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ABSTRACT

In this paper, we present Myna, a simple yet effective approach for self-supervised
musical representation learning. Built on a contrastive learning framework, Myna
introduces two key innovations: (1) the use of a Vision Transformer (ViT) on
mel-spectrograms as the backbone, replacing SampleCNN on raw audio; and (2)
a simple yet novel data augmentation strategy—token masking—that masks 90%
of spectrogram tokens (e.g., 16x16 patches). These innovations deliver both ef-
fectiveness and efficiency: (i) Token masking enables a significant increase in per-
GPU batch size, from 48 or 120 in traditional contrastive methods (e.g., CLMR,
MULE) to 4096. (ii) By avoiding traditional augmentations (e.g., pitch shifts),
Myna retains pitch sensitivity, enhancing performance in tasks like key detec-
tion. (iii) The use of vertical patches (128x2 instead of 16x16) allows the model
to better capture critical features for key detection. Our hybrid model, Myna-
22M-Hybrid, processes both 16x16 and 128x2 patches, achieving state-of-the-art
results. Trained on a single GPU, it outperforms MULE (62M) on average and
rivals MERT-95M, which was trained on 16 and 64 GPUs, respectively. When
scaled to 85M parameters, Myna achieves further improvements across all tasks
and is competitive with models like MERT-330M, MusicFM, and MuQ despite
being 3-7x smaller and trained with an order of magnitude fewer GPUs in less
time. Additionally, it surpasses MERT-95M-public and MuQm4a, establishing it-
self as the best-performing model trained on publicly available data. We release
our code and models to promote reproducibility and facilitate future research:
https://github.com/ghost-signal/myna

Figure 1: Myna is efficient: we achieve competitive downstream task performance while requiring
significantly fewer computational resources compared to other models. Models trained on public
datasets are represented in blue, while models trained on private datasets are shown in green. Myna
is trained on a publicly-available dataset and is marked in red.
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Figure 2: The Myna pre-training framework. Tokens from spectrogram patches are randomly
masked before being processed by a transformer encoder. The resulting embeddings are contrasted
to maximize similarity between masked views of the same data while minimizing similarity with
all other samples (negatives). Tokenizers, encoders and projector modules refer to the same sets of
shared weights. For downstream tasks, the projector is discarded and replaced with a task-specific
head (labeled “Probe” above) to leverage the learned embeddings.

1 INTRODUCTION

The field of Music Information Retrieval (MIR) has been revolutionized by deep learning. Tradi-
tionally, tasks such as genre classification, music auto-tagging, chord recognition, and key detection
were approached using supervised learning on labeled datasets Pons et al. (2017); Pons & Serra
(2019); Choi et al. (2017); Won et al. (2020); Baumann (2021). However, the creation of these
datasets is time-consuming and costly, while raw, unlabeled musical data is abundant. This disparity
has fueled interest in un- and self-supervised learning, with self-supervised contrastive learning be-
coming a prominent approach. Recent research has applied frameworks like SimCLR and masked
language modeling to extract meaningful musical representations from raw audio or spectrograms
Spijkervet & Burgoyne (2021); McCallum et al. (2022); Li et al. (2024); Castellon et al. (2021).

Self-supervised representation learning minimizes reliance on labeled data by learning a rich latent
space that can generalize well to downstream tasks. In contrastive learning, the objective is to
maximize agreement between different augmented views of the same data while pushing away other
pairs of data (negatives). The use of data augmentations is key to contrastive learning; however,
traditional data augmentations for musical data do not necessarily give good performance. For
example, augmentations such as pitch shifting alter critical musical properties that are essential for
tasks like key detection McCallum et al. (2024). Our approach instead relies entirely on token
masking to sample different subsets of spectrograms as “views” of the data, which preserves the
meaningful relationships between views. We argue that it is more beneficial to teach a model that
the relationship between two masked subsets of the input is the same than that two noisy versions of
the input are the same; the former keeps the model sensitive to augmentations while the latter makes
representations biased to the choice of transformations used. This ensures that we retain musically
relevant features while significantly reducing the number of hyperparameters for augmentations (for
example, the augmentation chain in CLMR contains 21 hyperparameters Spijkervet & Burgoyne
(2021), not including chain ordering; we reduce this to one).

