
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PREMISE: SCALABLE AND STRATEGIC PROMPT OP-
TIMIZATION FOR EFFICIENT MATHEMATICAL REASON-
ING IN LARGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) like Claude 3.7 Sonnet and OpenAI o1 achieve
strong performance on mathematical tasks via long Chain-of-Thought (CoT), but
often generate unnecessarily verbose reasoning traces. This inflates token usage
and cost, limiting deployment in latency-sensitive or API-constrained settings. We
present PREMISE (PRompt-based Efficient Mathematical Inference with Strate-
gic Evaluation), a prompt-only framework designed specifically for black-box
commercial LRMs. PREMISE reduces reasoning overhead without modifying
model weights or requiring multiple queries. It combines trace-level diagnos-
tics with gradient-based prompt optimization to minimize redundant computation
while preserving answer accuracy. To jointly optimize for brevity and correctness,
PREMISE uses a multi-objective textual optimization procedure that balances
token length and answer validity via natural language gradients. Unlike prior
approaches, PREMISE operates entirely within a single-pass black-box interface,
enabling efficient reasoning in commercial LLMs. Across GSM8K, SVAMP, and
MATH500, PREMISE is able to obtain average accuracy of 94.7%, while reducing
reasoning tokens by up to 84.3% and cutting dollar cost by 82.2%. These results
establish prompt-level optimization as a practical, scalable pathway for efficient
LRM inference without compromising reasoning quality.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as powerful tools for natural language understanding
and multi-step reasoning tasks. The recent development of reasoning specialized LLMs, which
commonly referred to as Large Reasoning Models (LRMs) (Xu et al., 2025a), has pushed the frontier
of advanced logical reasoning, particularly in mathematics (Cobbe et al., 2021b; Hendrycks et al.,
2021) and programming (Codeforces, 2025; Chen et al., 2021). Models such as OpenAI’s o1 (OpenAI,
2024) and DeepSeek-R1 (Guo et al., 2025) build on base pretrained models and use multi-stage
supervised fine-tuning and reinforcement learning to encourage structured reasoning behaviors.
Their boosted reasoning abilities have unlocked applications in domains like real-world settings like
interactive assistants, robotic planning systems, and real-time retrieval applications.

Despite these advances, practical deployment is hindered by efficiency concerns. Token-based billing
and similar bottlenecks make long reasoning chains costly and often infeasible in commercial settings.
Recent work has therefore explored strategies for efficient reasoning, including length-constrained
prompting (Han et al., 2024; Xu et al., 2025b; Nayab et al., 2025), self-training with compressed
CoT data (Munkhbat et al., 2025; Kang et al., 2024), latent-space reasoning (Hao et al., 2024; Shen
et al., 2025; Cheng & Van Durme, 2024), and dynamic test-time routing (Sun et al., 2024; Liao
et al., 2025; Wang et al., 2025). These approaches generally fall into two categories: model-level
adaptations that require access to internal weights (e.g., fine-tuning, RL, latent representation training)
and prompt-based methods that rely on static heuristics or rigid length constraints. The model-level
approaches often require weight access, large-scale training data, or reinforcement learning pipelines,
which makes them infeasible for black-box LRMs. Prompt-based approaches, while training-free,
typically rely on static heuristics or rigid length limits that treat all reasoning steps uniformly, offering
no systematic way to diagnose or adaptively control inefficiencies in the reasoning process.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these challenges, we present PREMISE (PRompt-based Efficient Mathematical Inference
with Strategic Evaluation). PREMISE leverages natural language gradient methods (Yuksekgonul
et al., 2024; Zhang et al., 2024) and extends them with trace-level diagnostics that directly assess
reasoning efficiency. By incorporating these diagnostics into a multi-objective optimization loop,
PREMISE generates reusable prompts that encourage models to maintain logical correctness while
avoiding redundant elaboration. This design makes PREMISE broadly applicable to black-box LRMs
such as Claude 3.7 Sonnet(Anthropic, 2025), OpenAI o3-mini(OpenAI, 2025), and Gemini 2.5
Flash(DeepMind, 2025), enabling efficient reasoning that reduces token usage and inference cost
without sacrificing accuracy.

We evaluate PREMISE across GSM8K, SVAMP, and MATH500, showing that it matches or exceeds
CoT (Wei et al., 2023) and SoT (Aytes et al., 2025) prompting in accuracy while reducing reasoning
token usage by up to 84.3%. PREMISE operates entirely through the prompt interface, making it
suitable for any commercial LRM. To the best of our knowledge, this is the first method to combine
trace-level reasoning diagnostics with prompt-driven optimization for efficient inference in black-box
models.

Our contributions are three-fold:

• We introduce PREMISE, an optimization framework that produce prompt solution for efficient
reasoning in black-box LRMs. PREMISE works without model fine-tuning or multi-sample
decoding, making it applicable to commercial models.

• We define and operationalize trace-level diagnostic metrics that capture inefficient reasoning
patterns during inference. These diagnostics provide a principled foundation for prompt-based
reasoning control and enable systematic optimization of reasoning efficiency.

• We demonstrate that PREMISE achieves up to 87.5% reduction in token usage while matching or
improving accuracy compared to standard CoT prompting across GSM8K, SVAMP, and Math500,
highlighting its effectiveness for real-world efficient inference.

