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Abstract

While large language models (LLMs) excel at001
understanding and generating plain text, they002
are not tailored to handle hierarchical text struc-003
tures or directly predict task-specific properties004
such as text rating. In fact, selectively and re-005
peatedly grasping the hierarchical structure of006
large-scale text is pivotal for deciphering its007
essence. To this end, we propose a novel frame-008
work for hierarchical text rating utilizing LLMs,009
which incorporates Recurrent Alignment with010
Hard Attention (RAHA). Particularly, hard at-011
tention mechanism prompts a frozen LLM to se-012
lectively focus on pertinent leaf texts associated013
with the root text and generate symbolic repre-014
sentations of their relationships. Inspired by the015
gradual stabilization of the Markov Chain, re-016
current alignment strategy involves feeding pre-017
dicted ratings iteratively back into the prompts018
of another trainable LLM, aligning it to progres-019
sively approximate the desired target. Experi-020
mental results demonstrate that RAHA outper-021
forms existing state-of-the-art methods on three022
hierarchical text rating datasets. Theoretical023
and empirical analysis confirms RAHA’s ability024
to gradually converge towards the underlying025
target through multiple inferences. Additional026
experiments on plain text rating datasets verify027
the effectiveness of this Markov-like alignment.028
Our data and code can be available in https:029
//anonymous.4open.science/r/RAHA/.030

1 Introduction031

Scaling up LLMs yields significant advances in032

their ability to mimic human-like text compre-033

hension and generation (Ouyang et al., 2022;034

Zeng et al., 2023; Touvron et al., 2023; OpenAI,035

2023). They demonstrate remarkable aptitude for036

in-context learning (ICL) (Brown et al., 2020; Min037

et al., 2022; Kojima et al., 2022) across various038

natural language processing (NLP) tasks (Qi et al.,039

2023; Chen et al., 2023a; Wen et al., 2023; Du et al.,040

2023). In particular, employing chain of thought041
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Figure 1: A comparison between a typical LLM and
our RAHA in processing hierarchical text rating task.
While a typical LLM treats the input as plain text, our
RAHA captures hierarchical structures and can straight-
forwardly provide task-specific rating score.

(CoT) prompts can stimulate the reasoning capabil- 042

ities of LLMs, enabling them to adeptly navigate 043

and conquer complex downstream tasks (Wei et al., 044

2022; Wang et al., 2023a). 045

However, LLMs face a dual challenge. From the 046

perspective of input, mainstream LLMs encounter 047

limitations when confronted with extensive and 048

structured textual inputs. While it is possible to ex- 049

tend the input length of LLM (Chen et al., 2023b), 050

this poses additional challenges and complications. 051

For example, excessively long inputs may hinder 052

the attention mechanism of LLM from effectively 053

encompassing the entire context (Liu et al., 2023a). 054

Moreover, a significant proportion of real-world 055

texts (e.g., academic papers, social posts) exhibit 056

hierarchical structures rather than strictly adhering 057

to a linear textual order (Zhao and Feng, 2022; Sun 058

et al., 2023). Figure 1 illustrates an exemplary task 059

to identify groundbreaking score of an academic 060

paper. Placing both the paper and its references 061

within a prompt would result in excessive length 062

and compromise the inherent structural relation- 063

ship. It is a common approach to model hierarchi- 064

cal text information with a tree structure instead of 065

a plain sequence structure. This involves analyzing 066

the relationship between the root and each leaf indi- 067

vidually. However, aggregating all leaf information 068

without proper filtering can introduce noise while 069

also being resource-intensive and time-consuming. 070

Therefore, it is crucial to selectively understand 071
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and integrate valuable relationships.072