Building on these insights, our work presents Myna 1, a contrastive framework that advances the
efficiency of musical representation learning. Myna refines the Contrastive Learning of Musical
Representations (CLMR) framework by introducing several key ideas to overcome its limitations.

Our primary contributions are as follows:

1The name Myna is inspired by the bird native to southern Asia.
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• We introduce a simple contrastive learning framework and demonstrate that masking spec-
trogram tokens can replace traditional data augmentations while maintaining musically rel-
evant features.

• We leverage the ViT architecture to increase memory efficiency and allow for large batch
sizes (85x increase in efficiency over CLMR), making training on a single GPU feasible.2

• Our model, Myna-Hybrid (22M), trained on a single GPU, achieves competitive results
with existing self-supervised approaches, including MULE and MERT-95M-public, high-
lighting the effectiveness of masking-only contrastive learning.

• When scaled to 85M parameters, Myna-Hybrid further improves across all downstream
tasks and surpasses MuQm4a, establishing itself as the best representation model for global
music understanding trained only on publicly available data.

We note that our work is specifically focused on global music understanding tasks (tagging, genre,
key detection, arousal and valence estimation) rather than lower-level audio processing tasks (such
as source separation, transcription, or motif detection), which may require different modeling ap-
proaches and objectives.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING FRAMEWORKS

SimCLR Chen et al. (2020) is a simple contrastive approach for learning discriminative representa-
tions and has found success in areas ranging from computer vision to language Spijkervet & Bur-
goyne (2021); Gao et al. (2022). A similar notable framework is Contrastive Predictive Coding
van den Oord et al. (2018), a universal approach to contrastive learning, which has been success-
ful for MIR- and audio-related tasks such as speaker and phoneme classification using raw audio.
Additionally, this work introduced the InfoNCE loss, which is used in SimCLR, CLMR, and Myna.

Recently, due to the widespread success of transformer-based models on various tasks and modal-
ities, MIR researchers have borrowed unsupervised learning paradigms from natural language pro-
cessing. In Castellon et al. (2021), the authors probe the hidden layers of OpenAI’s Jukebox model
Dhariwal et al. (2020) and achieve state-of-the-art results, suggesting that CALM (codified audio
language modeling) is an effective pre-training approach for MIR tasks. The authors of this work
also suggested that transformer-encoder based models are likely to outperform JukeMIR’s perfor-
mance in music audio representation. Building on this, Li et al. (2024), Won et al. (2023), and
Zhu et al. (2025) have emerged as pioneering efforts that harness masked language modeling for
musical applications. Masked auto-encoding (MAE) has found success as another non-contrastive
pre-training task in images and was recently shown to be effective in environmental sound and genre
classification He et al. (2021); Niizumi et al. (2022; 2024).

2.2 GENERAL-PURPOSE AUDIO REPRESENTATIONS

The COLA framework Saeed et al. (2020) employs a simple contrastive learning framework built on
SimCLR and utilizes Mel-spectrogram representations and bilinear comparisons to achieve better re-
sults than supervised counterparts. HARES Wang et al. (2021) further demonstrated that normalizer-
free Slowfast networks (trained on the SimCLR objective) lead to effective generalization of audio
representations Feichtenhofer et al. (2019); Brock et al. (2021); this finding was later used by Mc-
Callum et al. (2022) for music-specific tasks.

2.3 PATCH MASKING

While effective in sequence modeling, transformers Vaswani et al. (2017) suffer from quadratic
memory and time complexity with respect to the number of tokens. To address this issue, prior
work has explored various token masking strategies to reduce computational overhead. In the self-
supervised domain, MAE and FLIP He et al. (2021); Li et al. (2023) used masking on image tokens

2In the contrastive setting, larger batch sizes yield better performance. See Appendix A for batch size
ablations.
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to increase pre-training efficiency. In the supervised setting, PaSST Koutini et al. (2021) introduced
Patchout (spectrogram masking) to speed up transformer training and achieved state-of-the-art re-
sults in audio tagging. Our work is the first to show that spectrogram masking works in the con-
trastive setting.

