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ABSTRACT

We propose a novel framework RAML for interpreting the reasoning capabilities
of large language models (LLMs) through the perspective of meta-learning. By
conceptualizing reasoning trajectories as pseudo-gradient descent updates to the
LLM'’s parameters, we identify parallels between LLM reasoning and various meta-
learning paradigms. We formalize the training process for reasoning tasks as a
meta-learning setup, with each question treated as an individual task, and reasoning
trajectories serving as the inner loop optimization for adapting model parameters.
Once trained on a diverse set of questions, the LLM develops fundamental rea-
soning capabilities that can generalize to previously unseen questions. Extensive
empirical evaluations substantiate the strong connection between LLM reasoning
and meta-learning. We further explore the potential of the proposed RAML to
advance LLM reasoning and provide valuable insights. Our work deepens the
understanding of LLM reasoning processes and provides actionable insights for
enhancing these models through established meta-learning techniques.

1 INTRODUCTION

Recent advancements in large language models (LLMs) (Dubey et al., 2024; Yang et al., 2024a;
OpenAl, 2023; DeepSeek-Al et al., 2024) have significantly improved their capacity to perform
complex reasoning tasks. Current LLMs often utilize chain-of-thought (CoT) reasoning (Wei et al.,
2022; Chen et al., 2025b) (i.e., intermediate reasoning trajectories), to facilitate systematic problem-
solving through coherent, step-by-step logical deductions. Among them, state-of-the-art LLMs, such
as OpenAl-o-series (OpenAl, 2024b;a), DeepSeek-R1 (DeepSeek-Al et al., 2025), Kimi-k1.5 (Team
et al., 2025), Qwen3 (Yang et al., 2025a), and Gemini-2.5-Pro (Deepmind, 2025), exhibit exceptional
proficiency in addressing intricate mathematical and programming challenges. These models employ
long reasoning trajectories, characterized by an iterative and detailed process of exploration and
reflection, to enhance test-time scaling capabilities (Li, 2025; Teng et al., 2025; Shah et al., 2025).
This iterative approach has driven significant progress in complex reasoning while motivating the
studies to illuminate the potential of supervised fine-tuning (SFT) and reinforcement learning (RL)
methods to refine the learning and application of extended reasoning processes (Qin et al., 2024; Min
etal., 2024).

Despite significant advancements, comprehending and interpreting how LLMs achieve prominent
reasoning capabilities through reasoning trajectories remains crucial for further enhancement and
generalization (Jiang et al., 2020; Feng et al., 2023). The opaque nature of LLMs’ internal mechanisms
hinders efforts to comprehend their operations (Shi et al., 2025). Recent studies (Merrill et al., 2022;
Chiang et al., 2023; Giannou et al., 2023; Liu et al., 2023) have explored the representational power
of reasoning trajectories, showing that LLMs equipped with these trajectories can solve complex
problems. Other research (Gatmiry et al., 2024; Huang et al., 2025) demonstrates that reasoning
trajectories can effectively describe complex learning algorithms. Nevertheless, there is a notable gap
in research exploring the fundamental role of reasoning trajectories in LLM reasoning and connecting
diverse training approaches to enhance these capabilities. To address this, we propose RAML
(Reasoning as Meta-Learning), a methodology that analyzes LLM reasoning through a meta-learning
perspective (Schmidhuber, 1987; Andrychowicz et al., 2016; Ravi & Larochelle, 2017; Finn et al.,
2017; Hospedales et al., 2022). We conceptualize reasoning trajectories as pseudo-gradient descent
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updates to model parameters, leveraging established meta-learning methodologies, such as Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017) and Learn to Optimize (L20) (Andrychowicz
et al., 2016), to enhance both the understanding and optimization of LLM reasoning.

To be more specific, RAML frames the training regimen for reasoning tasks as a meta-learning
framework, wherein each question constitutes a distinct task, reasoning trajectories serve as inner-
loop optimization for parameter adaptation, and answers act as the query set to optimize LLMs. In
the context of RAML, the training process optimizes the LLM to develop generalized reasoning
abilities, identifying an effective meta-initialization that enables efficient parameter adaptation
through reasoning trajectories to produce accurate responses. This approach provides a theoretical
foundation for analyzing LLM reasoning capabilities and training, while facilitating the application
of meta-learning insights to advance LLM reasoning research.

RAML framework is complemented by comprehensive experiments and analysis involving both
models trained from the base LLMs and publicly available models. Drawing on meta-learning
studies (Liu et al., 2020; Triantafillou et al., 2020; 2021; Agarwal et al., 2021; Lee et al., 2019;
Collins et al., 2022), we conduct experiments to explore key factors influencing LLM reasoning
by framing them within a meta-learning perspective. These experiments further confirm a strong
connection between trajectory-based LLM reasoning and meta-learning principles. Furthermore,
we have demonstrated that RAML has the potential to advance the development of LLM reasoning.
We propose potential strategies for enhancing LLM reasoning capabilities based on RAML and
validate their effectiveness in improving reasoning performance. Our contributions are summarized
as follows: @ To elucidate the reasoning processes of LLMs, we introduce RAML, an interpretation
methodology for LLM reasoning from a meta-learning perspective, supported by a comprehensive
theoretical analysis; ® We provide empirical evidence and detailed analysis, demonstrating a strong
correspondence between LLM reasoning and meta-learning principles; ® We contextualize recent
advances in LLM reasoning within our framework, offering comprehensions into their success; @
We propose simple methods and present meaningful insights to advance LLM reasoning, building on
the existing meta-learning research and analysis addressed in our work.

2 RAML: INTERPRETING LLM REASONING AS META-LEARNING

In this section, we elucidate the interpretation methodology for the large language model (LLM)
reasoning from a meta-learning (Schmidhuber, 1987; Andrychowicz et al., 2016; Ravi & Larochelle,
2017; Finn et al., 2017; Hospedales et al., 2022) perspective, i.e., RAML. First, we conceptualize
the reasoning trajectories as a pseudo gradient update to the parameters of the LLM (§ 2.2) and
subsequently develop a meta-learning framework to model the training process for the reasoning
task (§ 2.3). As a supplement, we establish connections between various training techniques and our
proposed definition in § E. The notations used in this section are listed in § A.

2.1 SETUP

In this paper, we represent the large language model (LLM) as My, where 0 signifies the parameters
of the LLM. We focus on a specific reasoning task that involves a set of questions denoted as
Q = {@i}ie1,n and its corresponding answers A = {a; };c[1,)- Typically, the LLM is prompted to
generate the answer a based on the instruction I and the question g;:

d (Mg(T;¢:)) = as, e

where d denotes the autoregressive decoding mechanism (Vaswani et al., 2017; Radford et al., 2018),
which is specifically defined as follows:

pola;) = H Softmax (Eg - My (I, ¢, t,al, ...,afl)) [ai} . 2)
0<5<]aq|
Here, {a?7 c. 7al‘”l} denotes the token set of the answer a, t represents the possible intermediate

reasoning trajectories, and E¢ indicates the output embeddings of the entire token set (i.e., vocabu-
lary). Intuitively, My (I, g;, t,a?, ... a] _1> represents the activation determined by the parameters

et}

0 and the inputs, while the predicted probability is computed through the inner product between the
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Figure 1: Illustration of the reasoning trajectory (¢) as the optimization of the LLM parameters 6.

output embeddings and the activation. The activation, representing the output at the final position, is
computed iteratively through the self-attention and feed-forward layers of the LLM. During training,
the LLM M is optimized to deliver accurate answers to each question:

O = max Z s(al, a;), 3)
(qi,a:)€EQxA
where a} means the predicted answer for ¢;, and s(a’, @) indicates the plausibility of a’ w.r.t. a, which
also defines a loss landscape.

