exact training.

7 CONCLUSION

We propose VCAS, a robust sampling method for back propagation with controlled variance and
self-adaptive sample ratios. VCAS computes an approximate stochastic gradient by applying fine-
grained sampling to gradually remove samples and tokens during backpropagation. VCAS enjoys
similar variance, convergence trajectory, and final accuracy with exact back propagation, while re-
duces the training cost by up to 49.58%.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

The authors would like to thank Bingrui Li and Weiyu Huang for their valuable discussions and help
on algorithm design and implementation details. This work was supported by the National Key Re-
search and Development Program of China (No. 2021ZD0110502), NSFC Projects (Nos. 62376131,
62061136001, 62106123, 62076147, U19A2081, 61972224), Tsinghua Institute for Guo Qiang, and
the High Performance Computing Center, Tsinghua University. J.Z is also supported by the XPlorer
Prize.

REFERENCES

Guillaume Alain, Alex Lamb, Chinnadhurai Sankar, Aaron Courville, and Yoshua Bengio. Variance
reduction in sgd by distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more
accurate neural networks by emphasizing high variance samples. Advances in Neural Information
Processing Systems, 30, 2017.

Jianfei Chen, Lianmin Zheng, Zhewei Yao, Dequan Wang, Ion Stoica, Michael Mahoney, and Joseph
Gonzalez. Actnn: Reducing training memory footprint via 2-bit activation compressed training.
In International Conference on Machine Learning, pp. 1803–1813. PMLR, 2021.

Kai Lai Chung. A course in probability theory. Academic press, 2001.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019.

Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish Vaswani, and Yi Tay. The efficiency mis-
nomer. arXiv preprint arXiv:2110.12894, 2021.

Chaosheng Dong, Xiaojie Jin, Weihao Gao, Yijia Wang, Hongyi Zhang, Xiang Wu, Jianchao Yang,
and Xiaobing Liu. One backward from ten forward, subsampling for large-scale deep learning.
arXiv preprint arXiv:2104.13114, 2021.

Petros Drineas and Michael W Mahoney. Lectures on randomized numerical linear algebra. The
Mathematics of Data, 25(1), 2018.

Yang Fan, Fei Tian, Tao Qin, Jiang Bian, and Tie-Yan Liu. Learning what data to learn. arXiv
preprint arXiv:1702.08635, 2017.

Mohsen Fayyaz, Ehsan Aghazadeh, Ali Modarressi, Mohammad Taher Pilehvar, Yadollah
Yaghoobzadeh, and Samira Ebrahimi Kahou. Bert on a data diet: Finding important examples by
gradient-based pruning. arXiv preprint arXiv:2211.05610, 2022.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one
day. arXiv preprint arXiv:2212.14034, 2022.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
Zhou. Token dropping for efficient bert pretraining. arXiv preprint arXiv:2203.13240, 2022.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

10

Published as a conference paper at ICLR 2024

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R
Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating
deep learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate impor-
tance sampling. Advances in Neural Information Processing Systems, 31, 2018.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. arXiv preprint
arXiv:2307.06440, 2023.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Conglong Li, Zhewei Yao, Xiaoxia Wu, Minjia Zhang, and Yuxiong He. Deepspeed data efficiency:
Improving deep learning model quality and training efficiency via efficient data sampling and
routing. arXiv preprint arXiv:2212.03597, 2022.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo Cen, Weize Chen, Xu Han, Jianfei Chen,
Zhiyuan Liu, Jie Tang, Joey Gonzalez, et al. Gact: Activation compressed training for generic
network architectures. In International Conference on Machine Learning, pp. 14139–14152.
PMLR, 2022.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks.
arXiv preprint arXiv:1511.06343, 2015.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Win-
nie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Confer-
ence on Machine Learning, pp. 15630–15649. PMLR, 2022.

Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. Advances in neural information processing systems, 27,
2014.

