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Abstract

We propose a new algorithm for fine-tuning large language models using reinforce-
ment learning. Tapered Off-Policy REINFORCE (TOPR) uses an asymmetric,
tapered variant of importance sampling to speed up learning while maintaining
stable learning dynamics, even without the use of KL regularization. TOPR can
be applied in a fully offline fashion, allows the handling of positive and negative
examples in a unified framework, and benefits from the implementational simplicity
that is typical of Monte Carlo algorithms. We demonstrate the effectiveness of our
approach with a series of experiments on the GSM8K and MATH reasoning bench-
marks, finding performance gains for training both a model for solution generation
as a generative verifier, and on a learning to search task, using the model as a query
expander. We show that properly leveraging positive and negative examples alike in
the off-policy regime simultaneously increases test-time accuracy and training data
efficiency, all the while avoiding the “wasted inference” that comes with discarding
negative examples. We find that this advantage persists over multiple iterations
of training and can be amplified by dataset curation techniques, enabling us to
match 70B-parameter model performance with 8B language models. As a corollary
to this work, we find that REINFORCE’s baseline parameter plays an important
and unexpected role in defining dataset composition in the presence of negative
examples, and is consequently critical in driving off-policy performance.

1 Introduction

Reinforcement learning (RL) and EM-type methods are rapidly becoming the dominant paradigm for
fine-tuning LLMs on complex tasks such as chain-of-thought reasoning. These methods can amplify
a base model’s performance without additional human data and can optimize for synthetic rewards
[53] and non-differentiable objectives [5]. While several popular methods rely solely on positive
examples to fine-tune an LLM [52, 17], the “trial and error” nature of RL algorithms is especially
well-positioned to leverage negative examples produced by the model, which are increasingly being
recognized as key to efficient learning [39, 45, 54, 13]. In fact, there is mounting evidence that the
simplest of all methods, REINFORCE [49], is a highly effective approach to fine-tuning LLMs [1].

However, REINFORCE is essentially an on-policy algorithm. In the presence of negative rewards,
its good behaviour can only be guaranteed when the training data distribution (or reference model)
matches, or is close to, the model’s own distribution. This limits its ability to reuse past data, and
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Algorithm 1 TOPR (single iteration)
Input: Language model π, reference µ
Input: Prompts x1, . . . , xm

y1i , . . . , y
n
i ∼ µ(· |xi) for i = 1, . . . ,m

Make dataset D = {xi, y
j
i }

for (x, y) ∈ D do

α =
[
π(y | x)
µ(y | x)

]1
0

if R(x, y) < 0 else 1

ℓ = STOP-GRAD(α)R(x, y) log π(y |x)
Perform gradient step w.r.t. loss ℓ

end for

Figure 1: Left: Test set accuracy (Pass@1) on the GSM8K benchmark [7] over the course of
off-policy fine-tuning of the Llama 3 8B model. As training becomes increasingly off-policy, the
naive use of the REINFORCE gradient causes substantial performance degradation and PPO stops
improving. DPO, which handles negative examples through a preference-based formulation, fares
better but still falls well short of TOPR’s performance. Pass@1 refers to the usual single-reasoning
accuracy. See Section 4 for experimental details. Right: TOPR pseudo-code (Section 3).

puts pressure on the experimenter to select a just-right set of hyperparameters to avoid problems.
Indeed, evidence of the instability of REINFORCE-type in off-policy training of LLMs can be found
everywhere in the literature, from early work [36] to key algorithmic choices made in the training
of the Kimi κ1.5 [46] and DeepSeek-R1 [18] models. While KL regularization to the objective can
mitigate this instability, it results in slower learning and requires additional hyperparameter tuning.

We propose Tapered Off-Policy REINFORCE (TOPR), a stable algorithm even when the model differs
substantially from the data distribution, while fully leveraging positive and negative examples. TOPR
improves a language model π (or policy) by means of the asymmetric policy gradient

∇JTOPR(π) =
∑

τ :R(τ)>0

µ(τ)R(τ)∇ log π(τ) +
∑

τ :R(τ)<0

µ(τ)

[
π(τ)

µ(τ)

]1
0

R(τ)∇ log π(τ) , (1)

where τ is a response (or trajectory) sampled from some data-generating policy µ, R(τ) is the reward
associated with this trajectory, and [x]ba = max(min(x, b), a) denotes the clipping function. The lack
of importance ratio for positive examples means that TOPR will increase their probability, even when
that importance ratio is small. The importance ratio is kept for negative examples as it ensures that
the model will stop using capacity for them once their probability is small enough. Unlike other LLM
algorithms in the REINFORCE family, TOPR does not require an explicit KL penalty to guarantee
stable behaviour, making it both simpler to implement and computationally more efficient. Compared
to PPO [40], DPO [39], and the “naive” application of REINFORCE [1], TOPR continues to improve
reasoning performance even once π differs substantially from µ (Figure 1, left).

We characterize the stable off-policy performance of TOPR by using it to train language models to
reason within the GSM8K and MATH benchmarks. We use these benchmarks to highlight the various
factors at play in off-policy reinforcement learning of language models, in particular the importance
of positive/negative balance in the training dataset. Surprisingly, we find that REINFORCE’s baseline
parameter – commonly used as a variance reduction mechanism – plays an altogether different role
of balancing the dataset in this regime, and is essential to good performance. Critically, our results
indicate that choosing the best baseline requires taking more than only the mean return into account.
We conclude with a series of multi-iteration experiments showing the ability of TOPR to fine-tune
language models well beyond their base benchmark performance.

2 Off-policy policy optimization

We consider an autoregressive language model π that, given a prompt x, assigns a probability to a
length-n response y according to π(y |x) =

∏n
i=1 π(yi |x, y<i). Given a reward function R(x, y)
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that measures the quality of the response y to x and a dataset of prompts x1, . . . , xm, we wish to
maximize the expected reward J(π) = 1

m

∑m
j=1

[
Ey∼π(· | xj) R(xj , y)

]
. In this paper, we abstract

the prompt-response relationship and view this problem through the lens of policy optimization,
where τ is a trajectory produced by the language model (i.e., the policy). With mild abuse of notation,
we thus write J(π) = E

τ∼π
R(τ).

The original REINFORCE algorithm [49] maximizes J(π) through the process of on-policy policy
optimization. In the simplest form of the algorithm, a single trajectory τ is sampled according to
π, and the parametrized policy π is updated according to the unbiased gradient estimate ∇Ĵ(π) =
R(τ)∇ log π(τ), whose expectation is ∇J(π) = E

τ∼π
R(τ)∇ log π(τ).