2.2 REASONING TRAJECTORIES AS PARAMETER UPDATE

Recent works (Brown et al., 2020; Wei et al., 2022; OpenAl, 2024b; DeepSeek-Al et al., 2025)
demonstrate that incorporating intermediate reasoning steps can significantly enhance the capacity
of large language models to execute complex reasoning tasks. Moreover, some studies (Dai et al.,
2023; Bai et al., 2023; Giannou et al., 2023; Gatmiry et al., 2024; Fu et al., 2024; Huang et al., 2025)
theoretically demonstrate that models based on the transformer architecture can learn to perform
iterative algorithms like multi-step GD with the enhancement of CoT (which we called reasoning
trajectories in this paper). However, these studies primarily focus on explicit numerical optimization
problems, such as linear regression, and demonstrate that LLMs can learn optimization algorithms
like multi-step GD in the reasoning trajectories to solve the problem. In contrast, we conceptualize
the reasoning trajectories of an LLM M as a multi-step gradient descent process of the model’s
parameters 6, which could be formally represented by:

0; 0, + MMy (I,q,t<i), 0p=10, 1<i<|t, 4)

where ¢ denotes a reasoning trajectory, AMy, (I, q,t<;) = —nVe_ L4(0;_;) represents the
pseudo gradient update associated with the reasoning trajectory t<;, and 9|’ ¢ signifies the updated

parameters of the LLM in response to the instruction I, the query ¢, and the reasoning trajectory t.

In summary, we conceptualize each question ¢; as a sophisticated optimization task, with the LLM
M being optimized to produce the corresponding answer a;. Prior to generating the final answer,
the LLM is guided by an intermediate reasoning trajectory, which serves as a parameter update
mechanism. The overall process is illustrated in Figure 1.

Pseudo Gradient Update. Without loss of generality, we consider a classic transformer
model (Vaswani et al., 2017) comprising a single self-attention layer and a two-layer feed-forward
network while disregarding normalization layers and other components. When using | = {7, ¢} as
input, its activation can be expressed as follows:

W (o (W (Softmax (E;, W, W/ E[")) E,;W,) + b1)) + bs, )
where FE; . indicates the input embeddings of the whole sequence ! and E; _; indicates the
input embeddings of the last position of [. In this context, the parameters 6 refers to
{W,, Wy, W,, W1, Ws,bq,b2}. Then, given a reasoning trajectory ¢, when attending to the first
token ¥ of ¢ activation is changed to:

T
wl <O’ <W1T (Softmax (Et,OWquT {gtlo} ) [520] Wy> + b1>> + ba. (6)

Proposition 2.1 (One-Step Pseudo Gradient Update). There exists a set of parameters, denoted as
01, which includes {Wé, W, W/, W{ W}, b, ’2} allowing Equation (6) to be expressed in the
following form:

W3T (o (W (Softmax (E; _ W, W E[') E,.W,) + b)) + b, (7
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Figure 2: Landscape of the plausibility regarding LLMs to generate accurate answers. We apply
the methodology proposed by Li et al. (Li et al., 2018). The questions qo, g1, g2, g3 are selected
from AIME24. Additionally, we project the trajectory of the pseudo-gradient update onto the
landscape (purple line). Please refer to § G.1 for more details.

where 0, represents the one-step update of 0 and the increment AMg(I,q,t°) is only associated
with 0, I, q, and t°.

According to Theorem 2.1 (the proof can be found in § D), as the model progressively attends to the
entire reasoning trajectory, the model parameters 6 are updated incrementally, a process referred to as
the pseudo gradient update.

Empirical Evidence. We provide empirical evidence for the pseudo-gradient update where the
model’s confidence in the answer functions serves as a probe. Specifically, we calculate the negative
log-probability of the answer at each position (denoted as Z) within the generated trajectories by
appending Final Answer\n\boxed{...answer. ..} oneach position. This method provides
an alternative approach to observing the overall optimization objective (Equation (3)), with models
becoming more optimal as L decreases. Figure 2 displays the corresponding landscape of the negative
log-probability. More examples and details are provided in § [.3.

2.3 A META-LEARNING PERSPECTIVE ON LLM REASONING

Building upon the previous discussion, we present a meta-learning perspective, named RAML, for
modeling the process and the training of the LLM reasoning capability. We consider each question g;
within the question set as an independent task in the meta-learning. During training (e.g., supervised
fine-tuning (Howard & Ruder, 2018; Radford et al., 2018; Devlin et al., 2019) or reinforcement
learning (Mnih et al., 2013; Schulman et al., 2017; Ouyang et al., 2022; DeepSeek-Al et al., 2025)) on
the question set {g; }, the LLM My is prompted to solve a new question ¢; by following a reasoning
trajectory ¢. Initially, the parameters 6 are updated to 8} using one or more pseudo gradient descent
update indicated by the reasoning trajectory ¢. Subsequently, the LLM is optimized by pseudo second
order gradient, formally expressed as follows:

mein Z Z Ly, (My;) = r%in Z Z Lq, Mosarmotan) ®)

¢ €QteT; ¢ €EQLET;

where 7; denotes the set of reasoning trajectories corresponding to the question ¢; and 6 +
AMy(1,q,t) indicates the multi-step update of 6 as detailed in Equation (4).

Intuitively, RAML can be perceived as a variant of Model-Agnostic Meta-Learning (MAML,
detailed in § B) (Finn et al., 2017), where the update of 6 using reasoning trajectories function as
the inner loop, while the final optimization of the answer decoding distribution constitutes the outer
loop, as outlined in § C. In RAML, the gradient update associated with the latent support set is
represented by the reasoning trajectories, whereas the answer denotes the guery set. There are no
explicit evaluations (i.e., loss computation and backward) during the inner loop, as the gradient update
is implicitly dictated by the reasoning trajectories. Although the model weights have not been directly
updated, the pseudo update enables the LLM to simulate question-specific optimization within a
specific reasoning trajectory, thereby significantly enhancing the accuracy and stability of LLM
reasoning. During the training process, the parameters of the LLM, denoted as 6, are updated to th_’tj
according to the given reasoning trajectory t; in the inner loop. In the outer loop, the parameters of
the LLM are optimized using the second-order gradient (£,, — Hfli,tj — 0). The LLM is optimized

4
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Table 1: The evaluation performance of Qwen2.5-7B-Base trained using both SFT and Zero-GRPO
training methods. In this context, “Qwen” refers to the abbreviation for Qwen2.5-Math-Instruct, and
“Distil-Qwen” denotes DeepSeek-R1-Distill-Qwen-14B. Green cells indicate the best performance in
each column, while Blue cells indicate the second-best performance.

Techniques  Source AIME24 MATHS500-L5 LiveMathBench-Hard
q Pass@8 1 mG-Pass@87 Pass@81 mG-Pass@81 Pass@81T mG-Pass@8 1
SFT Qwen 20.34 7.43 58.42 35.65 26.77 7.43
Distill-Qwen 36.69 10.29 82.98 45.79 25.15 10.46
Zero-GRPO - 27.37 4.08 71.66 30.48 27.48 8.21

Table 2: Performance of Zero-GRPO model and GRPO model based on the SFT cold start.

Techniques AIME24 MATHS500-L5 LiveMathBench-Hard
q Pass@81T mG-Pass@81 Pass@817 mG-Pass@81 Pass@81 mG-Pass@8 1
Zero-GRPO 27.37 4.08 71.66 30.48 27.48 8.21

+SFT Cold Start  35.87y31,  11.2311750, 82421150, 44.92.400 42171550 18.841 1599

to provide an effective and robust foundation for answering questions (tasks), allowing its parameters
to be easily adapted based on the reasoning trajectories associated with these questions, thereby
facilitating answer generation.

Additionally, in the standard MAML process, a few-shot support set is typically required to fine-tune
the model on a new task. In the LLM reasoning scenario, this support set, comprising reasoning
trajectories, is generally generated by the LLM itself. Thus, the inner loop’s optimization process
in RAML resembles Learn-to-Optimize (L.20) (Andrychowicz et al., 2016; Li & Malik, 2017a;b),
which involves learning a parameterized optimizer to automate the optimization of various tasks.
Specifically, during the LLM reasoning training, the LLM is trained to function as the meta-optimizer,
generating an inner loop optimization path tailored to the specific question.

3 EMPIRICAL ANALYSIS ON LLM REASONING FROM META-LEARNING
PERSPECTIVE

Building on a meta-learning perspective of LLM reasoning, this section explores key factors that
influence LLM reasoning. Specifically, we study and analyze key issues of interest in the research
community regarding LLM reasoning by instantiating them within the framework of meta-learning,
referencing relevant research findings in this domain. We focus on the following problems: @ Which
training strategy, SFT or RL, is more effective for LLM reasoning, and why (§ 3.2)? & Why do
longer reasoning trajectories enhance reasoning performance (§ 3.3)? ® What principles behind
reasoning-efficiency methodology contribute to the trade-off between cost and performance (§ 3.3)?
O Does trajectory-aided reasoning generalize effectively across different domains (§ 3.4)?