From the perspective of output, while LLMs ex-073

cel at completing NLP tasks by generating textual074

responses, practical applications often necessitate075

directly providing task-required predictions. De-076

spite superiority of parameter-efficient fine-tuning077

(PEFT) over ICL in terms of speed and perfor-078

mance in few-shot scenarios (Liu et al., 2022), rat-079

ing tasks that require continuous numerical predic-080

tions remain challenging for LLMs. This difficulty081

arises because LLMs are primarily optimized for082

discrete text generation rather than precise numer-083

ical output, leading to potential inaccuracies and084

inconsistencies in rating predictions. Thus, further085

research is needed to effectively enhance LLMs’086

ability to handle hierarchical text rating.087

To this end, this study proposes a novel frame-088

work, named Recurrent Alignment with Hard089

Attention (RAHA) based on LLMs. Firstly, RAHA090

employs a frozen LLM to manage message passing091

within the hierarchical structure of the input. For092

each pair of root and its respective leaf nodes, the093

LLM discerns and generates symbolic comparative094

relationships between them. This paired input pre-095

serves the structural information of the root and096

leaf nodes and is much shorter than putting all leaf097

texts in one prompt. Here, the evaluation guides098

the LLM to determine whether a particular leaf re-099

quires further scrutiny. This decision functions as100

the hard attention mechanism, effectively reducing101

the computational load on the LLM and filtering102

out irrelevant lower-level details. Then, RAHA103

leverages another trainable LLM to aggregate all104

selected symbolic relationships that are considered105

relevant to the root. This LLM is equipped with106

a trainable adapter followed by a fully connected107

layer, enabling it to directly predict text ratings.108

This targeted aggregation supports more effective109

prediction.110

Moreover, inspired by the gradual stabilization111

seen in Markov Chains, we develop a recurrent112

alignment strategy to enhance task-specific align-113

ment for the trainable LLM. During the training114

phase, we introduce a special prompt that incorpo-115

rates the downstream task score predicted by the116

trainable LLM. Initially, this value is set to None117

and is subsequently updated with the prediction118

from the previous training iteration. This dynamic119

updating allows the trainable parameters to progres-120

sively learn and refine the alignment from the cur-121

rently predicted score to the desired target. Further-122

more, consistent with this training methodology,123

during testing, the trainable LLM performs mul- 124

tiple iterative inferences on the same input. This 125

approach ensures that the predictions become in- 126

creasingly accurate and aligned with the intended 127

outcomes over successive iterations. 128

We conduct extensive experiments across three 129

hierarchical text rating benchmarks. Our findings 130

demonstrate that the proposed RAHA outperforms 131

existing state-of-the-art methods in predicting task- 132

specific properties. Furthermore, theoretical and 133

empirical analysis highlights its capacity to in- 134

crementally approach the most accurate results 135

through iterative inference processes. Finally, we 136

successfully validate the soundness of our approach 137

on other general rating regression datasets. 138

The main contributions of this study are summa- 139

rized as follows: 140

• We propose a hard attention mechanism to 141

enable LLMs to effectively and efficiently 142

capture hierarchical relationships, thereby ad- 143

dressing the neglect of content structure in 144

long plain text input. 145

• Drawing inspiration from Markov Chains, we 146

design a recurrent alignment strategy, theoret- 147

ically and empirically proven to significantly 148

improve the alignment of LLM towards the 149

target value through multiple iterations. 150

• RAHA exhibits superior performance in un- 151

derstanding hierarchical text input to predict 152

rating score, overcoming the limitations of 153

LLMs in continuous numerical tasks. 154

2 Related Work 155

The essence of human intelligence is characterized 156

by the ability to understand abstract concepts, en- 157

gage in logical reasoning, and make advanced pre- 158

dictions based on existing knowledge (Sternberg 159

et al., 1982; Yu et al., 2023; Huang and Chang, 160

2022). However, in the era of natural language 161

processing (NLP), despite impressive representa- 162

tion and learning capabilities of neural networks, 163

it is still difficult for them to infer and deduce in- 164

formation from contexts (Duan et al., 2020; Wang 165

et al., 2022). This landscape has been dramatically 166

reshaped with the evolution of large language mod- 167

els (LLMs) (Brown et al., 2020; Workshop et al., 168

2022), driven by significant upscaling in parame- 169

ters, data, and computational resources (Ouyang 170

et al., 2022; Zeng et al., 2023; Touvron et al., 2023; 171
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OpenAI, 2023). They exhibit exceptional profi-172

