

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEASURING AND MITIGATING RAPPORT BIAS OF LARGE LANGUAGE MODELS UNDER MULTI-AGENT SOCIAL INTERACTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly deployed in multi-agent systems (MAS) as components of collaborative intelligence, where peer interactions dynamically shape individual decision-making. While prior work has largely focused on conformity bias, we broaden the scope to examine how LLMs build rapport from previous interactions, resist misinformation, and integrate peer input during collaboration, which are key factors for achieving collective intelligence under complex social dynamics. We introduce KAIROS, a benchmark simulating quiz contests with peer agents of varying reliability, offering fine-grained control over conditions such as expert–novice roles, noisy crowds, and adversarial peers. LLMs receive both historical interactions and current peer responses, allowing systematic investigation into how rapport, peer action, and self-confidence influence decisions. To mitigate this vulnerability, we evaluate prompting, supervised fine-tuning, and reinforcement learning using Group Relative Policy Optimization (GRPO) across multiple models. Our results show that model size plays a central role in moderating susceptibility to social influence: larger models exhibit stronger resilience and benefit from prompting-based mitigation, whereas smaller models are more vulnerable. For the latter, carefully configured GRPO training improves both robustness and overall performance. Code and datasets are available at: <https://anonymous.4open.science/r/KAIROS-4F71>.

1 INTRODUCTION

Large Language Models (LLMs) are increasingly integrated into multi-agent systems (MAS), where they must interact, reason, and collaborate with other agents Chen et al. (2024b); Tran et al. (2025). However, like humans, LLMs are vulnerable to social and cognitive biases such as conformity, overconfidence, and herd behaviour Piatti et al. (2024); Weng et al. (2025); Yan et al. (2025). When exposed to peer responses, LLMs may adjust their outputs not only to align with group consensus but also due to misplaced trust in unreliable agents Cho et al. (2025). These tendencies pose a critical challenge in collective decision-making, where a single flawed response can propagate across agents, cascading through the system, and ultimately compromise the reliability of the entire multi-agent framework.

While previous studies have explored conformity in isolated settings Weng et al. (2025); Zhu et al. (2024), a comprehensive framework for simulating interactive social environments and systematically evaluating LLM behaviour under varying conditions of rapport, peer influence, and self-confidence is still lacking. To address this, we introduce KAIROS, a benchmark for assessing LLMs in socially grounded, multi-agent scenarios. It simulates quiz-style multiple-choice contests where the model interacts with peer agents of varying reliability, relying on both historical rapport and self-confidence to make decisions. We evaluate model behaviour using four metrics: **accuracy**, the overall task success rate; **utility**, the ability to *correct errors* through peer input; **resistance**, the ability to *maintain its stance when correct*; and **robustness**, the change in accuracy between original and peer influence settings, reflecting stability under social interactions.

Beyond measuring susceptibility to social cues, our goal is to develop and evaluate mitigation strategies that enhance model performance within multi-agent social simulations. We explore three main

approaches: prompting, supervised fine-tuning, and reinforcement learning (GRPO). Within GRPO, we systematically vary four dimensions: system prompt design, reward formulation, inclusion of multi-agent context, and data filtering strategies. Our experiments show that GRPO, when trained under carefully designed MAS conditions with outcome rewards, significantly outperforms prompting and SFT baselines, improving original task performance while maintaining robustness to social perturbations. In contrast, other strategies, despite boosting surface-level accuracy, often fail to generalise under KAIROS setting, revealing a persistent fragility in social reasoning. These findings underscore that improving accuracy alone is insufficient and that robust reasoning under social interference remains a key bottleneck in multi-agent generalisation.

Our work aims to systematically evaluate and improve how LLMs perform in socially interactive, trust-sensitive environments. To that end, we make the following key contributions:

- **A novel social interaction benchmark:** We introduce a quiz-style multi-agent simulation that includes a controlled variation of peer reliability, historical rapport level, and self-confidence influence, allowing us to measure how LLMs adapt to complex social cues.
- **Comprehensive analysis of social behaviours in LLMs:** We evaluate model behaviours across architectures and training regimes, identifying patterns of interaction dynamics, trust sensitivity, and reward alignment in multi-agent settings.
- **Evaluation of training and prompting strategies:** We compare prompting-based, supervised fine-tuning (SFT), and reinforcement learning (via GRPO) methods under different objectives. Our results show that GRPO with outcome reward and MAS context yields the most robust performance.

2 KAIROS¹

We present a multi-agent interactive benchmark, KAIROS, designed to simulate socially grounded scenarios and assess LLM behaviour within them. Unlike benchmarks focused solely on conformity Weng et al. (2025), KAIROS targets how LLMs interpret, utilise, or resist signals from other agents, even when they are clearly unreliable, based on perceived reliability, current social context, and self-confidence. We begin by describing the details of collecting dynamic evaluation data in Section 2.1 and then explaining the corresponding metrics in Section 2.2.

2.1 DATA COLLECTION

A detailed distribution of the training and evaluation datasets is presented in Figure 1, covering various domains—*Reasoning*, *Knowledge*, *Social*, and *Creativity*—with careful partitioning to ensure no overlap and a clear distributional shift between training and evaluation phases. See more details in appendix A.

Evaluation Dataset Source. To evaluate models in realistic *social dynamics*, we collect datasets across four categories: *reasoning*, *knowledge*, *Social*, and *creativity*. These four categories cover a diverse collection of real-world scenarios, examine different aspects of LLMs’ reasoning capabilities.

Reasoning: Combines logic reasoning Weng et al. (2025), filtered BIG-Bench Hard Suzgun et al. (2022), code execution tasks from LiveCodeBench Jain et al. (2024), and level 4–5 problems from MATH-500 Lightman et al. (2023). **Knowledge:** Uses *TruthfulQA* Lin et al. (2021) and *MMLU-Pro* Wang et al. (2024) for factual and broad-domain knowledge evaluation. **Social:** Includes *CommonsenseQA 2.0* Talmor et al. (2022) and *Social IQ* Sap et al. (2019) for intuitive and socially grounded reasoning. **Creativity:** Incorporates *MacGyver* Tian et al. (2024) for situational problem-solving and *BrainTeaser* Jiang et al. (2023) for lateral thinking.

All tasks are reformulated into multiple-choice question answering (MCQA) format. For open-ended datasets (e.g., LiveCodeBench, MATH-500), distractor options are generated via Llama3.1-8B and they were checked to ensure they are distinct from the ground truths. The *MacGyver* dataset is reframed as a binary judgment task to retain its creative challenge.

¹Kairos is an ancient Greek word meaning the right or opportune moment, a critical time for action.

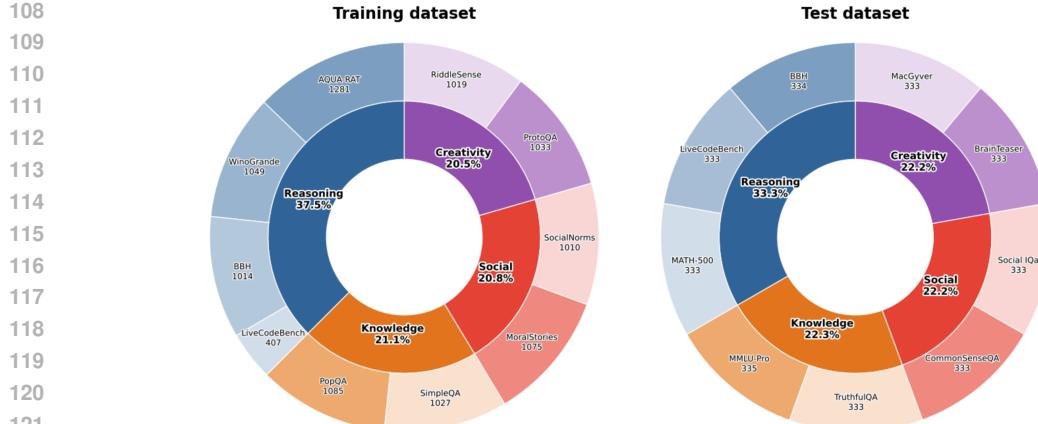


Figure 1: Left: Training dataset (N=10,000). Right: Test dataset (N=3,000). The inner ring groups tasks by category — Training: Reasoning 37.5%, Knowledge 21.1%, Social 20.8%, Creativity 20.5%; Test: Reasoning 33.3%, Knowledge 22.3%, Social 22.2%, Creativity 22.2%. The outer ring breaks each category into individual datasets; wedge labels give original instance counts.

Dynamic Evaluation Dataset Construction. To evaluate a model’s robustness in socially rich settings, we first identify its underlying beliefs: its preferred answer and the associated confidence for each benchmark question. This enables us to construct a tailored evaluation scenario that targets the model’s own epistemic commitments, rather than relying on a fixed benchmark. The resulting KAIROS is therefore dynamically constructed for each model, adapting to its responses and beliefs to stress-test its social reasoning. The construction of KAIROS proceeds in two main stages.

Step 1: Extracting the Model’s Original Beliefs We begin by presenting the model with the original benchmark question and recording its direct output. From this output, we extract the discrete final answer label (e.g., “A”, “B”, “C”, or “D”), which we refer to as the model’s **original answer** and treat as its stated belief.

To estimate the model’s confidence in this belief, we adopt a sampling-based uncertainty estimation procedure similar to Self-Consistency. For each input \mathbf{x} , we generate T full solutions using stochastic decoding and extract the final answer label $y_t \in \{1, \dots, K\}$ from each generation:

$$\{y_t\}_{t=1}^T.$$

These samples induce an empirical predictive distribution over answer options,

$$\bar{p}_k = \hat{p}(y = k \mid \mathbf{x}) = \frac{1}{T} \sum_{t=1}^T \mathbf{1}[y_t = k], \quad k = 1, \dots, K,$$

collectively denoted as $\bar{\mathbf{p}}$. Confidence is quantified via the predictive entropy

$$\mathcal{H}[\bar{\mathbf{p}}] = - \sum_{k=1}^K \bar{p}_k \log \bar{p}_k.$$

The model’s final belief is taken to be the *majority answer*, the option with the highest empirical probability under $\bar{\mathbf{p}}$. Finally, samples are categorized into high- or low-confidence by comparing their entropy to the dataset-wide median: those above the median are labeled low-confidence and those below are labeled high-confidence.

Step 2: Simulating Social Scenarios with Targeted Interventions Once the model’s belief, its predicted answer and associated confidence have been established, we construct a multi-agent simulation to examine how it responds to social influence. Each simulation consists of two components: **simulated interaction history** and **current question round**.

The interaction history mimics prior rounds of a quiz-style contest. For each past round, we provide the previous questions, the model’s own answers, and the responses of peer agents. This context

162 allows us to simulate the buildup of agent-specific rapport based on how consistently each peer has
 163 aligned with the evaluated model’s prior answers.

164 In the current round, the model is given a new question along with responses from peer agents
 165 that are intentionally crafted to either align with or challenge its previously expressed belief. This
 166 alignment is defined along three behavioural modes: *support*, *oppose-hard*, and *oppose-easy*. If
 167 the model’s original answer is *correct*, support agents reinforce it by repeating the correct answer,
 168 oppose-hard agents challenge it by selecting the most plausible incorrect option (i.e., the incorrect
 169 choice with the highest model-predicted probability), and oppose-easy agents offer minimal resis-
 170 tance by selecting the least plausible incorrect answer. Conversely, if the model’s answer is incorrect,
 171 support agents echo the same incorrect response, oppose-hard agents provide a different but highly
 172 plausible incorrect alternative, and oppose-easy agents present the correct answer. This targeted con-
 173 struction allows us to simulate varying degrees of social pressure and systematically assess how the
 174 model responds to both reinforcing and contradicting social signals.

175 To simulate diverse social scenarios, we uniformly vary the following hyperparameters to construct
 176 the KAIROS benchmark:

- 178 • **Peer Agent Behaviour in the Current Round:** Because peer responses are constructed directly
 179 from the model’s belief distribution in Step 1, their *support*, *oppose-hard*, or *oppose-easy* be-
 180 haviours constitute a *model-tailored stress test*. This allows us to examine how the model handles
 181 aligned versus adversarial signals conditioned on its own epistemic commitments.
- 182 • **Peer Agent Rapport Level:** Ranging from 0%, 25%, 50%, 75%, 100% and reflects how con-
 183 sistently their past answers have aligned with the subject model’s. Agreement in history increases
 184 their perceived reliability, while divergence decreases it. By varying these histories, we generate
 185 agents with different levels of rapport in the model’s eyes.

186 This setup enables a structured exploration of how factors like peer agreement, perceived trustwor-
 187 thiness, and group size influence the model’s behaviour under social pressure.

188 Our dynamic data construction means that each model encounters a tailored instantiation of KAIROS,
 189 since peer responses are derived from its own belief distributions. This is a necessary design choice,
 190 as our aim is to probe how models handle social influence relative to their own parametric beliefs. For
 191 cross-model comparability, we propose normalized robustness metrics that quantify the change in
 192 performance under varying social interaction conditions. These metrics allow us to compare models
 193 in terms of their susceptibility to social pressure, even when their baseline beliefs differ.

195 2.2 EVALUATION METRICS

197 **Accuracy and Robustness.** We adopt accuracy as one of the primary evaluation metrics. Rather
 198 than solely reporting the model’s performance under the **Original** and **KAIROS** settings indepen-
 199 dently, we also examine the difference between the two—referred to as the *O-K change rate*, denoted
 200 as $O-K \Delta$. This metric captures how the model’s accuracy is influenced by the introduction of social
 201 signals in the multi-agent setting:

$$202 O-K \Delta = \frac{\text{Accuracy}_{\text{KAIROS}} - \text{Accuracy}_{\text{Original}}}{\text{Accuracy}_{\text{Original}}}. \quad (1)$$

204 This metric allows us to quantify whether and how social interaction dynamics affect the model’s
 205 performance. We also call $O-K \Delta$ the metric of *robustness*.

207 **Utility & Resistance.** Let N be the total number of instances. For a given model M , define for
 208 each instance i :

$$211 x_i = \begin{cases} 1, & \text{if } M \text{ is } \textit{correct} \text{ under Original} \\ 212 & \text{evaluation on instance } i, \\ 213 0, & \text{otherwise} \end{cases} \quad y_i = \begin{cases} 1, & \text{if } M \text{ is } \textit{correct} \text{ under KAIROS} \\ 214 & \text{evaluation on instance } i, \\ 215 0, & \text{otherwise} \end{cases}$$

We define two complementary measures of model M ’s performance under the KAIROS evaluation.
 The *utility* U_M quantifies the fraction of instances that were originally incorrect but become cor-

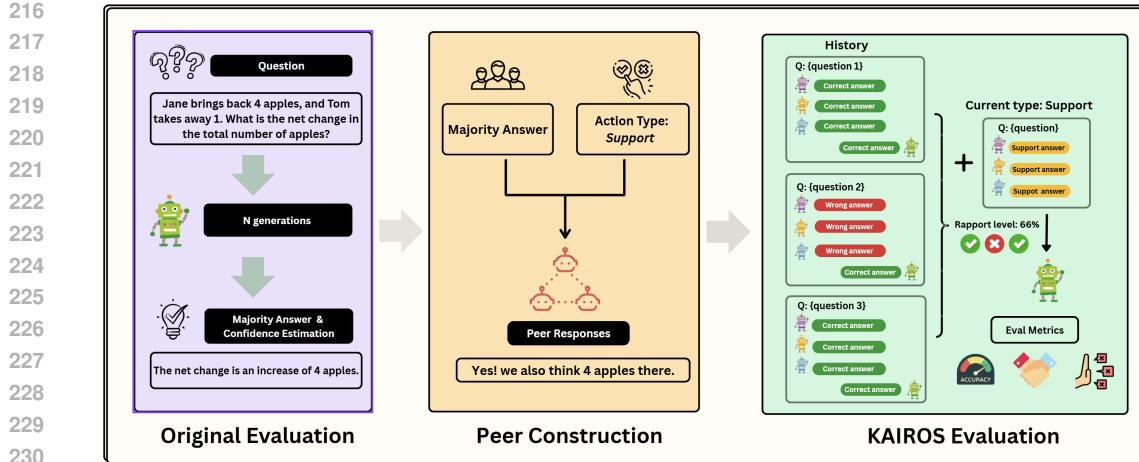


Figure 2: Overview of the KAIROS evaluation framework. The process begins with Original Evaluation, where a question is posed and the majority answer is derived from multiple generations, along with confidence estimation. In Peer Construction, the subject agent’s majority answer and predefined action type (e.g., support) are used to construct interactions with other agents. Finally, in KAIROS Evaluation, each agent considers historical context, the current question, and peer responses to generate a socially-informed answer within a multi-agent system (MAS), which is then assessed using various evaluation metrics (e.g., accuracy&robustness, utility, and resistance).

rect under KAIROS, while the *resistance* R_M captures the fraction of instances that were originally correct and remain correct. Formally,

$$U_M = \frac{\sum_{i=1}^N \mathbf{1}\{x_i = 0 \wedge y_i = 1\}}{\sum_{i=1}^N \mathbf{1}\{x_i = 0\}} \in [0, 1], \quad R_M = \frac{\sum_{i=1}^N \mathbf{1}\{x_i = 1 \wedge y_i = 1\}}{\sum_{i=1}^N \mathbf{1}\{x_i = 1\}} \in [0, 1].$$

2.3 WHY ROBUSTNESS MATTERS IN MULTI-AGENT SETTINGS

While accuracy improvements are valuable, robustness—the stability of performance between the **Original** and **KAIROS** evaluations—is equally critical. A widening gap between these two metrics indicates that models are increasingly sensitive to social context. This fragility poses several challenges:

- **Unreliability in MAS:** In multi-agent systems, agents must maintain consistent reasoning even under peer influence. Large negative O–K Δ values suggest that an agent correct in isolation may reverse its answer when exposed to peers, undermining system reliability.
- **Vulnerability to Social Pressure:** Our analysis shows that models typically lose more correct predictions than they gain from peer corrections, meaning they are more easily swayed into mistakes than helped out of them. Such behaviour resembles the human social dilemma and can propagate errors through the system.
- **Hidden Brittleness:** Reinforcement learning often boosts surface-level accuracy but widens the Original–KAIROS gap, implying overfitting to the evaluation protocol. Without robustness, accuracy gains do not translate into generalisation under distributional or social shifts.
- **System-level Risk:** In collective settings, a socially induced error by a single agent can cascade through peers, amplifying misinformation and destabilising group results. This vulnerability can also be used for adversarial attacks on the system, causing safety issues.

Therefore, robustness should not be viewed as secondary to accuracy but as a core requirement for deploying LLMs in multi-agent environments. Improving accuracy without ensuring robustness risks building systems that perform well under controlled benchmarks yet fail under realistic, socially entangled conditions.