In practice, training is rarely truly on-policy, for example because data is generated in a parallel,
asynchronous fashion [33] or in a separate “sidecar” process [35, 18]. It is obviously also desirable
to reuse trajectories throughout training, especially when generating these trajectories incurs a
substantial computational cost or because they have been generated by a different process (e.g., expert
trajectories). In the off-policy policy optimization setting, we assume the existence of a reference
distribution µ, typically different from π, which produces training trajectories. In the fully online case,
which we mainly consider in this work, trajectories are sampled once and never updated. The goal is
to find the optimal policy using this fixed set of trajectories. We also consider in our experiments
the setting where trajectories are only rarely updated. Our main goal in this paper is to highlight the
pitfalls of dealing with negatively-rewarded trajectories in off-policy policy optimization and propose
a solution – TOPR – that avoids these pitfalls to produce performant, stable behaviour when training
language models. By way of explaining the algorithmic choices behind TOPR, we review existing
solutions and how they fall short of our desiderata.

2.1 The problem with naive REINFORCE

As a warm-up, consider a binary reward function R(τ) ∈ {−1, 1} and the algorithm that sam-
ples a trajectory τ from µ, then updates the policy π according to the REINFORCE update:
∇Ĵµ(π) = R(τ)∇ log π(τ). This essentially corresponds to the “naive” off-policy application
of the REINFORCE update [1]. In expectation, this update maximizes the objective

J(µ) =
∑
τ∈T+

µ(τ) log π(τ)−
∑

τ∈T−

µ(τ) log π(τ) , (2)

where T+ and T− are the set of trajectories with positive and negative rewards, respectively. The
first term is maximized by making π as close to µ as possible on the positive subset T+. The second
term, on the other hand, incentivizes π being as far from µ as possible. This term is unbounded above
(in terms of π) and can be made arbitrarily large by driving the probability of any single trajectory
supported by µ to zero. This acts as a destructive force on the the model parameters, driving them to
producing infinitely negative logits and without safeguards, eventually causes degenerate behaviour.2

We show in Section 3.1 that, while the issue can be mitigated by early stopping, the use of a baseline
parameter, or KL regularization towards µ, these modifications effectively work by fully or partially
ignoring negative trajectories and thus limit the amount of learning that can be done off-policy.

2.2 Supervised fine-tuning

A simple solution to avoid the catastrophic failure of the model due to negative trajectories is
to remove them from the dataset entirely. This can be interpreted as a form of reward-weighted
supervised fine-tuning (SFT). The corresponding objective is

JSFT(π) =
∑
τ∈T+

µ(τ)R(τ) log π(τ) ,

where the trajectory τ has weight µ(τ)R(τ) if R(τ) is positive, 0 otherwise. If we write µ+
R(τ) ∝

µ(τ)R(τ), then −JSFT(π) is the cross-entropy loss between µ+
R and π.

2This issue doesn’t appear in the on-policy application of REINFORCE because, by definition, a trajectory τ
whose probability π(τ) is small is unlikely to arise in the dataset.
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Supervised fine-tuning in the usual sense [56] can be viewed as the special case where all positive
rewards are equal to +1 and µ is fixed and independent of the language model. STaR [52], ReST [17],
and ReST-EM [43] use SFT with a dataset generated by the LLM itself, i.e. µ is equal or close to π,
or by another LLM, possibly with a filtering step to further enhance dataset quality.

Removing negative examples from the dataset yields an objective that is bounded above, making
these methods stable. As they are implemented with a cross-entropy loss, they can also quickly learn
to mimic the distribution µ+

R, a characteristic that we retain in TOPR. However, omitting negative
examples comes at a cost: for challenging problems, there may be few positive examples, and finding
them may require additional machinery such as reference-guided grading [55], and wasted inference
cycles. Mathematically, the lack of negative examples means that π is incentivized to stay closer to µ,
limiting the amount of progress that can be achieved before having to resample from the LLM.

2.3 Truncated importance sampling

Importance sampling is perhaps the most common technique to address distribution shift. From
J(π) = Eτ∼µ

[
π(τ)
µ(τ)R(τ)

]
, we can derive an unbiased estimate of the on-policy gradient:

∇ĴOPR(π) = π(τ)
µ(τ)R(τ)∇ log π(τ). We call this the off-policy REINFORCE (OPR) gradient. In

theory, that equation provides a convenient algorithm for optimizing the true objective J(π): sample a
trajectory τ ∼ µ and weight its update by the importance ratio π(τ)

µ(τ) . In practice, it is well-known that
importance sampling is plagued with excessive variance. This is problematic when optimizing over
sequences, where the importance ratio is a product of many per-step ratios [38]. Gradient variance
matters for positive trajectories – whose probability π(τ) increases during training – and negative
trajectories, where a single excessive ratio can have a destructive effect on the model parameters.

One can mitigate the variance issue by truncating the importance ratios [34, 12, 14]. The correspond-

ing sample gradient is ∇ĴTIS(π) =
[
π(τ)
µ(τ)

]1
0
R(τ)∇ log π(τ).

Truncated importance sampling (TIS) is an integral part of TOPR. There are, however, situations
where following the gradient of J(π) is not desirable, justifying further enhancements. To see
this, note that when the importance ratio π(τ)

µ(τ) is close to 0, so is the norm of the gradient. Should
this happen for trajectories with positive rewards, the model will take a long time to increase that
trajectory’s probability. This is not specific to importance sampling and is an issue with the usual
on-policy REINFORCE [22]. We shall see in our experiments how TIS, while effective, is more
sensitive to dataset composition and the choice of reward baseline.

2.4 PPO and other methods

PPO [40], one of the most widely used policy-based methods, optimizes the objective JPPO(π) =

Eτ∼µ min

(
π(τ)
µ(τ)R(τ),

[
π(τ)
µ(τ)

]1+ϵ

1−ϵ
R(τ)

)
for ϵ ∈ (0, 1). This objective implements an asymmetric

treatment of positive and negative rewards and is essentially composed of three parts (Fig. 2). In the
near on-policy setting, when only few updates are made before resampling trajectories, this can be
quite effective; GRPO [18], for example, modifies JPPO with a batch-dependent baseline.

However, the PPO objective applies the importance ratio to the reward rather than to the gradient. As
a consequence, the gradient of JPPO(π) becomes zero outside of the [1− ϵ, 1 + ϵ] range, limiting its
usefulness and potentially causing brittleness when more than a handful of updates are made before
resampling trajectories. The algorithm is also not incentivized to reduce the relative probability of
negative trajectories below 1− ϵ, limiting the potential improvement from µ. Although variants such
as sPPO increase this robustness [47], their performance still drops after many updates.