Mahdi Nikdan, Tommaso Pegolotti, Eugenia Iofinova, Eldar Kurtic, and Dan Alistarh. Sparse-
prop: Efficient sparse backpropagation for faster training of neural networks. arXiv preprint
arXiv:2302.04852, 2023.

NVIDIA. Accelerating inference with sparsity using the nvidia ampere archi-
tecture and nvidia tensorrt. https://developer.nvidia.com/blog/
accelerating-inference-with-sparsity-using-ampere-and-tensorrt/,
2021.

Xu Ouyang, Shahina Mohd Azam Ansari, Felix Xiaozhu Lin, and Yangfeng Ji. Efficient model
finetuning for text classification via data filtering. arXiv preprint arXiv:2207.14386, 2022.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Find-
ing important examples early in training. Advances in Neural Information Processing Systems,
34:20596–20607, 2021.

Md Aamir Raihan and Tor Aamodt. Sparse weight activation training. Advances in Neural Infor-
mation Processing Systems, 33:15625–15638, 2020.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

11

https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/

Published as a conference paper at ICLR 2024

Vatsal Shah, Xiaoxia Wu, and Sujay Sanghavi. Choosing the sample with lowest loss makes sgd ro-
bust. In International Conference on Artificial Intelligence and Statistics, pp. 2120–2130. PMLR,
2020.

Zhewei Yao, Xiaoxia Wu, Conglong Li, Connor Holmes, Minjia Zhang, Cheng Li, and Yuxiong
He. Random-ltd: Random and layerwise token dropping brings efficient training for large-scale
transformers. arXiv preprint arXiv:2211.11586, 2022.

Minghe Zhang, Chaosheng Dong, Jinmiao Fu, Tianchen Zhou, Jia Liang, Jia Liu, Bo Liu, Michinari
Momma, Bryan Wang, Yan Gao, et al. Adaselection: Accelerating deep learning training through
data subsampling. arXiv preprint arXiv:2306.10728, 2023.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in Neural Information Processing Systems, 33:14011–
14023, 2020.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss
minimization. In international conference on machine learning, pp. 1–9. PMLR, 2015.

A ABLATION ON HYPERPARAMETERS

There are a few hyperparameters in our self-adaptation algorithm, but all of them have explicit
meaning. In this section we show that though extra tuning of these hyperparameters may achieve
a slightly better result, overall VCAS is robust to these hyperparameters with reasonable values.
We conduct ablation experiments on two tasks: BERT-base finetuning on SST-2 and MNLI. All the
results are averaged over 3 different seeds.

A.1 ACTIVATION AND WEIGHT VARIANCE THRESHOLDS τact, τw

The main hyperparameters in VCAS is the variance thresholds of activation τact and weight τw.
For these two thresholds, how to split total variance among them is a big problem with optimal
solution differing across models and tasks. So without prior knowledge introduced, we compromise
by keeping τact = τw = τ ≪ 1.

We further conduct an ablation on τ from 0.01 to 0.5 as is shown in Tab. 4 for SST-2 and Tab. 5 for
MNLI. From the results we can find that a satisfactory outcome is assured regardless of the specific
value of τ provided that τ ≪ 1, which proves the robustness of VCAS.

Table 4: Ablation on different variance thresholds τ of BERT-base finetuning on SST-2

τ 0(exact) 0.01 0.025 0.05 0.1 0.25 0.5

Final Train Loss 0.0559 0.0586 0.0600 0.0625 0.0642 0.0705 0.0761
Final Eval Acc(%) 92.59 93.07 93.04 93.25 92.81 92.79 92.18

FLOPs reduction(%) - 45.92 48.28 49.82 50.05 51.57 52.71

Table 5: Ablation on different variance thresholds τ of BERT-base finetuning on MNLI

τ 0(exact) 0.01 0.025 0.05 0.1 0.25 0.5

Final Train Loss 0.2372 0.2388 0.2428 0.2459 0.2552 0.2684 0.2805
Final Eval Acc(%) 84.33 84.31 84.23 84.33 84.07 84.13 84.08

FLOPs reduction(%) - 38.59 41.56 43.49 45.37 47.53 48.92

A.2 MONTE-CARLO REPETITIONS M

To calculate variances, VCAS introduces an overhead of extra iterations quadratic with Monte-Carlo
repetitions M .