2.4 MUSICAL REPRESENTATIONS

MusiCNN Pons & Serra (2019), a CNN designed for log-mel spectrograms, draws on the discussion
in Pons et al. (2017) for its efficient design and is pre-trained on a supervised music auto-tagging
task. CLMR Spijkervet & Burgoyne (2021) adapted the SimCLR framework for music using Sam-
pleCNN Lee et al. (2018) on raw waveforms and achieved competitive results with supervised coun-
terparts; S3T Zhao et al. (2022) improved on this by using a swin transformer Liu et al. (2021)
on spectrograms with simplified augmentations and achieved notable gains in tagging and classifi-
cation. MULE McCallum et al. (2022) provides a broad analysis of supervised and unsupervised
(contrastive) pre-training methodologies on MIR downstream tasks and are the only existing work
to not use pitch shifting as an augmentation in a contrastive setting, instead favoring MixUp Zhang
et al. (2017) as their sole augmentation. We believe this is a step in the right direction and this work
aims to further refine this approach. Their follow-up work studies the effect of various augmenta-
tions on model performance McCallum et al. (2024). Recent work has adopted NLP techniques for
MIR: JukeMIR Castellon et al. (2021) successfully probed representations from Jukebox Dhariwal
et al. (2020), a music generation model based on the GPT architecture. Following this, MERT Li
et al. (2024) and MusicFM Won et al. (2023) achieve state-of-the-art results via masked language
modeling on music audio tokens.

3 METHOD

3.1 PRELIMINARIES

Our work builds upon CLMR, which is the music audio adaptation of SimCLR’s contrastive learning
framework for visual representations. In SimCLR, for every sample xi in a batch, two augmentations
A(xi) and A′(xi) are applied, generating two correlated views. These views are passed through the
same encoder, and the objective is to maximize agreement between their latent representations using
a contrastive loss while minimizing agreement between all other samples in the batch.

SimCLR consists of:

• An encoder enc(·), which maps the augmented views to a latent space Rdata 7→ Rlatent.

• A projector proj(·), mapping latent representations to a projection space Rlatent 7→ Rproj.

• Stochastic augmentations A(x), producing two correlated views A(xi), A
′(xi) for each

sample.

• A contrastive loss to maximize the similarity between A(xi) and A′(xi) and minimize it
between views of all other samples.

The contrastive loss used in SimCLR, CLMR, and our work, is the InfoNCE loss van den Oord et al.
(2018), defined for a positive pair of examples (i, j) as:

ℓi = − log

(
exp
(
sim(z

(1)
i , z

(2)
i )/τ

)
N∑
j=1

∑2
v=1 1[j ̸=i] exp

(
sim(z

(1)
i , z

(v)
j )/τ

)
)

where sim(z
(u)
p , z

(v)
q ) denotes the cosine similarity between the normalized representations z(u)p and

z
(v)
q , and τ > 0 is a temperature parameter. Minimizing ℓi encourages the positive pair

(
z
(1)
i , z

(2)
i

)
to have a higher similarity than all negative pairs

(
z
(1)
i , z

(v)
j

)
for j ̸= i and v ∈ {1, 2}.
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Algorithm 1 Myna Pre-Training Algorithm

1: Input: Unlabeled dataset D, batch size B, masking ratio r, params θ = {θenc, θproj}, lr α, temp
τ , steps T

2: Initialize θ
3: for t = 1 to T do
4: Sample batch {xi}Bi=1 ∼ D; obtain two segments s(1)i , s

(2)
i

5: Compute Mel-spectrograms {m(j)
i = MelSpec(s

(j)
i )} and patchify p

(j)
i = Patchify(m

(j)
i )

6: Mask tokens v(j)i = Mask(p
(j)
i , r)

7: Encode and project z(j)i = proj(enc(v(j)i ; θenc); θproj)

8: Compute loss L = ContrastiveLoss({(z(1)i , z
(2)
i )}Bi=1, τ)

9: Update parameters θ using optimizer (e.g., Adam) on ∇θL
10: end for
11: return trained parameters θ∗

3.2 CREATION OF POSITIVE PAIRS

To generate positive pairs, we first select two three-second segments from the same audio. We gener-
ate Mel spectrograms for each segment and then patchify them into 16×16 or 128×2 sections. Each
spectrogram patch undergoes a linear projection combined with 2D sinusoidal positional encodings
Beyer et al. (2022) to create token representations.