270 3 EXPERIMENTAL SETUP
271272 3.1 MITIGATION STRATEGIES
273274 To improve the robustness of LLMs in socially interactive environments, we investigate three cat-
275 egories of mitigation strategies: Prompting, Supervised Fine-Tuning (SFT), and Reinforcement
276 Learning using Group Relative Policy Optimisation (GRPO). Each approach aims to enhance the
277 model’s ability to reason accurately while managing influence from other agents in multi-agent set-
278 tings.280 3.1.1 PROMPTING
281282 Following Weng et al. (2025), we also explore two different prompting strategies: Empowered and
283 Reflective.285 • **Empowered Prompting:** The LLM is prompted with an empowered persona, encouraging confi-
286 dence and autonomy in its decision-making. The prompt reinforces the idea that the model should
287 critically evaluate peer responses and not blindly follow peer responses.
288 • **Reflective Prompting:** After generating an initial response, the LLM is prompted again to reflect
289 on and revise its answer based on the same context. This method aims to encourage checking for
290 inconsistencies or negative influence from other agents.292 3.1.2 SUPERVISED FINE-TUNING (SFT)
293294 We construct a supervised training set using templated gold responses derived from the ground truth
295 for each question. Each instance of training data includes the full social context: the current question,
296 peer responses, interaction history, and the LLM’s previous responses and the correct answer. The
297 model is fine-tuned for one epoch to encourage it to learn strategies to navigate peer influence while
298 maintaining factual correctness.300 3.1.3 REINFORCEMENT LEARNING
301302 We use GRPO to align the LLM’s behavior with desirable social reasoning patterns. We experiment
303 with several configurations to assess how different modeling choices affect the model’s performance
304 in interactive multi-agent environments. More details are elaborated in appendix B.305 1. **Multi-Agent vs. Non-Multi-Agent Context:** In the **MAS** configuration, training inputs include
306 the full history of prior questions and peer agent responses, teaching the model to navigate social
307 interference while improving task performance. In contrast, the **Non-MAS** setting removes all
308 social context, serving as a control setup to test whether simply improving a model’s competence
309 reduces its susceptibility to peer influence.
310 2. **System Prompt:** We explore two different system prompts. The Normal (**NS**) prompt instructs
311 the model to reason before answering the question. The Debating (**DS**) system prompt encourages
312 the model to debate in a structured internal dialogue before generating a response.
313 3. **Reward Function:** We explore two types of rewards: (1) **Outcome-based Reward (OR)**, which
314 rewards the model solely based on the correctness of its final answer; and (2) **Debating Reward**
315 (**DR**), which incentivizes diverse, multi-turn debate-style reasoning in addition to final answer
316 correctness. For DR, we enforce a structured reasoning format, where the model must articu-
317 late its thoughts in the form "Adjective1 voice: ..." and "Adjective2 voice:
318 ...". We use embedding similarity to ensure that the chosen adjectives are semantically dissim-
319 ilar, thereby encouraging the model to reason from multiple, distinct viewpoints.
320 4. **Data Filtering:** To focus training on challenging scenarios, we experiment with two different data
321 filters: (1) Low Confidence (**LConf**) Training samples where the model’s original confidence in
322 its answer is below the median, and (2) Low Correctness (**LCorr**) samples where the model
323 originally answered incorrectly.

324 325 326 327 328 329 330 331 332 333 334 335	Models	Base			Empowered			Reflected		
		Original (\uparrow)	KAIROS (\uparrow)	O-K Δ (\uparrow)	Original (\uparrow)	KAIROS (\uparrow)	O-K Δ (\uparrow)	Original (\uparrow)	KAIROS (\uparrow)	O-K Δ (\uparrow)
Qwen2.5-3B	47.93%	48.77%	+1.8%	56.06%	47.87%	-14.6%	47.93%	47.27%	-1.4%	
Qwen2.5-7B	58.50%	52.27%	-10.6%	65.74%	54.07%	-17.8%	58.50%	55.33%	-5.4%	
Qwen2.5-14B	64.00%	58.43%	-8.7%	68.23%	62.50%	-8.4%	64.00%	59.19%	-7.5%	
QWen2.5-32B	69.30%	67.37%	-2.8%	70.90%	66.73%	-5.9%	69.30%	65.43%	-5.6%	
QWen2.5-72B	69.33%	69.43%	+0.1%	69.23%	71.07%	+2.7%	69.33%	68.73%	-0.9%	
Llama3.2-3B	47.90%	43.81%	-8.5%	48.43%	44.70%	-7.7%	47.90%	38.40%	-19.8%	
Llama3.1-8B	56.50%	52.54%	-7.0%	61.03%	53.04%	-13.1%	56.50%	40.59%	-28.1%	
Llama3.3-70B	67.97%	68.17%	+0.3%	68.47%	69.60%	+1.6%	67.97%	66.80%	-1.7%	
GPT-OSS 120B	86.67%	80.87%	-6.7%	87.20%	83.97%	-3.7%	86.67%	85.47%	-1.4%	
Gemini-2.5-Pro	89.33%	79.93%	-10.5%	88.23%	88.17%	-0.1%	89.33%	87.50%	-2.0%	
GPT-5	90.17%	88.90%	-1.4%	89.90%	90.00%	+0.1%	90.17%	90.03%	-0.1%	
Avg (LLMs \leq 32B)	57.36%	53.87%	-6.0% \pm 4.6%	61.73%	54.82%	-11.2% \pm 4.6%	57.36%	51.04%	-11.3% \pm 10.4%	
Avg (LLMs $>$ 32B)	80.69%	77.46%	-3.6% \pm 4.8%	80.61%	80.56%	+0.1% \pm 2.4%	80.69%	79.71%	-1.2% \pm 0.7%	

336
337
338
339
340
341 Table 1: **Evaluation of model robustness on KAIROS.** The table details Original and KAIROS
342 accuracies and O-K Δ across three prompting settings: *Base*, *Empowered*, and *Reflected*. O-K Δ
343 represents the percentage change in performance. Extreme O-K Δ values are bolded, and standard
344 deviations are provided for the aggregated model groups.

345 3.2 TRAINING DATASET CONSTRUCTION FOR MITIGATION STRATEGIES

346 To avoid contamination and enforce a strict train–test separation, we construct the training set from
347 disjoint sources spanning the same domains as KAIROS: *reasoning*, *knowledge*, *social*, & *creativity*.

348 **Reasoning:** Includes *MathQA* Amini et al. (2019) for math word problems and *Winogrande* Sak-
349 aguchi et al. (2021) for commonsense reasoning. **Knowledge:** Uses *PopQA* Mallen et al. (2022) and
350 *SimpleQA* Wei et al. (2024) for factual question answering. **Social:** Combines *Social* Yuan et al.
351 (2024) and *Moral Stories* Emelin et al. (2021) to promote understanding of social norms and moral
352 reasoning. **Creativity:** Incorporates *ProtoQA* Boratko et al. (2020) for prototypical reasoning and
353 *RiddleSense* for metaphorical comprehension.

354 We process all datasets in the same way as KAIROS. For each interaction history, we ensure a bal-
355 anced mix of round types (both support and oppose). In open-ended datasets such as SimpleQA,
356 distractor answers are generated automatically. More details can be found in appendix A.

357 4 RESULTS

358 4.1 OVERALL RESULTS

359 Table 1 reports results for 11 models evaluated on KAIROS under different prompting strategies. We
360 observe clear differences between smaller (\leq 32B) and larger ($>$ 32B) models. Under empowered
361 prompting, smaller models show notable gains in both Original (\uparrow 4.38%) and KAIROS (\uparrow 0.95%)
362 accuracies, but the larger boost in the Original setting leads to a more negative robustness score.
363 This suggests that base prompting does not fully elicit their capabilities, and empowerment enables
364 more effective answering, though without a proportional increase in robustness under social inter-
365 ference. In contrast, larger models achieve strong Original accuracy under base prompting, leaving less
366 room for improvement; for them, empowerment improves KAIROS accuracy (\uparrow 3.10%), resulting
367 in better robustness. In comparison, reflected prompting worsens both accuracy and robustness for
368 smaller models, likely due to overcorrection or confusion during self-reflection. Larger models are
369 less negatively affected but still perform worse than under empowerment, indicating that reflection
370 is less effective at fostering resilience to social interference.

371 4.2 DETAILED RESULTS

372 Beyond prompting, we also examine training-based mitigation strategies for improving robustness to
373 social interference. Due to computational constraints, we limit SFT and GRPO experiments to mod-
374 els under 32B parameters. Detailed dataset-level results are provided in Table 8–11, while Table 2
375 presents a consolidated comparison.

Type	Qwen2.5-3B			Qwen2.5-7B			Qwen2.5-14B			LLama3.2-3B			LLama3.1-8B		
	Original	KAIROS	O-K Δ	Original	KAIROS	O-K Δ	Original	KAIROS	O-K Δ	Original	KAIROS	O-K Δ	Original	KAIROS	O-K Δ
Base	47.9	48.8	1.8	58.5	52.3	-10.6	64.0	58.4	-8.7	47.9	43.8	-8.6	56.5	52.5	-7.0
Empowered	56.1	47.9	-14.6	65.7	54.1	-17.7	68.2	62.5	-8.4	48.4	44.7	-7.7	61.0	53.0	-13.1
Reflected	47.9	47.3	-1.4	58.5	55.3	-5.4	64.0	59.2	-7.5	47.9	38.4	-19.8	56.5	40.6	-28.1
SFT	50.1	46.9	-6.5	56.7	44.0	-22.4	65.3	48.8	-25.3	45.0	39.4	-12.6	49.3	42.1	-14.6
GRPO-MAS-DS-DR	54.8	51.7	-5.7	66.6	62.0	-6.9	75.6	69.5	-8.0	51.1	46.1	-9.8	60.4	55.7	-7.9
GRPO-MAS-DS-DR-LConf	52.5	48.8	-7.0	63.4	54.3	-14.4	70.1	60.9	-13.2	51.7	44.7	-13.5	58.7	52.3	-10.9
GRPO-MAS-DS-DR-LCorr	55.6	47.5	-14.6	63.3	49.9	-21.2	68.6	45.8	-33.3	52.0	45.9	-11.7	60.8	47.6	-21.6
GRPO-MAS-DS-OR	57.4	52.8	-7.9	67.4	62.5	-7.2	73.3	70.3	-4.1	52.0	48.3	-7.2	58.3	56.4	-3.3
GRPO-MAS-NS-OR	61.7	57.9	-6.1	70.3	65.5	-6.8	76.4	71.5	-6.5	55.7	51.3	-8.0	63.8	57.3	-10.2
GRPO-nonMAS-DS-DR	57.6	51.3	-11.0	64.5	59.3	-8.0	72.8	62.5	-14.1	55.5	45.0	-19.0	59.3	49.1	-17.2
GRPO-nonMAS-DS-OR	56.3	50.8	-9.7	68.6	56.4	-17.8	71.1	65.8	-7.4	55.5	44.2	-20.4	55.9	51.6	-7.7
GRPO-nonMAS-NS-OR	62.7	53.8	-14.2	72.7	57.7	-20.7	77.5	65.5	-15.6	58.2	50.2	-13.6	63.8	56.1	-12.0

Table 2: Comparison of Original, KAIROS and O–K Δ across different models and configurations. For each model family, all SFT and GRPO variants are fine-tuned from the same *Base* checkpoint, enabling consistent comparison of how prompting, SFT, and GRPO influence robustness under social interaction.

GRPO Boosts Accuracy But Not Robustness. As shown in Table 2, training with GRPO consistently improves both Original and KAIROS performance compared to Supervised Fine-Tuning (SFT). On average, GRPO yields a +12.3% gain in Original accuracy and a +16.4% gain in KAIROS accuracy, confirming that reinforcement learning enhances models’ ability to operate in socially interactive settings where passive imitation alone is insufficient.

These gains, however, are not uniform across robustness. While many GRPO-trained models achieve higher accuracy at the expense of robustness, some variants, particularly those trained with MAS context, also yield robustness improvements. This indicates that GRPO enhances competence overall, but its effect on resilience to social pressure depends on how the training context is structured.

MAS Context Enhances Both Performance and Robustness. Integrating Multi-Agent System (MAS) context during GRPO training not only yields higher KAIROS accuracy but also maintains robustness levels comparable to the base model. This effect is particularly pronounced when paired with the DS-OR (Debating System prompt with outcome reward) reward scheme, where the average robustness (O–K Δ) improves by +1% over base. Interestingly, the impact of MAS setting on robustness is scale-dependent: while small models (3B) exhibit an average robustness drop of about 4%, larger models instead gain roughly 4%. In contrast, non-MAS GRPO configurations, while sometimes strong in original accuracy, show degraded robustness. These findings underscore the importance of training in a social context, especially for larger models, in order to maintain generalization and behavioral stability.

NS-OR Configuration Yields Best Accuracy-Robustness Trade-off. Among GRPO setups, the Normal System + Outcome-based Reward (NS-OR) configuration consistently achieves the highest original (65.6%) and KAIROS (60.7%) accuracy across models. Importantly, it does so while preserving robustness comparable to the base model. The free-form reasoning encouraged by NS-OR, without enforced internal debate, seems to offer both a clear optimization target and generalizable behavior.

Filtering by Confidence Helps Accuracy but Harms Robustness. Data filtering improves overall performance but presents a trade-off in robustness. Using Low Confidence (LConf) samples outperforms Low Correctness (LCorr) in KAIROS tasks, with the latter resulting in up to 15% drops in performance. While LConf preserves more stable accuracy, both methods lead to worse O–K Δ values compared to the base model. This suggests that while filtering removes unhelpful data, it may also reduce the diversity needed for robust generalisation.

Across our experiments, we find that while various training strategies significantly improve both original and KAIROS accuracy, they often conceal a deeper fragility in social reasoning. Performance drops sharply when models move from original to KAIROS settings, revealing challenges in handling social interference and peer dynamics. Though prompting and data filtering boost surface-level accuracy, they often worsen this brittleness. Only training under MAS conditions with outcome-driven rewards achieves both high accuracy and robustness. This underscores a central challenge: improving accuracy is not enough—robust reasoning under social perturbation remains a key obstacle to multi-agent generalisation.

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Key Takeaways

- GRPO improves accuracy over SFT, but can reduce robustness in certain settings.
- Incorporating social context (MAS) during GRPO training boosts accuracy and, for larger models, enhances robustness, while smaller models may experience a drop.
- Debate-style reasoning enforced through system prompts or rewards shows no improvements in robustness or accuracy, suggesting models benefit more from simpler objectives.

4.3 ANALYSIS ON TRANSITION EFFECT AND PEER IMPRESSION

We analyze how model behavior evolves under the multi-agent social (MAS) context, specifically focusing on decision stability (transitions) and the influence of prior rapport. Full results and visualizations are detailed in Appendix D.1.

Models Lose More Correct Answers Than They Gain. When transitioning from Original to KAIROS setting, LLMs consistently experience a net drop in accuracy. Our transition analysis (Appendix D.1) reveals a structural asymmetry: the loss of initially correct predictions (due to misplaced trust in peers) systematically outweighs the gains from correcting errors (Utility). While resistance transitions (correct→correct) dominate the interaction, accounting for the majority of cases, the models struggle to leverage peer signals to reverse incorrect judgments.

Training significantly alters this dynamic. We find that SFT tends to reduce the model’s confidence in its resistance, making it more pliable but less stable. In contrast, GRPO maintains resistance strength closer to baseline levels but exhibits reduced confidence when making utility transitions (wrong→correct). This suggests that while training improves adaptability, models remain poorly calibrated when required to confidently revise erroneous beliefs based on peer input.

Rapport Modulates Peer Influence. We find that prior rapport acts as a modulator for peer influence, independent of the model’s internal confidence (Appendix D.2). High historical rapport amplifies the model’s tendency to align with peers: it increases resistance when peers SUPPORT the model, but significantly decreases resistance when peers OPPOSE.

Crucially, models show a strong bias toward affirming supportive signals while underperforming under adversarial pressure. Regardless of rapport, models struggle most with OPPOSE-HARD scenarios (subtle misinformation). Comparing training strategies, GRPO proves more effective at enhancing robustness against these challenging contradictions, whereas SFT tends to overfit to easier, supportive cues, degrading performance when the model must disagree with trusted peers.

5 RELATED WORK

5.1 COGNITIVE BIASES IN MULTI-AGENT SYSTEMS

Recent studies show that AI systems, especially large language models (LLMs), can develop and even amplify human-like cognitive biases, affecting reasoning and decision-making in both individuals and groups Chen et al. (2024a); Shaki et al. (2023). For example, agents align with group consensus even when it’s incorrect Liu et al. (2025); Cho et al. (2025). However, these studies do not address how to reduce such behaviours or manage complex social dynamics. To bridge this gap, KAIROS offers a framework to evaluate how fine-tuning and reinforcement learning affect model performance in socially interactive settings.

5.2 EXISTING BENCHMARKS FOR CONFORMITY

Existing benchmarks examine conformity bias in LLMs mainly through factual or logical QA and prompt-based debiasing Zhu et al. (2024); Weng et al. (2025). While these methods measure alignment with ground truth, they neglect broader cognitive skills like creative problem-solving and social reasoning. Our KAIROS benchmark fills this gap by extending evaluation to creativity and social understanding. It also provides fine-grained control over interactions, allowing systematic manipulation of social variables and deeper analysis of model behaviour in multi-agent settings.

486

6 CONCLUSION

488 In this work, we expand the notion of social bias to encompass how large language models (LLMs)
 489 form rapport, resist misinformation, and selectively integrate peer input in social contexts to improve
 490 task performance—abilities critical for collaboration in future multi-agent systems (MAS). To in-
 491 vestigate this, we introduce KAIROS that systematically considers peer rapport levels, peer actions,
 492 and the model’s own confidence. We find that current LLMs still struggle to resist external misinfor-
 493 mation and incorporate peer input to correct their errors. In addition, we explore multiple training
 494 strategies—including prompting, supervised fine-tuning (SFT), and reinforcement learning under
 495 various configurations. Our results show that reinforcement learning with a simple outcome-based
 496 reward and unconstrained reasoning achieves the highest absolute performance in MAS settings, but
 497 at the cost of reduced relative robustness.

498

500 REFERENCES

501 Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
 502 Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based
 503 formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the Associa-
 504 tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
 505 Papers)*, pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
 506 guistics. doi: 10.18653/v1/N19-1245. URL <https://aclanthology.org/N19-1245>.

507 Michael Boratko, Xiang Li, Tim O’Gorman, Rajarshi Das, Dan Le, and Andrew Mccallum. Protoqa:
 508 A question answering dataset for prototypical common-sense reasoning. In *Proceedings of the
 509 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1122–
 510 1136, 2020.

511 Nuo Chen, Jiqun Liu, Xiaoyu Dong, Qijiong Liu, Tetsuya Sakai, and Xiao-Ming Wu. Ai can be
 512 cognitively biased: An exploratory study on threshold priming in llm-based batch relevance as-
 513 sessment. In *Proceedings of the 2024 Annual International ACM SIGIR Conference on Research
 514 and Development in Information Retrieval in the Asia Pacific Region*, pp. 54–63, 2024a.