12

Published as a conference paper at ICLR 2024

0 2000 4000 6000
steps

10 2

10 1

100

101

102

va
ria

nc
e

Vs M = 10
Vs M = 5
Vs M = 3
Vs M = 2

Vact M = 10
Vact M = 5
Vact M = 3
Vact M = 2

Vw M = 10
Vw M = 5
Vw M = 3
Vw M = 2

Figure 7: Variance calculated with
different Monte-Carlo samples M of
BERT-base finetuning on SST-2.

0 10000 20000 30000
steps

10 1

100

101

102

va
ria

nc
e

Vs M = 10
Vs M = 5
Vs M = 3
Vs M = 2

Vact M = 10
Vact M = 5
Vact M = 3
Vact M = 2

Vw M = 10
Vw M = 5
Vw M = 3
Vw M = 2

Figure 8: Variance calculated with
different Monte-Carlo samples M of
BERT-base finetuning on MNLI.

Obviously bigger M will bring more precise empirical variance, yet the cost is prohibitive.

We experiment on different M from 2 to 10 and find no significant difference in the empirical
variance as is shown in Fig. 7 for SST-2 and Fig. 8 for MNLI. Therefore, we adopted the setting
of M = 2, with which we only need to perform 6 extra iterations that is negligible if the variance
calculation frequency is large enough like 100 in SST-2 and 500 in MNLI.

A.3 VARIANCE CALCULATION FREQUENCY F

Similar to M , the variance calculation frequency F is also a trade-off between better empirical
approximation and less overhead introduced. We experimented on F = 50, 100, 200, 500, 1000 in
Tab. 6 for SST-2 and Tab. 7 for MNLI. We can see that although as F grows larger the overhead of
VCAS is gradually relieved, with a too large F , like F = 1000 in SST-2 that leads to only 6 times of
self-adaptation update, the sample ratio schedule is not fully explored and the final FLOPs reduction
is even smaller. Therefore, for all these tasks we set F to be at least 1/50 of total training steps and
no more than 500 due to slight marginal gains.

Table 6: Ablation on different adaptation frequency F of BERT-base finetuning on SST-2, the num-
ber of training steps is 6315.

F 0(exact) 50 100 200 500 1000

Final Train Loss 0.0559 0.0589 0.0600 0.0587 0.0577 0.0562
Final Eval Acc(%) 92.59 92.71 93.04 92.56 93.15 93.19

FLOPs reduction(%) - 47.33 48.28 46.06 39.43 31.03

Table 7: Ablation on different adaptation frequency F of BERT-base finetuning on MNLI, the num-
ber of training steps is 36816.

F 0(exact) 50 100 200 500 1000

Final Train Loss 0.2372 0.2460 0.2461 0.2440 0.2428 0.2428
Final Eval Acc(%) 84.33 84.20 84.23 84.12 84.23 84.21

FLOPs reduction(%) - 35.16 39.58 41.31 41.56 39.43

A.4 s UPDATE STEP α AND WEIGHT RATIO MULTIPLIER β

A simple grid search is conducted for α ∈ {0.005, 0.01, 0.02} and β ∈ {0.95, 0.9, 0.8} in Fig. 9 for
SST-2 and Fig. 10 for MNLI. From the figures, we can find that we are able to trade convergence
for efficiency with a more aggressive setting of larger α and smaller β, yet all results here are decent

13

Published as a conference paper at ICLR 2024

with a final accuracy drop of no more than 0.3% for both tasks. Thus, VCAS is robust to different α
and β.