3.1 EXPERIMENT SETUP

Reasoning Task. In this paper, we mainly focus on the mathematical reasoning task due to its broad
applicability and prominence in the research community and we also include other reasoning tasks in
§ 3.4 for the study of generalization.

Training. To minimize the impact of the post-training, we train Qwen2.5-7B-Base (Yang et al.,
2024a) from scratch and conduct experiments on it. We involve SFT for the off-policy training
and (Zero-)GRPO (Shao et al., 2024) for the on-policy training. The training data, sourced from
Open Reasoner Zero (Hu et al., 2025), initially comprised approximately 57k questions, refined to
39k through filtering (see § G.2 for details). Synthetic reasoning trajectories are generated using
Qwen2.5-Math-72B-Instruct (Yang et al., 2024b) and DeepSeek-R1-Distill-Qwen-14B (DeepSeek-Al
et al., 2025). Further training details are provided in § G.2.

Evaluation. We primarily evaluate performance using three mathematical reasoning benchmarks
orthogonal to the training data: AIME24 ', MATHS500 (Lightman et al., 2024) (Level 5 questions

"https://huggingface.co/datasets/AI-MO/aimo-validation-aime
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selected for greater discrimination), and LiveMathBench-Hard (Liu et al., 2024). We also include
GPQA (Rein et al., 2023) and LiveCodeBench (Jain et al., 2024) to assess generalization. Model
outputs are generated with a temperature of 1.0, top-p of 0.8, top-%k of 50, and a maximum output
length of 16, 384 tokens. We report mG-Pass @k (Liu et al., 2024) for stability and Pass@¥k (Chen
et al., 2021) for performance. Additional evaluation details are in § G.3.

3.2 INNER LOOP OPTIMIZATION v.s. REASONING TRAJECTORY SOURCE

The inner loop optimization is crucial in meta-

learning, as the results of this process signifi- on-Policy off-Policy Base Model |
Cantly lmpaCt the Stablhty and_ performance Of Off-Policy v.s. On-Policy on AIME24  Off-Policy v.s. On-Policy on AIME24
the final model. In the definition of RAML, T ® Ughirr-a28 @ Openinker2 28

the LLM needs to learn as the inner loop opti-
mizer, generating an optimization trajectory for
each query. It is well-documented that training @
learned optimizers presents considerable chal- ‘?30
lenges (Lan et al., 2024). In this section, we will ~ » 0 | s sveon

discuss the development of inner loop optimiz- ~ ©

ers for SFT and GRPO training techniques. The " rainng date. " rainng date.
biggest difference between them is the source

of the reasoning trajectories used for training: Figure 3: Performance of base models, mod-
1) on-policy, where the trajectories are gener- els trained on off-policy data (SFT), and mod-
ated by the LLM currently being updated, and 2) els trained on on-policy data (RL) using the
off-policy, where the trajectories are generated AIME24 benchmark, with the z-axis represent-
either by other LLMs or by a previously trained ing the amount of training data. We generate 64
version of the same LLM (e.g., through reject for each question and report Pass@32 and mG-
sampling (Yuan et al., 2023; Singh et al., 2024)). Pass@32. Details of models are provided in § G.4.

Status Quo of SFT v.s. RL. Recent studies

(Xiong et al., 2024; Chen et al., 2025a; Chu et al., 2025a) claim the superiority of the on-policy
strategy in LLM reasoning training. For example, GRPO-based DeepSeek-R1-Zero (DeepSeek-Al
et al., 2025) outperforms DeepSeek-V3, which is trained on large-scale off-policy synthetic data, in
mathematical reasoning tasks, scoring 71.0 compared to 39.8 on AIME24, thereby reinforcing the
advantages of on-policy strategies. However, as our results in Table 1 and the evaluation results of
community models in Figure 3, GRPO-trained models do not consistently outperform SFT-trained
models for the same base LLM, consistent with findings in (DeepSeek-Al et al., 2025; Wen et al.,
2025; Yang et al., 2025a).

SFT Leads to Stable Inner Loop Optimization. Learning to optimize frequently encounters
challenges such as unstable training, easy divergence, and limited generalization. To address these
issues, researchers (Prémont-Schwarz et al., 2022; Thérien et al., 2024) have suggested employing
optimal optimizers as “guardian” optimizers, integrating their features to ensure convergence and
stability. The training reasoning trajectories used by SFT originate from human-annotated or other
advanced reasoning models. These trajectories can be viewed as guides from an oracle optimizer.
Consequently, SFT achieves a stable and effective inner loop optimization process, leading to superior
performance. However, this does not imply that reinforcement learning always has disadvantages.
RL provides greater freedom to explore optimization paths and, given sufficient model capability and
exploration steps, offers a higher theoretical upper limit.

Combination of SFT and RL for Stable Inner Loop Optimization. A straightforward idea involves
training the LLM using an optimal optimizer to stabilize its performance. Subsequently, reinforcement
learning can be employed to explore improved paths for inner loop optimization. As evidenced in
Table 2, the RL model demonstrates substantial enhancements after supervised fine-tuning.

Takeaway. @ SFT provides stable inner loop optimization by training on trajectories from oracle

inner loop optimizer compared with RL. & Combining SFT with RL shows significant performance
improvements by utilizing SFT for initializing inner loop optimization and RL for further exploration.
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Figure 4: Illustration of QwQ’s pseudo-gradient update for both thinking and non-thinking modes.
We visualize four pairs of correct reasoning trajectories for one question in AIME24. Compared with
thinking trajectories, no-thinking trajectories converge more quickly, which also easily falls into local
optimal points.
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Figure 5: Illustration of the influence of Figure 6: Evaluation results of base, SFT and GRPO
reflection tokens. Reflection tokens lead models on AIME24, LiveMathBench-Hard, GPQA-
to sharper objective change. Diamond, and LiveCodeBench.

3.3 INNER LOOP OPTIMIZATION STEPS v.s. REASONING TRAJECTORY TOKENS

In RAML, each token in a single reasoning trajectory corresponds to an individual optimization step,
and the length of the trajectory indicates the total number of update steps. We examine these factors
by integrating experimental results with related research studies.

Long Reasoning Trajectories Lead to Superior Performance. As shown in Table 1, models trained
with longer reasoning trajectories consistently outperform those with shorter trajectories, aligning
with meta-learning findings that extended inner loop updates enhance performance. This observation
is consistent with the superior performance of long CoT reasoning models, such as DeepSeek-R1
(DeepSeek-Al et al., 2025), suggesting that longer trajectories increase inner update steps, thereby
improving LLM reasoning capabilities.

Different Reasoning Trajectory Tokens Represent Varying Roles of Update. We focus on
discussing two intriguing findings in LLM reasoning. First, advanced reasoning in LLMs has been
observed to have an aha moment (DeepSeek-Al et al., 2025). This refers to specific reflection tokens
that prompt LLMs to devote additional time to thinking about questions. These tokens are also
utilized to implement test-time scaling (Muennighoff et al., 2025; Ma et al., 2025). Following the

settings described in § 2.2, we measure the relative changes in the L value before and after each token
position. The results are presented in Figure 5. We observe that reflection tokens such as “Wait” and
“Alternatively” indicate a significant change in the objective. From an optimization perspective, we
propose that these reflection tokens assist the model in escaping saddle points. As the model gradually
approaches a stable state, these tokens provide a larger gradient, thereby expanding the exploration
space to find a better parameter space. In the following part, we explore the concept of reasoning
efficiency, as discussed by various researchers (Qu et al., 2025; Yang et al., 2025b; Zhang et al., 2025;
Ma et al., 2025; Yang et al., 2025a). This concept involves optimizing the balance between decoding
cost and performance utilizing specific segments, such as the end-of-thinking token delimiter. We
hypothesize that these termination delimiters enhance convergence at the optimization level, akin to
the role of momentum in optimization, facilitating rapid convergence of model parameters within a
flatter region. However, this acceleration does not always lead to the optimal point. Also refer to the
settings described in § 2.2, we append the end-of-thinking token delimiter Therefore, after
all this, I believe the answer is following the thinking token delimiter <think>.
Figure 4 demonstrates that trajectories using the end-of-thinking token delimiter achieve quicker
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convergence, confirming our hypothesis to some extent. Since the QwQ model does not completely
adapt to the no-thinking mode, we include additional experiments related to Qwen3 in § 1.3. These
experiments further substantiate our conclusions.