We focused here on methods that work with batch size 1, i.e. that do not need to compare examples.
We discuss other methods, including popular ones like DPO, in Appendix A.
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R(𝜏) ≥ 0 R(𝜏) < 0

Figure 2: Visualization the TOPR objective (Eq. 6 with a+ = 1, b+ = 1 + ϵ, a− = 0, b− = 1)
contrasted with PPO, as a function of the importance ratio π

µ (IS). The two losses are equal on
the intervals [1, 1 + ϵ] and [1 − ϵ, 1] (positive and negative rewards, respectively). However, PPO
stops gradients when the ratio differs substantially from 1, which prevents it from being an effective
off-policy algorithm. TOPR also implements a sharper positive-example loss for small importance
ratios, accelerating the learning of these examples.

a+ b+ a− b−
Negative
examples

Bounded
objective

Low
variance

Fast
learning

SFT 1 1 0 0 No Yes Yes Yes
Naive REINFORCE 1 1 1 1 Yes No Yes Yes

Off-policy REINFORCE 0 +∞ 0 +∞ Yes Yes No No
Truncated IS 0 1 0 1 Yes Yes Yes No

TOPR 1 1 0 1 Yes Yes Yes Yes
Table 1: TOPR combines the advantages of supervised fine-tuning, REINFORCE, and importance
sampling to support stable and efficient off-policy fine-tuning of language models.

3 TOPR: Tapered off-policy REINFORCE

We now introduce the TOPR algorithm. TOPR uses importance sampling to downweight negative tra-
jectories that are not likely under π, while allowing positive trajectories to be upweighted irrespective
of π. The framework we consider involves two sets of truncation limits, a+ ≤ b+ and a− ≤ b−:

∇J(π) =
∑
τ∈T+

µ(τ)

[
π(τ)

µ(τ)

]b+
a+

R(τ)∇ log π(τ) +
∑

τ∈T−

µ(τ)

[
π(τ)

µ(τ)

]b−
a−

R(τ)∇ log π(τ) . (3)

By choosing different truncation limits, we obtain many of the methods introduced in the previous
section (Table 1). TOPR itself corresponds to a range of truncation limits that combine the desirable
properties of each of these methods into one learning rule.

Gracefully unlearning negative trajectories. Setting a− = 0 allows the algorithm to progressively
reduce the contribution of negative trajectories, as provided by importance sampling. Any a− > 0
must eventually lead to model degeneracy as with naive REINFORCE (Section 2.1).

Quickly learning positive trajectories. Setting a+ > 0 gives the benefits of supervised fine-tuning:
we ensure a minimum rate of learning for positive trajectories and accelerate their learning when they
have a low probability under π. This allows us to avoid the “quasi-local minima” issue that plagues
REINFORCE in high-dimensional action spaces.
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Trading off bias and variance. The upper truncation limits allow us to keep gradient variance
under control, as expected from truncated importance sampling. This is important early in training
for negative examples, when a few examples may exhibit a very large importance ratio, and late in
training for positive examples, where we expect the untruncated ratio to be much greater than 1.

We follow Occam’s principle in defining the canonical form of TOPR as the algorithm where
a− = 0 and all other parameters are 1. This yields the expected TOPR gradient:

∇JTOPR(π) =
∑
τ∈T+

µ(τ)R(τ)∇ log π(τ)︸ ︷︷ ︸
SFT update for positive examples

+
∑

τ∈T−

µ(τ)

[
π(τ)

µ(τ)

]1
0

R(τ)∇ log π(τ)︸ ︷︷ ︸
TIS update for negative examples

, (4)

which combines the SFT update for positive examples, leading to acceleration, and the TIS update
for negative examples, allowing for their handling without brittleness. Algorithm 1 sketches out an
implementation of TOPR in an off-policy, deep learning setting.

We will demonstrate in Section 4 that this canonical parametrization is highly effective and provides
robustness to the choice of data distribution and deep learning hyperparameters. Before doing so,
however, we provide theoretical justification for the design choices behind TOPR.

3.1 Analysis

In Section 2.1 we argued that introducing a baseline parameter cannot create stable off-policy learning
behaviour without risking sacrificing performance. We will make this point more precisely in this
section and the next. To begin, let us revisit the expected naive REINFORCE update, now introducing
a baseline parameter c ∈ R:

∇Jµ,c(π) = E
τ∼µ

[(
R(τ)− c

)
∇ log π(τ)

]
. (5)

The following establishes the contribution of positive and negative examples as well as the baseline
to the expected loss Jµ,c(π).
Proposition 3.1. Lµ,c(π), defined as Lµ,c(π) = −Jµ,c(π), is the four-part loss

Lµ,c(π) = C +R+
µ KL(µ+

R ∥π)−R−
µ KL(µ−

R ∥π)− cKL(µ ∥π),

where µ−
R is the reward-weighted distribution

µ−
R(τ) =

{
µ(τ)|R(τ)|

R−
µ

if R(τ) < 0,

0 otherwise;
R−

µ =
∑

τ∈T−

µ(τ)
∣∣R(τ)

∣∣; T− = {τ : R(τ) < 0},

and symmetrically for µ+
R, and C is a constant independent of π.

Proposition 3.1 shows that the baseline induces KL regularization towards (c < 0) or away (c > 0)
from the sampling distribution [see also 25, 47]. At µ = π, we recover that the baseline has no effect
on the expected on-policy gradient [49, 44]. In particular, when all rewards are positive (R−

µ = 0),
Eq. 5 moves the policy π towards a reward-weighted version of the sampling distribution µ [15].

Proposition 3.1 also shows that adding a baseline to minimize the impact of negative rewards (c < 0)
works by regularizing π towards µ. To guarantee stable behaviour, the baseline must in general
match the smallest negative reward (e.g., R′(τ) = R(τ) − c ≥ 0). At this point, however, the
baseline effectively removes negative trajectories from the objective function – losing the information
contained in these trajectories. Using importance sampling instead avoids this issue. To see this, we
start by noting that Eq. 3 is the gradient of

JTOPR(π) =
∑
τ∈T+

µ(τ)ρ

(
π(τ)

µ(τ)
, a+, b+

)
R(τ) +

∑
τ∈T−

µ(τ)ρ

(
π(τ)

µ(τ)
, a−, b−

)
R(τ), (6)

where ρ(·, a, b) : [0,∞) → R is the taper function

ρ(x, a, b) =


a
(
1 + log x

a

)
if x < a

b
(
1 + log x

b

)
if x > b

x otherwise.
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The taper function ρ describes the effect of the truncation on the objective optimized by TOPR. It
defines a lower bound on the importance ratio, in the sense that for any a ≤ b,

ρ

(
π(τ)

µ(τ)
, a, b

)
≤ π(τ)

µ(τ)
,

and it is equal to this ratio on the interval [a, b] (Fig. 2). For our choice of a+ = b+ = 1 and a positive
reward function R(τ) ≥ 0, TOPR optimizes a lower bound on the true objective J(π):

J(π) ≥ JTOPR(π) = E
τ∼µ

[
ρ

(
π(τ)

µ(τ)
, 1, 1

)
R(τ)

]
.