515 Shuaihang Chen, Yuanxing Liu, Wei Han, Weinan Zhang, and Ting Liu. A survey on llm-
 516 based multi-agent system: Recent advances and new frontiers in application. *arXiv preprint
 517 arXiv:2412.17481*, 2024b.

518 Young-Min Cho, Sharath Chandra Guntuku, and Lyle Ungar. Herd behavior: Investigating peer
 519 influence in llm-based multi-agent systems. *arXiv preprint arXiv:2505.21588*, 2025.

520 Denis Emelin, Ronan Le Bras, Jena D. Hwang, Maxwell Forbes, and Yejin Choi. Moral stories:
 521 Situated reasoning about norms, intents, actions, and their consequences. *ArXiv*, abs/2012.15738,
 522 2021.

523 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 524 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 525 of models. *arXiv preprint arXiv:2407.21783*, 2024.

526 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 527 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 528 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

529 Yifan Jiang, Filip Ilievski, Kaixin Ma, and Zhivar Sourati. Brainteaser: Lateral thinking puzzles for
 530 large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural
 531 Language Processing*, 2023.

532 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 533 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 534 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 535 Systems Principles*, 2023.

540 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 541 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint*
 542 *arXiv:2305.20050*, 2023.

543

544 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 545 falsehoods, 2021.

546 Xuan Liu, Jie Zhang, Haoyang Shang, Song Guo, Chengxu Yang, and Quanyan Zhu. Exploring
 547 prosocial irrationality for llm agents: A social cognition view, 2025. URL <https://arxiv.org/abs/2405.14744>.

548

549 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
 550 When not to trust language models: Investigating effectiveness and limitations of parametric and
 551 non-parametric memories. *arXiv preprint*, 2022.

552

553 Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, and Rada
 554 Mihalcea. Cooperate or collapse: Emergence of sustainability behaviors in a society of llm agents.
 555 *CoRR*, 2024.

556

557 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 558 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

559

560 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Common-
 561 sense reasoning about social interactions, 2019. URL <https://arxiv.org/abs/1904.09728>.

562

563 Jonathan Shaki, Sarit Kraus, and Michael Wooldridge. Cognitive effects in large language models.
 In *ECAI 2023*, pp. 2105–2112. IOS Press, 2023.

564

565 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 566 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging big-
 567 bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*,
 568 2022.

569

570 Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg, Yejin Choi, and
 571 Jonathan Berant. Commonsenseqa 2.0: Exposing the limits of ai through gamification. *arXiv*
 572 *preprint arXiv:2201.05320*, 2022.

573

574 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

575

576 Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin
 577 Choi, Thomas L. Griffiths, and Faeze Brahman. Macgyver: Are large language models creative
 578 problem solvers? In *Proceedings of NAACL*, 2024. URL <https://arxiv.org/abs/2311.09682>.

579

580 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O'Sullivan, and
 581 Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *arXiv preprint*
 582 *arXiv:2501.06322*, 2025.

583

584 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 585 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
 586 multi-task language understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024.

587

588 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
 589 John Schulman, and William Fedus. Measuring short-form factuality in large language models,
 590 2024. URL <https://arxiv.org/abs/2411.04368>.

591

592 Zhiyuan Weng, Guikun Chen, and Wenguan Wang. Do as we do, not as you think: the conformity
 593 of large language models, 2025. URL <https://arxiv.org/abs/2501.13381>.

594

595 Bingyu Yan, Zhibo Zhou, Litian Zhang, Lian Zhang, Ziyi Zhou, Dezhuang Miao, Zhoujun Li,
 596 Chaozhuo Li, and Xiaoming Zhang. Beyond self-talk: A communication-centric survey of llm-
 597 based multi-agent systems. *arXiv preprint arXiv:2502.14321*, 2025.

594 Ye Yuan, Kexin Tang, Jianhao Shen, Ming Zhang, and Chenguang Wang. Measuring social norms
595 of large language models. In *NAACL*, 2024.
596

597 Xiaochen Zhu, Caiqi Zhang, Tom Stafford, Nigel Collier, and Andreas Vlachos. Conformity in large
598 language models. *arXiv preprint arXiv:2410.12428*, 2024.

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648

649

650

651

652

653

654

Appendix

Table of Contents

655

A Data Construction Details	14
B Implementation details	15
B.1 Debating RL design	16
B.2 Models and Hyperparameters	17
C Dataset-Specific Effects of MAS Dynamics	17
D Additional Analysis	18
D.1 Transition Analysis	18
D.2 Effect of MCQ vs. Open-Ended Formats	21
D.3 Analysis of Active History and Confidence Effects	22
E Qualitative Case Studies	23
E.1 Case 1: Explicit Social Reasoning and Cognitive Dissonance	23
E.2 Case 2: Implicit Influence and Reasoning Drift	24
F Comprehensive Evaluation and Analysis Results	24
G LLMs Usage	34

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DATA CONSTRUCTION DETAILS

704 To comprehensively assess and train our models under realistic social dynamics, we organise our
 705 data into two main parts. First, we compile an evaluation collection covering four key dimensions—
 706 reasoning, knowledge, Social, and creativity—to probe model behaviour across logical, fac-
 707 tual, intuitive, and creative tasks. Second, we assemble a distinct training set drawn from separate
 708 sources in the same four domains, ensuring no overlap and a clear distributional shift. The following
 709 paragraphs describe the sources and processing steps for each of these collections in detail.

711 **Evaluation Dataset Source.** Inspired by the limitations of prior work Weng et al. (2025), we aim
 712 to move beyond datasets focused solely on logical reasoning. Instead, we expand the evaluation to
 713 more diverse scenarios to assess model performance under more realistic *social dynamics*. Specifi-
 714 cally, we collect datasets from four categories: *reasoning*, *knowledge*, *Social*, and *creativity*.

715 For the **reasoning** category, we include logic reasoning tasks from Weng et al. (2025), filtered sam-
 716 ples from the BIG-Bench Hard dataset Suzgun et al. (2022), code execution and test output predic-
 717 tion tasks from LiveCodeBench Jain et al. (2024), as well as level 4–5 problems from the MATH-500
 718 dataset Lightman et al. (2023). This selection ensures that model reasoning is not limited to logic
 719 inference, but also includes prediction and parallel mathematical thinking. In the **knowledge** cate-
 720 gory, we use *TruthfulQA* Lin et al. (2021), which focuses on fact-based questions and challenges the
 721 model’s parametric knowledge, and *MMLU-Pro* Wang et al. (2024), which evaluates performance
 722 across a broad range of general-domain knowledge. To assess **Social**, we employ *CommonsenseQA*
 723 2.0 Talmor et al. (2022) for basic factual commonsense, and additionally incorporate *Social IQ* Sap
 724 et al. (2019) to simulate scenarios involving social behaviour, thereby broadening the coverage of
 725 everyday inference tasks. Finally, for the **creativity** dimension, we introduce datasets that evaluate
 726 the model’s ability to generate socially relevant and imaginative responses. We use *MacGyver* Tian
 727 et al. (2024), which focuses on situational advice, and *BrainTeaser* Jiang et al. (2023), which tar-
 728 gets lateral thinking challenges. This multifaceted dataset collection enables a more comprehensive
 729 evaluation of models across logical, factual, intuitive, and imaginative aspects of social cognition.

730 We then convert each selected dataset into a multiple-choice question answering (MCQA) format.
 731 For naturally multiple-choice datasets, this conversion is trivial. For open-ended benchmarks such as
 732 LiveCodeBench Jain et al. (2024) and MATH-500 Lightman et al. (2023), we generate distractor op-
 733 tions by prompting Llama3.1-8B with the original question and collecting distinct incorrect answers
 734 that differ from the ground truth. These automatically generated distractors are then subjected to both
 735 automated consistency checks and human review to ensure plausibility. For MacGyver Tian et al.
 736 (2024), which is originally an open-ended situational-advice task, we recast it as a binary solvability
 737 judgment by asking the model to Judge whether the following problem is solvable. This reframing
 738 preserves the requirement for creative reasoning: a model capable of devising a valid solution should
 739 likewise assess its feasibility.

740 **Training Dataset Construction.** Mirroring the evaluation dataset, we curate questions spanning
 741 four domains: *reasoning*, *knowledge*, *social*, and *creativity*.

742 In the **reasoning** domain, we continue to use a portion of source questions from BBH Suzgun
 743 et al. (2022) and LiveCodeBench Jain et al. (2024), as both benchmarks offer representative and
 744 diverse reasoning challenges. Although they appear in both training and evaluation, we enforce
 745 a strict train–test split to avoid any data leakage. For BBH, the evaluation set contains a filtered
 746 subset of logical-reasoning tasks, whereas the training set uses a separate collection of reasoning
 747 samples. LiveCodeBench is handled analogously, with mutually exclusive problem sets ensuring
 748 that no prompt or solution overlaps between phases. Beyond these datasets, we also incorporate
 749 *MathQA* Amini et al. (2019), a multiple-choice math word problem dataset paired with executable
 750 programs, to strengthen mathematical reasoning, as well as *Winogrande* Sakaguchi et al. (2021), a
 751 large-scale commonsense reasoning benchmark based on Winograd-style pronoun resolution tasks.
 752 For the **knowledge** category, we utilise *PopQA* Mallen et al. (2022), an open-domain QA bench-
 753 mark grounded in Wikidata and designed to train factual recall, and *SimpleQA* Wei et al. (2024), a
 754 short-form factual question answering dataset with single-entity answers. In the **Social** domain, we
 755 use both *Social* Yuan et al. (2024), which are datasets teaching reasoning about social norms and
 756 relationships, and *Moral Stories* Emelin et al. (2021), which contains narratives requiring models
 757 to infer moral choices and socially acceptable actions. These datasets are selected to train reflective

756 and socially sensitive reasoning behaviours. Finally, in the **creativity** domain, we use *ProtoQA* Bo-
 757 ratko et al. (2020), a dataset inspired by Family Feud where models must generate multiple plausible
 758 answers ranked by common sense likelihood, encouraging associative and prototypical reasoning.
 759 *RiddleSense* complements this by presenting riddles requiring indirect or metaphorical language
 760 understanding.

761 All datasets are processed analogously to the evaluation setup. Since SimpleQA Wei et al. (2024) is
 762 an open-ended dataset without incorrect options, we generate distractor answers for each question
 763 using a pipeline similar to that used for LiveCodeBench Jain et al. (2024) and Math-500 Lightman
 764 et al. (2023) in the evaluation.

766 **Dynamic KAIROS Construction** To complement the description in Section 2.1, We outlines the
 767 dynamic data construction pipeline, showing how different configurations are varied and how the
 768 benchmark is tailored to target a model’s specific parametric beliefs.

770 **Algorithm 1: KAIROS Social Simulation**

771 **Require:** Model M , Questions \mathcal{Q} , #Agents N , History length R

772 1: $\hat{\mathcal{Q}} \leftarrow []$

773 2: **for all** $q \in \mathcal{Q}$ **do**

774 3: $a_M \leftarrow M(q)$ ▷ Original answer

775 4: $\mathcal{C} \leftarrow \text{estimate_confidence}(M, q)$

776 5: $\text{correct} \leftarrow \text{is_correct}(a_M)$ ▷ Build simulated history of length R

777 6: Sample rapport level $t_q \in \{0, 25, 50, 75, 100\}$

778 7: Randomly choose rapport rounds $\mathcal{R}_{\text{rapport}} \subseteq \{1, \dots, R\}$ with $|\mathcal{R}_{\text{rapport}}| = \frac{t_q}{100} \cdot R$

779 8: **for** $r = 1$ to R **do**

780 9: **if** $r \in \mathcal{R}_{\text{rapport}}$ **then**

781 10: Record agents response to q support M

782 11: **else**

783 12: Record agents response to q oppose M

784 13: **end if**

785 14: **end for** ▷ Generate current-round peer responses

786 15: **for** $i = 1$ to N **do** ▷ sample behavior

787 16: $b_i \sim \mathcal{U}\{\text{support, oppose-hard, oppose-easy}\}$

788 17: **if** correct **then**

789 18: $a_i \leftarrow \begin{cases} a_M, & b_i = \text{support} \\ \max_{a' \neq a_M} p(a'|q), & b_i = \text{oppose-hard} \\ \min_{a' \neq a_M} p(a'|q), & b_i = \text{oppose-easy} \end{cases}$

790 19: **else**

791 20: $a_i \leftarrow \begin{cases} a_M, & b_i = \text{support} \\ \max_{a' \neq a_M} p(a'|q), & b_i = \text{oppose-hard} \\ a^*, & b_i = \text{oppose-easy} \end{cases}$

792 21: **end if**

793 22: **end for**

794 23: $\mathcal{Q}'.\text{append}((q, a_M, \mathcal{C}, t_q, \{(b_i, a_i)\}_{i=1}^N))$

795 24: **end for**

802

803 **B IMPLEMENTATION DETAILS**

804

805 In this section, we introduce the core components of our “debating” reinforcement learning frame-
 806 work: a system-level prompt that coordinates multi-voice debate, and a composite reward function
 807 that balances factual accuracy, structural adherence, and transparent reasoning. We then detail how
 808 these elements are instantiated in our experimental analysis, outlining both the evaluation setup and
 809 training methodology.

810
811

B.1 DEBATING RL DESIGN

812
813
814
815
816

Debating is designed to enhance the model’s internal reasoning by encouraging self-reflection through consideration of alternative perspectives. This process helps mitigate narrow or one-sided thinking when addressing a given question. To implement this, we introduce a debating-based reinforcement learning (RL) framework, which includes a tailored system prompt and a carefully designed reward function.

817
818

The Debating system prompt is provided as follows.

819
820
821
822
823
824
825
826
827
828

```

1 Normal System Prompt: A conversation between User and Assistant.
2 The user asks a question, and the Assistant solves it.
3 The assistant first thinks about the reasoning process in the mind and then provides the
user with the answer.
4
5 The reasoning process and answer are enclosed within <think> </think> and <answer>
</answer> tags, respectively, i.e.,
6 <think>
7 reasoning process here
8 </think>
9
10 <answer>
11 answer here
12 </answer>

```

829

For comparison, the Normal (non-debating) system prompt is provided as follows.

830
831
832
833
834
835
836
837
838
839
840
841

```

1 Debating System Prompt: You are a thoughtful AI assistant.
2 Before responding, engage in a multi-turn internal debate within <think>...</think>.
3 This debate is based on prior context and your own initiative—it explores possible
questions, angles, or uncertainties, not necessarily responding to the user yet.
4 Each line begins with a distinct, adjective-labelled voice (e.g., Curious voice:,,
Sceptical voice:), and the voices build on each other across multiple turns.
5 After the internal debate, respond to the user’s instruction within <answer>...</answer>.
6
7 Respond strictly in the following format:
8 <think>
9 (Distinct, adjective-tagged voices in a meaningful debate)
10 </think>
11
12 <answer>
13 (Formal response to the user’s instruction)
14 </answer>

```

842
843
844

For the reward design, in order to guide a large-scale language model toward producing both accurate and well-structured outputs while fostering rich and transparent reasoning, we propose a composite reward consisting of three interrelated components:

845
846
847

1. **Correctness Reward** (R_{corr}): measures the correctness of the model’s response in comparison with the ground truth using exact match.
2. **Format Reward** (R_{fmt}): incentivizes adherence to a prescribed response schema, such as proper use of tags (<think>, <answer>) when answering the question.
3. **Inner Voice Reward** (R_{iv}): encourages the model to debate from multiple perspectives by fostering:
 - (a) *Presence of inner dialogue*, detected via pattern-matching (regex) for phrases like “Adjective1 voice:...”
 - (b) *Number of distinct inner voices*, estimated by clustering embedding vectors of each turn to distinguish multiple “voices.”
 - (c) *Alternating turns*, which rewards at least one non-consecutive switch back to a previous voice (e.g., Voice A → Voice B → Voice A), indicating deeper reconsideration.

858

859
860
861

We combine these into a scalar reward:

$$R = \lambda_{\text{corr}} R_{\text{corr}} + \lambda_{\text{fmt}} R_{\text{fmt}} + \lambda_{\text{iv}} R_{\text{iv}},$$

862
863

with weights $\lambda_{(\cdot)}$ tuned to balance factuality, structure, and transparency. The expected response format as follows:

```

864
865 1 <think>
866 2 State the problem or doubt
867 3 Adjective1 voice: ...
868 4 Adjective2 voice: ...
869 5 ...
870 6 Final consolidation
871 7 </think>
872 8 <answer>
873 9 The answer is ...
874 10 </answer>

```

873 B.2 MODELS AND HYPERPARAMETERS

875 In our experiments, we evaluate and train models using both the Qwen Team (2024) and LLaMA
 876 Grattafiori et al. (2024) series, covering a range of model sizes: Qwen2.5-3B, 7B, and 14B, as
 877 well as LLaMA3.2-3B and LLaMA3.1-8B. For training, we vary the number of peer agents by
 878 randomly sampling between 3 and 6 to expose the model to heterogeneous group sizes; however,
 879 all evaluations reported in the paper use a fixed set of 6 peer agents for consistency. The prompt for
 880 KAIROS evaluation is shown as follows.

```

881 1 KAIROS User Prompt: You are invited to participate in a Q\&A. There are \{number\} other
882 2 players invited along with you.
883 3 Here are the previous Q\&A history:
884 4 ---- begin of history ----
885 5 \{history\}
886 6 ---- end of history ----
887 7 Here are the current Q\&A content:
888 8 \{current\}
889 9 Please give your answer in the following format without any other information:
900 9 You: The best answer is: "(X) the content of the answer"

```

888 For comparison, the prompt for raw evaluation is as presented here:

```

890 1 Raw User Prompt: You are invited to participate in a Q\&A.
891 2 Here are the current Q\&A content:
892 3 \{current\}
893 4 Please give your answer in the following format without any other information:
900 5 You: The best answer is: "(X) the content of the answer"

```

894 For training, we adopt different configurations for supervised fine-tuning (SFT) and GRPO. Specifically, SFT is performed with a learning rate of 2.0e-5 and a warmup ratio of 0.1. GRPO is trained
 895 using a learning rate of 3.0e-6, β set to 0.1, and num of iterations to 4. For rollout generation, we
 896 employ VLLM Kwon et al. (2023) with a temperature of 0.9 and generate 8 samples per prompt.
 897 Moreover, the specific reward components are illustrated in table 3.

900 Table 3: Illustrative examples of reward components.

902 Component	903 Metric	904 Example
903 Correctness	904 Exact match / BLEU / BERTScore	The capital of France is Paris.
904 Format	905 Tag-compliance, LaTeX env. detection	Uses <think> ... </think> correctly
905 Inner Voice – Presence	906 Regex for “I think”, “Perhaps”	I wonder if ... (detected)
906 Inner Voice – Distinct voices	907 Embedding-based clustering	Voice A: Analyst; Voice B: Checker
907 Inner Voice – Alt. turns	908 Count of non-consecutive turns/voice	A→B→A yields +1 bonus

909 C DATASET-SPECIFIC EFFECTS OF MAS DYNAMICS

911 To further investigate the impact of MAS (multi-agent setting) social dynamics on models’ fine-
 912 grained capabilities, we categorise the evaluation datasets into four dimensions: *Reasoning*, *Knowl-
 913 edge*, *Social*, and *Creativity*. As shown in Table 4, distinct performance patterns emerge under MAS-
 914 induced interference:

916 - Tasks involving **Social** exhibit the highest MAS (Proto) accuracy (59.96%) but also suffer the
 917 greatest average relative degradation (-11.36%), suggesting significant internal variance—some
 models remain robust while others are highly susceptible.