Takeaway. @ Long reasoning trajectories are analogous to performing additional steps of inner loop
optimization, which improves inner loop optimization and further enhances the reasoning performance
of LLMs. @ Different tokens serve distinct functions in the inner loop optimization process. For
instance, tokens associated with reflection patterns promote the exploration of optimization paths,
whereas special tokens regulating the length of reasoning in the recent Long-CoT LLMs facilitate
fast-converging optimization steps.

3.4 TASK GENERALIZATION v.s. REASONING GENERALIZATION

Meta-learning models typically exhibit strong generalization across tasks with similar distributions,
since the models learn generalized representations for these tasks. We investigate whether this
applies to LLM reasoning, where each question is a distinct task but shares fundamental reasoning
skills, suggesting a similar distribution. We analyze generalization from two perspectives: within-
domain generalization (same reasoning domain) and cross-domain generalization (different reasoning
domains). Training data, sourced from Open Reasoner Zero (§ 3.1), consist of mathematical problems
from MATH, making AIME24 and LiveMathBench-Hard suitable for within-domain evaluation.
Results in Figure 6 show improved performance for both SFT and GRPO models on these benchmarks.
For cross-domain generalization, we evaluated SFT and GRPO models on GPQA (scientific reasoning)
and LiveCodeBench (code reasoning). As illustrated in the right section of Figure 6, all trained models
outperformed the base model on both benchmarks. Our findings align with existing research. For
instance, studies have shown that large models trained on code datasets exhibit strong logical reasoning
capabilities (Chen et al., 2021). Additionally, research indicates that training on mathematical and
code corpora mutually enhances performance (Wang et al., 2024; Hui et al., 2024; Guo et al., 2024).

Takeaway. Training LLMs using trajectories facilitates the learning of shared features across diverse

reasoning questions. This process, akin to meta-learning, enables the parameters of LLMs to adapt
efficiently by new trajectories and demonstrate generalization to out-of-distribution questions.

4 ADVANCING LLM REASONING DRAWING INSPIRATION FROM
META-LEARNING

In this section, we demonstrate the potential of integrating meta-learning insights to improve reasoning
capabilities. We introduce two simple yet effective methods inspired by the studies of meta-learning
to enhance the reasoning performance and efficiency of LLMs, respectively and validate their
effectiveness through experiments.

Increasing Training Reasoning Trajectories per Question. Inspired by meta-learning insights on
support set size, we propose increasing the number of training reasoning trajectories per question to
enhance LLM reasoning performance. We conduct experiments using SFT and GRPO, as detailed in
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§ L.1. The results, shown in Figure 7 and § 1.1, demonstrate that training with multiple trajectories per
question improves performance. From a meta-learning perspective, this approach is analogous to
expanding the support set to enhance inner loop optimization, thereby promoting stable outer loop
optimization leading to better performance.

Incentivizing Reasoning Efficiency by Optimization Lens. Reasoning trajectories can be viewed as
optimization paths, prompting the question: Can an optimal inner loop optimization path yield more
effective reasoning trajectories? We propose a simple method to streamline the lengthy reasoning
processes of long CoT LLMs by selectively summarizing to eliminate inefficient optimization steps,
as discussed in § 3.3, while evaluating the resulting performance changes. As shown in Figure 8,
this approach achieves performance comparable to extensive reasoning methods and surpasses non-
thinking mode performance with a reduced token count. Further details in § [.2 demonstrate that long
reasoning trajectories have corresponding optimal paths that maintain performance while using fewer
tokens. Developing methods to generate these optimal trajectories during decoding could enhance
reasoning efficiency.

These findings confirm the feasibility of advancing LLM reasoning through a meta-learning perspec-
tive. Building on this, we propose more potential research directions in § J.

5 RELATED WORK

Understanding LLMs. The remarkable success of LLMs has spurred extensive research into their
capabilities. Early studies (Yun et al., 2020a;b) explored function approximation, demonstrating that
sufficiently large transformers (Vaswani et al., 2017) can universally approximate any continuous
sequence-to-sequence mapping on a compact domain. Subsequent research investigated the compu-
tational power of transformers (Dehghani et al., 2019; Bhattamishra et al., 2020; Yao et al., 2021b;
Hewitt et al., 2020; Weiss et al., 2021; Merrill et al., 2022; Chiang et al., 2023; Giannou et al., 2023;
Liu et al., 2023). For example, Feng et al. (2023) validated the necessity of chain-of-thought (CoT)
prompting for solving complex problems using circuit complexity theory. Other works (Gatmiry
et al., 2024; Huang et al., 2025) demonstrate that transformers can learn to implement learning
algorithms, such as gradient descent, within trajectories. Several studies (Xie et al., 2022; Akyiirek
et al., 2023; Dai et al., 2023; Bai et al., 2023; Olsson et al., 2022; Gatmiry et al., 2024) have focused
on understanding in-context learning (ICL) (Brown et al., 2020; Dong et al., 2024), examining the
role of demonstration examples.

Meta-Learning. Meta-learning, commonly referred to as “learning to learn”, aims to enable models to
enhance their learning strategies by leveraging prior experience across multiple tasks. Early research
in this area (Bengio et al., 1992; Thrun & Pratt, 1998) explored methods for acquiring learning
rules applicable to new tasks, with a particular emphasis on lifelong learning. These foundational
efforts established the basis for creating more adaptable and flexible learning algorithms, paving the
way for subsequent advancements. Recent meta-learning approaches can generally be categorized
into three groups: 1) metric-based methods, which focus on learning a feature space to efficiently
compare samples (Snell et al., 2017; Chen et al., 2020b; Tang et al., 2020; Zhang et al., 2023); 2)
model-based methods, which utilize memory mechanisms or other structures to store and retrieve
task-specific information (Weston et al., 2015; Sukhbaatar et al., 2015; Santoro et al., 2016); and 3)
optimization-based methods, which refine the learning process to facilitate rapid adaptation (Finn
et al., 2017; Rajeswaran et al., 2019; Ye et al., 2021).

For additional discussions on related work, please refer to § F.

6 CONCLUSION

This paper presents a novel perspective on LLM reasoning by integrating it with the meta-learning
framework. Through theoretical analysis and empirical validation, we demonstrate that reasoning
trajectories can be effectively conceptualized as pseudo-gradient updates, facilitating a deeper under-
standing of how LLMs perform complex reasoning tasks. Extensive experiments demonstrate the
correlation between meta-learning and LLM reasoning, suggesting potential directions for advancing
LLM reasoning through meta-learning principles.
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A  NOTATIONS

Table 3: Illustration of notations used in the paper.

@»-Q Cbi

Wkanan
Wl; W27b17b2
‘C(I

the large language model

the parameters of the large language model
the question

the question set

the i-th question in the question set

the j-th token of the i-th question

the answer

the answer set

the i-th answer of the i-th question

the j-th token of the i-th answer

the length of tokens

the instruction

the autoregressive decoding mechanism
the softmax function

the activation function

the reasoning trajectory

the set of reasoning trajectory

the whole output token embedding of LLM
the input token embedding of the sequence x

the input token embedding of the i-th token in the sequence
x

the value of softmax vector in the entry corresponding to

the probability distribution of one token sequence deter-
mined by the LLM

the variation of the parameter 6 corresponding to the inputs
the i-th step updated parameters

the updated parameters 6 corresponding to the reasoning
trajectory ¢

the concatenation of « and y

the parameters in self-attention layer
the parameters in feed-forward network
the loss corresponding to the question

Algorithm 1: Model-Agnostic Meta-Learning

1 Randomly initialize 6 ;
2 while not done do

3

4
5
6

Input: p (7): distribution over tasks, «, 8: step size hyperparameters.