The bound follows from the analysis of related algorithms by [8, 25, 26] and [17]. The following
proposition establishes the stable off-policy behaviour of TOPR for a wider range of truncation
parameters.
Proposition 3.2. For a− = 0, Eq. 6 is bounded above: there exists a B such that

supπ JTOPR(π) ≤ B.

Furthermore, for any a− > 0, JTOPR(π) is unbounded above unless R(τ) ≥ 0 for all τ .

For positive examples, the taper function with a+ > 0 maintains a substantial gradient even when
π(τ) is small, since the weight used for the gradient of the surrogate objective, µ(τ), is independent of
the current policy π. This allows the model to recover from a low probability π(τ) assigned to a good
trajectory, avoiding a traditional failure of REINFORCE. Empirically, [26] observed lower variance
and more efficient learning when optimizing this log-ratio lower bound. With negative rewards,
however, replacing the importance ratio with the log-ratio leads to the surrogate objective being an
upper bound on J(π) [25], which is a different way of expressing the conclusion of Proposition 3.2.

4 Results

We study the effectiveness of TOPR at training language models to perform chain-of-thought (CoT)
reasoning, as well as preliminary results on fine-tuning an LLM to perform query expansion with the
end goal of improving search results. For the most part we focus on the single-iteration, fully offline
regime aiming to characterize the relative stability and effectiveness of TOPR for training language
models compared to prior alternatives. Our results are naturally complementary to the full gamut of
methods that improve language models iteratively.

Our main results are on mathematical reasoning datasets that require step-by-step solutions and are
widely used to evaluate the reasoning capabilities of LLMs: GSM8K [7] and MATH [20]. As our
core model, we use the Llama 3 family of instruction-tuned language models [10], using the 8B
model unless otherwise specified. More details about the datasets and experimental setup may be
found in Appendix C.

4.1 Fine-tuning chain-of-thought reasoning

Our first set of experiments aims to answer the question: Is a more careful handling of importance
ratios and rewards beneficial in off-policy policy optimization? We begin with a comparison of PPO,
DPO, naive REINFORCE, and TOPR. For DPO, pairs of candidate solutions are formed from these
so as to obtain up to 16 contrastive pairs. For PPO, we use ϵ = 0.2.

Fig. 1 (left) experimentally demonstrates the limitations of existing methods. Naive REINFORCE
performs well at first but, in the absence of a KL term, collapses as π moves away from µ. As
expected, PPO makes little progress on the objective as most data points quickly fall outside of its
[1− ϵ, 1 + ϵ] range. DPO performs well off-policy, confirming the observations of [35], especially
when measured in terms of Pass@1 accuracy. TOPR outperforms all these methods. We explore in
more detail in Appendix D.1 some reasons for TOPR’s success.

TOPR minimizes reasoning failures. To understand the reasons behind TOPR’s success, we
measured the proportion of generated solutions that were correct, incorrect, or invalid (the string
“The answer is” is not present) during the course of training. Fig. 7 gives strong evidence as to the
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Figure 3: Test set accuracy on GSM8K across
training when using all examples (TOPR) or pos-
itive examples alone. Not shown here, TOPR
also yields higher inference efficiency at test time:
greater Maj@N performance for all N.

root cause of REINFORCE’s poor performance, whose generations are overwhelmingly degenerate
by the end of training. By contrast, TOPR proves effective at teaching the model to avoid incorrect
formatting – yielding the desirable property that one can solely rely on RL for solution generation,
rather than using additional tools to correctly format them.

Using negative examples improve performance. To understand the impact of negative examples
on training, we next formed a “positives only” dataset by removing all negative examples from our
base dataset. This procedure mimics some of the design choices of recent work such as STaR that
apply SFT as the inner loop of an RL-like procedure. Using this dataset results in stable learning
but substantially lower performance than that of TOPR (Fig. 3). This translates into greater self-
consistency [48] efficiency: more solutions must be generated at test time to reach the same level of
performance (top right). A more detailed analysis of this experiment can be found in Appendix D.2.

Striking the right balance of positive and negative examples. We now refine the previous analysis
by varying the effective proportion of positive examples in the dataset. We start with a dataset of
50,000 examples, 10% of which are positive. We then vary the baseline for each model to reach an
effective proportion of positive examples from 1% all the way to 100%. Details on how changing the
baseline can affect the effective proportion of positive examples may be found in Appendix B.

Fig. 4 shows the test performance on GSM8K using either TOPR or TIS when the effective proportion
of positive examples varies. The optimal effective proportion to be around 10-20% for both datasets
(GSM8K and MATH) and both algorithms (TIS and TOPR). We posit that a good baseline is one that
achieves such a proportion. We also performed additional experiments in Appendix D.3 showing that
this effective proportion is independent of the actual proportion of examples in the training set.

Our result also gives further evidence that the optimal baseline is not always the expected return in
practical settings, contrary to common belief.3

Acceleration improves robustness to dataset composition. Given the important performance
gains from incorporating negative examples to training and the relevance of dataset composition
(Section B), it is natural to ask whether TOPR’s positive-example acceleration (a+ = 1) helps when
positive examples are outnumbered in the dataset, for example because the problem at hand is very
hard. When that proportion is low, the model tends to lower the probability of most trajectories in
its training set, leading to the probability of positive trajectories being lowered too. Fig. 4 shows
that, thanks to its acceleration (a+ = 1), TOPR recovers from these cases while TIS cannot. When
the effective proportion of positive examples is high, there is virtually no difference between TOPR
and TIS. We also see that TIS reaches a slightly higher maximum Pass@1 accuracy (chosen over all
experiments) compared to TOPR. This suggests that TIS may trade robustness for peak performance.

Ratio truncation improves stability. A natural question is whether the truncation of importance
ratios as done by TOPR is necessary, or if standard importance sampling alone suffices, as suggested
by [1]. To study this question, we trained from the base model as before but using standard importance
sampling (a+ = a− = 0, b+ = b− = +∞). Results and analysis may be found in Appendix D.4.