ciency for in-context learning (ICL) (Brown et al.,173

2020; Min et al., 2022; Kojima et al., 2022) across174

a wide range of NLP tasks (Qi et al., 2023; Chen175

et al., 2023a; Wen et al., 2023; Du et al., 2023).176

One of the key advancements in LLMs is the incor-177

poration of strategies like Chain of Thought (CoT)178

prompting, which empowers these models to gener-179

ate reasoning steps and tackle more complex down-180

stream application (Liu et al., 2023b; Wei et al.,181

2022; Wang et al., 2023a).182

Notwithstanding the progress made in CoT rea-183

soning (Wei et al., 2022; Wang et al., 2023b; Ko-184

jima et al., 2022), there remains a notable defi-185

ciency in current methodologies regarding the pro-186

cessing of hierarchical structures within long text.187

Numerous studies have focused on identifying and188

correcting specific thought units where the reason-189

ing process may deviate or require additional infor-190

mation, aiming to produce desired outcomes (Yao191

et al., 2023; Ling et al., 2023; Yang et al., 2023;192

Wang et al., 2023a). This prevailing research pre-193

dominantly concentrates on purely textual content,194

neglecting the intrinsic hierarchical nature of cer-195

tain text formats (Zhao and Feng, 2022; Sun et al.,196

2023). In our work, we propose a hard attention197

mechanism to redress this shortfall by introducing198

a novel paradigm for enhancing the processing of199

structured text within CoT reasoning.200

The escalation in the scale and adaptability of201

LLMs has been accompanied by significant ad-202

vancements in model fine-tuning and adaptation,203

exemplified by the introduction of various adapter204

architectures (Houlsby et al., 2019; Pfeiffer et al.,205

2020; Zaken et al., 2022; Hu et al., 2022). How-206

ever, these adaptations have primarily focused on207

enhancing the model’s generation capabilities and208

have not addressed the limitations of LLMs in di-209

rectly generating continuous prediction values like210

text rating. Concurrently, recent research within211

LLMs has increasingly focused on recurrent align-212

ment, primarily through prompting techniques and213

iterative refinement processes (Huang et al., 2023;214

Zelikman et al., 2022). Yet, these methodologies215

have not sufficiently capitalized on employing the216

properties from predictive tasks as feedback mech-217

anisms for iterative refinement. Our contribution in218

this regard is the formulation of a Markov-like re-219

current alignment strategy. It represents a novel ap-220

proach in harnessing the model’s output for succes-221

sive iterative enhancements, thereby augmenting222

the predictive precision and versatility of LLMs.223

3 Methodology 224

The proposed framework, RAHA, is depicted in 225

Figure 2. It includes a tree-based hard attention 226

mechanism that enhances the ability of LLMs to 227

effectively capture hierarchical structures. In addi- 228

tion, a trainable LLM is employed to output hier- 229

archical text rating score. Moreover, we employ a 230

Markov-like recurrent alignment strategy to enable 231

the RAHA to iteratively align with the ground truth 232

of the downstream task. 233

3.1 Problem Formulation 234

For each sample in our data collection, we represent 235

its hierarchical structure as a tree, which is denote 236

as ⟨ri, Li⟩. This structure consists of a textual root 237

ri and a set of m leaves Li = {l(i)1 , l
(i)
2 , · · · , l(i)m }. 238

Each leaf l(i)j serves as the textual root of its own 239

tree and can have its own associated leaves. 240

Our framework aims to accomplish an objective 241

with the input ⟨ri, Li⟩, which is to estimate the text 242

rating yi. By analyzing the hierarchical structure 243

of the data, RAHA can filter meaningful insights 244

and make accurate predictions according to the 245

recurrent alignment strategy. 246

3.2 Hard Attention Mechanism 247

RAHA framework integrates a tree-based hard at- 248

tention mechanism to facilitate message passing 249

within a tree structure. It eliminates the necessity 250

for LLMs to grasp the intricate interplay between 251

root and individual leaves within extensive plain 252

texts. 253

To accomplish this goal, this mechanism firstly 254

utilizes a frozen LLM to figure out the comparative 255

relationship between the root ri and its j-th leaf 256

l
(i)
j . This process is facilitated by constructing a 257

prompt p(i)j , which contains the following informa- 258

tion. Firstly, it provides a clear task description, 259

such as identifying disruptions in papers or predict- 260

ing potential popularity in social posts. Next, the 261

prompt includes the root text and leaf text along 262

with their respective meta-information. Finally, a 263

well-crafted question is included to extract the nec- 264

essary features of the root and each leaf that are 265

essential for the task. For a more comprehensive 266

understanding, please refer to the Appendix D.1 267

for specific formulation and illustrative examples. 268

With the provided prompt p(i)j , the LLM can 269

derive two critical pieces of information for each 270

pair of root and child (ri, l
(i)
j ), which are the hard 271
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Figure 2: The overview of RAHA architecture. A frozen LLM determines connections and generates updates with
hard attention scores to filter noise. RAHA incorporates an adapter and fully connected layer within a trainable
LLM to predict text rating scores after aggregating updates. During training and testing, the predicted score is fed
back into the trainable LLM prompt, refining predictions over multiple iterations.

attention score a
(i)
j and a tailored symbolic repre-272

sentation d
(i)
j :273

p
(i)
j = f (1)

p (ri, l
(i)
j )

a
(i)
j , d

(i)
j = F(p(i)j )

(1)274

where f
(1)
p represents the heuristics function for275

constructing the prompt and F denotes the frozen276

LLM.277

Here, the hard attention score a
(i)
j ∈ {0, 1} is a278

binary value, that determines whether the leaf l(i)j279

deserves further aggregation for the root ri. The280

symbolic representation d
(i)
j serves as an update for281

the root ri and provides valuable task-oriented in-282

sights. This information captures essential aspects283

such as the integration, correlation, or distinction284

between the root ri and its j-th leaf l(i)j .285

Given updates Di = [d
(i)
1 , d

(i)
2 , · · · , d(i)m ] of the286

root relative to all leaves, the utilization of hard287

attention scores Ai = [a
(i)
1 , a

(i)
2 , · · · , a(i)m ] helps288

filter out potential noise, leading to a reduction in289

computational consumption:290

D∗
i = Ai ⊗Di

= [a
(i)
1 ⊗ d

(i)
1 , a

(i)
2 ⊗ d

(i)
2 , · · · , a(i)m ⊗ d(i)m ]

(2)
291

where ⊗ denotes the selection operator and D′
i292

keeps m′ symbolic updates after selection, where293

m′ ≤ m. The valuable updates D∗
i will be aggre- 294

gated by the subsequent model. 295

3.3 Parameter-Efficient Fine-Tuning 296

We employ a trainable LLM to complete aggrega- 297

tion of the updates within a tree structure. This 298

LLM is enhanced with Parameter-Efficient Fine- 299

Tuning (PEFT) techniques, which improve its 300

alignment with downstream tasks (Houlsby et al., 301

2019). We integrate trainable parameters ∆W as 302

an adapter into the original LLM parameters W0 303

(Hu et al., 2022; Liu et al., 2022). It is represented 304

as: 305

Wx = W0x+∆Wx = W0x+BAx (3) 306

where B and A are both trainable low-rank matri- 307

ces. In addition, we incorporate a fully connected 308

layer following the hidden representation h from 309

the last layer of the LLM. 310

y = W1h (4) 311

where the W1 is a trainable matrix. This layer 312

facilitates direct prediction of property value for 313

the downstream task. For simplicity, we denote this 314

trainable LLM as F∗. 315

The prompt for facilitating aggregation of this 316

trainable LLM consists of three key components. 317

Firstly, it includes details about the root ri of 318
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the tree. Secondly, it incorporates the previously319

filtered updates D∗
i . Next, inspired by Markov320

Chains, it provides the predicted rating score y∗i of321

the text required for the task. Finally, we include322

the task-related question in the prompt. We aim323

to iteratively bring the predicted value closer to324

the true value through prior states. It is important325

to note that at the initial stage, the model has not326

started the inference yet. As a result, there is no327

available predicted value, and therefore, this value328

is set to None in the prompt. The prompt can be329

represented as pi:330

pi = f (2)
p ([ri, D

∗
i , y

∗
i ]) (5)331

where f (2)
p denotes heuristic approach for construct-332

ing the prompt pi and the y∗i is initialized to None,333

denoted as ϕ. Please refer to the Appendix D.2 for334

specific formulation and illustrative examples.335

3.4 Recurrent Alignment Strategy336

Many existing studies typically conclude once they337

complete the previous step. However, we are now338

considering the possibility of leveraging LLMs to339

enhance their understanding of inputs based on340

their previous outputs. Inspired by the principle341

of Markov Chains, where each state depends on342

the previous one and converges to a stationary dis-343

tribution, we propose a recurrent alignment strat-344

egy to enhance the learning and inference process345

of RAHA. Specifically, given the root ri and fil-346

tered updates D∗
i , we perform inference multiple347

times using trainable LLM F∗. The difference of348

each step is that we update this rating value y∗i in349

the prompt function f
(2)
p with the model predic-350

tion from the previous step. The formulations are351

shown as follows:352 
y
(1)
i = F∗(f

(2)
p (ri, D

∗
i , ϕ))

y
(2)
i = F∗(f

(2)
p (ri, D

∗
i , y

(1)
i ))