0.95 0.9 0.8

0.02

0.01

0.005

0.0606 0.0597 0.0601

0.0600 0.0592 0.0599

0.0591 0.0595 0.0597

0.0590

0.0595

0.0600

0.0605

0.0610

(a) Train Loss

0.95 0.9 0.8

0.02

0.01

0.005

92.93 92.60 92.82

93.04 92.89 92.48

93.12 93.04 92.74 92.4

92.6

92.8

93.0

93.2

(b) Eval Acc(%)

0.95 0.9 0.8

0.02

0.01

0.005

48.68 49.59 50.08

48.28 49.06 49.78

46.27 47.25 48.75
46

47

48

49

50

(c) FLOPs reduction(%)

Figure 9: Grid search of s update step α and weight ratio multiplier β of BERT-base finetuning on
SST-2. The darker color the better.

0.95 0.9 0.8

0.02

0.01

0.005

0.2462 0.2451 0.2456

0.2428 0.2426 0.2457

0.2418 0.2442 0.2434
0.242

0.244

0.246

0.248

(a) Train Loss

0.95 0.9 0.8

0.02

0.01

0.005

84.12 84.21 84.19

84.23 84.29 84.17

84.29 84.16 84.18

84.05

84.10

84.15

84.20

84.25

84.30

(b) Eval Acc(%)

0.95 0.9 0.8

0.02

0.01

0.005

42.05 42.74 43.98

41.56 42.89 43.51

40.84 42.38 42.93

40

41

42

43

44

(c) FLOPs reduction(%)

Figure 10: Grid search of s update step α and weight ratio multiplier β of BERT-base finetuning on
MNLI. The darker color the better.

From all the ablation results above, we can see that VCAS is robust to all these hyperparameters
with reasonable values, proving the insensitiveness.

B INSIGHTS ON UPDATE OF s, {ρl} AND {νl}

In this section, we will show how the gradient norm preserving ratio s as well as all the sample ratios
{ρl} and {νl} update across the training.

We record the update process of BERT-base finetuning on MNLI with different variance tolerance
thresholds τ as in Appendix. A.1. All results are averaged on three different seeds.

Fig. 11a depicts the update of s. For non-decreasing {ρl}, we plot the update of the first and the last
values ρ1, ρL in Fig. 11b, with other values lying between. For {νl}, we show the update of the first
three ones ν1, ν2, ν3 in Fig. 11c and observe similar behavior of other weights.

It is seen in Fig. 11 that during training of BERT-base on MNLI, the gradient norm preserving ratio s
first decreases and then shows a slight downward trend. The activation sample ratios {ρl} gradually
decrease with an abrupt change between epochs due to the rapid decline of train loss caused by
the lowered learning rate in the linear learning rate scheduler. The weight sample ratios {νl} first
decrease and then fluctuate to match the change of activation sample ratios.

C PERFORMANCE ON CNN

In Sec. 6, we mainly experiment with Transformer-based models and Adam optimizers. But the
variance controlled adaptation depicted in Sec. 5 holds universally for any DNNs with SGD-based
optimizers, since it just provides an approximated stochastic gradient with controlled variance to
estimate the full gradient. In this section, we employ VCAS on other architectures and other opti-
mizers to prove its versatility.

14

Published as a conference paper at ICLR 2024

0 10000 20000 30000
steps

0.75

0.80

0.85

0.90

0.95

1.00

s

= 0.5
= 0.25

= 0.1
= 0.05

= 0.025
= 0.01

(a) Update of s

0 10000 20000 30000
steps

0.2

0.4

0.6

0.8

1.0

1 = 0.5
L = 0.5
1 = 0.05
L = 0.05

1 = 0.25
L = 0.25
1 = 0.025
L = 0.025

1 = 0.1
L = 0.1
1 = 0.01
L = 0.01

(b) Update of {ρl}

0 10000 20000 30000
steps

0.2

0.4

0.6

0.8

1 = 0.5
2 = 0.5
3 = 0.5
1 = 0.05
2 = 0.05
3 = 0.05

1 = 0.25
2 = 0.25
3 = 0.25
1 = 0.025
2 = 0.025
3 = 0.025

1 = 0.1
2 = 0.1
3 = 0.1
1 = 0.01
2 = 0.01
3 = 0.01

(c) Update of {νl}

Figure 11: VCAS update process with different τ for BERT-base finetuning on MNLI.