TOPR outperforms across multiple iterations. As a final experiment, we combine insights from
our previous experiments to demonstrate that TOPR is an effective inner-loop algorithm for iterated

3[37] and [8] remark on similar findings in the on-policy setting; see also the empirical study by [6].
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sampling, and Anna Karenina sampling (see main text). By combining TOPR and Anna Karenina
sampling, a fine-tuned DeepSeek-R1 8B model outperforms Llama 3 70B.

fine-tuning of language models. Training begins with a base model π0, from which a dataset is
sampled (µi = πi−1, i = 1, 2, . . . ). We then subsample this dataset to create an iteration batch
of to N = 50, 000 data points, and use these to train a new policy πi starting from πi−1 as a
reference. Figure 5 shows how model performance continues to improve over multiple iterations,
both for GSM8K and MATH; furthermore, TOPR enables faster learning than positive-only sampling,
allowing us to surpass DeepSeek 8B-level Maj@16 accuracy within a few iterations.

One challenge with fine-tuning models that already perform quite well is that, as training progresses,
the model is essentially presented with examples that it already performs quite well on. This can
make training quite inefficient. To combat this, we introduce a dataset-balancing technique we call
Anna Karenina sampling, based on Tolstoy’s famous “All happy families are alike; each unhappy
family is unhappy in its own way.” For each problem, we sample 64 candidate solutions, of which
we only keep the first positive example. The iteration batch is then filled with negative examples
chosen at random from those candidates. On GSM8K, this technique enables more efficient learning
(79.6% Pass@1 accuracy) compared to uniform sampling (75.4%). It is less effective on early
MATH iterations, where the model has low Pass@1 accuracy and every positive example counts. As
further evidence of TOPR’s effectiveness, applied to the more recent DeepSeek 8B model [18] it
produces a model that rapidly surpasses the 70B version of Llama 3 in Maj@16 accuracy.

4.2 Learning to search

We now turn to preliminary results of TOPR’s performance on a learning to search task. We apply
reinforcement learning to replicate responses from a black-box API. Many systems that support
text-based search rely on synonym and abbreviation expansion, where a user’s query is automatically
improved using a large corpus of morphological variants for the same concept [21]. While model-
based approaches to expanding a user’s query have been proposed [27, 9, 51], none of them have
used RL to learn a better covering for user queries.
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For this purpose we consider the clinicaltrials.gov repository of clinical trial protocols
(CTG). We studied whether a large language model can learn to produce a set of synonyms (an
expansion) in response to a given query that minimizes the symmetric set distance between the CTG
API and a simple internal database containing the same documents but differently indexed.

We used the Llama3-70B model to generate 1,200 distinct in-domain queries related to the field of life
sciences, then defined a train-test split of 1,000 and 200 respectively. For each query, we prompted
the smaller 8B model to propose 8 variations of up to 10 query expansions resulting in a training
dataset of 8,000 samples to fine-tune our generator. Expansions were assigned a reward of 1 if they
resulted in the same search results, or up to 5% relative tolerance for searches with 11 or more results.

Figure 6 shows the distribution of search result overlap for the test set, before and after training.
We measure this overlap in terms of the intersection over union (IOU) metric, which as the name
implies measures the ratio of shared articles to total articles. Thus, a score of 1.0 indicates a perfect
match, and 0.0, completely different results. We find that, despite the challenging nature of this
task, TOPR is able to improve on the base model by reducing the number of complete misses (score:
0.0). The average test IOU was improved from 35.03% (base model) to 35.83% (trained model).
While preliminary, this result points to the potential value of using reinforcement learning to optimize
language models to act as agents performing complex, but narrow tasks.

5 Conclusion and future work

Our results show that a simple but principled change to REINFORCE is all that is needed to deploy it
successfully and stably in the off-policy regime. Our approach is more efficient than existing dataset
curation methods: when generating the dataset as all data points are kept; at training time because
no KL regularization is required, and negative examples are effectively made use of to improve
performance; and at test time, because fewer solutions need to be generated. Our theory further
provides an alternative, optimization-based perspective on truncated importance sampling for RL,
which may warrant revisiting other algorithms that make use of it [34]. Finally, our analysis sheds
new light on the role of the baseline parameter and dataset composition in off-policy RL.

From here, there are a number of future avenues for research. On one hand, we limited our experi-
mental work to the setting where µ is the model at the beginning of an iteration, and data points are
generated in the “self-taught” style. It would be beneficial to deploy this in the offline setting [28]
with a different µ, but at first glance this poses numerical challenges. We also limited ourselves to
the training of large language models but there is no reason to believe that TOPR would not perform
equally in other application areas of RL, from video games [3] to robotics [23].
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions are both theoretical and experimental, as reflected in the
abstract and introduction. We limit our claims to the learning algorithm.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly mentions that we limit our claims to the case where the
starting policy is the one used to draw the samples. We also only make claims about the
fine-tining of large language models for specific tasks.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?

15



Answer: [Yes]
Justification: We explicitly stated assumptions for our theorems. Proofs are correct to the
best of our knowledge.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In addition to the algorithm, we provided the list of hyperparameters used as
well as the architectural details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The training datasets are publicly available, and the parsing code is taken from
open source implementations of the benchmarks. The code was written in a proprietary
environment and cannot easily be released, however TOPR itself can be obtained with a
simple modification of any open-source REINFORCE implementations. We are additionally
in the process of open-sourcing a version of TOPR.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for
more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As explained for the "experimental result reproducibility" question.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All main claims of the paper are supported by experiments containing error
bars. Experiments on learning to verify, which are in the appendix, do not have error bars
due to the high cost of running them.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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Answer: [No]
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didn’t make it into the paper).
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spect, with the NeurIPS Code of Ethics https://neurips.cc/public/
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Answer: [Yes]
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ing tasks, which comply with the Code of Ethics.
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Answer: [NA]
Justification: We do not argue that there is no societal impact per se but rather that we cannot
predict it at this stage given the theoretical nature of the work involved. We do not foresee
any direct path to a negative application, hence our answer.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Similar to the question above, we do not foresee any particular misuse related
to the use of our method.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provided references for the used assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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asset is used.
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Answer: [NA]

Justification: This research did not involve human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This research did not involve human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Only humans contributed to the important, original and non-standard compo-
nents of this research.
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• The answer NA means that the core method development in this research does not
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In this appendix, we provide additional theoretical results, experimental results and analyses.