Following this, we randomly mask 90% of the tokens from each spectrogram, inspired by the meth-
ods in Li et al. (2023) and He et al. (2021). Positive pairs are constructed using the strategy described
in Algorithm 1 and illustrated in Figure 2. This masking enables the model to learn meaningful rela-
tionships between the remaining tokens, effectively treating the masked spectrograms as augmented
views of the same underlying data. The resulting masked pairs serve as positive samples for our
contrastive learning framework.

Intuitively, masking a high percentage of tokens encourages the model to focus on global patterns
and relationships between the unmasked tokens. By treating masked spectrograms as augmented
views, the model is trained to reconstruct meaningful relationships between the unmasked tokens and
their masked counterparts. This forces the model to infer higher-level, context-aware features rather
than overfitting to specific low-level details that might only be locally relevant. Since the masking
process only hides information without altering it (unlike traditional augmentations such as pitch
shifting or time stretching), the underlying properties of the music, like pitch/key and BPM, remain
intact in both views. This ensures that the model learns representations that are robust to missing
information and invariant to the masking operation, allowing it to generalize better to downstream
tasks that depend on recognizing the overall structure and relationships in the data.

3.3 WHY NOT MASKED AUTO-ENCODING?

Previous work has demonstrated that masked auto-encoding is an effective pre-training task for
learning representations in various domains Niizumi et al. (2022); He et al. (2021). Below, we
outline three reasons against using masked auto-encoding for musical representation learning and
instead favor a contrastive learning framework.

3.3.1 EFFICIENCY

MAE frameworks require training both an encoder and a decoder. While the decoder is necessary
for reconstruction during pre-training, it is discarded when transitioning to downstream tasks. This
means a substantial portion of computational resources during training is devoted to learning and
optimizing a decoder that is ultimately unused. By contrast, our masking-based contrastive learning
framework eliminates the need for a decoder entirely and thus reduces computational overhead.

5
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3.3.2 TASK DIFFICULTY

In masked auto-encoding, the model is tasked with reconstructing the original input from masked
portions, which can be a challenging and sometimes counterproductive objective for music. While
MAE has shown success in environmental sound classification, where sounds often exhibit simpler
and more repetitive patterns, music exhibits high variability and structural complexity. Musical pat-
terns often span longer temporal contexts, and the relationships between different components (e.g.,
melody, harmony, rhythm) can be intricate. This makes the reconstruction task disproportionately
difficult. Contrastive learning, on the other hand, focuses on learning high-level relationships and
invariances rather than predicting low-level details, making it better suited for music (see Appendix
B).

3.3.3 PRESERVING MUSICALLY RELEVANT FEATURES

MAE forces the model to focus on reconstructing fine-grained details, which may not always align
with the musically meaningful features needed for tasks like music tagging, key detection, or emo-
tion recognition. For example, reconstructing the exact values of masked spectrogram tokens could
encourage the model to focus on local energy patterns rather than higher-level tonal or rhythmic
structures. Contrastive learning emphasizes capturing meaningful global representations, ensuring
that the learned features are aligned with the downstream tasks.

3.4 MODEL ARCHITECTURE

We use a simplified version of the Vision Transformer (ViT) Dosovitskiy et al. (2020), SimpleViT
Beyer et al. (2022), which replaces the CLS token with global average pooling and employs 2D
sinusoidal positional encodings. For all experiments in this paper, we use the ViT-S/16 architecture
(22M parameters), with the exception of using 16× 16 or 128× 2 non-overlapping patches.

3.5 HYBRID MODELS

Figure 3: Hybrid model training. A three-second spectrogram is sampled and made into patches.
After masking, the patches are processed by their respective tokenizer, consisting of a linear projec-
tion and positional embedding. The resulting tokens are fed to a shared encoder/projector module.
To compute the hybrid loss, two forward passes are performed with vertical and square patches. The
hybrid loss is the average of the vertical and square losses.

Our experiments show that using square (16 × 16) patches yields competitive performance. Con-
versely, using vertical (128 × 2) patches reduces performance across all metrics, except for key
detection, where it achieves state-of-the-art (SOTA) performance among self-supervised methods.
To combine the strengths of both approaches, we propose a novel hybrid model compatible with
both patch configurations.