· · ·
y
(k)
i = F∗(f

(2)
p (ri, D

∗
i , y

(k−1)
i ))

(6)353

In this context, each iteration can be viewed as354

a transition in a Markov Chain, progressively re-355

fining the state towards convergence. This strategy356

offers significant benefits to the model’s learning357

process during the training stage. Since the target358

output of each iteration is considered the ground359

truth in the downstream task data, the model grad-360

ually approaches the true value based on existing361

assessments.362

During the testing phase, we conduct multiple 363

iterations of the model to perform inference on 364

the same input. This iterative approach allows the 365

model to begin with naive information, advanc- 366

ing step by step towards an accurate hidden rep- 367

resentation and progressively aligning itself to the 368

true value. This process is analogous to a Markov 369

Chain reaching its steady-state distribution. Since 370

the model parameters remain unchanged during the 371

testing phase, the process can be considered equiv- 372

alent to the transition matrix of a Markov Chain. 373

The final predicted value can be expressed as: 374

y
(k)
i = P (F ∗⊞F ∗2⊞F ∗3⊞· · ·⊞F ∗(k−1))⊞y

(0)
i F ∗k

(7) 375

Assuming that the spectral radius of F ∗ is less 376

than 1 (Blundell et al., 2015), the value can eventu- 377

ally converge to: 378

lim
t→∞

y
(k)
i = P (I − F ∗)−1 (8) 379

The detailed theoretical proof is in appendix B. 380

3.5 Training 381

Our proposed RAHA integrates two LLMs. The pa- 382

rameters of the first LLM F remain frozen through- 383

out the process. As for the second LLM F∗, we 384

keep its main parameters W0 fixed. We solely 385

employ training data from downstream tasks to 386

optimize its trainable parameters ∆W and W1 to- 387

gether, which correspond to the adapter and the 388

fully connected layer, respectively. Specifically, 389

since reasoning si has no ground truth, we utilize 390

the property values yi required by the task to build 391

the mean squared error (MSE) as the objective func- 392

tion: 393

L =
1

2M

M∑
i=1

(y
(k)
i − yi)

2 (9) 394

where M is the number of training samples and 395

y
(k)
i represent the predicted value for the i-the sam- 396

ple in the k-th iteration. We conduct a total of K 397

iterations. After each prediction, we will update 398

the prompts for the next iteration. The target value 399

in each round of loss function is the ground truth 400

of the training data. Appendix C provides detailed 401

steps for RAHA. 402

4 Experiments 403

4.1 Datasets and Evaluation Metrics 404

To evaluate the effectiveness of RAHA, we uti- 405

lize three hierarchical text rating datasets, namely 406
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Model DBLP PubMed PatentsView Average

MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

SciBERT 0.072 0.119 0.025 0.116 0.069 0.121 0.055 0.119
Bloom-7B 0.062 0.104 0.044 0.129 0.081 0.162 0.062 0.132
ChatGLM3-6B-32K 0.045 0.091 0.056 0.182 0.042 0.088 0.047 0.120

RAHA 0.024* 0.070** 0.025* 0.106** 0.022* 0.084* 0.023* 0.086*

w/o Hard Attention 0.049 0.098 0.035 0.125 0.041 0.089 0.042 0.104
w/o PEFT 0.082 0.101 0.031 0.119 0.034 0.089 0.049 0.103
w/o Recurrent Alignment 0.025 0.085 0.028 0.110 0.023 0.085 0.025 0.093

Table 1: A comparative results of various language models. The performance is measured in terms of MSE and
MAE with lower values indicating better performance. The best results are in bold. The differences are statistically
significant as determined by student-t test and * is significance results for the model.