A DPO and and other contrastive losses

We focused in the main text on methods that could work with a batch size of 1. This excludes all
contrastive losses, which usually use pairs of examples, one positive and one negative. DPO [39],
one of the most well-known of these methods, works with pairs of trajectories and maximizes the
weighted log probability ratio of these two trajectories. For positive and negative trajectories τw and
τl, respectively, the DPO objective is

JDPO(π) = log σ

(
β log

π(τw)

µ(τw)
− β log

π(τl)

µ(τl)

)
,

where σ is the sigmoid function. When rewards are either -1 or 1, DPO can be repurposed to handle
negative and positive trajectories [19, 4], and is in fact well-suited to off-policy policy optimization
[35]. However, DPO does not directly aim to maximize J(π) and, with a finite number of trajectories,
it is possible for the objective to increase while the probability of the positive trajectory decreases, as
long as the probability of the negative trajectory decreases more. We shall see in our experiments
that, while DPO indeed performs well off-policy, it is largely outperformed by TOPR. More recently,
CoPG [13] also applied the idea of contrasting negatives and positives and, although their update
shares a similar form with REINFORCE, the use of a carefully crafted baseline makes the method
similar to DPO and IPO [2] and we therefore omit it from our analysis.

B Changing the effective positive rate through the baseline

In addition to the choice of the loss, the composition of the training set is critical to the performance of
the trained model. In the context of training language models to perform chain-of-thought reasoning,
for example, dataset curation methods such as STaR, ReST, and ReST-EM differ mainly on which
data they include.

As we will see, the relative importance of positive and negative examples in the dataset is equally
critical to good performance. Interestingly enough, the baseline parameter can also be interpreted as
modulating this relative importance.

Let us again assume a binary reward function R0(τ) ∈ {−1, 1} and a baseline c ∈ [−1, 1]. Let
p = |T+|/(|T+| + |T−|) be the proportion of positive examples in the dataset. Substituting
R(τ) = R0(τ)− c into Eq. 6, we obtain

JTOPR(π) =
∑
τ∈T+

µ(τ)ρ

(
π(τ)

µ(τ)
, a+, b+

)
(1− c) +

∑
τ∈T−

µ(τ)ρ

(
π(τ)

µ(τ)
, a−, b−

)
(−1− c)

= (1− c)
∑
τ∈T+

µ(τ)ρ

(
π(τ)

µ(τ)
, a+, b+

)
− (1 + c)

∑
τ∈T−

µ(τ)ρ

(
π(τ)

µ(τ)
, a−, b−

)
.

With this transformation, the contribution of each positive example to the objective is weighted by
1− c. With some algebra, we find that the effective proportion of positive examples changes from p to

p̃ =
p(1− c)

p(1− c) + (1− p)(1 + c)
=

p(1− c)

1 + (1− 2p)c
. (7)

With a fixed dataset, we can thus vary the relative importance of positive and negative examples (p̃
and 1− p̃) by modifying the baseline according to Eq. 7. This generalizes the result from the previous
section that discarding negative examples is equivalent to using a baseline of −1.

Furthermore, the choice of the baseline c can be viewed as adding a softer version of the KL(µ ∥π)
term to the TOPR objective, again encouraging π to stay close to µ when c < 0 (see Appendix F). As
a negative baseline c also increases the effective proportion of positive examples in the dataset, we
see that a larger proportion of positive examples will decrease the degree of off-policyness that is
achievable without resampling the training set. Adding negative examples can thus be seen as a way
to further improve the policy.
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It is however important to highlight some differences between setting a baseline and weighting
positive and negative examples differently. While the expected gradient is the same, stochastic
estimates can be different, which might impact techniques like gradient clipping or second-order
optimization. We expect this difference to be larger for extreme values of the baselines.

We shall show in Section 4 how carefully choosing the effective proportion of positive examples,
either through dataset composition or a baseline, can lead to a boost in accuracy.

C Datasets and experimental setup

C.1 Models and Datasets

We focus on mathematical reasoning datasets that require step-by-step solutions and are widely used
to evaluate the reasoning capabilities of LLMs. As our core model, we use the Llama 3 family of
instruction-tuned language models [10], using the 8B model unless otherwise specified.

GSM8K [7] The GSM8K dataset is composed of short grade-school math problems, requiring
basic arithmetic or elementary algebra to solve. It contains 1,319 problems for testing and 7,473
for training. Verifying the correctness of model responses is straightforward, as the final answer is
typically an integer. When the string is not present, we consider the answer as missing. For each
training question we generate n = 16 candidate solutions using chain-of-thought (CoT) prompting,
using the 8-shot prompt from [48]. We parse our model’s answer by looking for the magic string
“The answer is”, matching this few-shot prompt.

MATH [20] The MATH dataset contains problems from high school math competitions, covering a
wide range of topics such as algebra, geometry, and probability, and is generally harder than GSM8K.
We use the split from the original work, which includes 7,500 training problems. For computational
reasons, we report performance on the smaller MATH-500 test set [30]. Each problem includes a
step-by-step solution, ending in a final answer marked by \boxed{} in the solution (e.g., “..so
the smallest possible value of c is π ”). This marking allows for verification of the correctness of
model-generated responses by comparing the final answer to the ground truth. We use the script
provided by [41] for this purpose.

For each training question we generate n = 32 candidate solutions using chain-of-thought (CoT)
prompting, using the 4-shot prompt from [29].

C.2 Experimental setup

Our training infrastructure is based on HuggingFace’s transformers library [50]. We use data
parallelism on a single H100 node with a per-GPU batch size of 1, a constant learning rate of 5e-7
chosen from a small parameter sweep, the Adafactor optimizer [42] to minimize memory usage, and
neither weight decay nor KL regularization.4 We divide the loss by the sequence length [16], which
in reinforcement learning terms can be thought of as implementing hyperbolic discounting. We use
HuggingFace’s default gradient clipping parameter of 1.0. The reward is +1 for a correct answer and
-1 for an incorrect answer, and no baseline is used. Candidate generations are produced using vLLM
[24] with temperature T = 1, topp = 1, topk = 500, and a maximum of 512 tokens.

An iteration of training consists of generating candidates using a model (usually the base model),
labelling those candidates with their associated reward, and performing a single epoch over this
generated dataset. The reference µ corresponds to the model predictions at the beginning of the
iteration. Unless otherwise noted, all reported scores and accuracies are with respect to test sets,
measured by evaluating the model at the end of the iteration. No early stopping is performed. We
use the bootstrap technique [11] to provide confidence intervals: we generate 64 solutions for each
question for GSM8K and 16 for MATH due to the cost of evaluating. For each question, we select K
answers at random without replacement, then compute the average maj@K or pass@K performance
across the dataset. We repeat this process 100 times and estimated the empirical variance V̂ across

4In addition to allowing us to focus on the relative stability of different learning rules, the removal of the KL
term decreases the memory and computational burden of training the language model.
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Figure 7: Proportion of correct (green), incorrect (gray), and invalid (red) generated solutions
on the GSM8K test set. Of the four, TOPR is the only one to significantly reduce invalid generations.

the 100 trials. We compute the standard error as
√

V
64
K −1

=
√

KV
64−K ; depicted confidence intervals

correspond to two standard errors.