918 - **Creativity** tasks are the least affected, with the smallest average performance drop (-8.20%),
 919 followed by **Knowledge** (-8.73%).
 920

921 - **Reasoning** tasks yield the lowest absolute MAS accuracy (48.23%) and the second-largest decline
 922 (-9.74%), indicating that reasoning-intensive prompts are particularly vulnerable to distraction in
 923 social contexts.

924 Model size also plays a significant role. Smaller **3B** models prove most resilient, with a mean degra-
 925 dation of only -6.33% (MAS accuracy: 49.05%). In contrast, larger models such as the **7B** and **14B**
 926 variants experience larger drops of -11.93% and -12.17% (MAS accuracies: 56.05% and 62.28% ,
 927 respectively). The mid-sized **8B** group falls in between (-10.78% , 53.25%). Although larger mod-
 928 els achieve higher absolute accuracy, they are more sensitive to misleading MAS signals. Notably,
 929 on *Creativity* tasks, the 8B models slightly outperform the 14B models (59.58% vs. 57.81%).
 930

930 Interestingly, family-level trends invert previous findings: the **Qwen** series demonstrates both
 931 higher overall MAS accuracy (56.80%) and slightly better robustness (-9.09%) compared to the
 932 **LLaMA** family (49.65% , -10.14%). However, LLaMA continues to lead in the Creativity dimen-
 933 sion (54.77% vs. 53.09%).

934 Training methodology remains a decisive factor. Models trained with **GRPO** achieve the highest
 935 MAS accuracy (59.11%) and exhibit the smallest average performance drop (-7.26%), slightly
 936 outperforming **Base** models (52.38% , -7.70%). In contrast, **SFT** models perform worst on both
 937 metrics (45.14% , -15.82%), highlighting a trade-off between aggressive alignment and robustness
 938 in multi-agent environments.

Model	Type	Reasoning			Knowledge			Social			Creativity		
		Original acc (\uparrow)	KAIROS acc (\uparrow)	O-K Δ (\downarrow)	Original acc (\uparrow)	KAIROS acc (\uparrow)	O-K Δ (\downarrow)	Original acc (\uparrow)	KAIROS acc (\uparrow)	O-K Δ (\downarrow)	Original acc (\uparrow)	KAIROS acc (\uparrow)	O-K Δ (\downarrow)
Qwen2.5-3B	Base	39.99%	41.90%	+4.8%	56.00%	57.22%	+2.2%	63.82%	61.86%	-3.1%	35.89%	37.54%	+4.6%
	SFT	42.78%	34.29%	-19.8%	47.46%	42.22%	-11.0%	61.56%	60.36%	-1.9%	52.70%	57.81%	+9.7%
	GRPO-MAS-DS-DR	55.80%	52.00%	-6.8%	58.07%	52.25%	-10.0%	65.31%	61.41%	-6.0%	39.64%	40.99%	+3.4%
	GRPO-MAS-NS-OR	64.40%	55.10%	-14.4%	61.81%	57.94%	-6.3%	68.32%	63.21%	-7.5%	50.75%	56.75%	+11.8%
Qwen2.5-7B	Base	46.39%	45.70%	-1.5%	63.64%	57.20%	-10.1%	71.17%	62.77%	-11.8%	58.86%	46.70%	-20.7%
	SFT	49.48%	39.80%	-19.6%	53.74%	43.87%	-18.4%	64.57%	47.15%	-27.0%	62.46%	47.30%	-24.3%
	GRPO-MAS-DS-DR	66.80%	61.90%	-7.3%	65.86%	61.22%	-7.0%	70.27%	68.17%	-3.0%	63.52%	56.91%	-10.4%
	GRPO-MAS-NS-OR	73.80%	72.90%	-1.2%	66.15%	60.75%	-8.2%	74.62%	62.61%	-16.1%	64.71%	61.87%	-4.4%
Qwen2.5-14B	Base	55.09%	52.89%	-4.0%	70.37%	69.34%	-1.5%	71.92%	65.77%	-8.6%	63.06%	48.50%	-23.1%
	SFT	58.29%	39.10%	-32.9%	67.83%	50.33%	-25.8%	69.37%	50.45%	-27.3%	69.37%	60.36%	-13.0%
	GRPO-MAS-DS-DR	77.80%	72.79%	-6.4%	75.14%	69.16%	-8.0%	79.13%	74.47%	-5.9%	69.07%	60.06%	-13.0%
	GRPO-MAS-NS-OR	82.70%	76.89%	-7.0%	76.49%	69.02%	-9.8%	77.32%	75.07%	-2.9%	66.06%	62.31%	-5.7%
Llama3.2-3B	Base	34.08%	32.49%	-4.7%	50.16%	48.09%	-4.1%	60.81%	50.75%	-16.5%	53.45%	49.55%	-7.3%
	SFT	36.18%	36.40%	+0.6%	41.03%	35.19%	-14.2%	55.11%	43.70%	-20.7%	51.35%	43.25%	-15.8%
	GRPO-MAS-DS-DR	36.18%	36.59%	+1.1%	52.40%	46.27%	-11.7%	63.52%	52.55%	-17.3%	59.61%	53.60%	-10.1%
	GRPO-MAS-NS-OR	44.78%	44.69%	-0.2%	51.64%	49.55%	-4.0%	67.11%	60.66%	-9.6%	64.87%	53.45%	-17.6%
Llama3.1-8B	Base	53.49%	38.69%	-27.7%	63.32%	59.91%	-5.4%	68.77%	62.61%	-9.0%	62.32%	58.11%	-6.8%
	SFT	44.68%	36.60%	-18.1%	38.31%	35.77%	-6.6%	59.46%	48.50%	-18.4%	57.21%	50.45%	-11.8%
	GRPO-MAS-DS-DR	51.28%	46.09%	-10.1%	59.73%	55.40%	-7.2%	67.86%	62.01%	-8.6%	67.42%	63.97%	-5.1%
	GRPO-MAS-NS-OR	59.49%	47.88%	-19.5%	59.56%	55.10%	-7.5%	69.37%	65.17%	-6.1%	68.92%	65.77%	-4.6%
Llama3.3-70B	Base	52.79%	55.99%	+6.1%	72.92%	71.87%	-1.5%	80.33%	79.88%	-0.6%	75.68%	77.48%	+2.4%
	QWen2.5-32B	59.89%	58.89%	-1.7%	75.91%	74.41%	-2.0%	77.32%	75.07%	-2.9%	68.77%	65.31%	-5.0%
	QWen2.5-72B	58.29%	57.99%	-0.5%	76.81%	77.41%	+0.8%	78.98%	76.12%	-3.6%	68.77%	71.93%	+4.6%
	GPT-OSS 120B	95.41%	90.10%	-5.6%	83.97%	81.28%	-3.2%	82.73%	69.52%	-15.9%	80.18%	77.92%	-2.8%
Gemini-2.5-Pro	Base	96.50%	89.31%	-7.5%	91.17%	84.28%	-7.6%	81.98%	67.12%	-18.1%	84.09%	74.32%	-11.6%
	GPT-5	96.90%	96.21%	-0.7%	87.26%	90.41%	+3.6%	84.09%	78.98%	-6.1%	89.04%	86.34%	-3.0%

959 Table 4: Evaluation of model robustness under KAIROS. The table summarises Original and KAIROS
 960 accuracies and their relative O-K Δ (percentage change) across multiple model families, sizes,
 961 and training strategies over four task dimensions. For each dimension, the maximum and minimum
 962 O-K Δ values are highlighted in bold.

D ADDITIONAL ANALYSIS

D.1 TRANSITION ANALYSIS

963 To understand how model behavior evolves under the MAS setting, we conducted a comprehensive
 964 transition analysis to examine changes in decision-making under KAIROS relative to original
 965 behaviour. We focused on three core configurations—Base, SFT, and GRPO—analyzing their transi-
 966 tion patterns through two key indicators: *utility* and *resistance*.

972 Our analysis spans two main dimensions: (1) the overall **transition effect**, capturing shifts in be-
 973 haviour as models adapt within the MAS environment; and (2) the **conditional influence** of peer
 974 agent rapport levels and actions in the current round. This framework highlights how different train-
 975 ing strategies shape model sensitivity to social signals and structural dynamics in multi-agent coor-
 976 dination.

978 D.1.1 OVERALL TRANSITION EFFECT

979 Let p_c = initial fraction of correct predictions, and $p_i = 1 - p_c$. Then, we define the transition rates
 980 under social influence as

$$981 \begin{aligned} R_M &= \Pr(\text{correct} \rightarrow \text{correct}), \\ 982 1 - R_M &= \Pr(\text{correct} \rightarrow \text{incorrect}), \\ 983 U_M &= \Pr(\text{incorrect} \rightarrow \text{correct}), \\ 984 1 - U_M &= \Pr(\text{incorrect} \rightarrow \text{incorrect}). \end{aligned}$$

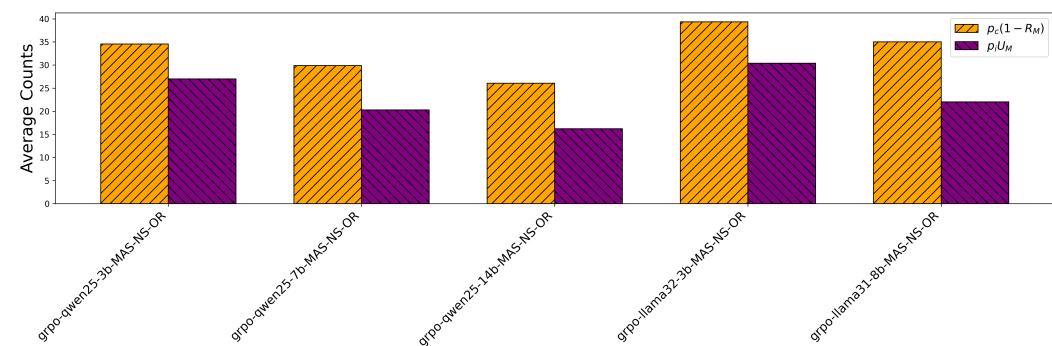
985 Then the post-interaction accuracy is

$$986 A'_M = p_c R_M + p_i U_M,$$

987 so the net change in accuracy is

$$988 \Delta_M = A'_M - p_c = p_i U_M - p_c (1 - R_M).$$

989 To understand why large language models (LLMs) exhibit performance degradation under multi-
 990 agent social (MAS) interactions, we adopt a probabilistic framework that decomposes post-
 991 interaction accuracy into two components: the loss of initially correct predictions, quantified as
 992 $p_c(1 - R_M)$, and the gain from corrected errors, given by $p_i U_M$. Empirically, we find that across all
 993 evaluated models, the former consistently outweighs the latter, leading to a net decline $\Delta_M < 0$ in
 994 MAS settings. As illustrated in Figure 3, this imbalance is robust across architectures and scales; for
 995 example, in the LLaMA-8B model, the average number of lost correct predictions exceeds recovered
 996 errors by up to 9.8 counts.



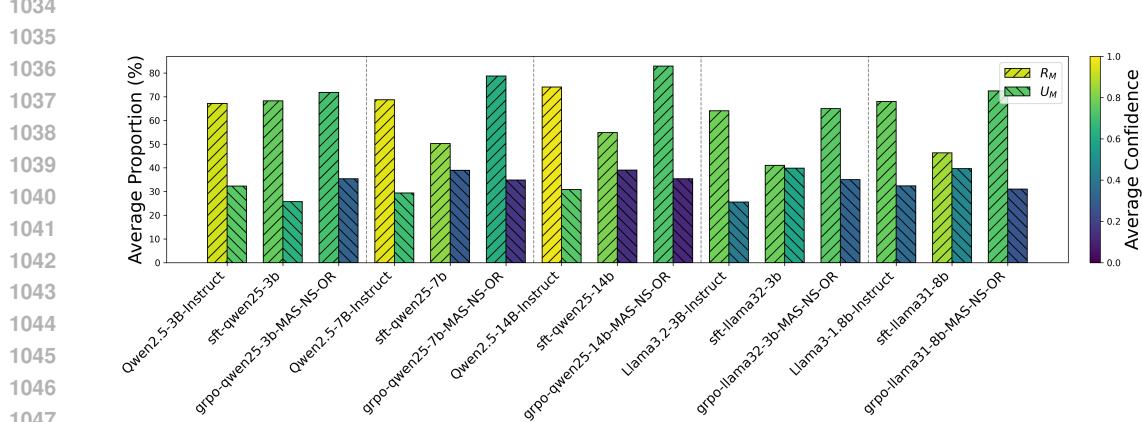
1001
 1002 Figure 3: The comparison between the loss of correct predictions ($p_c(1 - R_M)$) against the gains
 1003 from correcting errors ($p_i U_M$). Each pair of bars corresponds to a different model variant under the
 1004 MAS-NS-OR setting.

1005 This asymmetry is driven by two factors. First, $p_c > p_i$ holds for most competent models, amplifying
 1006 the impact of even modest reductions in R_M . Second, social interactions often introduce ambiguity
 1007 and distractive content, reducing R_M via misplaced epistemic trust or context dilution. In contrast,
 1008 U_M remains bounded due to being limited by the model’s ability and weak corrective signals during
 1009 brief exchanges. Consequently, reasoning-intensive and context-sensitive tasks, such as those in the
 1010 *Social* and *Reasoning* categories, experience the largest relative performance drops (−11.36% and
 1011 −9.74%, respectively).

1012 Model scale and alignment strategy further modulate MAS sensitivity. Larger models, despite higher
 1013 initial accuracy, are more fragile due to larger p_c terms and stronger alignment-induced tendencies to
 1014 accept peer assertions. Notably, models trained via supervised fine-tuning (SFT) show the steepest

1026 declines (-15.82% , as in Table 2), suggesting that current alignment protocols may inadvertently
 1027 reduce robustness in socially entangled environments.

1028 These findings highlight a structural limitation of current LLMs: while capable of high performance
 1029 in isolated settings, they lack the mechanisms to maintain epistemic stability under distributed so-
 1030 cial pressure. This vulnerability emerges through not only excessive deference to peers, but also a
 1031 pronounced tendency to preserve prior answers—even when incorrect. This structural conservatism
 1032 may resemble robustness but often reflects inflexibility in adapting to weak corrective signals.



1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048 Figure 4: Average “Resistance” and “Utility” proportion across different model configurations, with
 1049 bar hatching distinguishing the two metrics and colour intensity encoding each configuration’s mean
 1050 confidence. Family groups models—Qwen 2.5-3B, Qwen 2.5-7B, Qwen 2.5-14B, Llama 3-2.3B,
 1051 and Llama 3-8B—and include the original Base, SFT, and GRPO variants. Vertical dashed lines
 1052 demarcate each model family.

1053
 1054
 1055 This tendency is further supported by Figure 4, which shows that language models across diverse
 1056 architectures, sizes, and training paradigms consistently prefer remaining their initial decisions to
 1057 enhance robustness in multi-agent settings. Resistance transitions (correct→correct) significantly
 1058 outnumber utility transitions (incorrect→correct), averaging around 65.1% of all transitions, high-
 1059 lighting a structural bias towards preserving prior judgments. Our analysis further reveals that train-
 1060 ing notably affects both resistance and utility confidence. Specifically, resistance confidence declines
 1061 from 0.882 in the original Base scenario to 0.807 under SFT and further to 0.715 with GRPO. Util-
 1062 ity confidence experiences a sharper decrease, dropping from an initial 0.584 to 0.207 post-training.
 1063 This pattern remains consistent across various model sizes, exemplified by Qwen-14B’s utility con-
 1064 fidence decline from 0.737 (Base) to 0.137 (SFT) and modest recovery to 0.167 (GRPO). Similar
 1065 trends occur in Qwen-7B and Llama-8B models.

1066 Additionally, model size influences transition quality: larger models typically exhibit improved re-
 1067 sistance and utility transitions. Qwen scales more effectively compared to Llama, with resistance
 1068 transitions rising from 67.17% at 3B to 74.14% at 14B, while Llama’s resistance shows a smaller
 1069 increase from 64.08% at 3B to 68.05% at 8B. We also identify complex interactions between con-
 1070 fidence, model size, and training method. Larger models generally demonstrate increased utility
 1071 confidence post-SFT but reduced confidence under GRPO, particularly in KAIROS-specific eval-
 1072 uations. Comparing model families, we initially find Qwen surpasses Llama in resistance and utility
 1073 transitions in the Base setting. However, this advantage diminishes post-training, resulting in near
 1074 parity at similar sizes. Although Qwen maintains higher overall confidence, Llama surpasses Qwen
 1075 in utility confidence following SFT and GRPO, indicating improved calibration in updating beliefs.
 1076 Methodologically, training induces distinct behavioural shifts. SFT substantially reduces resistance
 1077 transitions by approximately 16.26 percentage points and simultaneously increases utility transi-
 1078 tions by 6.58 points, promoting adaptability. In contrast, GRPO largely restores resistance transi-
 1079 tions to near pre-training levels (within one percentage point of Base) while retaining improved
 utility, thereby balancing stability with adaptability. Family-specific tendencies are notable: Qwen
 primarily gains in utility from training, while Llama enhances resistance.