The hybrid model retains a shared encoder and projector but employs two separate tokenizers (linear
projections) and positional embeddings tailored for the two patch sizes. During training, we alternate
between patch configurations. Specifically, at each iteration, we calculate the contrastive loss for
each patch configuration independently and then optimize the average of the two losses. The overall
objective is Lhybrid = 1

2 (Lsquare + Lvertical).
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where Lsquare and Lvertical are the contrastive losses computed using two separate forward passes with
16 × 16 and 128 × 2 patches using Algorithm 1, respectively. Figure 3 illustrates the computation
process of the hybrid model’s loss.

By incorporating this dual-patch training strategy, the hybrid model benefits from the general-
purpose performance of square patches while leveraging the superior key detection capabilities of
vertical patches. This results in a model capable of excelling across a broader range of musical
representation tasks.

4 EXPERIMENTS

Approach Size Tags Genre Key Emotion Average
MTTAUC MTTAP GTZAN GS EmoA EmoV

MULE†‡ 62M 91.2 40.1 75.5 64.9 73.1 60.7 68.2
MERT-95M†‡ 95M 91.0 39.3 78.6 63.5 76.4 60.0 68.9
MERT-330M†‡ 330M 91.3 40.2 79.3 65.6 74.7 61.2 69.7
MuQ†‡ 310M 91.4 40.1 85.6 65.0 76.1 62.8 71.4
Jukebox† 5B 91.5 41.4 79.7 66.7 72.1 61.7 69.9
MusiCNN∗ 7M 90.6 38.3 79.0 12.8 70.3 46.6 53.7
CLMR∗ 3M 89.4 36.1 68.6 14.9 67.8 45.8 50.8
MERT-95M-public∗ 95M 90.7 38.4 72.8 67.3 72.5 59.7 67.7
MuQ∗

m4a 310M 91.1 39.0 84.0 63.7 76.0 60.0 70.2
MAE∗ 32M 88.9 35.6 75.5 53.6 69.7 50.2 62.8
PaSST∗ 87M 88.0 32.8 71.4 46.1 66.7 44.9 58.4
Supervised SOTA N/A 90.7 38.4 65.8 75.7 70.4⋄ 50.0⋄ 66.6

Myna-Base∗ 22M 90.8 39.5 78.3 63.5 73.5 55.8 67.9
Myna-Vertical∗ 22M 90.1 37.4 75.9 68.6 66.5 45.9 66.1
Myna-Hybrid∗ 22M 91.0 39.8 77.9 68.0 70.8 55.2 68.6
Myna-85M-Hybrid∗ 85M 91.1 40.0 81.0 69.6 73.3 57.3 70.4

Table 1: Comparison of Different Approaches on Various MIR Tasks. As in Castellon et al. (2021),
tasks with multiple evaluation metrics have their metrics averaged first, and then the averages across
all tasks are computed. Models labeled with ∗ are trained on publicly-available data, while models
labeled with † were trained on private datasets. Models marked with ‡ use the MARBLE Yuan
et al. (2023) hyperparameter grid instead of the one employed in Castellon et al. (2021) (detailed in
Appendix C). All data splits are identical. The max score for all metrics is 100 and higher is better.
Note that CLMR was pre-trained on MTT, so its evaluation on MTT does not demonstrate out-of-
distribution generalization. Supervised results are from Pons & Serra (2019); Medhat et al. (2017);
Baumann (2021); Weninger et al. (2014). ⋄ indicates previous supervised works on Emomusic used
different dataset subsets for evaluation, and hence numbers are not directly comparable.

Figure 4: Performance of varying masking ratio on different datasets: MagnaTagATune, GiantSteps,
and average across all four benchmarks (MTT, GiantSteps, EmoMusic, and GTZAN).
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Figure 5: T-SNE visualizations of different embeddings (top to bottom: Myna-Hybrid, MAE, and
CLMR) for the GTZAN dataset. Each subplot shows the distribution of samples in the training,
validation, and test subsets, with color-coding by class label. The GTZAN dataset was not used in
training any of these models.