D Additional experimental results

D.1 TOPR minimizes reasoning failures

To understand the reasons behind TOPR’s success, we measured the proportion of generated solutions
that were correct, incorrect, or invalid (the string “The answer is” is not present) during the course
of training. Fig. 7 gives strong evidence as to the root cause of REINFORCE’s poor performance,
whose generations are overwhelmingly degenerate by the end of training. By contrast, TOPR proves
effective at teaching the model to avoid incorrect formatting – yielding the desirable property that one
can solely rely on RL for solution generation, rather than using additional tools to correctly format
them.

D.2 TOPR vs. Positives only

Fig. 8 allows us to further analyze the experiment comparing TOPR, which uses both positives and
negatives, to SFT which only uses the positive examples. Breaking down the test results as a function
of the number of rationales that conclude in the correct answer (“Correct answer cardinality”, bottom
left), we find that TOPR’s performance gains from using negative examples can be attributed to
reducing the number of questions for which no or few solutions are found, guaranteeing a strong
majority for self-consistency. We find similar results on MATH, where using TOPR enables us to
almost double the Pass@1 accuracy compared to the base model (bottom right). Beyond these results,
it is also worthwhile noting that TOPR is more training inference-efficient: indeed, because all vLLM
generations are used to improve the model, training data is effectively generated as a faster rate.

D.3 Effective vs actual proportion of positive examples

We observed in Sec. 4.1 that the optimal effective positive rate for GSM8K and MATH was in the
10%-20% range. These results, however, were obtained with a dataset that contained 10% of actual
positive examples. One might thus wonder if the optimal performance is obtained when the effective
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Figure 8: Top Test set accuracy on GSM8K across training when using all examples (TOPR) or
positive examples alone. Not shown here, TOPR also yields higher inference efficiency at test time:
greater maj@n performance for all n. Bottom left: Distribution of GSM8K problem questions as
a function of the number of correct generations. TOPR more effectively reduces the number of
questions with none (0) to few (1–4) correct generations. Bottom right: Pass@1 accuracy on MATH.
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Figure 9: Test set accuracy on the GSM8K dataset when the training set contains either p = 10%
(solid line) or p = 50% (dotted line) of positive examples as the baseline c is varied. The x-axis, on a
log scale, represents the effective proportion of positives p̃ = p(1−c)

1+c(1−2p) . Pass@1 (left) and Maj@16
(right) results are shown.

positive rate matches that actual positive rate, i.e. with a baseline c = 0. For that purpose, in addition
to the dataset containing 10% actual positive samples (labelled “10p”), we built one containing
50% of positive examples (“50p”). We then vary the baseline for each model to reach an effective
proportion of positive examples from 1% all the way to 100%. We see in Figure 9 that, once again,
TOPR’s performance is maximal around 10-20% of effective positive examples, regardless of the
actual proportion of positive samples in the training. Further, we observe a strong correlation between
the 10% and 50% curves, showing that the effective proportion is a more critical factor than the
actual proportion of positive samples. Further, Fig. 4 shows the optimal effective proportion to be
around 10-20% for both GSM8K and MATH. We posit that a good baseline is one that achieves such
a proportion.
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Figure 10: Performance of TOPR and standard importance sampling (IS) in our default experi-
mental setting and with a higher gradient clipping parameter (100.0). TOPR shows greater robustness
to the gradient clipping parameter.

Acceleration improves robustness to dataset composition. Given the important performance
gains from incorporating negative examples to training and the relevance of dataset composition
(Section B), it is natural to ask whether TOPR’s positive-example acceleration (a+ = 1) helps when
positive examples are outnumbered in the dataset, for example because the problem at hand is very
hard. Figure 4 shows the test performance on GSM8K using either TOPR or TIS when the effective
proportion of positive examples varies. When that proportion is low, the model tends to lower the
probability of most trajectories in its training set. This leads to the probability of positive trajectories
being lowered as well. Thanks to its acceleration (a+ = 1), TOPR recovers from these cases
while TIS cannot. When the effective proportion of positive examples is high, there is virtually no
difference between TOPR and TIS. Interestingly, we see that TIS reaches a slightly higher maximum
Pass@1 accuracy (chosen over all experiments) compared to TOPR. This suggests that TIS may trade
robustness for peak performance.

D.4 The importance of truncating the importance ratio

Fig. 10 shows that this results in an algorithm that is as performant as TOPR. When we inspected
its in-training behaviour, however, we found that the average gradient norm became increasingly
larger as training became more and more off-policy. The impact of this norm blow-up is mitigated
by the use of the default gradient clipping parameter (1.0), as well as the relatively low number
of negative examples in the training dataset (∼33%). To further demonstrate the stabilizing effect
of ratio truncation in TOPR, we used the same two algorithms but now with a negatively-skewed
dataset (60% negatives) and the gradient clipping parameter set to 100.0. The “Grad. Clip. 100”
curves depict these results. TOPR is affected by these changes but still improves on the base model.
Standard importance sampling, on the other hand, harms the model’s performance – producing 31%
of bad reasonings by the end of training against 12% for the base model.

D.5 Experiments on Learning to verify

[53] and [32] recently studied the use of multiple CoT generations to verify the output of an LLM.
In the context of math reasoning benchmarks, this generative verifier acts as a reward model that is
used in a best-of-n selection scheme, improving performance over self-consistency [48]. Our next
series of experiments aimed to study whether TOPR can improve verifier performance and improve
solution quality for harder problems.