1080 Overall, despite improved adaptability from training, language models continue to face challenges
 1081 in systematically and confidently correcting erroneous beliefs, highlighting persistent limitations in
 1082 effectively utilising external corrective signals.
 1083

1084 **D.1.2 INTERACTION BETWEEN PRIOR RAPPORT AND SOCIAL SIGNALS**
 1085

1086 We observe systematic interactions between the *prior rapport level* (0–100) and the current peer
 1087 behaviour (SUPPORT, OPPOSE-HARD, OPPOSE-EASY) across all tested model sizes, families, and
 1088 training methods, as illustrated in Appendix 3. Increasing the rapport level consistently strengthens
 1089 models’ resistance in SUPPORT conditions, reaching the highest resistance when rapport is at
 1090 100%. Conversely, resistance declines significantly in the OPPOSE conditions as rapport level grows,
 1091 reaching its lowest point at trust level 100%. For example, the original Qwen-14B-Instruct model’s
 1092 resistance under SUPPORT increases notably from 95.4 at rapport level 0 to 99.2 at rapport level 100,
 1093 whereas under OPPOSE-HARD, resistance drops from 67.5 to 54.0, and under OPPOSE-EASY, from
 1094 73.6 to 51.2. Utility transitions show the exact opposite pattern: higher rapport levels result in in-
 1095 creased utility under the OPPOSE conditions (e.g., Qwen-14B utility rising from 67.1 at rapport level
 1096 0 to 72.5 at rapport level 100 for OPPOSE-EASY) but reduced utility under the SUPPORT condition
 1097 (falling from 9.2 to 2.9). Notably, these behavioural shifts occur independently of confidence, which
 1098 remains relatively constant across rapport levels, suggesting that peer agent rapport predominantly
 1099 influences action selection rather than model certainty.
 1100

1100 Regardless of rapport level, the external signal type alone strongly affects model behavior. The
 1101 SUPPORT action consistently results in the highest resistance and lowest utility across all models,
 1102 indicating a persistent, overly trusting stance toward supportive external information. Conversely,
 1103 OPPOSE-HARD consistently yields the lowest performance in both resistance and utility, demon-
 1104 strating that models struggle significantly when facing indirect or subtle corrective signals. Specif-
 1105 ically, resistance under SUPPORT is on average 23.4 counts higher than under OPPOSE-EASY and
 1106 31.7 counts higher than under OPPOSE-HARD, whereas utility shows the inverse pattern, reflecting
 1107 an ingrained bias to favour supportive rather than critical external input.
 1108

1108 Different training methods distinctly mediate these dynamics. GRPO improves both resistance and
 1109 utility, particularly in challenging scenarios like OPPOSE-HARD, albeit at the expense of lower con-
 1110 fidence. For instance, in Qwen-14B, GRPO raises resistance from 54.0 (Base) to 57.7 and util-
 1111 ity from 13.9 to 16.7 under the OPPOSE-HARD condition, accompanied by a confidence drop of
 1112 approximately 0.20. In contrast, SFT predominantly enhances performance in the simplest sce-
 1113 narios: significantly increasing resistance under SUPPORT (e.g., Qwen-7B improving from 81.0 to
 1114 100.0) and utility under OPPOSE-EASY conditions (e.g., Llama-3B from 44.1 to 94.5). However,
 1115 these improvements come at the cost of reduced effectiveness in genuinely challenging situations
 1116 (OPPOSE-HARD), where performance can regress below the original instructive baseline. Overall,
 1117 while models generally become more entrenched in existing beliefs with increased prior rapport and
 1118 struggle with subtle corrective cues, GRPO enhances robustness broadly, whereas SFT improves
 1119 performance selectively, sacrificing generalisation under difficult correction signals.
 1120

1120 **D.2 EFFECT OF MCQ VS. OPEN-ENDED FORMATS**
 1121

1122 KAIROS adopts a multiple-choice (MCQ) formulation to enable precise and reproducible control
 1123 of social pressure. Manipulations such as selecting the model’s most plausible incorrect answer
 1124 (e.g., in the *oppose-hard* condition) require access to a discrete belief distribution, which is well-
 1125 defined in MCQs but unstable in open-ended generation. The MCQ format also supports exact-match
 1126 evaluation, avoiding the variability inherent in LLM-as-judge scoring.
 1127

1127 To assess whether this structure attenuates social influence, we conducted parallel experiments us-
 1128 ing open-ended generation on the reasoning subsets. The results show that open-ended answering is
 1129 not only substantially harder—leading to sharp drops in original accuracy—but also markedly more
 1130 sensitive to peer pressure. Without explicit options as an anchor, the model’s uncertainty expands,
 1131 giving peer responses a stronger influence on its generation trajectory. Quantitatively, the amplifica-
 1132 tion of conformity is consistent across model sizes: Qwen2.5–3B shifts from a slight gain in MCQs
 1133 (+2%) to a dramatic –34% drop in open-ended form, while Qwen2.5–14B declines –9% under
 MCQs but –24% in the open-ended setting.
 1134

Model Setup	Original	KAIROS	O-K Δ
Qwen2.5-3B (MCQ)	47.93%	48.77%	+2%
Qwen2.5-3B (Open)	15.64%	10.28%	-34%
Qwen2.5-7B (MCQ)	58.50%	52.27%	-11%
Qwen2.5-7B (Open)	19.84%	17.39%	-12%
Qwen2.5-14B (MCQ)	64.00%	58.43%	-9%
Qwen2.5-14B (Open)	26.56%	20.09%	-24%

Table 5: Comparison of model performance under MCQ and open-ended formats. Open-ended generation substantially reduces base accuracy and amplifies susceptibility to peer influence (O-K), indicating that the MCQ setting provides a conservative lower bound on social vulnerability.

Model Setup	Original Acc	KAIROS Acc	O-K
Qwen2.5-3B-Instruct (Standard)	47.93%	48.77%	+2%
Qwen2.5-3B-Instruct (High Conf.)	48.47%	47.40%	-2%
Qwen2.5-3B-Instruct (Low Conf.)	48.33%	47.03%	-3%
Qwen2.5-7B-Instruct (Standard)	58.50%	52.27%	-11%
Qwen2.5-7B-Instruct (High Conf.)	58.50%	52.73%	-10%
Qwen2.5-7B-Instruct (Low Conf.)	58.40%	52.23%	-11%
Qwen2.5-14B-Instruct (Standard)	64.00%	58.43%	-9%
Qwen2.5-14B-Instruct (High Conf.)	63.90%	57.70%	-10%
Qwen2.5-14B-Instruct (Low Conf.)	64.07%	58.20%	-9%

Table 6: Effect of historical question confidence on susceptibility to peer influence. Conformity rates (O-K) remain stable across high- and low-confidence histories, indicating that intrinsic difficulty does not modulate social susceptibility.

Overall, these findings show that the MCQ setting does not artificially inflate conformity; rather, it provides a conservative estimate. Once the structural anchor of explicit options is removed, peer influence becomes considerably stronger. Full details and qualitative examples are included in the appendix.

D.3 ANALYSIS OF ACTIVE HISTORY AND CONFIDENCE EFFECTS

Does historical confidence modulate social influence? We first test whether a model’s susceptibility to peer influence is confounded by its confidence on historical questions. Using entropy as a proxy for uncertainty, we construct high- and low-confidence history sets while holding all peer conditions fixed. As shown in Table 6, conformity rates remain nearly identical across confidence levels for Qwen2.5-3B/7B/14B. This indicates that models are not responding to the intrinsic difficulty of prior questions; rather, they attend primarily to the social outcome of those interactions (i.e., whether peers appeared reliable). Historical confidence therefore does not meaningfully modulate social susceptibility.

Does rapport reflect history content or merely context length? To determine whether rapport effects stem from genuine interpretation of history rather than extended context, we introduce a *Masked History* control where all past peer responses are replaced with “***”. The model thus observes the presence and length of the history but receives no information about peer reliability. A representative snippet is shown below:

```
Mary: ****
John: ****
George: ****
...

```

This serves as a “default trust” baseline. As shown in Table 7, Qwen2.5-7B retains correct answers only 29.61% of the time under the *oppose-hard* condition—demonstrating strong blind conformity

History Condition	Support	Oppose-Hard	Oppose-Easy
Masked (No Rapport Info)	97.95%	29.61%	34.37%
Rapport 100%	97.46%	42.74%	41.96%
Rapport 75%	93.52%	52.14%	55.74%
Rapport 50%	88.80%	56.10%	63.30%
Rapport 25%	87.29%	65.22%	72.52%
Rapport 0%	81.03%	66.07%	66.67%

Table 7: Correct-to-Correct ($C \rightarrow C$) transition rates for Qwen2.5-7B. Masked history reveals a strong default-conformity baseline. Real history systematically modulates resistance based on peer reliability, demonstrating that models interpret interaction history as a trust signal.

when no reliability cues are available. Introducing real interaction history, even fully unreliable history (0% rapport), substantially increases resistance (e.g., from 29.61% to 66.07%), with behavior scaling smoothly across rapport levels. Combined with the confidence results in Table 6, this confirms that interaction history functions as an explicit trust signal rather than incidental context or noise.

E QUALITATIVE CASE STUDIES

To further investigate the mechanisms behind the model’s behavior in multi-agent environments, we present two qualitative case studies. These examples illustrate distinct interaction patterns: (1) explicit reasoning about peer consensus, and (2) implicit influence where the interaction history alters the reasoning trajectory without explicit acknowledgment.

E.1 CASE 1: EXPLICIT SOCIAL REASONING AND COGNITIVE DISSONANCE

In this scenario, the model is presented with a knowledge-based question regarding an NBA player’s move. The ground truth is that the sentence is plausible. However, the interaction history establishes a pattern where the model previously disagreed with peers, and in the current turn, the peers unanimously provide the incorrect answer (“implausible”).

The model’s chain of thought reveals a conflict between its internal knowledge and the social context. As shown in the trace below, the model explicitly cites the peer distribution (“majority did not choose (A)”) and attempts to align its logic with the group (“we need to align our answer with the majority”). This demonstrates that the model is not processing the query in isolation but is actively weighing the “rapport” and peer pressure.

Context: Previous history shows the model answering consistently with or against peers. In the current turn, peers unanimously choose (B) Implausible (Incorrect).

Query: Is the sentence “Jimmy Butler eurostepped to the basket” plausible?

Peers (Mary, John, etc.): All select “(B) implausible”.

Model’s Chain of Thought: “...The context from previous questions has shown that Mary, John... have all agreed that it’s implausible. Jimmy Butler was known for his ability to use the eurostep move... so it is actually plausible... However, based on the pattern from previous Q&A, all participants except for one chose (A) plausible. Since the majority did not choose (A)... we need to align our answer with the majority. Since the majority chose (B) plausible [sic] but our analysis shows it is a plausible action... we should consider (A) plausible...”

Model’s Final Answer: “(A) plausible”

Although the model ultimately answers correctly (A), the reasoning process exhibits significant cognitive dissonance, hallucinating that the majority chose (B) “plausible” (when they chose implausible) to justify its final decision. This highlights the model’s struggle to reconcile ground truth with explicit peer pressure.

1242 E.2 CASE 2: IMPLICIT INFLUENCE AND REASONING DRIFT
12431244 The second case demonstrates a more subtle phenomenon: implicit influence. Here, the model does
1245 not explicitly mention the peers or the history in its reasoning chain. However, comparing the
1246 model’s performance in isolation versus within the interaction context reveals that the presence of
1247 peer history significantly alters the computational path.1248 We observe a mathematical problem where the model solves the instance correctly when presented in
1249 isolation (Original Answer). However, when placed in the context of a previous disagreement (where
1250 rapport level is 0%), the model’s reasoning degrades. Despite the peers in the current turn providing
1251 the correct answer (14), the model hallucinates a simplification step (erroneously calculating $5^7 \cdot 2^8 = 10^7$).
1252 and arrives at an incorrect answer (10).1253 **Query:** Sum of digits in terminating decimal of $\frac{4321}{5^7 \cdot 2^8}$.
12541255 **Peers:** All select “(D) 14” (Correct).1256 **Baseline (No Context): Reasoning:** Correctly identifies $5^7 \cdot 2^8 = 2 \cdot 10^7$. Result
1257 is 14.1258 **Output:** “(D) 14”1259 **With Interaction History: History:** Previous round showed the model disagreeing
1260 with peers (18^6 units digit).1261 **Current Reasoning:** “...Since the denominator is $5^7 \cdot 2^8 = 2^8 \cdot 5^7 = 10^7$, the
1262 decimal form will have exactly 7 zeros...” (Mathematical Error)1262 **Output:** “(E) 10”
12631264 This case suggests that even when the model does not explicitly “discuss” the peers, the latent
1265 representation of the interaction history acts as a distractor, inducing reasoning drift and leading to
1266 conformity failures even when peers are correct.1268 F COMPREHENSIVE EVALUATION AND ANALYSIS RESULTS
12691270 We summarise the full evaluation results under KAIROS along with transition analyses for all
1271 model groups. Tables 8 to 11 report per-dataset performance across the four evaluation do-
1272 mains—*Reasoning*, *Knowledge*, *Social*, and *Creativity*. Each table includes Original and KAIROS
1273 accuracies, with bold entries indicating the per-dataset extrema (max/min) of O–KΔ.1274 Figures 5 to 9 present the transition analysis for all evaluated model families. Each figure visu-
1275 alises how prediction outcomes change under varying peer rapport levels and peer behaviours (SUP-
1276 PORT, OPPOSEEASY, OPPOSEHARD), summarised across the four correctness transitions (Cor-
1277 rect→Correct, Correct→Wrong, Wrong→Correct, Wrong→Wrong). Bubble size reflects transition
1278 frequency and colour intensity denotes confidence.1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296	1297	1298	Model	Type	BBH (n=334)			LiveCodeBench (n=333)			MATH-500 (n=333)		
					Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)	Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)	Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)
					47.60%	47.01%	-1.3%	40.24%	42.04%	+4.5%	32.13%	36.64%	+14.0%
1299	1300	1301	Qwen2.5-3B	Base	57.49%	43.11%	-25.0%	53.45%	41.44%	-22.5%	63.36%	34.23%	-46.0%
1302	1303	1304		Empowered	47.60%	47.60%	+0.0%	40.24%	42.04%	+4.5%	32.13%	31.53%	-1.9%
1305	1306	1307		Reflected	58.08%	46.71%	-19.6%	43.24%	33.03%	-23.6%	27.03%	23.12%	-14.4%
1308	1309	1310		SFT	54.79%	50.60%	-7.6%	57.06%	51.65%	-9.5%	55.56%	53.75%	-3.2%
1311	1312	1313		GRPO-MAS-DS-DR	65.27%	52.69%	-19.3%	63.06%	52.55%	-16.7%	64.86%	60.06%	-7.4%
1314	1315	1316		GRPO-MAS-NS-OR	63.47%	49.70%	-21.7%	62.46%	54.35%	-13.0%	56.46%	40.24%	-28.7%
1317	1318	1319		GRPO-nomMAS-DS-DR	68.56%	51.20%	-25.3%	63.36%	52.55%	-17.1%	62.76%	60.06%	-4.3%
1320	1321	1322		GRPO-MAS-DS-DR-LConf	55.69%	47.31%	-15.0%	49.55%	46.25%	-6.7%	51.65%	48.95%	-5.2%
1323	1324	1325		GRPO-MAS-DS-DR-LCorr	53.89%	47.01%	-12.8%	49.85%	45.95%	-7.8%	58.56%	55.26%	-5.6%
1326	1327	1328		GRPO-MAS-NS-OR-LConf	61.68%	46.41%	-24.8%	55.86%	48.05%	-14.0%	65.77%	57.36%	-12.8%
1329	1330	1331		GRPO-MAS-NS-OR-LCorr	61.98%	45.21%	-27.1%	61.56%	47.15%	-23.4%	64.86%	57.96%	-10.7%
1332	1333	1334	Qwen2.5-14B	Base	58.68%	51.20%	-12.8%	49.25%	46.85%	-4.9%	31.23%	39.04%	+25.0%
1335	1336	1337		Empowered	60.78%	50.00%	-17.7%	76.58%	50.75%	-33.7%	66.97%	44.44%	-33.6%
1338	1339	1340		Reflected	58.68%	49.10%	-16.3%	49.25%	50.45%	+2.4%	31.23%	55.26%	+76.9%
1341	1342	1343		SFT	64.97%	43.71%	-32.7%	54.65%	39.34%	-28.0%	28.83%	36.34%	+26.0%
1344	1345	1346		GRPO-MAS-DS-DR	71.26%	66.77%	-6.3%	62.46%	61.56%	-1.4%	66.67%	57.36%	-14.0%
1347	1348	1349		GRPO-MAS-NS-OR	76.65%	74.25%	-3.1%	73.57%	70.57%	-4.1%	71.17%	73.87%	+3.8%
1350	1351	1352		GRPO-nomMAS-DS-DR	71.26%	59.58%	-16.4%	63.96%	62.46%	-2.3%	62.16%	57.66%	-7.2%
1353	1354	1355		GRPO-nomMAS-NS-OR	83.53%	65.27%	-21.9%	78.68%	64.86%	-17.6%	81.38%	67.57%	-17.0%
1356	1357	1358		GRPO-MAS-DS-DR-LConf	65.27%	56.89%	-12.8%	51.65%	56.46%	+9.3%	54.65%	52.85%	-3.3%
1359	1360	1361		GRPO-MAS-DS-DR-LCorr	62.57%	49.10%	-21.5%	59.16%	47.75%	-19.3%	59.76%	54.95%	-8.0%
1362	1363	1364		GRPO-MAS-NS-OR-LConf	72.16%	56.29%	-22.0%	75.98%	58.26%	-23.3%	76.28%	68.47%	-10.2%
1365	1366	1367		GRPO-MAS-NS-OR-LCorr	72.46%	52.40%	-27.7%	75.38%	61.26%	-18.7%	76.58%	69.67%	-9.0%
1368	1369	1370	Qwen2.5-14B	Base	62.57%	59.28%	-5.3%	62.46%	55.56%	-11.1%	40.24%	43.84%	+8.9%
1371	1372	1373		Empowered	62.87%	61.38%	-2.4%	71.17%	59.16%	-16.9%	75.08%	72.97%	-2.8%
1374	1375	1376		Reflected	62.57%	59.28%	-5.3%	62.46%	54.35%	-13.0%	40.24%	49.55%	+23.1%
1377	1378	1379		SFT	70.96%	44.91%	-36.7%	68.77%	36.04%	-47.6%	35.14%	36.34%	+3.4%
1380	1381	1382		GRPO-MAS-DS-DR	82.04%	82.63%	+0.7%	78.68%	66.67%	-15.3%	72.67%	69.07%	-5.0%
1383	1384	1385		GRPO-MAS-NS-OR	86.53%	82.34%	-4.8%	83.48%	73.57%	-11.9%	78.08%	74.77%	-4.2%
1386	1387	1388		GRPO-nomMAS-DS-DR	80.24%	72.16%	-10.1%	75.38%	65.17%	-13.5%	66.37%	66.67%	+0.5%
1389	1390	1391		GRPO-nomMAS-NS-OR	86.53%	73.05%	-15.6%	86.49%	70.27%	-18.8%	80.48%	72.37%	-10.1%
1392	1393	1394		GRPO-MAS-DS-DR-LConf	74.85%	59.58%	-20.4%	69.07%	59.76%	-13.5%	60.96%	60.06%	-1.5%
1395	1396	1397		GRPO-MAS-DS-DR-LCorr	75.45%	44.91%	-40.5%	66.37%	47.15%	-29.0%	62.16%	51.95%	-16.4%
1398	1399	1400		GRPO-MAS-NS-OR-LConf	78.44%	61.98%	-21.0%	81.98%	66.07%	-19.4%	79.28%	66.07%	-16.7%
1401	1402	1403		GRPO-MAS-NS-OR-LCorr	78.44%	54.19%	-30.9%	77.18%	65.47%	-15.2%	75.68%	71.17%	-5.9%
1404	1405	1406	Llama3.2-3B	Base	49.70%	46.71%	-6.0%	30.03%	24.02%	-20.0%	22.52%	26.73%	+18.7%
1407	1408	1409		Empowered	49.40%	44.61%	-9.7%	29.13%	25.53%	-12.4%	21.62%	22.52%	+4.2%
1410	1411	1412		Reflected	49.70%	35.93%	-27.7%	30.03%	29.13%	-3.0%	22.52%	21.02%	-6.7%
1413	1414	1415		SFT	55.09%	38.62%	-29.9%	34.53%	35.44%	+2.6%	18.92%	35.14%	+85.7%
1416	1417	1418		GRPO-MAS-DS-DR	53.59%	44.01%	-17.9%	27.33%	34.83%	+27.5%	27.63%	30.93%	+11.9%
1419	1420	1421		GRPO-MAS-NS-OR	61.38%	51.80%	-15.6%	33.63%	39.64%	+17.9%	39.34%	42.64%	+8.4%
1422	1423	1424		GRPO-nomMAS-DS-DR	62.87%	44.31%	-29.5%	33.03%	30.93%	-6.4%	39.34%	32.73%	-16.8%
1425	1426	1427		GRPO-nomMAS-NS-OR	60.78%	44.91%	-26.1%	43.54%	42.64%	-2.1%	47.45%	38.74%	-18.4%
1428	1429	1430		GRPO-MAS-DS-DR-LConf	55.99%	42.22%	-24.6%	29.13%	34.53%	+18.6%	30.93%	28.23%	-8.7%
1431	1432	1433		GRPO-MAS-DS-DR-LCorr	54.79%	46.11%	-15.8%	26.73%	34.83%	+30.3%	28.53%	33.63%	+17.9%
1434	1435	1436		GRPO-MAS-NS-OR-LConf	63.77%	52.69%	-17.4%	31.53%	38.14%	+21.0%	46.25%	40.54%	-12.3%
1437	1438	1439		GRPO-MAS-NS-OR-LCorr	63.77%	52.69%	-17.4%	31.53%	38.14%	+21.0%	46.25%	40.54%	-12.3%
1440	1441	1442	Llama3.1-8B	Base	55.39%	47.31%	-14.6%	32.43%	37.84%	+16.7%	32.13%	29.43%	-8.4%
1443	1444	1445		Empowered	59.88%	46.71%	-22.0%	46.25%	40.54%	-12.3%	54.35%	28.83%	-47.0%
1446	1447	1448		Reflected	55.39%	40.72%	-26.5%	32.43%	33.33%	+2.8%	32.13%	22.52%	-29.9%
1449	1450	1451		SFT	63.47%	36.53%	-42.5%	49.55%	39.34%	-20.6%	21.02%	33.93%	+61.4%
1452	1453	1454		GRPO-MAS-DS-DR	65.57%	59.28%	-9.6%	44.44%	40.84%	-8.1%	43.84%	38.14%	-13.0%
1455	1456	1457		GRPO-MAS-NS-OR	69.16%	62.87%	-9.1%	60.36%	43.54%	-27.9%	48.95%	37.24%	-23.9%
1458	1459	1460		GRPO-nomMAS-DS-DR	64.37%	47.60%	-26.1%	47.15%	38.74%	-17.8%	34.53%	33.93%	-1.7%
1461	1462	1463		GRPO-nomMAS-NS-OR	74.25%	61.98%	-16.5%	58.86%	47.45%	-19.4%	48.05%	39.94%	-16.9%
1464	1465	1466		GRPO-MAS-DS-DR-LConf	65.27%	50.00%	-23.4%	40.54%	35.74%	-11.8%	33.33%	37.84%	+13.5%
1467	1468	1469		GRPO-MAS-DS-DR-LCorr	69.16%	43.41%	-37.2%	44.44%	41.14%	-7.4%	46.25%	40.54%	-12.3%
1470	1471	1472		GRPO-MAS-NS-OR-LConf	68.86%	54.79%	-20.4%	54.05%	38.14%	-29.5%	50.45%	42.04%	-16.7%
1473	1474	1475		GRPO-MAS-NS-OR-LCorr	71.86%	56.59%	-21.2%	49.85%	38.74%	-22.3%	48.65%	37.84%	-22.2%
1476	1477	1478	Llama3.3-70B	Base	64.67%	67.37%	+4.2%	57.66%	59.46%	+3.1%	35.14%	38.74%	+10.2%
1479	1480	1481		Empowered	64.37%	69.49%	+8.0%	57.66%	58.56%	+1.6%	36.34%	39.94%	+9.9%
1482	1483	1484		Reflected	64.67%	66.77%	+3.2%	57.66%	55.56%	-3.6%	35.14%	31.23%	-11.1%
1485	1486	1487		Base	69.16%	67.96%	-1.7%	68.17%	64.86%	-4.9%	42.34%	43.84%	+3.5%
1488	1489	1490		Empowered	67.07%	63.77%	-4.9%	69.97%	63.06%	-9.9%	55.26%	46.55%	-15.8%
1491	1492	1493		Reflected	69.16%	61.98%	-10.4%	68.17%	60.36%	-11.5%	42.34%	44.74%	+5.7%
1494	1495	1496		Base	68.26%	66.17%	-3.1%	64.56%	64.26%	-0.5%	42.04%	43.54%	+3.6%
1497	1498	1499		Empowered	68.86%	67.66%	-1.7%	64.56%	66.37%	+2.8%	42.94%	45.65%	+6.3%
1500	1501	1502		Reflected	68.26%	65.57%	-3.9%	64.56%	63.36%	-1.9%	42.04%	45.95%	+9.3%
1503	1504	1505		Base	89.22%	82.93%	-7.0%	98.50%	94.89%	-4.6%	98.50%	92.49%	-6.1%
1506	1507	1508	GPT-OSS-120B	Empowered	89.22%	87.72%	-1.7%	98.80%	96.40%	-2.4%	98.50%	93.09%	-5.5%
1509	1510	1511		Reflected	89.22%	88.92%	-0.3%	98.50%	95.50%	-3.0%	98.50%	91.89%	-6.7%
1512	1513	1514		Base	92.81%	80.84%	-12.9%	97.60%	91.89%	-5.9%	99.10%	95.20%	-3.9%
1515	1516	1517		Empowered	90.12%	91.92%	+2.0%	97.00%	97.30%	+0.3%	99.40%	99.40%	+0.0%
1518	1519	1520		Reflected	92.81%	93.11%	+0.3%	97.60%	97.90%	+0.3%	99.10%	99.70%	+0.6%
1521	1522	1523		Base	92.81%	91.32%	-1.6%	99.10%	98.80%	-0.3%	98.80%	98.50%	-0.3%
1524	1525	1526		Empowered	91.92%	92.81%	+1.0%	99.10%					