Sample batch of tasks 7; ~ p (T) ;
for all T; do
Evaluate VL7, (fg) with respect to K examples ;

Compute adapted parameters with gradient descent: 8’ = 6 — aVo L7, (fo) ;

7 Update 0 < 6 — BV > 1) £7: (for) ;
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B AN OVERVIEW OF THE MAML WORKFLOW

Algorithm 1 illustrates the algorithm of the overall workflow of Model-Agnostic Meta-Learning
(MAML).

C PSEUDO ALGORITHM OF RAML

Algorithm 2 shows the overall flow of our proposed meta-learning perspective on LLM reasoning.

Algorithm 2: Meta-Learning Perspective on LLM Reasoning

Input: My: LLM, I: instruction, Q: question set, 7;: reasoning trajectories for each
question .
1 while not training done do

2 Sample batch of questions ¢; from Q ;
3 for all ¢; do
4 Obtain reasoning trajectories 7; of each ¢; through training data or rollout ;
5 Update 6 to 9,’57, by reasoning trajectory ¢; € 7; refer to Equation (4) ;
6 Optimize 0 through ), _ L4, (Mg/ ) for each ¢; ;
i€ /i t

D PROOF OF THEOREM 2.1

Proof. Recall that our objective is to determine the set {W,, W, W, Wi, W, b}, b5} such that:

T
T T T | E E;. _
w;, (0 (Wl (Softmax <Et70Wqu |:Et,0:| ) |:Et,0:| WU> + b1>> + by = ©
W3T (o (W (Softmax (B . W, W E[') E;.W,) +b))) + b},
where E;. € R B _ E, € R, W, W/ W, W, W, W/ € R and
Wy, Wl’7 Ws, WQ/ € Rixd,
We might as well let W, W3, b, b, equal to Wy, Ws, by, ba (@), respectively, as follows:
W{ =Wy,
W3 =W,
b, = by,
b, = bs.

(10)

Then, we only need to establish the following equality:

T
Softmax <Et70WqW,;‘F {El’:} ) {El’:] W, =

E; E, (11)

Softmax (E;,_1.W,W/"E',) E, ;W

For simplicity, we refine Equation (11) into several parts:

Q = E, oW, e R,

KT =W[E, . E, " e RUIFIx

V = [Ey, B o] W, € RUFDx

Q =E, W, e R,

K/T _ WIQTEZT c ]R\l|><d7

V' = E, W/ e RlIxd

(12)

22



Under review as a conference paper at ICLR 2026

where d is the dimension size of embeddings.

Initially, considering the matrices @, we will demonstrate the existence of a linear transformation
matrix P € R9*4 such that:

E.oP=E_.. (13)

To support this assertion, we reference Theorem D.1:

Theorem D.1. Let U and V' be vector spaces, and let {by,bs, ..., b,} denote a basis of U. For
n vectors v; € V, there exists a linear transformation T : U — V such that T'(b;) = v; for each
1=1,2,...,n.

Proof. We begin by defining a linear transformation 7" : U — V. Let u be a vector in U, expressed as
u = urby +ugbs + - - - +u, b, where the set {by, ba, ..., b, } constitutes a basis and the coefficients
U, Ug, . .., Uy, are determined by w. The linear transformation 7" is constructed as follows:

T(u) = u1v1 + ugvz + -+ + Upn. (14)

It is evident that this transformation 7T satisfies T'(b;) = v; for each index i. O

Based on Theorem D.1, if we define a basis which involves E; ¢ (e.g., {Ey 0,0, ..., 0}) and construct
a corresponding vector space, we can derive a linear transformation matrix P such that Equation (13)
holds, with P being solely dependent on E; . Therefore, if we let W(; = PW, (®), then we have

Q = Q'. Consequently, we simplify Equation (11) to:
Softmax (QK ™) V = Softmax (QK'") V' (15)

E;

Now considering the matrix { } € RUI+FD*d apd E; . c RI1*4 we can consistently identify a

s

vector C € RY¥I! guch that:
E, o~ CE,,.. (16)

We examine the existence of C' in two cases: 1) if E, ( lies within the span of the row vectors of
E; ., then C obviously exists; 2) if E; y does not lie within the span of the row vectors of Ej .,
an approximate solution for C' can be derived using various methods, such as the least squares
method (Merriman, 1877). Then, let M = [Il, CT} e RIUXUU+D) it follows that:

E;. T
Tl M E;.. 1
{Et,o} 8 a7

We can express this relationship mathematically as follows:

E. "\ [E
Softmax (QKT) V = Softmax (QW,CT |:Efl0:| > [Etlo} W,

~ Softmax (QW, E/ . M) M" E; .W, (18)
= Softmax (QK'") V'
= Softmax (QW," E},) E,.W,.
Thus, we obtain (&):
W = E] M"E, W,
W, = E M"E,\W,. (19

This construction ensures the validity of Equation (11). In this context, ElT . indicates the
Moore—Penrose pseudoinverse (Moore, 1920; Bjerhammar, 1951; Penrose, 1955) of E; ..

Building upon the previous discussions (@,8,0), we demonstrate the existence of a parameter set:

{Wy, Wi, W, Wi, W3, by, by}
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Table 4: Comparison of training techniques, where SFT, PO, and RL mean the abbreviation of
supervised fine-tuning, preference optimization, and reinforcement learning, respectively.

Techniques Reasoning Trajectories Outer Loop Loss

SFT Off-policy L = —E()~p [logpe(y | x)] (Radford et al., 2018)

Off-Policy PO Off-policy L = —10g o (1g(Ypreferrea) — 70 (Yaispreferrea)) (Rafailov et al., 2023)

On-Policy RL On-policy L=-E; {min (rt(e)/lm clip(r¢(0),1 —€,1 + E)A,ﬂ (Schulman et al., 2017)
such that:

T
T T T | E,: E;, _
W <a (Wl (Softmax (Et,quWk |:Et,0:| ) |:Et,0:| Wv> + b1>> + by = 20)
WiT (o (W, (Softmax (Ey . W, W[TE[') E, W) +b})) + b},

which proves the Theorem 2.1. And this parameter set may not be the only viable option. For example,
according to the universal approximation theorem (Cybenko, 1989; Hornik, 1991), a feed-forward
network can be utilized to address differences in attention computations and provide a greater degree
of freedom for Wé, W/, and W).

O

E INSTANTIATION OF TRAINING TECHNIQUES WITHIN RAML

We review various training techniques from a meta-learning perspective, including supervised fine-
tuning (Howard & Ruder, 2018; Devlin et al., 2019), off-policy preference optimization (Rafailov
et al., 2023), and on-policy reinforcement learning (Schulman et al., 2017; Ouyang et al., 2022;
Shao et al., 2024; Ahmadian et al., 2024). We propose to categorize these techniques into two
macro-level stages. The first stage involves acquiring reasoning trajectories and inputting them
into the LLM to update its parameters 6, thereby obtaining the output token distribution through
updated 6. Subsequently, the LLM parameters 6 are optimized using a specific loss function based
on this output distribution. Since various loss functions lead to the same maximum likelihood
estimation (MLE) (Swamy et al., 2025), we attribute the essential difference between different
training techniques to their inner loop optimization. Inner loop optimization is crucial in meta-
learning training, as the meta-gradient is essential for enhancing meta-learning performance. Off-
policy training techniques obtain reasoning trajectories through manual collection or synthesis, while
on-policy training techniques generate reasoning trajectories based on the model distribution. From
the perspective of learning to optimize, off-policy training techniques are equivalent to learning from
an optimal meta-optimizer, directing the optimization of the inner loop. In contrast, RL requires
independently exploring the inner loop’s optimization path, presenting challenges due to increased
freedom but allowing for potentially greater optimization outcomes.