For each training sample in the MATH dataset, we used the 70B model to generate 16 solutions
per problem, each with 4 verifications. We then fine-tuned an 8B model using TOPR to act as a
generative verifier [53] using a total of 480,000 data points. We evaluated this generative verifier
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Verifier Verifier accuracy Invalid rate Weighted SC

None – – 55.5%
Llama 3 8B 32.6% 34.2% 56.7%

8B TOPR 70.9% 0.90% 61.5%
Table 2: Performance of a verifier trained with TOPR compared to using a base model verifier
or no verifier. Here “Verifier accuracy” is the Pass@1 accuracy of the verifier (whether it correctly
judges that a solution is right), “Invalid rate” is the number of verifications that could not be parsed
successfully, and “Weighted SC” is weighted self-consistency with 32 generations (see e.g. [31]).
When no verifier is used, Weighted SC indicates the usual maj@32 accuracy.
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Figure 11: Test set accuracy on GSM8K (top) and MATH (bottom) when the training set
contains p = 10% of positive examples, using either truncated importance sampling (TIS) or
TOPR. The x-axis, on a log scale, represents the effective proportion of positives p̃ = p(1−c)

1+c(1−2p) .

in a weighted self-consistency setting, where four verifications are aggregated into a score for each
solution, and the answer with the highest score sum is selected. Table 2 shows that this procedure
indeed produces a much more effective verifier for MATH generations, both in terms of its verifier
accuracy and effect on solution quality. In an even more pronounced version of the results from Fig. 7,
we find that TOPR fine-tunes the model to output almost no invalid generations – simply because it is
negatively rewarded for doing so.

E Additional Maj@16 results

We computed Maj@16 results in addition to the Pass@1 scores from the main text. Similar conclu-
sions can be reached, whether it is about the comparison between TOPR and TIS when varying the
effective positive rate (Fig. 11) or the performance of TOPR when performing multiple iterations
(Fig. 12).

F The impact of the baseline on KL regularization in TOPR

In standard REINFORCE, adding a baseline to the reward does not change the unbiasedness of the
gradient estimate but affects its variance. The same is not true in off-policy policy optimization.
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Figure 12: Pass@1 (left) and Maj@16 (right) scores on GSM8K (top) and MATH (bottom) for
uniform sampling, positive-only sampling, and Anna Karenina sampling (see main text). By
combining TOPR and Anna Karenina sampling, we are able to fine-tune the DeepSeek-R1 8B model
to achieve performance slightly superior to Llama 3 70B.

Looking back at Eq. (3), assuming a+ = a− = 0, b+ = b− = b, we see that adding a baseline c
yields

∇JTOPR(π, c) =
∑
τ

µ(τ)

[
π(τ)

µ(τ)

]b
0

[R(τ)− c]∇ log π(τ)

=
∑
τ

µ(τ)

[
π(τ)

µ(τ)

]b
0

R(τ)∇ log π(τ)

−
∑
τ

µ(τ)

[
π(τ)

µ(τ)

]b
0

c∇ log π(τ)

= ∇JTOPR(π, 0)

− c
∑
τ

µ(τ)
π(τ)

µ(τ)
∇ log π(τ)

− c
∑
τ

µ(τ)

([
π(τ)

µ(τ)

]b
0

− π(τ)

µ(τ)

)
∇ log π(τ)

∇JTOPR(π, c) = ∇JTOPR(π, 0) + c
∑
τ

µ(τ)

(
π(τ)

µ(τ)
−
[
π(τ)

µ(τ)

]b
0

)
∇ log π(τ)

Assume a negative baseline c. Since π(τ)
µ(τ) −

[
π(τ)
µ(τ)

]1
0

is positive when π(τ) > bµ(τ), the additional

term will decrease π(τ) in that case. Hence, a negative baseline will discourage π(τ) to be above
bµ(τ) for all trajectories τ . In that sense, it acts as a softer version of a KL regularizer that only alters
π when it deviates too much from µ. Alternatively, a positive baseline will encourage π to be large,
making the policy more deterministic. Note that this effect is solely due to clipping and goes against
the effect due to stochasticity [6].
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G Theoretical proofs

G.1 Proof of Proposition 3.1

As in the main text, we separate positive and negative trajectories as T+ := {τ : R(τ) ≥ 0} and
T− := {τ : R(τ) < 0}. Define the reward-weighted distribution

µ−
R(τ) =

{
µ(τ)|R(τ)|

R−
µ

if R(τ) < 0,

0 otherwise;
R−

µ =
∑

τ∈T−

µ(τ)
∣∣R(τ)

∣∣,
and symmetrically for µ+

R and R+
µ .5 We have

Jµ,c(π)− J(µ) = E
τ∼µ

[
R(τ)− c

]
log

π(τ)

µ(τ)

= E
τ∼µ

[
R(τ) log

π(τ)

µ(τ)

]
− c E

τ∼µ

[
log

π(τ)

µ(τ)

]
=
∑

τ
µ(τ)R(τ) log π(τ) + cKL(µ ∥π) + C0,

where KL(µ ∥π) denotes the Kullback-Leibler divergence from µ to π and C0 ∈ R. We now break
the first term of the above equation into its positive and negative components:∑

τ
µ(τ)R(τ) log π(τ) =

∑
τ∈T+

µ(τ)R(τ) log π(τ) +
∑

τ∈T−

µ(τ)R(τ) log π(τ)

= R+
µ

∑
τ∈T+

µ+
R(τ) log π(τ)−R−

µ

∑
τ∈T−

µ−
R(τ) log π(τ)

= −R+
µ KL(µ+

R ∥π) +R−
µ KL(µ−

R ∥π) + C1.

Putting it all together, we see that

Lµ,c(π) = C +R+
µ KL(µ+

R ∥π)−R−
µ KL(µ−

R ∥π)− cKL(µ ∥π),

with C a constant independent of π.

G.2 Proof of Proposition 3.2

We start by showing that ρ(x, 0, b) ≥ 0 for all x ≥ 0 and all b > 0. If x < b, then ρ(x, 0, b) = x > 0.
If x > b, then ρ(x, 0, b) = b

(
1 + log x

b

)
≥ 0 since x

b ≥ 1.

Then, starting from

JTOPR(π) =
∑
τ∈T+

µ(τ)ρ

(
π(τ)

µ(τ)
, a+, b+

)
R(τ) +

∑
τ∈T−

µ(τ)ρ

(
π(τ)

µ(τ)
, 0, b−

)
R(τ), (8)

we see that the second term is negative as the sum is over trajectories with negative rewards and both
µ(τ) and ρ

(
π(τ)
µ(τ) , 0, b

−
)

are positive.

Hence,

JTOPR(π) ≤
∑
τ∈T+

µ(τ)ρ

(
π(τ)

µ(τ)
, a+, b+

)
R(τ)

≤
∑
τ∈T+

µ(τ)
π(τ)

µ(τ)
R(τ) (since ρ (x, a+, b+) ≤ x)

≤ max
τ

R(τ) (since π(τ) ≤ 1 for discrete trajectories)

= B .

This concludes the proof.
5If R+

µ = 0 (resp. R−
µ = 0), our argument holds for any µ+

R (resp. µ−
R).
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