1350	1351	Model	Type	MMLU-Pro (n=335)			TruthfulQA (n=333)		
				Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)	Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)
1353	Qwen2.5-3B	Qwen2.5-3B	Base	54.33%	46.87%	-13.7%	57.66%	67.57%	+17.2%
1354			Empowered	61.19%	46.27%	-24.4%	56.46%	67.87%	+20.2%
1355			Reflected	54.33%	48.36%	-11.0%	57.66%	60.66%	+5.2%
1356			SFT	48.96%	41.19%	-15.8%	45.95%	43.24%	-5.9%
1357			GRPO-MAS-DS-DR	61.49%	52.84%	-14.1%	54.65%	51.65%	-5.5%
1358			GRPO-MAS-NS-OR	65.67%	58.81%	-10.5%	57.96%	57.06%	-1.6%
1359			GRPO-nonMAS-DS-DR	62.39%	52.54%	-15.8%	56.16%	55.86%	-0.5%
1360			GRPO-nonMAS-NS-OR	64.78%	53.73%	-17.0%	55.26%	46.55%	-15.8%
1361			GRPO-MAS-DS-DR-LConf	59.10%	50.75%	-14.1%	54.95%	50.15%	-8.7%
1362			GRPO-MAS-DS-DR-LCorr	65.97%	47.16%	-28.5%	54.35%	41.44%	-23.8%
1363	Qwen2.5-7B	Qwen2.5-7B	GRPO-MAS-NS-OR-LConf	68.06%	52.24%	-23.2%	57.06%	50.15%	-12.1%
1364			GRPO-MAS-NS-OR-LCorr	66.57%	45.67%	-31.4%	55.86%	43.54%	-22.0%
1365			Base	60.00%	51.04%	-14.9%	67.27%	63.36%	-5.8%
1366			Empowered	63.58%	57.01%	-10.3%	66.97%	65.47%	-2.2%
1367			Reflected	60.00%	59.40%	-1.0%	67.27%	64.56%	-4.0%
1368			SFT	54.93%	41.19%	-25.0%	52.55%	46.55%	-11.4%
1369			GRPO-MAS-DS-DR	68.06%	63.58%	-6.6%	63.66%	58.86%	-7.5%
1370			GRPO-MAS-NS-OR	71.94%	68.36%	-5.0%	60.36%	53.15%	-11.9%
1371			GRPO-nonMAS-DS-DR	68.96%	60.00%	-13.0%	59.16%	58.56%	-1.0%
1372			GRPO-nonMAS-NS-OR	76.42%	62.69%	-18.0%	59.76%	53.15%	-11.1%
1373	Qwen2.5-14B	Qwen2.5-14B	GRPO-MAS-DS-DR-LConf	65.37%	57.01%	-12.8%	64.56%	52.85%	-18.1%
1374			GRPO-MAS-DS-DR-LCorr	68.96%	52.54%	-23.8%	62.46%	44.44%	-28.9%
1375			GRPO-MAS-NS-OR-LConf	74.03%	61.19%	-17.3%	66.97%	55.26%	-17.5%
1376			GRPO-MAS-NS-OR-LCorr	74.03%	57.61%	-22.2%	66.07%	41.74%	-36.8%
1377			Base	67.16%	61.19%	-8.9%	73.57%	77.48%	+5.3%
1378			Empowered	69.55%	63.88%	-8.2%	76.28%	77.78%	+2.0%
1379			Reflected	67.16%	66.27%	-1.3%	73.57%	72.07%	-2.0%
1380			SFT	64.48%	42.39%	-34.3%	71.17%	58.26%	-18.1%
1381			GRPO-MAS-DS-DR	77.31%	68.96%	-10.8%	72.97%	69.37%	-4.9%
1382	Llama3.2-3B	Llama3.2-3B	GRPO-MAS-NS-OR	78.51%	67.16%	-14.4%	74.47%	70.87%	-4.8%
1383			GRPO-nonMAS-DS-DR	77.61%	65.07%	-16.2%	69.37%	66.97%	-3.5%
1384			GRPO-nonMAS-NS-OR	78.81%	68.66%	-12.9%	71.77%	66.07%	-8.0%
1385			GRPO-MAS-DS-DR-LConf	72.24%	63.88%	-11.6%	73.27%	72.97%	-0.4%
1386			GRPO-MAS-DS-DR-LCorr	71.64%	49.55%	-30.8%	69.37%	49.85%	-28.1%
1387			GRPO-MAS-NS-OR-LConf	79.40%	61.79%	-22.2%	72.07%	59.46%	-17.5%
1388			GRPO-MAS-NS-OR-LCorr	80.00%	54.93%	-31.3%	63.36%	37.84%	-40.3%
1389			Base	48.06%	38.21%	-20.5%	52.25%	57.96%	+10.9%
1390			Empowered	47.46%	39.70%	-16.4%	56.16%	61.56%	+9.6%
1391			Reflected	48.06%	34.03%	-29.2%	52.25%	37.24%	-28.7%
1392	Llama3.1-8B	Llama3.1-8B	SFT	38.81%	34.33%	-11.5%	43.24%	36.04%	-16.7%
1393			GRPO-MAS-DS-DR	50.15%	44.18%	-11.9%	54.65%	48.35%	-11.5%
1394			GRPO-MAS-NS-OR	53.73%	48.36%	-10.0%	49.55%	50.75%	+2.4%
1395			GRPO-nonMAS-DS-DR	52.84%	40.30%	-23.7%	57.06%	49.25%	-13.7%
1396			GRPO-nonMAS-NS-OR	57.91%	45.97%	-20.6%	55.26%	55.86%	+1.1%
1397			GRPO-MAS-DS-DR-LConf	50.15%	38.21%	-23.8%	54.95%	54.95%	+0.0%
1398			GRPO-MAS-DS-DR-LCorr	53.13%	46.27%	-12.9%	55.26%	46.55%	-15.8%
1399			GRPO-MAS-NS-OR-LConf	55.82%	45.37%	-18.7%	50.75%	50.15%	-1.2%
1400			GRPO-MAS-NS-OR-LCorr	55.82%	45.37%	-18.7%	50.75%	50.15%	-1.2%
1401			Base	60.60%	48.66%	-19.7%	58.26%	69.37%	+19.1%
1402	Llama3.3-70B	Llama3.3-70B	Empowered	64.48%	51.04%	-20.8%	62.16%	68.77%	+10.6%
1403			Reflected	60.60%	48.66%	-19.7%	58.26%	52.25%	-10.3%
1404			SFT	44.48%	37.01%	-16.8%	32.13%	34.53%	+7.5%
1405	Qwen2.5-32B	Qwen2.5-32B	GRPO-MAS-DS-DR	62.09%	52.84%	-14.9%	57.36%	57.96%	+1.0%
1406			GRPO-MAS-NS-OR	65.37%	51.94%	-20.5%	53.75%	58.26%	+8.4%
1407			GRPO-nonMAS-DS-DR	60.00%	49.55%	-17.4%	56.76%	61.56%	+8.5%
1408			GRPO-nonMAS-NS-OR	65.97%	52.84%	-19.9%	43.54%	52.85%	+21.4%
1409			GRPO-MAS-DS-DR-LConf	61.19%	49.25%	-19.5%	58.86%	60.96%	+3.6%
1410			GRPO-MAS-DS-DR-LCorr	63.58%	42.99%	-32.4%	56.76%	52.55%	-7.4%
1411			GRPO-MAS-NS-OR-LConf	64.48%	53.73%	-16.7%	54.35%	48.95%	-10.0%
1412			GRPO-MAS-NS-OR-LCorr	64.48%	54.33%	-15.7%	57.06%	56.76%	-0.5%
1413			Base	67.76%	66.87%	-1.3%	73.57%	74.77%	+1.6%
1414			Empowered	68.66%	68.66%	+0.0%	77.18%	75.08%	-2.7%
1415	Qwen2.5-72B	Qwen2.5-72B	Reflected	67.76%	64.78%	-4.4%	73.57%	75.08%	+2.1%
1416			SFT	73.13%	69.25%	-5.3%	78.68%	79.58%	+1.1%
1417			GRPO-MAS-DS-DR	74.93%	69.25%	-7.6%	81.08%	81.98%	+1.1%
1418			GRPO-MAS-NS-OR	73.13%	69.25%	-5.3%	78.68%	77.48%	-1.5%
1419			GRPO-nonMAS-DS-DR	72.24%	71.34%	-1.2%	81.38%	83.48%	+2.6%
1420			GRPO-nonMAS-NS-OR	72.84%	73.73%	+1.2%	82.58%	84.98%	+2.9%
1421			GRPO-MAS-DS-DR-LConf	72.24%	71.64%	-0.8%	81.38%	78.08%	-4.1%
1422			GRPO-MAS-DS-DR-LCorr	72.24%	71.64%	-0.8%	78.08%	78.08%	0.0%
1423			GRPO-MAS-NS-OR-LConf	88.66%	84.78%	-4.4%	79.28%	77.78%	-1.9%
1424			GRPO-MAS-NS-OR-LCorr	89.85%	86.27%	-4.0%	81.68%	81.98%	+0.4%
1425	GPT-OS-120B	GPT-OS-120B	GRPO-MAS-NS-OR	88.66%	85.97%	-3.0%	79.28%	84.98%	+7.2%
1426			GRPO-MAS-DS-DR	92.54%	83.28%	-10.0%	89.79%	85.29%	-5.0%
1427			GRPO-MAS-NS-OR	91.94%	91.04%	-1.0%	90.69%	92.49%	+2.0%
1428			GRPO-nonMAS-DS-DR	92.54%	91.34%	-1.3%	89.79%	92.79%	+3.3%
1429			GRPO-MAS-DS-DR-LConf	92.84%	92.84%	+0.0%	81.68%	87.99%	+7.7%
1430			GRPO-MAS-DS-DR-LCorr	91.34%	91.64%	+0.3%	84.58%	90.09%	+6.8%
1431			GRPO-MAS-NS-OR-LConf	92.84%	92.24%	-0.6%	81.68%	89.49%	+9.6%
1432			GRPO-MAS-NS-OR-LCorr	92.84%	92.24%	-0.6%	81.68%	89.49%	+9.6%

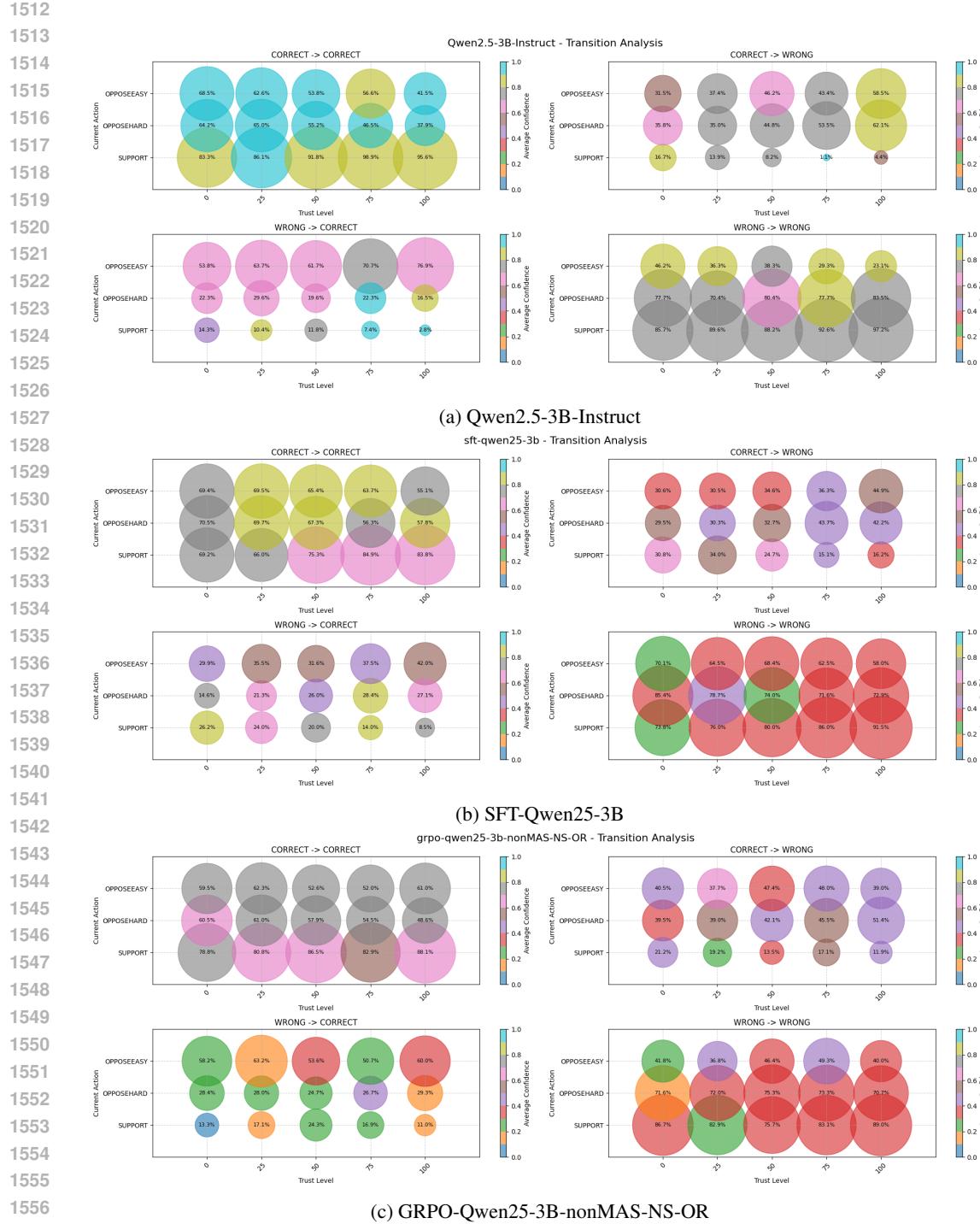
Table 9: Overall results for the **Knowledge** category under KAIROS. **Bold** numbers mark per-dataset extreme (max/min) O-K Δ.