4.1 DATASETS

We pre-train our models on the music subset of the Audioset dataset Gemmeke et al. (2017), con-
taining roughly 822k 10-second music audio segments. Notably, unlike CLMR, we did not train our
model on any of the datasets used for downstream tasks (CLMR was pre-trained on the MagnaTa-
gATune dataset). Downstream datasets are detailed in appendix E.

4.2 MODELS

We train and evaluate three Myna models with various patch size configurations. Myna-Base, our
base model, operates on 16×16 patches. Myna-Vertical operates on 128×2 patches. Myna-Hybrid
is a hybrid model trained to support both patch sizes simultaneously. During evaluation of Myna-
Hybrid, we evaluate a single linear model on the square, vertical, and concatenated (both square and
vertical) representations for each task and use the representation that yields the best performance.
Hyperparameters are detailed in Appendix F.

4.3 RESULTS

For a direct and fair comparison with other approaches, we use the exact data splits, metrics, and
evaluation procedure as in Castellon et al. (2021). We briefly summarize the evaluation procedure
below for completeness.

To extract relevant information from representations, we employ simple models—linear probes and
shallow MLPs—trained on fixed representation vectors to predict task-specific labels. We conduct
a grid search over architectures and hyperparameters for each task, varying the model type, hidden
dimension, learning rate, and regularization (see Appendix D for more). The model achieving the
best performance on a validation set is then evaluated on the test set. This protocol allows for
an apples-to-apples comparison of the quality of representations produced by different pre-training
strategies.

8
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Based on the results presented in Table 1, Myna demonstrates competitive or superior performance
across multiple MIR tasks. Myna-Hybrid (22M) achieves an average score of 68.6, surpassing
MERT-95M-public (67.7) and MULE (68.2) while rivaling MERT-95M (68.9). Furthermore, the
hybrid model improves performance on music tagging tasks due to its ability to integrate features
from both square and vertical patches. Notably, Myna-Vertical and Myna-Hybrid excel in the key
detection task with scores of 68.6 and 68.0, surpassing the previous self-supervised SOTA of 67.3. In
comparison, Myna-Base and Myna-Vertical exhibit slight trade-offs in performance. Myna-Base de-
livers robust general-purpose capabilities (67.9 average score), while Myna-Vertical’s specialization
in key detection (68.6) comes at the cost of lower scores in other areas. Scaling further, Myna-85M-
Hybrid achieves the strongest results among publicly trained models, with an average score of 70.4.
This not only surpasses MuQm4a (70.2) and MERT-95M-public (67.7), but also rivals much larger
private-data models such as MERT-330M and MuQ, highlighting Myna’s efficiency and scalability.
Interestingly, probing PaSST Koutini et al. (2021) supervised features shows an improvement over
MusiCNN (also supervised) in key detection but still has lower performance overall; we hypothesize
that the former is due to architecture (Transformer vs. CNN) and the latter is due to domain-specific
pretraining. We discuss the effect of masking ratios in Appendix G.

On music tagging and key detection, Myna shows smooth performance improvements with larger
batch sizes (see Appendix A for more). However, it underperforms in emotion classification, likely
because our masked contrastive learning approach struggles to capture subtle temporal evolution of
expressive features, such as gradual shifts in timbre and intensity, which are crucial for emotional
perception. Additionally, the Audioset dataset contains 10-second audio snippets that may not con-
tain enough emotional content for the model to recognize. For genre classification, Myna performs
well but may be more attuned to harmonic and timbral characteristics rather than the broader rhyth-
mic and structural patterns that often define genres, as contrastive learning emphasizes local spectral
similarities over long-term dependencies.

4.4 COMPARING WITH MASKED AUTO-ENCODER

MAE, with its focus on reconstructing masked spectrogram tokens, performs well in tasks requir-
ing detailed local information (such as local harmonics that aid in genre classification and many of
the tags in MTT, as shown in Table 1) but struggles with tasks that rely on understanding broader
musical contexts, such as key detection. Our approach, which instead emphasizes learning global re-
lationships through token masking, consistently achieves stronger generalization across these tasks.
For example, in key detection, our model benefits from its ability to capture harmonic relationships
without being constrained by the need to reconstruct low-level spectrogram details. This suggests
that while MAE excels at learning fine-grained patterns, its objectives may not align with the struc-
tural and contextual complexities of music, whereas our approach effectively bridges this gap by
focusing on meaningful, high-level representations.