DBLP, PubMed, and PatentsView. See the Ap-407

pendix A for detailed introduction. Each dataset408

is characterized by citation relationships and their409

respective textual content. Considering the exten-410

sive size of these datasets, we randomly select a411

subset of nearly 10,000 samples from each dataset412

and allocate 15% of them for validating and 15%413

for testing purposes. The target text rating score we414

focus on is the disruption index (Funk and Owen-415

Smith, 2017; Wu et al., 2019), which measures the416

novelty and impact of the papers or patents on a417

scale ranging from -1 to 1. We use Mean Squared418

Error (MSE) and Mean Absolute Error (MAE) as419

the main evaluation metrics.420

4.2 Baselines421

We compare RAHA with four baselines. (1) SciB-422

ERT (Beltagy et al., 2019) is a pre-trained language423

model within the scientific domain. (2) BLOOM-424

7B (Workshop et al., 2022) exemplifies advance-425

ments in large-scale multi-language processing. (3)426

Chatglm3-6B-32K (Zeng et al., 2023) is a genera-427

tive language model based on autoregressive blank428

Infilling. They’re all publicly accessible. For all429

baselines, we simply add a fully connected layer430

after their last hidden states for property prediction.431

Here, we don’t compare GPT4 since it lacks the432

ability to map the input to our numerical target.433

4.3 Experiment Setup434

We implement experiments via PyTorch on a single435

NVIDIA A800 GPU. The two LLMs included in436

our RAHA are both Chatglm3-32k. Optimization437

of the models is achieved using AdamW optimizer438

(Loshchilov and Hutter, 2019), with the learning439

rate set to 1e-5 and the gradient clipping value fixed440

to 0.2. We set the model to accommodate a max- 441

imum input length of 2560. The batch size is set 442

to 4. The low rank of the adapter in the second 443

LLM is 64. We use the PEFT package to insert the 444

adapter for the last layer of LLM(Mangrulkar et al., 445

2022). The number of training and testing itera- 446

tions K of RAHA are set to 3 and 5, respectively. 447

The number of epochs is set to 3 for other base- 448

lines. The optimal model checkpoint is selected 449

based on performance metrics obtained from the 450

development set. 451

4.4 Main Results 452

We report the main results on DBLP, PubMed, and 453

PatentView in Table 1. Overall, we can observe 454

that our framework RAHA achieves the best MSE 455

and MAE in three datasets. 456

Specifically, on the DBLP dataset, RAHA 457

demonstrates superior accuracy, reducing MSE 458

and MAE by 0.048 and 0.049, respectively, com- 459

pared to SciBERT. This improvement underscores 460

RAHA’s precision and consistency in interpreting 461

complex academic metadata. Additionally, RAHA 462

shows a marked improvement over Bloom-7b, il- 463

lustrating its enhanced ability to discern nuanced 464

contextual variations within the DBLP entries. 465

In the PubMed and PatentView datasets, RAHA 466

maintains its leadership, affirming its robustness 467

and adaptability. The framework’s efficacy in these 468

domains can be attributed to its innovative use of 469

a tree-based hard attention mechanism, which me- 470

thodically navigates through hierarchical data struc- 471

tures, ensuring that significant informational cues 472

are captured and emphasized. Moreover, RAHA’s 473

recurrent alignment strategy enhances its ability 474

to discern and interpret the nuanced linguistic and 475
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semantic variations that are critical in fields like476

biomedical research and patent descriptions.477
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Figure 3: Comparison of predictions over multiple itera-
tions during recurrent alignment across three datasets.
Figures (a), (c), and (e) show outcomes with the initial
prompt set to None. Figures (b), (d), and (f) show re-
sults with the initial prompt randomly chosen from -1
to 1.

4.5 Ablation Study478

To dissect the contributions of the individual com-479

ponents in our RAHA framework, we conduct ab-480

lation studies, as shown in the lower half of Table481

1.482

(1) RAHA w/o Tree-based hard attention483

mechanism: Excluding the hard-attention mecha-484

nism leads to a decline in performance across all485

datasets. This mechanism is crucial for RAHA’s486

ability to process and relate different parts of tree-487

structured data. Without it, RAHA struggles to488

pinpoint the most relevant parts of the input text489

for decision-making, highlighting the importance490

of understanding the information between the root491

and leaves.492

(2) RAHA w/o Parameter-efficient fine-493

tuning: Removing the adapter results in the most494

substantial increases in both MAE and MSE. The495

adapter enables the second LLM to fine-tune its496

parameters based on training data. Without it, the497

second LLM struggles to effectively align with498

downstream tasks, especially those requiring spe- 499

cific property values, demonstrating the adapter’s 500

significance in the architecture. 501

(3) RAHA w/o Recurrent Alignment: The re- 502

current alignment strategy iteratively refines out- 503

puts based on previous predictions, enhancing the 504

learning process. Without this strategy, there is 505

a slight increase in errors, indicating its critical 506

role in maintaining accuracy and performance by 507

learning from previous predictions. 508

4.6 Predictions over Multiple Iterations 509

Figure 3 displays the predictions of our RAHA 510

framework over multiple iterations during the test 511

stage. It provides evidence to support our hypothe- 512

sis that the recurrent alignment strategy allows the 513

fine-tuned LLM to progressively approximate more 514

accurate properties. We use different initialization 515

values in the prompt (see equation 5) to provide 516

broader perspectives for investigating the recurrent 517

alignment strategy. The standard initialization in- 518

volves using None as a value in the prompt. For 519

comparison, we also utilize random initialization 520

with values ranging from -1 to 1. 521

As shown in Figure 3a, Figure 3c, and Fig- 522

ure 3e, despite fluctuations, the decrease in MAE 523

over gradual iterations demonstrates the ability of 524

RAHA to refine its understanding of the input. This 525

trend suggests that RAHA is not merely fitting to 526

the immediate data but also leveraging its recurrent 527

alignment component to internalize the original 528

input and previous understanding. The ability to 529

improve its performance by iteratively replacing 530

the predicted value in the prompt proves the effi- 531

cacy of the recurrent alignment strategy. 532

In contrast, as shown in Figure 3d and Figure 533

3f, the result of the recurrent alignment strategy 534

initialized with random values is manifested in a 535

random process according to MAE. The lack of 536

the scratch-to-refinement process we set in place 537

results in models making predictions by guessing 538

rather than reasoning from prior knowledge. This 539

random initialization hampers interpretability as 540

the predictions are not based on any discernible 541

pattern or learning process. 542

Overall, the recurrent alignment strategy plays 543

a critical role in the alignment of RAHA to the 544

downstream task. By replacing the predicted value 545

from the previous round to construct the prompt, 546

this approach allows the model to evolve its knowl- 547

edge in a logical and transparent manner, which is 548

particularly valuable for applications that require 549
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reliability and trustworthiness.550

1 2 3 4 5
Iterations

3.0
3.5
4.0
4.5
5.0
5.5
6.0

1e 6

DBLP

(a) KL of DBLP

1 2 3 4 5
Iterations

6.5

7.0

7.5

8.0

8.5

1e 5

PubMed

(b) KL of PubMed

1 2 3 4 5
Iterations

0.90

0.95

1.00

1.05

1.10

1.15 1e 5

PatentsView

(c) KL of Patents

Figure 4: A detailed analysis based on the Kullback-
Leibler (KL) divergence over testing iterations across
three datasets. It highlights the narrowing gap between
the representation of the fine-tuned LLM and the target
representation during the recurrent alignment process.