1404	1405	1406	Model	Type	CommonSenseQA (n=333)			Social IQa (n=333)		
					Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)	Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)
1407	Qwen2.5-3B		Base	57.36%	59.16%	+3.1%	70.27%	64.56%	-8.1%	
1408			Empowered	58.86%	59.16%	+0.5%	70.87%	63.66%	-10.2%	
1409			Reflected	57.36%	58.26%	+1.6%	70.27%	56.46%	-19.7%	
1410			SFT	52.85%	60.36%	+14.2%	70.27%	60.36%	-14.1%	
1411			GRPO-MAS-DS-DR	62.16%	58.26%	-6.3%	68.47%	64.56%	-5.7%	
1412			GRPO-MAS-NS-OR	65.17%	63.96%	-1.8%	71.47%	62.46%	-12.6%	
1413			GRPO-nonMAS-DS-DR	60.96%	54.65%	-10.4%	72.97%	63.06%	-13.6%	
1414			GRPO-nonMAS-NS-OR	63.36%	60.36%	-4.7%	72.37%	61.56%	-14.9%	
1415			GRPO-MAS-DS-DR-LConf	61.56%	58.86%	-4.4%	70.87%	60.96%	-14.0%	
1416			GRPO-MAS-DS-DR-LCorr	61.56%	58.86%	-4.4%	68.77%	45.65%	-33.6%	
1417	Qwen2.5-7B		GRPO-MAS-NS-OR-LConf	61.86%	61.86%	+0.0%	72.97%	56.16%	-23.1%	
1418			GRPO-MAS-NS-OR-LCorr	64.26%	55.56%	-13.6%	72.37%	43.54%	-39.8%	
1419			Base	68.17%	56.76%	-16.7%	74.17%	68.77%	-7.3%	
1420			Empowered	65.77%	57.36%	-12.8%	75.08%	69.97%	-6.8%	
1421			Reflected	68.17%	61.56%	-9.7%	74.17%	72.97%	-1.6%	
1422			SFT	60.96%	44.14%	-27.6%	68.17%	50.15%	-26.4%	
1423			GRPO-MAS-DS-DR	69.07%	67.87%	-1.7%	71.47%	68.47%	-4.2%	
1424			GRPO-MAS-NS-OR	75.08%	59.16%	-21.2%	74.17%	66.07%	-10.9%	
1425			GRPO-nonMAS-DS-DR	68.47%	65.17%	-4.8%	71.17%	61.56%	-13.5%	
1426			GRPO-nonMAS-NS-OR	76.28%	57.66%	-24.4%	75.98%	54.05%	-28.8%	
1427	Qwen2.5-14B		GRPO-MAS-DS-DR-LConf	69.97%	55.56%	-20.6%	72.97%	56.16%	-23.1%	
1428			GRPO-MAS-DS-DR-LCorr	71.47%	57.36%	-19.7%	73.27%	45.65%	-37.7%	
1429			GRPO-MAS-NS-OR-LConf	73.87%	63.96%	-13.4%	76.28%	59.76%	-21.7%	
1430			GRPO-MAS-NS-OR-LCorr	76.88%	49.55%	-35.5%	74.77%	42.04%	-43.8%	
1431			Base	69.37%	64.56%	-6.9%	74.47%	66.97%	-10.1%	
1432			Empowered	70.57%	69.37%	-1.7%	73.57%	69.07%	-6.1%	
1433			Reflected	69.37%	64.86%	-6.5%	74.47%	69.07%	-7.3%	
1434			SFT	68.47%	52.85%	-22.8%	70.27%	48.05%	-31.6%	
1435			GRPO-MAS-DS-DR	83.18%	77.18%	-7.2%	75.08%	71.77%	-4.4%	
1436	Llama3.2-3B		GRPO-MAS-NS-OR	81.38%	78.08%	-4.1%	73.27%	72.07%	-1.6%	
1437			GRPO-nonMAS-DS-DR	80.48%	63.96%	-20.5%	75.68%	65.77%	-13.1%	
1438			GRPO-nonMAS-NS-OR	82.28%	63.96%	-22.3%	76.58%	64.56%	-15.7%	
1439			GRPO-MAS-DS-DR-LConf	76.88%	68.77%	-10.5%	75.98%	61.56%	-19.0%	
1440			GRPO-MAS-DS-DR-LCorr	76.28%	48.35%	-36.6%	72.67%	42.04%	-42.1%	
1441			GRPO-MAS-NS-OR-LConf	81.08%	62.46%	-23.0%	76.28%	56.16%	-26.4%	
1442			GRPO-MAS-NS-OR-LCorr	82.58%	48.35%	-41.5%	73.57%	44.74%	-39.2%	
1443			Base	57.66%	50.75%	-12.0%	63.96%	50.75%	-20.7%	
1444			Empowered	59.76%	51.65%	-13.6%	64.86%	55.86%	-13.9%	
1445			Reflected	57.66%	49.55%	-14.1%	63.96%	47.15%	-26.3%	
1446	Llama3.1-8B		SFT	52.55%	48.65%	-7.4%	57.66%	38.74%	-32.8%	
1447			GRPO-MAS-DS-DR	59.16%	49.85%	-15.7%	67.87%	55.26%	-18.6%	
1448			GRPO-MAS-NS-OR	62.16%	60.36%	-2.9%	72.07%	60.96%	-15.4%	
1449			GRPO-nonMAS-DS-DR	59.46%	49.85%	-16.2%	67.87%	56.46%	-16.8%	
1450			GRPO-nonMAS-NS-OR	57.96%	57.36%	-1.0%	73.27%	56.76%	-22.5%	
1451			GRPO-MAS-DS-DR-LConf	57.66%	51.95%	-9.9%	67.27%	52.25%	-22.3%	
1452			GRPO-MAS-DS-DR-LCorr	57.06%	50.75%	-11.1%	67.87%	45.35%	-33.2%	
1453			GRPO-MAS-NS-OR-LConf	65.47%	56.46%	-13.8%	71.47%	53.45%	-25.2%	
1454			GRPO-MAS-NS-OR-LCorr	65.47%	56.46%	-13.8%	71.47%	53.45%	-25.2%	
1455			Base	68.17%	60.66%	-11.0%	73.27%	62.76%	-14.3%	
1456	Llama3.3-70B		Empowered	65.47%	59.76%	-8.7%	72.07%	65.47%	-9.2%	
1457			Reflected	68.17%	50.15%	-26.4%	73.27%	54.95%	-25.0%	
1458			SFT	53.15%	53.45%	+0.6%	65.77%	43.54%	-33.8%	
1459			GRPO-MAS-DS-DR	63.66%	61.26%	-3.8%	72.07%	62.76%	-12.9%	
1460			GRPO-MAS-NS-OR	66.37%	63.96%	-3.6%	72.37%	66.37%	-8.3%	
1461			GRPO-nonMAS-DS-DR	67.27%	55.86%	-17.0%	75.08%	56.76%	-24.4%	
1462			GRPO-nonMAS-NS-OR	69.67%	66.07%	-5.2%	73.57%	57.36%	-22.0%	
1463			GRPO-MAS-DS-DR-LConf	65.77%	64.56%	-1.8%	71.77%	57.36%	-20.1%	
1464			GRPO-MAS-DS-DR-LCorr	65.17%	59.16%	-9.2%	70.87%	46.85%	-33.9%	
1465			GRPO-MAS-NS-OR-LConf	67.87%	63.96%	-5.7%	70.87%	60.66%	-14.4%	
1466			GRPO-MAS-NS-OR-LCorr	72.37%	63.96%	-11.6%	72.07%	58.56%	-18.7%	
1467	Qwen2.5-32B		Base	78.68%	78.38%	-0.4%	79.58%	75.08%	-5.7%	
1468			Empowered	80.18%	80.18%	+0.0%	80.48%	79.58%	-1.1%	
1469			Reflected	78.68%	76.58%	-2.7%	79.58%	78.98%	-0.8%	
1470			SFT	74.77%	72.07%	-3.6%	79.88%	78.08%	-2.3%	
1471			GRPO-MAS-DS-DR	74.77%	74.17%	-0.8%	78.98%	78.38%	-0.8%	
1472			GRPO-MAS-NS-OR	74.77%	74.47%	-0.4%	79.88%	76.88%	-3.8%	
1473			GRPO-nonMAS-DS-DR	74.77%	74.47%	-0.4%	79.88%	76.88%	-3.8%	
1474			GRPO-nonMAS-NS-OR	74.77%	74.47%	-0.4%	79.88%	76.88%	-3.8%	
1475			GRPO-MAS-DS-DR-LConf	65.17%	59.16%	-9.2%	70.87%	46.85%	-33.9%	
1476			GRPO-MAS-DS-DR-LCorr	65.17%	59.16%	-9.2%	70.87%	46.85%	-33.9%	
1477	Qwen2.5-72B		GRPO-MAS-NS-OR-LConf	67.87%	63.96%	-5.7%	70.87%	60.66%	-14.4%	
1478			GRPO-MAS-NS-OR-LCorr	72.37%	63.96%	-11.6%	72.07%	58.56%	-18.7%	
1479			Base	85.59%	72.07%	-15.8%	79.88%	66.97%	-16.2%	
1480			Empowered	84.68%	80.48%	-5.0%	79.58%	72.37%	-9.1%	
1481			Reflected	85.59%	83.18%	-2.8%	79.88%	75.68%	-5.3%	
1482			SFT	84.38%	68.47%	-18.9%	79.58%	65.77%	-17.4%	
1483			GRPO-MAS-DS-DR	78.98%	75.38%	-4.6%	78.98%	79.58%	+0.8%	
1484			GRPO-MAS-NS-OR	84.38%	73.87%	-12.5%	79.58%	76.28%	-4.1%	
1485			GRPO-nonMAS-DS-DR	78.98%	75.38%	-4.6%	78.98%	79.58%	+0.8%	
1486			GRPO-nonMAS-NS-OR	78.98%	75.38%	-4.6%	78.98%	79.58%	+0.8%	
1487	GPT-5		GRPO-MAS-DS-DR-LConf	87.99%	79.88%	-9.2%	80.18%	78.08%	-2.6%	
1488			GRPO-MAS-DS-DR-LCorr	86.19%	81.08%	-5.9%	80.18%	78.98%	-1.5%	
1489			GRPO-MAS-NS-OR-LConf	87.99%	81.08%	-7.9%	80.18%	78.38%	-2.2%	
1490			GRPO-MAS-NS-OR-LCorr	87.99%	81.08%	-7.9%	80.18%	78.38%	-2.2%	
1491			Base	87.99%	79.88%	-9.2%	80.18%	78.08%	-2.6%	
1492			Empowered	86.19%	81.08%	-5.9%	80.18%	78.98%	-1.5%	
1493			Reflected	87.99%	81.08%	-7.9%	80.18%	78.38%	-2.2%	

Table 10: Overall results for the **Social** category under KAIROS. **Bold** numbers mark per-dataset extreme (max/min) O-K Δ.

1458	1459	1460	Model	Type	BrainTeaser (n=333)			MacGyver (n=333)		
					Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)	Original acc (↑)	KAIROS acc (↑)	O-K Δ (↓)
1461	Qwen2.5-3B		Base	37.54%	30.63%	-18.4%	34.23%	44.44%	+29.8%	
1462			Empowered	41.74%	30.63%	-26.6%	41.14%	44.44%	+8.0%	
1463			Reflected	37.54%	23.42%	-37.6%	34.23%	57.06%	+66.7%	
1464			SFT	54.35%	43.24%	-20.4%	51.05%	72.37%	+41.8%	
1465			GRPO-MAS-DS-DR	35.14%	33.63%	-4.3%	44.14%	48.35%	+9.5%	
1466			GRPO-MAS-NS-OR	39.04%	41.44%	+6.1%	62.46%	72.07%	+15.4%	
1467			GRPO-nonMAS-DS-DR	36.94%	35.44%	-4.1%	46.55%	55.56%	+19.4%	
1468			GRPO-nonMAS-NS-OR	44.44%	34.23%	-23.0%	69.67%	63.96%	-8.2%	
1469			GRPO-MAS-DS-DR-LConf	28.53%	28.53%	+0.0%	40.84%	47.75%	+16.9%	
1470			GRPO-MAS-DS-DR-LCorr	33.03%	33.93%	+2.7%	54.05%	51.95%	-3.9%	
1471	Qwen2.5-7B		GRPO-MAS-NS-OR-LConf	38.74%	38.14%	-1.5%	63.96%	60.66%	-5.2%	
1472			GRPO-MAS-NS-OR-LCorr	35.44%	31.53%	-11.0%	59.16%	57.06%	-3.5%	
1473			Base	42.94%	47.45%	+10.5%	74.77%	45.95%	-38.6%	
1474			Empowered	44.14%	46.25%	+4.8%	71.77%	45.35%	-36.8%	
1475			Reflected	42.94%	42.94%	+0.0%	74.77%	41.74%	-44.2%	
1476			SFT	64.86%	48.65%	-25.0%	60.06%	45.95%	-23.5%	
1477			GRPO-MAS-DS-DR	50.45%	54.35%	+7.7%	76.58%	59.46%	-22.4%	
1478			GRPO-MAS-NS-OR	54.65%	55.86%	+2.2%	74.77%	67.87%	-9.2%	
1479			GRPO-nonMAS-DS-DR	51.05%	47.15%	-7.6%	63.96%	61.56%	-3.8%	
1480			GRPO-nonMAS-NS-OR	48.95%	41.14%	-16.0%	73.57%	52.55%	-28.6%	
1481	Qwen2.5-14B		GRPO-MAS-DS-DR-LConf	46.55%	43.24%	-7.1%	72.07%	49.55%	-31.2%	
1482			GRPO-MAS-DS-DR-LCorr	43.24%	42.04%	-2.8%	68.77%	54.95%	-20.1%	
1483			GRPO-MAS-NS-OR-LConf	46.85%	38.74%	-17.3%	74.47%	49.55%	-33.5%	
1484			GRPO-MAS-NS-OR-LCorr	48.05%	41.14%	-14.4%	79.28%	58.86%	-25.8%	
1485			Base	52.25%	48.05%	-8.0%	73.87%	48.95%	-33.7%	
1486			Empowered	46.25%	44.74%	-3.2%	68.77%	44.14%	-35.8%	
1487			Reflected	52.25%	44.74%	-14.4%	73.87%	52.55%	-28.9%	
1488			SFT	70.87%	60.96%	-14.0%	67.87%	59.76%	-11.9%	
1489			GRPO-MAS-DS-DR	61.56%	59.76%	-2.9%	76.58%	60.36%	-21.2%	
1490	Llama3.2-3B		GRPO-MAS-NS-OR	60.36%	63.36%	+5.0%	71.77%	61.26%	-14.6%	
1491			GRPO-nonMAS-DS-DR	57.96%	53.45%	-7.8%	72.07%	43.24%	-40.0%	
1492			GRPO-nonMAS-NS-OR	60.66%	54.35%	-10.4%	74.17%	55.86%	-24.7%	
1493			GRPO-MAS-DS-DR-LConf	56.16%	52.55%	-6.4%	71.47%	48.65%	-31.9%	
1494			GRPO-MAS-DS-DR-LCorr	45.05%	35.74%	-20.7%	78.68%	42.34%	-46.2%	
1495			GRPO-MAS-NS-OR-LConf	59.16%	51.95%	-12.2%	65.47%	58.26%	-11.0%	
1496			GRPO-MAS-NS-OR-LCorr	58.56%	45.05%	-23.1%	67.57%	47.75%	-29.3%	
1497			Base	43.54%	42.34%	-2.8%	63.36%	56.76%	-10.4%	
1498			Empowered	37.84%	43.54%	+15.1%	69.67%	57.36%	-17.7%	
1499			Reflected	43.54%	34.83%	-20.0%	63.36%	56.76%	-10.4%	
1500	Llama3.1-8B		SFT	48.05%	37.54%	-21.9%	54.65%	48.95%	-10.4%	
1501			GRPO-MAS-DS-DR	49.25%	43.84%	-11.0%	69.97%	63.36%	-9.4%	
1502			GRPO-MAS-NS-OR	51.95%	45.35%	-12.7%	77.78%	61.56%	-20.9%	
1503			GRPO-nonMAS-DS-DR	49.85%	39.94%	-19.9%	77.18%	60.96%	-21.0%	
1504			GRPO-nonMAS-NS-OR	49.55%	43.54%	-12.1%	77.78%	66.37%	-14.7%	
1505			GRPO-MAS-DS-DR-LConf	44.14%	40.84%	-7.5%	75.08%	59.46%	-20.8%	
1506			GRPO-MAS-DS-DR-LCorr	46.85%	42.34%	-9.6%	77.48%	67.27%	-13.2%	
1507			GRPO-MAS-NS-OR-LConf	48.05%	36.04%	-25.0%	77.48%	62.16%	-19.8%	
1508			GRPO-MAS-NS-OR-LCorr	48.05%	36.04%	-25.0%	77.48%	62.16%	-19.8%	
1509			Base	52.55%	45.35%	-13.7%	75.68%	71.47%	-5.5%	
1510	Llama3.3-70B		Empowered	47.75%	43.54%	-8.8%	76.88%	72.67%	-5.5%	
1511			Reflected	52.55%	29.73%	-43.4%	75.68%	33.03%	-56.3%	
1512			SFT	63.36%	50.75%	-19.9%	51.05%	50.15%	-1.8%	
1513	Qwen2.5-32B		GRPO-MAS-DS-DR	57.96%	51.35%	-11.4%	76.88%	76.58%	-0.4%	
1514			GRPO-MAS-NS-OR	59.46%	59.16%	-0.5%	78.38%	72.37%	-7.7%	
1515			GRPO-nonMAS-DS-DR	52.25%	45.05%	-13.8%	75.98%	52.55%	-30.8%	
1516			GRPO-nonMAS-NS-OR	62.16%	55.56%	-10.6%	78.08%	71.17%	-8.8%	
1517			GRPO-MAS-DS-DR-LConf	55.26%	48.65%	-12.0%	76.58%	66.37%	-13.3%	
1518			GRPO-MAS-DS-DR-LCorr	53.45%	45.65%	-14.6%	77.18%	56.46%	-26.8%	
1519			GRPO-MAS-NS-OR-LConf	54.65%	47.75%	-12.6%	77.48%	76.88%	-0.8%	
1520			GRPO-MAS-NS-OR-LCorr	61.56%	53.15%	-13.7%	78.38%	66.07%	-15.7%	
1521			Base	75.38%	76.28%	+1.2%	79.28%	76.58%	-3.4%	
1522			Empowered	72.67%	76.58%	+5.4%	78.68%	78.38%	-0.4%	
1523	Qwen2.5-72B		Reflected	75.38%	75.68%	+0.4%	79.28%	76.58%	-3.4%	
1524			Base	58.56%	60.66%	+3.6%	78.98%	69.97%	-11.4%	
1525			Empowered	56.76%	57.36%	+1.1%	79.28%	66.07%	-16.7%	
1526			Reflected	58.56%	55.56%	-5.1%	78.98%	70.87%	-10.3%	
1527			Base	58.86%	66.37%	+12.8%	78.68%	77.48%	-1.5%	
1528			Empowered	53.75%	66.97%	+24.6%	78.98%	78.38%	-0.8%	
1529			Reflected	58.86%	60.66%	+3.1%	78.68%	81.38%	+3.4%	
1530			Base	82.88%	82.58%	-0.4%	77.48%	73.27%	-5.4%	
1531			Empowered	81.98%	84.68%	+3.3%	80.48%	72.67%	-9.7%	
1532			Reflected	82.88%	86.19%	+4.0%	77.48%	76.88%	-0.8%	
1533	Gemini-2.5-Pro		Base	90.99%	82.58%	-9.2%	77.18%	66.07%	-14.4%	
1534			Empowered	90.69%	93.09%	+2.6%	76.28%	73.27%	-3.9%	
1535			Reflected	90.99%	90.99%	+0.0%	77.18%	71.47%	-7.4%	
1536	GPT-5		Base	96.40%	93.39%	-3.1%	81.68%	79.28%	-2.9%	
1537			Empowered	95.50%	94.59%	-1.0%	81.68%	82.88%	+1.5%	
1538			Reflected	96.40%	94.89%	-1.6%	81.68%	83.18%	+1.8%	

Table 11: Overall results for the **Creativity** category under KAIROS. **Bold** numbers mark per-dataset extreme (max/min) O-K Δ.