5 FUTURE WORK

While Myna demonstrates strong performance in musical representation learning, several promising
directions remain. First, scaling to larger models and training on more extensive datasets is a natural
next step; our initial scaling experiments already suggest that further improvements are likely. Sec-
ond, we currently sample token subsets for positive pairs uniformly at random. More sophisticated
masking policies—either fixed heuristics or learned strategies—may accelerate convergence or yield
stronger representations, as has been observed in language and vision pretraining Liang & Larson
(2024).

6 CONCLUSION

We introduced Myna, a contrastive learning framework that uses token masking as the sole aug-
mentation strategy. Our approach has shown that this method is effective in learning meaningful
representations in the music audio domain while offering significant computational benefits. By
leveraging a ViT-based architecture and using token masking as our augmentation, we achieved
competitive results with significantly reduced computational requirements. We hope Myna inspires
future research to further explore masking-based contrastive learning.

9
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Peter Knees, Ángel Faraldo, Perfecto Herrera, Richard Vogl, Sebastian Böck, Florian Hörschläger,
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A BATCH SIZE ABLATIONS

We conduct ablation studies on batch size to investigate its effect on task performance. Results
verify previous work Chen et al. (2020) and theory Yuan et al. (2022) that suggests larger batch
sizes yield better performance in the contrastive setting. As shown in Table 3, increasing the batch
size from 256 to 4096 leads to noticeable and consistent improvements in both individual metrics
and the overall average performance. The best results are achieved at the largest batch size of 4096
(Myna-Base), indicating that larger batch sizes are beneficial for achieving optimal performance.

Approach Tags Genre Key Emotion Average
MTTAUC MTTAP GTZAN GS EmoA EmoV

Batch size 256 90.1 38.0 75.2 60.4 68.3 52.5 65.0
Batch size 512 90.3 38.3 74.5 60.7 72.4 54.5 65.7
Batch size 1024 90.4 38.8 74.1 61.8 69.9 56.3 65.9
Batch size 2048 90.7 39.2 77.6 63.3 70.1 54.2 67.0
Myna-Base (4096) 90.8 39.5 78.3 63.5 73.5 55.8 67.9

Table 2: Performance metrics across various tasks with increasing batch sizes for Myna-Base (16×
16 patches).

B MASKED AUTO-ENCODER VISUALIZATIONS

This section provides visualizations of the Masked Auto-Encoder (MAE) outputs for four randomly
selected spectrograms from a held-out validation set. We overlay the output spectrogram with the
ground truth unmasked (input) patches to showcase how unmasked patches affect the model’s output.
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C MASKED AUTO-ENCODER IMPLEMENTATION DETAILS

In this section, we provide details on the implementation of the Masked Autoencoder (MAE) ex-
periments. We aim for a fair comparison with Myna in terms of architecture, training setup, and
evaluation procedures.

C.1 MODEL ARCHITECTURE

To ensure comparability, we adopted the same encoder architecture as Myna. The encoder model is
the same Vision Transformer (ViT-S/16, 16× 16 patches, 22M parameters) identical to the architec-
ture employed by Myna. We keep the same 2D sinusoidal positional encoding Beyer et al. (2022).
For the decoder, we used a 6-layer ViT model with the same architecture. To stay consistent with
previous work (and because it is the best setting we have found), we used a 75% masking ratio for
the input tokens He et al. (2021); Niizumi et al. (2024).

C.2 TRAINING AND EVALUATION PROCEDURE

We trained the MAE model using the same dataset and hardware setup as Myna, except for differ-
ences in training duration (the MAE model took a week to train for the same number of epochs)
due to reconstruction overhead. We used a batch size of 1024 as it was the largest batch size that fit
on a single A100 GPU. We used the same optimizer (AdamW) and weight decay (1e-5). For a fair
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comparison, the MAE model was evaluated identically to Myna. We used the outputs from the last
encoder layer as the representation.