For CNN, it is noted that the weight sampler SampleW in Sec. 4 designed for linear layers is not us-
able for convolution layers. Thus we employ VCAS with a degraded version of activation sampling
only.

We experiment with WideResNet-18 with widen factor w = 4 pretraining on ImageNet. We use
eight NVIDIA 3090Ti to parallel the training with Distributed Data Parallel(DDP). We employ
SGDM optimizer with momentum m = 0.9. The results are in Tab. 8.

Table 8: Training results of WideResNet-18 pretraining on ImageNet with 8 NVIDIA
3090Ti.

Method Train Loss Eval Acc(%) Train Time(h) FLOPs↓(%) Time↓(%)

exact 1.474 75.96 21.31 - -
VCAS 1.479 75.86 20.20 17.47 5.21

From the table we can see VCAS is also capable of accelerating the training of CNN. Besides, the
parallel setting also proves the parallelizability of VCAS. The relatively low but still decent time
reduction can be explained with Amdahl’s Law since VCAS only accelerate the calculation part and
is not able to accelerate other parts like communication cost during parallel training.

D DETAILS ABOUT ALGORITHM. 1

It should be noted that some parts of Alg. 1 are simplified for clarity and we list the implementation
details below:

In the algorithm table, we put the calculation of empirical variances out of the two Monte-Carlo
loops for simplicity. Yet practically we can calculate Vact and Vw inside the loops and average the
variance scalars outside. Therefore, we only need to store three tensors additionally regardless of
M : SGD gradient Gs,i to calculate Vact, and its running mean and running square mean to calculate
Vs. By sampling only part of parameters to keep gradients, like 1% in our experiments, the memory
overhead can be neglected.

Besides, since weight sample ratios {νl} are updated parameter-wise according to Eq. 7, the empir-
ical weight variances and SGD variances are also stored parameter-wise when implemented.

Update of activation sample ratios {ρl} requires finding out gradient sparsity {pl} with the new s
according to Eq. 4. In implementation, this is achieved by calculating possible new {ρl} with both
s + α and s − α inside the Monte-Carlo loops and averaging them outside. Then just choose the
proper one with new s.

15

Published as a conference paper at ICLR 2024

E PROOF

E.1 PROOF TO UNBIASEDNESS OF VCAS

Let’s first consider a L-layer MLP. (Note: for simplicity we mildly abuse the term ”layer” here,
representing a single operation like matrix multiplication and ReLU)

For the last layer L, the output gradient ∇Z(L) is calculated from the loss directly, the same as the
Exact BP. Since activation sampler ∇̂Z(L) = SampleAϵ,ρL

(∇Z(L)) is unbiased, we have:

E
[
∇̂Z(L)

]
= ∇Z(L)

When back propagation proceeds, we may encounter two types of layers: linear and non-linear. For
the linear layer, we have:

∇Z(L−1) = ∇̂Z(L)θ(L)

Thus unbiasedness is preserved with the output gradient of the (L− 1)-th layer:

E [∇Z(L−1)] = E
[
∇̂Z(L)

]
θ(L) = ∇Z(L)θ(L) = Exact BP result

While for the non-linear layer like ReLU, we have:

∇Z(L−1) = ∇̂Z(L) ⊙ JZ(L)

where ⊙ is the Hadamard product and JZ(L) is the Jacobbi matrix determined by Z(L) which is
saved in forward pass and is exact. Thus again we derive the the output gradient of the (L − 1)-th
layer being unbiased:

E [∇Z(L−1)] = E
[
∇̂Z(L)

]
⊙ JZ(L) = ∇Z(L) ⊙ JZ(L) = Exact BP result

Thus by induction, VCAS assures all activation gradients ∇̂Z(l) , l = 1 . . . L being unbiased.