F ADDITIONAL RELATED WORK

LLM Reasoning. The reasoning capabilities of large language models (LLMs) have progressively
advanced through the development of several key technologies, which have substantially enhanced
their performance on complex tasks. In-Context Learning (Brown et al., 2020; Rubin et al., 2022; Min
et al., 2022b; Dong et al., 2024; Bertsch et al., 2024) enables models to perform tasks by interpreting
examples provided in prompts without requiring additional training. However, this approach relies
heavily on the model’s pre-trained knowledge and careful prompt design, limiting its effectiveness for
complex reasoning tasks (Min et al., 2022a). The introduction of Chain of Thought (CoT) (Wei et al.,
2022; Yao et al., 2023; Besta et al., 2024) prompting has significantly improved LLM performance
in areas such as mathematical reasoning, commonsense reasoning, and symbolic reasoning by
guiding the models to produce intermediate reasoning steps. Supervised Fine-Tuning (SFT) further
refines the reasoning capabilities of LLMs by training them with labeled datasets tailored to specific
tasks (Beeching et al., 2024; Team, 2025bja; Ye et al., 2025). Reinforcement Learning (RL), through
the use of reward mechanisms, has become a critical approach to optimizing model behavior and
enhancing reasoning abilities. Recently, Long-Chain of Thought (Long-CoT) models have emerged
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as a notable trend in reasoning research, generating detailed reasoning steps to better address complex
tasks (OpenAl, 2024b; DeepSeek-Al et al., 2025; Team et al., 2025; Team, 2025c; Deepmind, 2025).

Additional Discussion on RAML and Related Work. In this section, we aim to elucidate and
discuss our work in comparison with several related studies. Dai et al. (Dai et al., 2023) interpret in-
context learning (ICL) as LLMs generating meta-gradients from demonstration examples, which are
applied to the base GPT model to construct an ICL system. In this work, each demonstration example
serves as one data sample to update the parameters of LLMs. In contrast, our research emphasizes
trajectory-aided reasoning, viewing each token as an update step and drawing extensive connections
to supervised fine-tuning and reinforcement learning, rather than focusing on demonstration examples.
Additionally, our approach incorporates more general training techniques with explicit parameter
optimization, whereas ICL is constrained by limited demonstration examples, which poses certain
limitations. Another research avenue explored by studies such as Gatmiry et al. (Gatmiry et al., 2024)
and others (Huang et al., 2025) shows that transformers can learn to implement learning algorithms,
such as gradient descent, within a chain of thought. However, these studies primarily investigate
whether transformers can describe learning algorithms in natural language to solve practical numerical
optimization problems, while our work delves into the internal parameter updates of the transformer
model, applicable to a broader range of problems.

G IMPLEMENTATION DETAILS OF EXPERIMENTS

G.1 IMPLEMENTATION DETAILS OF VISUALIZATION OF PSEUDO GRADIENT UPDATE

Data Preparation. We select four questions from AIME2024 as follows:

Details of qq
QUESTION

Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours,
including ¢ minutes spent in the coffee shop. When she walks s + 2 kilometers per hour, the
walk takes her 2 hours and 24 minutes, including ¢ minutes spent in the coffee shop. Suppose
Aya walks at s + % kilometers per hour. Find the number of minutes the walk takes her,
including the ¢ minutes spent in the coffee shop.

ANSWER
204

Details of ¢;
QUESTION

There exist real numbers = and y, both greater than 1, such that log,, (y*) = log,, (x4y) = 10.
Find zy.

ANSWER
025
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Details of ¢o

QUESTION
Find the largest possible real part of
96 + 144¢

z

(75 + 117)z +

where z is a complex number with |z| = 4.

ANSWER
540

Details of q3
QUESTION

Let AABC have circumcenter O and incenter I with TA | OI, circumradius 13, and
inradius 6. Find AB - AC.

ANSWER
468

Visualization of Pseudo Gradient Update. We leverage QwQ-32B (Team, 2025c¢) to generate
trajectories for these four questions. Then for each trajectory, we calculate the negative log-probability
of Final Answer\n\boxed..answer.. ateach position. Algorithm 3 outlines the overall
process.

Algorithm 3: Computation of Empirical Examples of Pseudo Gradient Update

Input: M: QwQ-32B, I: instruction, ¢: question from AIME2024, ¢: the trajectory
generated by QwQ-32B, a: the answer sequence, i.e., Final
Answer\n\boxed. .answer. ., s: step size.

1 fori € [0, |t]) do
2 L Obtain inputby I & q d t.; Ha;

3 Feed input to M and get logits [, of answer sequence ;
4 Compute the negative log-probability using [, ;

Visualization of Landscape. We refer to the methodology proposed by Li et al. (Li et al., 2018).
Assuming the set parameters of QwQ-32B is denoted by {6;} (excluding the embedding matrix),
we randomly select two vectors, {61} and {65 1 }, for each parameter. We then edit the parameters
by adding o160 ;. + 203 . and compute the negative log-probability given only the instruction and

o~

question to form the point set {(a1, &2, L4, ,q,)}- Finally, we visualize this point set to reveal the
landscape. The overall process is summarized as Algorithm 4.

Project the Pseudo Gradient Update to Landscape. To project the trajectory of the pseudo-
gradient update onto the landscape, we fix one direction corresponding to the time dimension and

identify the closest contour to the corresponding L to determine another direction.

G.2 TRAINING DETAILS

Dataset Processing. To maintain the validity and verifiability of the question set, we clean and
filter the original dataset. Initially, we exclude incomplete questions as well as those lacking answers.
Subsequently, we remove questions requiring reasoning with images or other external information.
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Algorithm 4: Computation of Landscape

Input: M: QwQ-32B, I: instruction, g: question from AIME2024, a: the answer
sequence, i.e., Final Answer\n\boxed..answer. ..

1 Obtain random vectors {61 1}, {62 1} for each parameter ), of M ;
2 forie[—1,1,s]do
forjc[-1,1,s] do
Get edited parameters {6}, } by adding ¢ - 61, + 7 - 021 ;
Obtain inputby I g P a;
Feed input to M and get logits [, of answer sequence ;
Compute the negative log-probability using [, ;

N U e W

To further ensure verifiability, we employ Math-Verify > to examine each question and exclude those
that could not be verified. Finally, we eliminate irrelevant characters, such as URLs and HTML tags,
resulting in approximately 39k questions with corresponding answers.

Training of SFT. We first synthesize training trajectories from Qwen2.5-Math-72B-Instruct (Yang
et al., 2024b) and DeepSeek-R1-Distill-Qwen-14B (DeepSeek-Al et al., 2025). From the entire
question set, we sample 10k questions and use the sampling parameters shown in Table 5 to generate
reasoning trajectories with the prompt, Please solve the following mathematical problem step by step
and put your final answer in \boxed, resulting in 640k trajectories. We then filter out trajectories with

Table 5: Sampling parameters leveraging for reasoning trajectories synthesis.

Qwen2.5-Math-72B-Instruct DeepSeek-R1-Distill-Qwen-14B

Temperature 0.7 0.7
Top-p 1.0 1.0
Top-k 50 50
Max Tokens 8192 36784
Rollout Number 64 64

incorrect answers, retaining approximately ~ 470k for Qwen2.5-Math-72B-Instruct and approxi-
mately ~ 550k for DeepSeek-R1-Distill-Qwen-14B. During training, we utilize the parameters listed
in Table 6.

Table 6: Training parameters for SFT. Table 7: Training parameters for GRPO.
Parameter Parameter
Max Response Length 18432 Max Prompt Length 1024
Train Batch Size 256 Max Response Length 16384
Learning Rate le-h Rollout Temperature 1.0
Total Epochs 1 Rollout Number 16
Train Batch Size 1024
Learning Rate le-6
Total Epochs 1

https://github.com/huggingface/Math-Verify
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System Prompt of GRPO

A conversation between a User and an Assistant. The User poses a question, and the Assistant
provides a solution. The Assistant’s response follows these structured steps:

1. Reasoning Process: The Assistant reflects on the problem using a reasoning process
enclosed within jthink; and j/think; tags.

2. Conclusion: The Assistant reaches a conclusion, which is enclosed within jconclusion,
and j/conclusiony, tags. The final answer is highlighted within \boxed...final answer....

3. Answer Format: The complete response should be formatted as:

jthinkg,

...reasoning process...

j/thinkg

jconclusiony,

...conclusion...