Model ASAP Splunk

MSE ↓ MAE ↓ MSE ↓ MAE ↓

SciBERT 0.396 0.517 0.208 0.363
Bloom-7b 0.256 0.446 0.214 0.384
GLM3 0.252 0.439 0.214 0.361

RAHA 0.249 0.421 0.212 0.358

Table 2: The performance of various language models
on two text rating datasets, ASAP and Splunk, using
Mean Squared Error (MSE) and Mean Absolute Error
(MAE) as metrics.

4.7 Model Representation after Recurrent551

Alignment552

We provide further insight into the role of the re-553

current alignment strategy in driving dynamics of554

model representation. Since our strategy can enable555

the trainable LLM to learn the alignment capabili-556

ties from scratch to pierce, we assume that directly557

incorporating the task-desired target truth within558

the prompt (see equation 5) enables the fine-tuned559

LLM to derive the target’s true representation, facil-560

itating subsequent comparisons with the predicted561

representation. This simulates a situation where562

the result obtained through previous understanding563

is completely correct. We employ the Kullback-564

Leibler (KL) divergence as a metric to gauge the565

disparity between the predicted representation ex-566

tracted by the LLM at each iteration and the target567

representation. Figure 4 delineates the KL diver-568

gence trajectories over five test iterations across569

three datasets. Despite occasional fluctuations, the570

downward trend suggests that RAHA progressively 571

refines its approximation of the target representa- 572

tion. This highlights the effectiveness of the recur- 573

rent alignment process. Combined with the results 574

of specific predictions from the previous step, the 575

fine-tuned LLM can further align with downstream 576

tasks when grasping and aggregating updates. This 577

trend shows a static snapshot of model performance 578

and the significance of the recurrent alignment iter- 579

ations. 580

4.8 Experiment on Rating Data without 581

Hierarchical Structure 582

To enhance the assessment of the generalization of 583

recurrent alignment, we conduct experiments on 584

two plain text rating datasets. Detailed information 585

of the dataset can be found in Appendix A. 586

The table 2 provides a performance comparison 587

of several models on two text rating datasets, ASAP 588

and Splunk. Generally, RAHA performs better 589

across both the ASAP and Splunk datasets in terms 590

of MAE and nearly best in MSE, suggesting its 591

robustness and suitability for these tasks and its 592

recurrent alignment process’s ability to capture the 593

nuances in text rating data effectively. 594

5 Conclusion 595

In this paper, we propose a novel framework called 596

RAHA, that leverages two LLMs to analyze hier- 597

archically structured text. RAHA incorporates a 598

tree-based hard attention mechanism and a recur- 599

rent alignment strategy. The tree-based attention 600

enables a frozen LLM to understand the associa- 601

tions between the root and each leaf separately and 602

then selectively choose significant updates for ag- 603

gregation. This results in a reduction of potential 604

noise in the hierarchical structure and improved 605

utilization of computing resources. The iterative 606

recurrent alignment empowers a trainable LLM 607

to revisit insights gained from previous delibera- 608

tions, progressively aligning itself with the desired 609

property for downstream tasks. In evaluations on 610

three datasets, RAHA outperforms existing base- 611

lines in text rating estimation. Theoretical and em- 612

pirical analysis reveals that by repeated iterations 613

of prompting the results from the preceding step, 614

RAHA produces hidden representations that grad- 615

ually approach the optimal representation. This 616

study enhances the abilities of LLMs in handling 617

hierarchical text and aligning with specific tasks. 618
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6 Limitation619

We list several limitations in this work that could620

be improved in the future. One limitation of our re-621

search is the inference time associated with RAHA.622

The hard attention and iterative recurrent alignment,623

while beneficial for progressively refining represen-624

tations, can lead to increased computational over-625

head. Future efforts should prioritize optimizing626

the model framework to reduce inference time, en-627

hancing the broader applicability of RAHA. Addi-628

tionally, further studies are needed to explore the629

potential of RAHA in other hierarchical text analy-630

sis domains and to validate its performance across631

a wider range of tasks. A more rigorous investi-632

gation into the principles underlying the recurrent633

alignment strategy is necessary. Understanding the634

theoretical foundations and the exact mechanisms635

through which iterative prompting improves rep-636

resentation alignment can provide deeper insights637

and guide future enhancements to the model.638

7 Ethics Statement639

We recognize the ethical implications of our work640

and the importance of developing and using LLMs641

responsibly. LLMs are powerful tools that need642

careful monitoring. While our research aims to im-643

prove LLMs, these techniques can also be misused644

to generate harmful content. We emphasize not645

placing excessive trust in generated content until646

LLMs are well-regulated.647
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Appendix 858

A Data analysis 859

In this study, we utilized five diverse datasets to 860

evaluate the performance of our RAHA: DBLP, 861

PubMed, PatentsView, ASAP, and Splunk. Each 862

dataset was split into training, validation, and test 863

sets to ensure robust evaluation and comparison, 864

which is shown as Table 3. 865

DBLP: A dataset contains bibliographic infor- 866

mation on major computer science journals and pro- 867

ceedings. https://www.aminer.cn/citation 868

PubMed: PubMed contains citations and ab- 869

stracts of biomedical literature from several NLM 870

literature resources, including MEDLINE—the 871

largest component of the PubMed database. https: 872

//pubmed.ncbi.nlm.nih.gov/download/ 873

PatentsView: PatentsView offers publicly ac- 874

cessible patent research data sets with detailed doc- 875

umentation, which focusing on technological and 876

innovation studies. https://patentsview.org/ 877

download/data-download-tables 878

ASAP: The Automated Student Assessment 879

Prize (ASAP) dataset, sourced from Kaggle, is used 880

for evaluating automated essay scoring systems. 881

https://www.kaggle.com/c/asap-aes/data 882

Splunk: A Kaggle competition Predict Word- 883

Press Likes data, is used for operational in- 884

telligence tasks. https://www.kaggle.com/c/ 885

predict-wordpress-likes/data 886

Model Train Val Test Total

DBLP 6945 1488 1488 9921
PubMed 6956 1491 1490 9937
PatentsView 3988 855 854 5697

ASAP 3500 750 750 5000
Splunk 5763 1235 1235 8233

Table 3: Dataset Splits for RAHA. The table displays
the number of instances in the training, validation, and
test sets for each dataset (DBLP, PubMed, PatentsView,
ASAP, and Splunk).