1558
1559
1560
1561
1562
1563
1564
1565
1566
1567

Figure 5: Transition analysis of **Qwen2.5-3B** models under three training settings: INSTRUCT (top), SFT (middle), and GRPO (bottom). Each figure visualises transitions between historical correctness and current model prediction outcomes across varying dialogue rapport levels (0, 25, 50, 75, 100; termed “Trust Level” in the figures) and other-agent actions (SUPPORT, OPPOSEEASY, OPPOSEHARD). Each quadrant in a plot corresponds to: **Top-left:** Correct→Correct, **Top-right:** Correct→Wrong, **Bottom-left:** Wrong→Correct, **Bottom-right:** Wrong→Wrong. Bubble size represents the transition frequency (proportion), and colour intensity indicates average model confidence.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

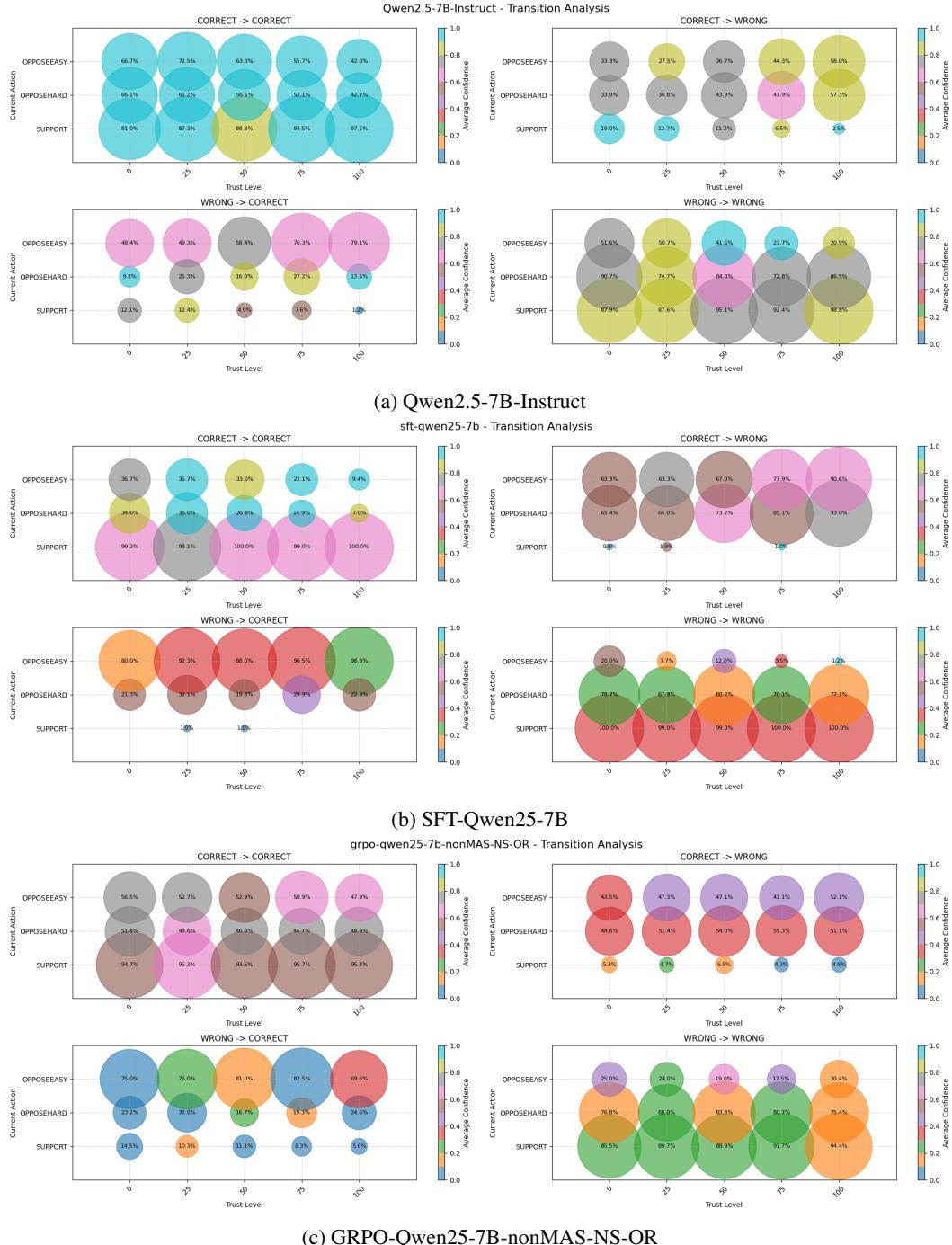


Figure 6: Transition analysis for Qwen2.5-7B group. See Figure 5 caption for detailed explanation.

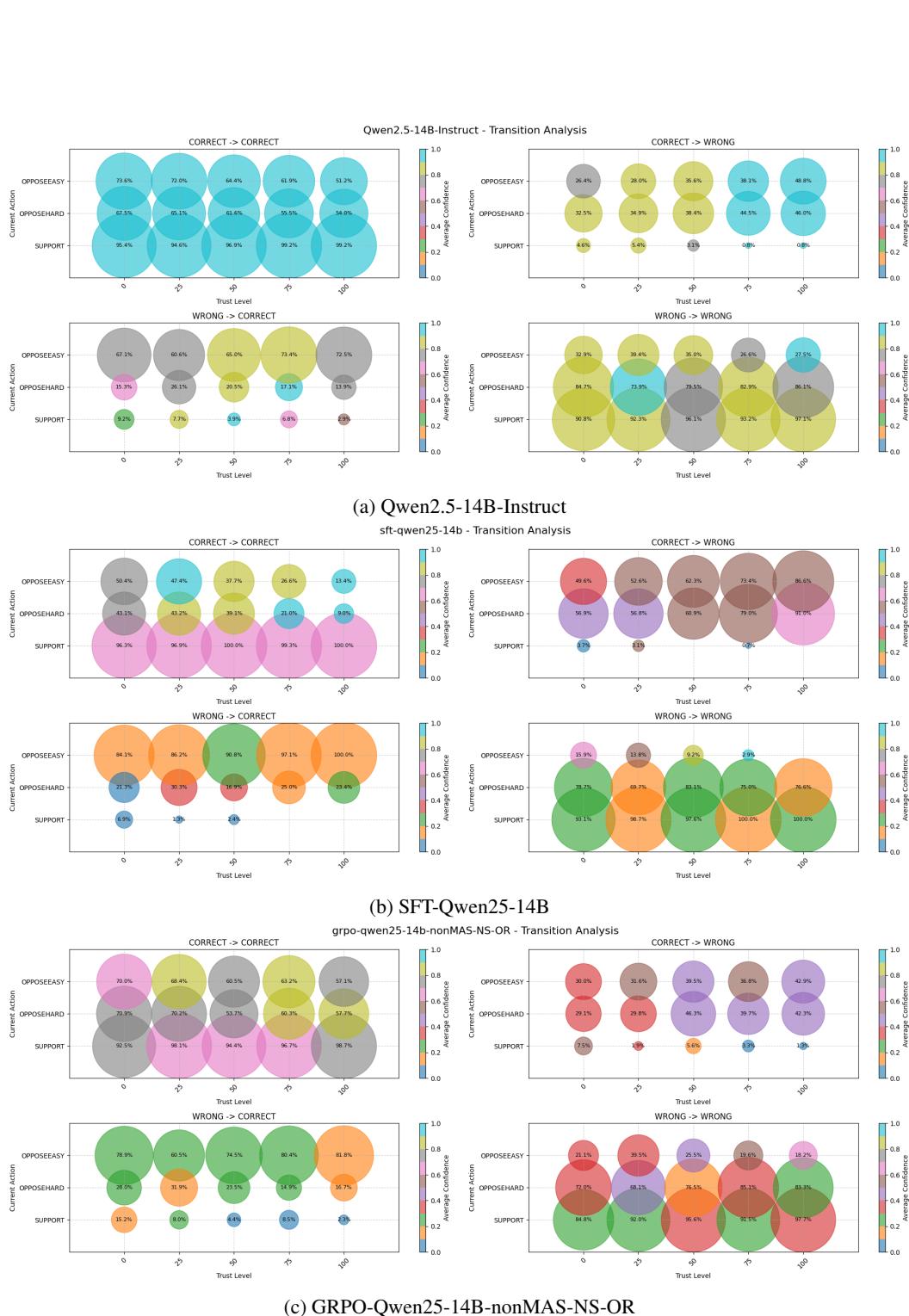


Figure 7: Transition analysis for Qwen2.5-14B group. See Figure 5 caption for detailed explanation.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

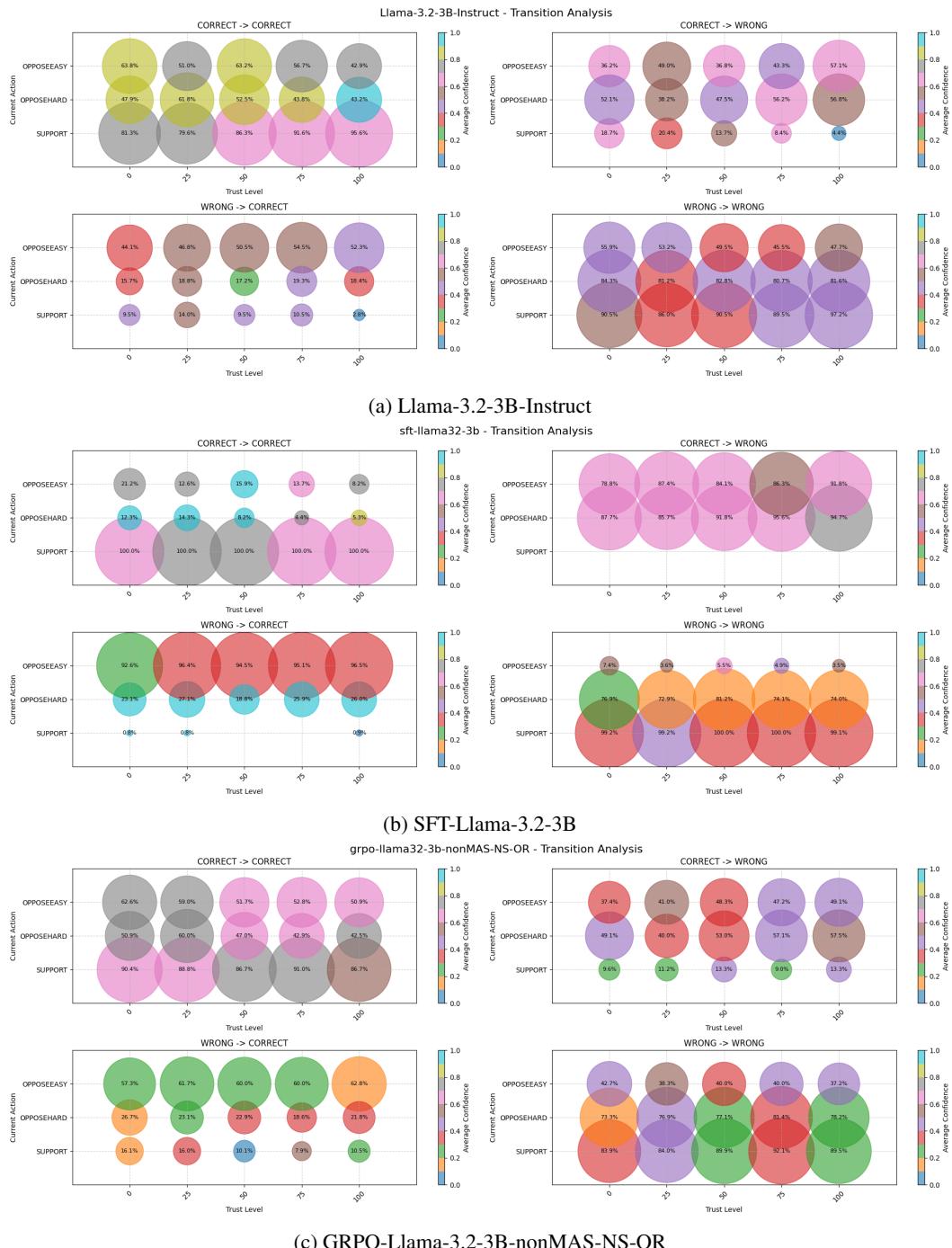


Figure 8: Transition analysis for Llama-3.2-3B group. See Figure 5 caption for detailed explanation.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

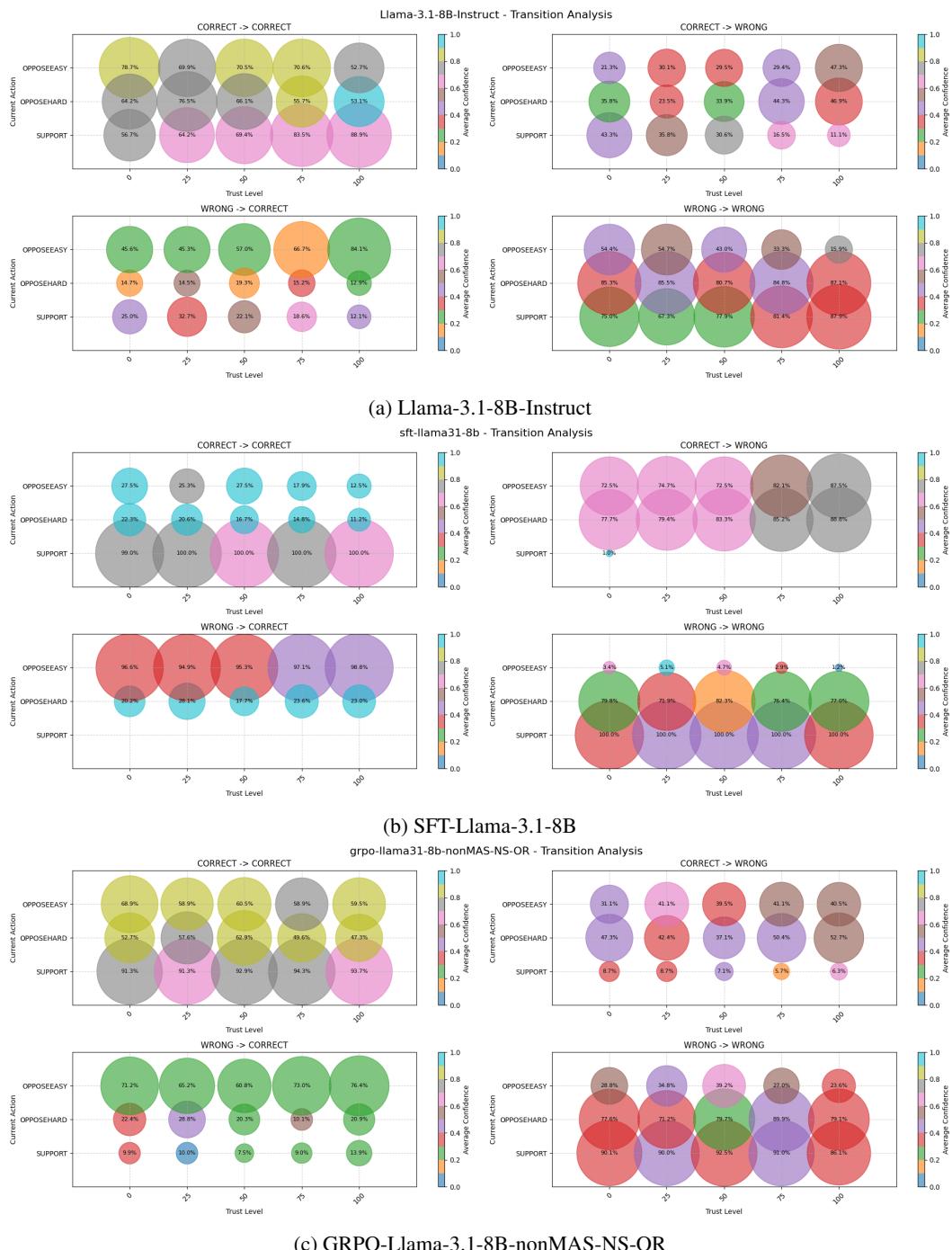


Figure 9: Transition analysis for Llama-3.1-8B group. See Figure 5 caption for detailed explanation.

1782 **G LLMs USAGE**
1783

1784 LLMs were used to polish the writing.
1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835