Then for weight gradients, since weight sampler ∇̃Z(l) = SampleWξl,νl

(
∇̂Z(l) , Z(l−1)

)
is unbi-

ased, we have:

E
[
∇̃Z(l)

]
= E

[
∇̂Z(l)

]
= ∇Z(l)

Finally, we derive all weight gradients being unbiased:

E [∇θ(l)] = E
[
∇̃Z(l)

]⊤
Z(l−1) = ∇⊤

Z(l)Z
(l−1) = Exact BP result

For more complicated neural networks like CNN and Transformer, since operations like convolu-
tions and layernorm are all linear transforms, by similar reasoning the unbiasedness still holds.

F EXPERIMENT DETAILS

F.1 BERT-BASE PRETRAINING

For BERT-base pretraining we use a crammed BERT in Geiping & Goldstein (2022) with the recipe
same as the original settings of 1 day training on a single NVIDIA 2080Ti. The full results are as
follows in Tab. 9

From the table we can find that although VCAS achieves a relatively high train loss, the downstream
task performance is still competent with exact training. While SB and UB both perform worse
on CoLA, which is a vulnerable task, reflecting that they have changed the original convergence
trajectory of SGD.

16

Published as a conference paper at ICLR 2024

Table 9: Full results on BERT-base pretraining

Methods Loss MNLI-m MNLI-mm QQP QNLI SST2 CoLA STSB MRPC RTE Avg.

exact 2.099 82.28 82.68 87.08 88.85 91.28 48.07 83.26 86.98 54.87 78.37
SB 2.133 82.34 82.86 87.27 88.63 91.28 41.82 82.86 85.53 55.23 77.53
UB 2.106 82.95 83.46 87.27 88.66 91.05 42.80 83.68 85.90 55.95 77.96

VCAS 2.134 82.03 82.82 86.92 89.23 91.62 48.36 83.02 86.03 55.23 78.36

F.2 RECIPE OF OTHER TASKS

For BERT finetuning, we use AdamW optimizer with lr = 2e−5 and wd = 0.01. The learning rate
scheduler is a linear one with warmup ratio = 0.1. We set epoch numbers N = 3 and a batch size
of batch size = 32.

For ViT finetuning, we use Adam optimizer with lr = 2e−5. A linear lr scheduler with no warmup
employed. We run N = 5 epochs with batch size batch size = 32

G LIMITATIONS

VCAS is designed for adaptively learning the proper sample ratios of large model training on large
datasets. It is not suitable for small models with low gradient variances resulting in increased nu-
merical errors, or small datasets with few training steps that is insufficient for the update process in
VCAS.

The weight sampler SampleW in VCAS is specially designed for linear layers and is not usable
for other operations like convolution. But the activation sampler SampleA can be applied to all
mainstream architectures with deep layers. So for CNN or RNN, we need to employ a degraded
version of VCAS with activation sampling only, as shown in Appendix. C.

VCAS focuses on mirroring the exact training with theoretical guarantee and is lack of exploration
of other possible convergence trajectories that may bring a better result. Thus it is not recommended
when the original training recipe is under-optimized.

17

	Introduction
	Related Work
	Variance-Controlled Sampling as Stochastic Optimization
	Fine-Grained Sampling
	Activation Gradient
	Weight Gradient

	Adapting Sample Ratios
	Experiments
	Training FLOPs reduction
	Wall-clock time reduction
	Effectiveness of fine-grained sampling
	Effectiveness of variance control and self-adaptation

	Conclusion
	Ablation on hyperparameters
	activation and weight variance thresholds act,w
	Monte-Carlo repetitions M
	variance calculation frequency F
	s update step and weight ratio multiplier

	Insights on update of s, {l} and {l}
	Performance on CNN
	Details about Algorithm. 1
	Proof
	Proof to unbiasedness of VCAS

	Experiment Details
	BERT-base pretraining
	Recipe of other tasks

	Limitations