B Formal Proof of Markov-like Process 887

In our model, we employ a recurrent alignment 888

strategy, analogous to a Markov chain process, by 889

performing multiple iterations on the same input to 890

refine inference. This approach allows the model 891

to start with naive information and progressively 892

refine towards an accurate representation over time. 893
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Given that the model parameters remain unchanged894

during the testing phase, this iterative process is895

equivalent to transitions defined by a Markov Chain896

transition matrix. The mathematical justification897

proceeds as follows:898

B.1 Definitions899

• y
(k)
i : State of the model at the k-th iteration.900

• P : Matrix representation of prompt. Fixed.901

• F ∗: Represents the fixed parameters of the902

model, analogous to a transition matrix in a903

Markov chain.904

• ⊞: A custom operation defined as follows:905

A ⊞ B = (A1M + B1M)∥(A2M + B2M)906

Here, A and B are matrices that are split into907

sub-blocks A1, A2 and B1, B2, which are then908

transformed by matrix M and recombined.909

B.2 Iterative Process Expansion910

The iterative refinement process can be expanded911

recursively as:912

y
(k)
i = [P y

(k−1)
i ]F ∗913

= PF ∗ ⊞ y
(k−1)
i F ∗914

= PF ∗ ⊞ (PF ∗ ⊞ y
(k−2)
i F ∗)F ∗915

= PF ∗ ⊞ PF ∗2 ⊞ y
(k−2)
i F ∗2916

= . . .917

= P (F ∗ ⊞ F ∗2 ⊞ · · ·⊞ F ∗(k−1))⊞ y
(0)
i F ∗k918

919

Define S = F ∗ ⊞ F ∗2 ⊞ · · ·⊞ F ∗(k−1), where ⊞920

operates similarly to addition. Assuming that the921

spectral radius of F ∗ is less than 1, this infinite se-922

ries converges, meaning the influence of the initial923

state y(0)i diminishes over time as k increases. This924

results in: limk→∞ S = (I−F ∗)−1 which implies925

that: y(k)i → P (I − F ∗)−1 as k →∞.926

The convergence of y(k)i to P (I − F ∗)−1 as k927

approaches infinity can be understood through the928

lens of stability theory in linear algebra. Since929

most weights of the neural network are concen-930

trated around zero after training (Blundell et al.,931

2015), the spectral radius of F ∗ is less than 1. The932

spectral radius condition, ρ(F ∗) < 1, ensures that933

the effects of F ∗ dampen over successive iterations,934

leading to the stabilization of y
(k)
i . This behav-935

ior is analogous to a Markov chain reaching its936

Algorithm 1 RAHA
Input: hierarchical text ⟨ri, Li⟩
Output: task-desired property yi

1: while 1 ≤ k iteration ≤ K do
2: for each root and leaf pair (ri, s

(i)
j ) in

⟨ri, Li⟩ do
3: p

(i)
j ← construct prompt f (1)

p (ri, s
(i)
j )

4: a
(i)
j , d

(i)
j ← conduct inference F(p(i)j )

5: end for
6: Ai ← related hard attentions

[a
(i)
1 , a

(i)
2 , · · · , a(i)m ]

7: Di← all updates [d(i)1 , d
(i)
2 , · · · , d(i)m ]

8: D′
i← filter out noise Ai ⊗Di

9: if k = 1 then
10: pi ← construct aggregation prompt

f
(2)
p (ri, D

′
i, ϕ)

11: else
12: pi← f

(2)
p (ri, D

′
i, y

(k−1)
i )

13: end if
14: y

(k)
i ← conduct inference F∗(pi)

15: L← compute loss between y
(k)
i and yi

16: ∆W , W1 ← update parameters via
AdamW

17: end while
18: return y

(k)
i

steady state, where the transition matrix F ∗ dic- 937

tates the evolution of states such that the influence 938

of the initial state progressively wanes, eventually 939

stabilizing at a distribution determined by P and 940

(I − F ∗)−1. This stabilization is crucial in demon- 941

strating that the iterative refinement process under 942

fixed parameters behaves similarly to state tran- 943

sitions in a Markov model, with F ∗ serving as a 944

transition-like matrix. 945

C Pseudo Code 946

The pseudo-code of our framework is shown in 947

algorithm 1. 948

D Prompt 949

In the appendix section, we present a series of de- 950

tailed tables that outline the prompts used in the var- 951

ious mechanisms of the RAHA framework. These 952

tables are crucial for understanding the intricacies 953

of how the tree-based hard attention mechanism, 954

parameter-efficient fine-tuning, and recurrent align- 955

ment strategy are implemented in practice. Each 956

table provides the structure of prompts used in our 957
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Prompt for Tree-based Hard Attention in Aca-
demic Paper Analysis
Task1: Determine whether a reference paper is
important to a focal paper based on the abstract.
Return Import Index is "1" if it is important and
"0" if it is not. Don’t repeat my inputs, just
output the values.

Example 1:
Input:
Focal paper abstract: abstract1
Reference paper abstract: reference1
Output: 0

Input:
Focal paper abstract: {abstract}
Reference paper abstract: {reference}
Output:
Task2: You are now tasked with assessing the dis-
ruptive potential in the research area of academic
papers. Your approach involves contrasting the
abstract of a focus paper with the abstracts of its
cited references. No need to give me abstract’s
analysis, just output Contrast and Difference.