The answer is \boxed...final answer...

j/conclusiony,

Training of GRPO. For the GRPO training, we use the complete question set and apply the
parameters listed in Table 7. We adhere to the DeepSeek-R1-style system prompt, as presented in the
System Prompt of GRPO box. And for the reward design, we assign the trajectory with the correct
answer and correct format the score 1, the trajectory with the false answer and correct format the
score 0.0, trajectory with the correct answer and false format the score —0.5, and trajectory with the
false answer and false format the score —1, formally:

1 answer_match(y’,y) and format_correct(y’),
Ry ) = 0 —answer_match(y’,y) and format_correct(y’), e
' —0.5  answer_match(y’,y) and —format_correct(y’),

—1  —answer_match(y’,y) and —format_correct(y’),

where y indicates the ground-truth and y’ indicates the trajectory. We employ the Math-Verify
package to ascertain the equivalence of y and y/'.

Details of Hardware and Software. All the training tasks are conducted based on veRL (Sheng
et al., 2025), cooperated with Pytorch (Paszke et al., 2019) 2.6.0, Transformers (Wolf et al., 2020)
4.51.3, vLLM (Kwon et al., 2023) 0.8.4. We conduct all experiments on clusters equipped with
NVIDIA A800 GPUs and Intel(R) Xeon(R) Platinum 8336C CPUs.

G.3 EVALUATION DETAILS

Benchmarks. The following details describe our evaluation benchmarks:

« AIME24. AIME24° consists of 30 challenging questions from the 2024 American Invitational
Mathematics Examination (AIME).

MATHS00. The original MATH dataset (Hendrycks et al., 2021) comprises 12, 500 problems
from American high school mathematics competitions. MATH500 (Lightman et al., 2024), a
widely used subset of its test split, includes only Level 5 questions in this study.

LiveMathBench. LiveMathBench (Liu et al., 2024) is a continuously updated dataset of chal-
lenging mathematical problems. We use the December 2024 hard split, comprising 45 questions
in English and Chinese.

* GPQA. GPQA (Rein et al., 2023) dataset is a challenging, professional multiple-choice science
question-answering dataset. We use its diamond subset, comprising 198 questions.

L]

LiveCodeBench. LiveCodeBench (Jain et al., 2024) is a benchmark designed for a comprehensive
and uncontaminated evaluation of the code-related capabilities of LLMs. It incorporates questions
from LeetCode, AtCoder, and Codeforces.

Shttps://huggingface.co/datasets/AI-MO/aimo-validation-aime
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Metrics. We use Pass@k and mG-Pass@Fk (Liu et al., 2024) as evaluation metrics. We generate n
responses for each question and assume the number of correct responses is c. Then the metrics are
computed as:

e Pass@k.

Pass@k = Equestions [1 — C )] . (22)

e mG-Pass@k.
GPass@h — E ' 2 k - (;) ’ (Z:JC) 23
mG-Prass — IDquestions E Z Z (7 ’ ( )

)
i=[k/2]+1 j=1 k

G.4 MODELS UTILIZED IN FIGURE 3

The evaluation includes prominent models such as Sky-T1-32B (Team, 2025a), Bespoke-Stratos-
32B (Labs, 2025), LIMO (Ye et al., 2025), s1.1-32B (Muennighoff et al., 2025), OpenThinker-
32B (Team, 2025b), Light-R1-32B (Wen et al., 2025), DeepSeek-R 1-Distill-Qwen-32B (DeepSeek-
Al et al., 2025), DAPO-32B (Yu et al., 2025), and VAPO-32B (Yue et al., 2025). These models are
based on either Qwen2.5-32B or Qwen?2.5-32B-Instruct only through SFT or RL (Zero-RL). Since
VAPO is not open source, we copy its results from the original paper.

H MORE DISCUSSIONS ON RECENT LLLM REASONING PROGRESS

In this section, we focus on recent research developments and discuss the essential improvements
they implemented to enhance performance within our framework. We involve the following represen-
tative works: OpenThoughts (Team, 2025b), Light-R1 (Wen et al., 2025), Open-Reason-Zero (Hu
et al., 2025), DAPO (Yu et al., 2025), VAPO(Yue et al., 2025), GPG (Chu et al., 2025b), Llama
Nemotron (Bercovich et al., 2025).

Data Filtering. Works such as Light-R1 (Wen et al., 2025) use strategies like diversity and difficulty
filtering to obtain high-quality data. From a meta-learning perspective, this approach can be seen as a
sample mining strategy, optimizing the distribution of training task sets to enhance the efficiency of
model training.

Synthetic Data From Strong Reasoning LLMs. Works such as OpenThoughts (Team, 2025b) and
Llama Nemotron (Bercovich et al., 2025) utilize a more advanced reasoning LLM, such as DeepSeek-
R1, to generate multiple trajectories for each training question, resulting in training data for SFT.
This approach effectively expands the size of the support set to stabilize inner loop optimization,
thereby achieving improved results. On the other hand, this is equivalent to distilling the optimization
path from the already trained model (strong reasoning LL.Ms) to the small model.

Clip Higher for Clipper Surrogate Loss of RL. DAPO (Yu et al., 2025) proposes using a higher
clipping range to promote exploration during the GRPO training process. Similarly, removing the
KL penalty term and entropy loss in GRPO can achieve the same effect. From an optimization
perspective, these improvements expand the exploration space of the optimization path, facilitating
the model’s ability to explore extreme points. Increasing the diversity of training data in supervised
fine-tuning also contributes to this effect.

Dynamic Sampling During RL. Recent studies (Chu et al., 2025b; Yu et al., 2025) aim to balance the
ratio of correct to incorrect trajectories during rollout by employing dynamic sampling or introducing
bias. This strategy equalizes the positive and negative gradients in the inner loop, thereby alleviating
model overfitting to a particular class.

Group-Sampling for PPO. In classic reinforcement learning methodologies, algorithms typically
generate only a single trajectory per problem instance. Recent advancements (Yue et al., 2025; Hu
et al., 2025) have introduced group sampling in algorithms such as PPO, allowing the generation
of multiple trajectories for each problem. From the perspective of this study, this improvement
corresponds to expanding the support set, thereby enhancing inner-loop optimization.
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Figure 9: Evaluation results w.r.t. different number of reasoning trajectories of SFT models on
AIME24, MATHS500-LS5, and LiveMathBench-Hard.

I ADDITIONAL EXPERIMENTS

1.1 MANIPULATING TRAINING REASONING TRAJECTORIES PER QUESTION TO ENHANCE
LLM REASONING

Previous studies (Agarwal et al., 2021; Chen et al., 2020a) highlight that the size of the support set is
of paramount importance in improving performance, stability, and convergence in meta-learning. In
RAML, the support set is intrinsically connected with the number of reasoning trajectories trained per
question, prompting the question: Can enhancements in support set size contribute to more effective
training in LLM reasoning? In this preliminary study, we investigate the impact of increasing the
number of training reasoning trajectories per question on LLM reasoning.

SFT. We train Qwen2.5-7B-Base through SFT with {1, 2, 4,8, 16, 32} synthetic reasoning trajec-
tories, ensuring equal training frequency per question. Evaluation results (Figure 9) show that
increasing the number of trajectories improves performance and reasoning stability across all bench-

marks, suggesting that additional trajectories enhance supervised fine-tuning outcomes (Yang et al.,
2024b).

GRPO. With regards to GRPO, the support set size corresponds to the number of trajectories in
the rollout group for each prompt (question). To maintain stable advantage estimation in GRPO and
ensure a fair comparison, we fix the rollout group size at 16 and calculated the advantage for each
trajectory. During gradient updates, however, we randomly select n € {1,2,4,8,16} trajectories
to calculate the gradient. Experimental results shown in Figure 10 demonstrate that: 1) multiple
trajectories for a single question significantly enhance model performance and stability; 2) a larger
number of trajectories accelerates convergence. These findings explain the superior performance
and stability of GRPO-based (or other similar RL algorithms) reasoning models (Liu et al., 2024),
as the GRPO mechanism inherently optimizes for multiple trajectories per question compared with
PPO (Schulman et al., 2017) and naive SFT. It is noteworthy that some studies have attempted to
enhance PPO through group sampling (Hu et al., 2025; Yue et al., 2025) and achieve competitive
performance compared with original PPO.