D EVALUATION PROCEDURE

To evaluate representations for downstream MIR tasks, we follow the procedure as outlined in
Castellon et al. (2021): shallow supervised models (linear models and one-layer MLPs) are trained
on each task using the representations as input features. A grid search over the following 216 hyper-
parameter configurations is conducted:

• Feature standardization: {off, on}
• Model type: {Linear, one-layer MLP with 512 hidden units}
• Batch size: {64, 256}
• Learning rate: {1e-5, 1e-4, 1e-3}
• Dropout probability: {0.25, 0.5, 0.75}
• L2 regularization: {0, 1e-4, 1e-3}

Early stopping is applied based on task-specific metrics computed on validation sets, with the opti-
mal model from each grid search evaluated on the task-specific test set. Loss functions are tailored to
each task: cross-entropy for genre classification and key detection, independent binary cross-entropy
for tagging, and mean squared error for emotion recognition.

E DOWNSTREAM DATASETS

MagnaTagATune (MTT): The MTT dataset comprises 25,863 clips, each 29 seconds long, anno-
tated with a set of 188 tags that cover genres, moods, instruments, and other sonic characteristics
Law et al. (2009). Similarly to previous work, we use the standard (12:1:3) train, validation, and test
split van den Oord et al. (2014); Pons et al. (2017) and do not discard any examples (see Won et al.
(2020)). We evaluate using ROC-AUC and average precision (AP) on the top 50 tags.

GTZAN: The GTZAN dataset Tzanetakis & Cook (2002), a cornerstone dataset for genre classi-
fication in MIR, comprises 1,000 audio tracks, each 30 seconds long, spanning 10 diverse genres.
For a fair comparison with previous work, we use the fault-filtered set as described in Kereliuk et al.
(2015); Sturm (2013), and report accuracy scores.

GiantSteps: The GiantSteps Key dataset Knees et al. (2015) features electronic dance music anno-
tated with key information. It includes roughly 1,000 2-minute song clips covering all 24 major and
minor keys (though the data is imbalanced). This dataset challenges models to accurately predict
musical keys, which requires sensitivity to harmonic and tonal content. We evaluate using a refined
accuracy metric Raffel et al. (2014).

EmoMusic: The EmoMusic dataset Soleymani et al. (2013) consists of 744 clips, each 45 seconds
long, annotated with valence and arousal scores derived from human listeners’ emotional responses.
The dataset tests the model’s capacity to capture and interpret the emotional cues encoded in music,
a sophisticated challenge that probes the depth of the learned musical representations. We report
determination coefficients for valence (R2

V ) and arousal (R2
A).

F HYPERPARAMETERS

We extract Mel spectrograms with 128 bins at a sample rate of 16 kHz using the nnAudio library
Cheuk et al. (2020) and apply a 90% masking ratio. The 22M models are trained for 500 epochs
(411M examples seen) with a batch size of 4096 on a single NVIDIA A100 GPU, using Adam
Kingma & Ba (2017) with a cosine schedule (peak learning rate 3× 10−4, 10 warmup epochs) and
weight decay 1 × 10−5. Myna-85M-Hybrid is trained with a batch size of 6144 across 4 A100s,
a peak learning rate of 1.5 × 10−4, and weight decay 2.5 × 10−6. For the contrastive loss, we set
τ = 0.1. Masking ablations are run on four A100s, as lower masking ratios are less efficient and

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

require multiple GPUs. While work exists on learning τ via gradient descent Radford et al. (2021)
or individualized temperature values Zi-Hao Qiu & Yang (2023), we keep it constant in this work.

G MASKING RATIOS

We investigate the impact of varying the masking ratio on model performance. As shown in Fig-
ure 4, we find that increasing the masking percentage generally improves performance. However,
performance saturates at 90%, as pushing it to 95% removes too much information and leads to
performance degradation. Additionally, we note a clear correlation between the masking ratio and
the model’s average performance, and suspect that low masking ratios make the contrastive task too
easy, which leads to less discriminative (and thus useful) representations. This is particularly advan-
tageous since increasing the masking ratio also improves computational efficiency by reducing the
number of tokens that the model needs to attend to.

We qualitatively evaluate Myna’s discriminative capacity against MAE and CLMR on the GTZAN
dataset in Figure 5. Myna demonstrates clearer separation between classes with noticeably reduced
overlap between class clusters; this indicates that Myna’s embeddings capture more meaningful and
discriminative features.
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