Focal paper abstract: {abstract}
Reference paper abstract: {reference}
Contrast and Difference:

Table 4: Structured Prompts for Tree-Based Hard At-
tention in Academic Paper Analysis within the RAHA
Framework. This table showcases the input format and
elucidates how the prompts direct the LLM’s focus and
analytical processes in handling the hierarchical struc-
tures of academic texts.

experiments, including examples for academic pa-958

pers and patents. For specific tasks, prompts should959

be replaced with content that fits the context of the960

task.961

D.1 Detailed Prompt for Hard Attention962

In the RAHA framework, the integration of a tree-963

based hard attention mechanism significantly en-964

hances the process of message passing within hi-965

erarchical structures. This mechanism streamlines966

the task for LLMs by reducing the complexity in-967

volved in understanding the interplay between the968

root and individual leaves of a tree within extensive969

texts. To practically implement this mechanism,970

we utilize structured prompts that direct the LLM’s971

focus and analytical process. Examples of these972

Prompt for Tree-based Hard Attention in
Patent Analysis
Task1: Assess the importance of a reference
patent based on its abstract in relation to a focal
patent. Return an Importance Index as "1" if it is
important and "0" if it is not. Do not repeat the
inputs, only provide the evaluation.

Example 1:
Input:
Focal Patent abstract: abstract1
Reference Patent abstract: reference1
Output: 0

Input:
Focal Patent abstract: {abstract}
Reference Patent abstract: {reference}
Output:
Task2: You are tasked with analyzing the inno-
vation gap and potential impact between patents.
Your job is to contrast the abstract of a focal
patent with the abstracts of its related patents.
Avoid providing an analysis of the abstracts
themselves; focus instead on the contrast and
potential differences.

Focal Patent abstract: {abstract}
Related Patent Abstract: {reference}
Contrast and Difference:

Table 5: Structured Prompts for Tree-Based Hard Atten-
tion in Patent Analysis within the RAHA Framework.
This table presents examples of how prompts are tai-
lored for assessing the importance and innovation gap
between patents, demonstrating the framework’s adapt-
ability to different domains.

structured prompts are illustrated in the following 973

table 4. 974

In addition to academic papers, the RAHA 975

framework’s tree-based hard attention mechanism 976

is adeptly applied to patent analysis. The Table 5, 977

showcases structured prompts designed for patent 978

analysis. 979

D.2 Detailed Prompt for Fine-Tuning and 980

Recurrent Alignment 981

In this section, we present a detailed example of 982

a prompt designed specifically for the fine-tuning 983

and recurrent alignment components of the RAHA 984

framework. The Property between the [DINDEX] 985

tokens changes iteratively, with the property for 986
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Prompt for Fine-Tuning and recurrent align-
ment in Academic Paper Analysis
Task: You are tasked with assessing the disrup-
tive potential of academic papers. Your primary
tool for this analysis is the Disruption Index, a
metric ranging from -1 to 1. This index quan-
tifies the level of innovation or breakthrough a
paper represents. A higher positive value on the
index indicates a significant breakthrough, while
negative values suggest a lower level of innova-
tion.
Please provide a detailed analysis based on the
contrast and differences between the focus paper
and its references. Use the Disruption Index of
the focus paper to guide your assessment. Pay
special attention to the unique contributions or
shortcomings of the focus paper in comparison
to the referenced works.

Details for Analysis:
Determine whether the DINDEX predicted in
the previous epoch is high or low: [DIN-
DEX]{Property}[DINDEX]
Abstract of Focus Paper: {abstract}
Comparison with Reference Paper : {reference}

Based on the above information, analyze the
reason for the disruptive nature (or lack thereof)
of the focus paper.

Table 6: Example of a Structured Prompt for Fine-
Tuning and recurrent alignment in Academic Paper
Analysis within the RAHA Framework. This table
demonstrates how prompts are designed to assess the
innovation level of papers using the Disruption Index.

this iteration being the output from the previous987

one. The prompt in Table 6 is tailored for the task988

of assessing the disruptive potential of academic989

papers using the Disruption Index. This example990

illustrates how the prompt structures the analysis991

process, guiding the model to focus on key indi-992

cators and draw meaningful conclusions from the993

data.994

In addition to academic papers, the fine-tuning995

and recurrent alignment components of the RAHA996

framework are also effectively applied to the do-997

main of patent analysis. The prompt provided in998

Table 7 is specifically designed for evaluating the999

innovation level and potential breakthroughs of1000

patents.1001

Prompt for Fine-Tuning and recurrent align-
ment in Patent Analysis
Task: You are tasked with evaluating the innova-
tion level and potential breakthrough of patents.
Your primary tool for this analysis is the Disrup-
tion Index, a metric ranging from -1 to 1. This
index helps quantify the level of novelty and po-
tential market disruption a patent represents. A
higher positive value on the index indicates a
significant breakthrough, while negative values
suggest incremental or less novel innovations.
Please provide a detailed assessment based on
the comparison between the focal patent and its
related patents. Consider the Disruption Index of
the focal patent to guide your analysis, focusing
on the unique contributions or advancements it
offers.

Details for Analysis:
Determine whether the DINDEX predicted in
the previous epoch is high or low: [DIN-
DEX]{Property}[DINDEX]
Abstract of Focus Patent: {abstract}
Comparison with Related Patent: {reference}

Based on the above information, predict the Dis-
ruption index of the focal patent.

Table 7: Example of a Structured Prompt for Fine-
Tuning and recurrent alignment in Patent Analysis
within the RAHA Framework. This table demonstrates
how prompts are designed to assess the innovation level
of patents using the Disruption Index.
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