[.2 INCENTIVIZING REASONING EFFICIENCY BY OPTIMIZATION LENS

Recent advanced reasoning models face limitations due to inefficient and excessively lengthy rea-
soning trajectories. Although several studies (Ma et al., 2025; Yang et al., 2025a) have attempted to
minimize the number of decoding tokens to mitigate overhead, these approaches frequently lead to
decreased reasoning performance, thereby presenting a fundamental question: Can we reduce the
number of reasoning tokens without compromising reasoning performance? As previously discussed,
each reasoning trajectory corresponds to an inner-loop optimization trajectory, thus reframing the in-
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Figure 10: Evaluation results w.r¢. different number of reasoning trajectories of GRPO models on
AIME24, MATHS500-L5, and LiveMathBench-Hard.
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Figure 11: Given a long reasoning trajec- Figure 12: Experimental results of Qwen3-32B with
tory, there exists an optimal correspond- 1) thinking mode, 2) summarized trajectory, and 3)
ing reasoning trajectory which leverage nothinking mode on AIME24, MATHS500-L5, and
less tokens. LiveMathBench-Hard-en.

quiry as follows: Can there be a s more effective inner loop optimization path? From an optimization
perspective, as illustrated in Figure 11, there exists such an optimal inner loop optimization path. In
this section, we present a straightforward yet convincing experiment to validate the existence of this
inner loop optimization path.

Specifically, we employ Qwen3-32B (Yang et al., 20252) to generate 16 reasoning trajectories for
each question in AIME24, MATH500-L5, and LiveMathBench-Hard. These trajectories serve as
foundational optimization paths, and our goal is to refine them to discover more optimal paths. We
propose an heuristic method which condense the reasoning trajectories by using an LLM to summarize
the original trajectories into shorter variants, which are then used to prompt Qwen3-32B for answer
generation. The summarizations are generated by Qwen2.5-32B-Instruct, deliberately excluding
answers from the summarized reasoning trajectories. We performed four summary generators
to reduce the impact of randomness. Figure 12 displays the experimental results. Notably, we
observe that Qwen3-32B’s performance with summarized reasoning trajectories is comparable to
its performance in thinking mode especially for the Pass@16 metric, while significantly reducing
the number of tokens in the reasoning trajectories. Moreover, Qwen3-32B’s performance using
summarized reasoning trajectories surpasses that in no-thinking mode, even that the latter has more
tokens.

Our experiments demonstrate that trained long-CoT LLMs have the potential to achieve optimal
reasoning trajectories that require fewer tokens while maintaining comparable reasoning performance.
We approximate these trajectories using a straightforward method, leaving the exploration of more
advanced approaches for future work.
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Figure 13: Visualization of the pseudo-gradient update: The z-axis represents the normalized indices
of corresponding trajectories. qo, q1, g2, g3 are question selected from AIME24, refer to § G.1 for
more details.
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Figure 14: Visualization of the pseudo-gradient update: The z-axis represents the normalized indices
of corresponding trajectories. qo, q1, g2, g3 are question selected from AIME24.

1.3 DETAILS OF PSEUDO GRADIENT UPDATE

QwQ’s Pseudo Gradient Update. Following the methodology described in § 2.2 and § G.1, we
monitor the pseudo-gradient update of QwQ-32B. As shown in Figure 13, the negative log-probability
progressively decreases along the reasoning trajectories which aligns with our definition.

Qwen3’s Pseudo Gradient Update. Following the methodology described in § 2.2 and § G.1, we
monitor the pseudo-gradient update of Qwen3-32B (Yang et al., 2025a) under thinking mode, as
illustrated in Figure 14. We observe that the reasoning trajectories of Qwen3 exhibit a parameter
update effect.

Qwen3’s Pseudo Gradient Update in Thinking/NoThinking Mode. Referring to the settings
in § 3.3, we examine the differences between thinking mode and no-thinking mode, as shown
in Figure 15. It is evident that, due to the specific optimization of Qwen3, its no-thinking token
delimiter (i.e., </think>) demonstrates a more pronounced gradient descent effect. The delimiter
</think> enables the model to swiftly update to an extreme point in the appropriate direction with
a larger step size. However, this update is susceptible to falling into local minima, which accounts for
the performance gap between Qwen3’s no-thinking mode and thinking mode.

Pseudo Gradient Update of False Reasoning Trajectories. Figure 16 illustrates the curve of
pseudo gradient updates associated with incorrect reasoning trajectories. It is evident that the curve
representing these trajectories does not show a downward trend, underscoring the strong connection
between reasoning paths and optimization processes.

J  FUTURE DIRECTIONS

Further studies can be conducted based on our work, for instance:
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Figure 15: Illustration of Qwen3’s pseudo-gradient update for both thinking and non-thinking modes.
We visualize four pairs of correct reasoning trajectories for one question in AIME24.
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Figure 16: Illustration Qwen3’s pseudo-gradient update corresponding to false reasoning trajectories.

¢ Further Understanding Reasoning Trajectories

@ Unlike typical meta-learning frameworks with predefined support sets, the reasoning trajec-
tories in LLMs are self-generated. This implies that LLMs inherently learn gradient update
steps without needing explicit support sets for fine-tuning. Investigating how LLMs learn to
form effective reasoning trajectories, namely, gradient update steps, presents an intriguing
challenge.

® Tokens contribute differently to the modification of model parameters. What accounts for
this disparity among tokens? Is it connected to their semantic properties, and if so, in what
manner?

® Trajectory-aided reasoning in large language models (LLMs) demonstrates comparable
generalization abilities across various tasks. What aspects of the learning process contribute
to this generalization ability, and which meta-features are developed through the optimization
of reasoning trajectories?

¢ Towards Enhancing LLM Reasoning

@ Improved Reasoning Trajectory Selection Strategy in LLM Training. During both super-
vised fine-tuning and reinforcement learning, reasoning trajectories usually remain constant.
Could implementing an adaptive sampling mechanism, similar to those utilized in meta-
learning (Yao et al., 2021a; Liu et al., 2020), enhance training efficacy?

® Enhancing Reasoning Efficiency Through an Optimization Perspective. Given that each
token offers a unique contribution to optimization, is there a strategy to discern these
contributions to filter out superfluous tokens, thereby improving reasoning efficiency?

® Tusk (Question) Ratio to Enhance Generalization Across Different Domains. Insights from
related studies, such as Collins et al. (Collins et al., 2020) and Wang et al. (Wang et al., 2022),
in meta-learning, suggest methods to bolster the reasoning capability of LLMs, enabling
them to generalize across domains—for instance, training on mathematical data and inferring
insights from coding data.

K LIMITATIONS

Limitations of Theoretical Analysis. This paper’s theoretical analysis, while providing a founda-
tional framework, relies on several approximate assumptions, as discussed in Equation (17). Although
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these assumptions hold valid in most typical scenarios, a more detailed investigation into their specific
conditions and potential limitations is warranted in subsequent research to fully understand their
implications. Additionally, while the theory presented herein confirms the existence of the related
equation cited in Theorem 2.1, deriving its precise analytical solution remains an open problem
requiring further exploration. Finding this solution could potentially lead to a deeper theoretical
understanding of the pseudo-gradient dynamics.

Limitations of Experiments. Firstly, due to time and resource constraints, our experiments
primarily focused on mathematical reasoning tasks. While mathematical reasoning shares many
commonalities with other reasoning tasks, suggesting our conclusions may generalize, differences in
the specific optimization behavior across diverse task types warrant further dedicated study. Secondly,
experiments were conducted on a limited selection of LLMs. Although the observed performance
behavior across these models was largely consistent, indicating the general applicability of our
conclusions, future work should investigate a wider range of LLM architectures to identify any subtle,
model-specific differences. Finally, mirroring a limitation discussed previously, our experiments were
confined to the textual modality. Given that recent research indicates the significance of reasoning
trajectories in multimodal contexts, exploring their role through experiments involving multimodal
data is a valuable direction.

L LLM USAGE

In this study, the deployment of LLMs is intentionally limited to the final phases of our research,
specifically for refining and proofreading the manuscript. LLMs are utilized solely to enhance the
clarity, logical coherence, and linguistic precision of the narrative, ensuring a clear and sophisticated
articulation of our ideas. Crucially, LLMs played no role in the foundational aspects of this investiga-
tion, including the formulation of the research strategy, the design of the experimental framework, or
the interpretation of the results.
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