2 RELATED WORK

Chain-of-Thought Prompting. Chain-of-Thought (CoT) prompting (Wei et al., 2022) has emerged as
a central technique for improving reasoning in LLMs, with extensions such as majority voting (Wang
et al., 2025), dynamic selection (Xu et al., 2025b), and self-consistency (Sun et al., 2024). While
these methods improve accuracy, they often produce excessively long reasoning traces, especially on
simple problems (Chen et al., 2024; Yang et al., 2025), leading to inefficiency. Other works explore
truncation strategies, such as token-consistency pruning (Su et al., 2025), but provide no mechanism
for systematically diagnosing inefficiencies.

Model-Based Efficient Reasoning. Approaches like DeepSeek-R1 (Guo et al., 2025) employ
reinforcement learning to enforce compact templates, while others fine-tune models on variable-
length CoT corpora (Liu et al., 2024a; Kang et al., 2024; Munkhbat et al., 2025) or distill reasoning
into latent representations (Hao et al., 2024; Shen et al., 2025; Cheng & Van Durme, 2024). These
methods require access to model weights and large-scale training data, which limits applicability to
black-box LRMs, and they generally lack direct trace-level evaluation.

Prompt-Based Efficient Reasoning. Training-free methods constrain reasoning through prompt
design. Token-Budget prompting (Han et al., 2024) sets explicit limits, while CCoT (Nayab et al.,
2025), CoD (Xu et al., 2025b), and SoT (Aytes et al., 2025) encourage minimal intermediate drafts.
Other studies propose compression-based constraints (Lee et al., 2025), but these approaches rely on
static heuristics without dynamic or principled control.

Test-Time and Dynamic Reasoning. Methods such as best-of-n decoding (Wang et al., 2025),
speculative decoding (Sun et al., 2024; Liao et al., 2025), and reward-guided sampling (Fu et al.,
2024) improve inference by reranking multiple outputs. Dynamic tree search (Ding et al., 2025),
summarization-based reasoning (Zhang et al., 2025), and iterative inference loops (Yan et al., 2025)
further explore adaptive compute allocation. However, these techniques often require multiple
forward passes, auxiliary scoring models, or batch-mode generation, which introduces substantial
computational overhead.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Summary. In short, prior work has primarily targeted either (1) model-level adaptations that demand
parameter access and heavy supervision or (2) heuristic prompt- and sampling-based strategies that
lack systematic trace-level diagnostics. Our work complements these directions by introducing metrics
of reasoning inefficiency and incorporating them into a prompt-level optimization framework that is
black-box compatible, enabling efficient reasoning without retraining or multi-sample decoding.

3 METHOD

Our objective is to guide black-box LRMs to generate reasoning traces that are not only correct but also
efficient. We first introduce the problem setup and an efficiency assumption, which together motivate
a multi-objective optimization framework inspired by recent advances in textual optimization.

3.1 PROBLEM SETUP

Let q be a question with ground-truth answer A, and letR denote the set of possible reasoning traces
that a model may generate for q. Each trace r ∈ R is a token sequence:

r = (t1, t2, . . . , tL(r)),

where L(r) ∈ N is the token length of r. Let a(r) denote the answer extracted from r, and define the
binary correctness indicator:

acc(r, q) =

{
1, if a(r) = A,

0, otherwise.

This setup captures the dual challenge: among the many traces a model may produce, we care about
both whether the final answer is correct and how costly the reasoning path is.

3.2 EFFICIENCY ASSUMPTION

Early pilot experiments similar to CCoT (Nayab et al., 2025) revealed that naively refined prompts
can substantially reduce the length of reasoning traces, but sometimes at the expense of accuracy.
This observation motivates a guiding principle: efficiency is valuable only if correctness is preserved.
We therefore posit the following assumption: among all correct reasoning traces for a given question,
the optimal one is the shortest in terms of tokens. Formally,

r∗(q) = argmin
r∈R
{L(r) | acc(r, q) = 1} , L∗(q) = L(r∗(q)).

Equation 3.2 establishes the target we aim to approximate through prompt optimization: concise yet
correct reasoning.

3.3 PREMISE: MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

The efficiency assumption highlights the need to optimize not only for correctness but also for the
length of reasoning traces. Existing prompt optimization systems such as TEXTGRAD (Yuksekgonul
et al., 2024) and REVOLVE (Zhang et al., 2024) provide a natural foundation: they frame prompts as
variables that can be iteratively refined using feedback expressed in natural language. However, these
methods are largely accuracy-driven and do not explicitly incorporate efficiency objectives.

Inspired by their design, we extend textual optimization into a dual-objective framework that balances
both accuracy and efficiency. Concretely, at iteration t we optimize the prompt pt by minimizing:

L(pt, q, r) = α · Lacc(pt, q, r) + (1− α) · Leff (pt, q, r),

where α ∈ [0, 1] governs the trade-off between the two objectives.

The accuracy term penalizes incorrect outputs:

Lacc(pt, q, r) = Eq∼Q
[
1− acc(r, q)

]
,

ensuring the model’s final predictions remain correct. The efficiency term penalizes unnecessarily
long traces:

Leff (pt, q, r) = I(r, q),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where I(r, q) measures the deviation of the observed trace length from the shortest known correct
trace L∗(q).

By weaving these two objectives together, PREMISE produces prompts that steer LRMs toward
reasoning paths that are both reliable and compact, addressing the limitations observed in our
preliminary experiments.

3.3.1 TEXTUAL GRADIENT FOUNDATION

We adopt the general pipeline of textual optimization for LLM-based systems (Yuksekgonul et al.,
2024; Zhang et al., 2024), where prompts are optimized using feedback in the form of natural
language gradients, with three key phases:

Forward Pass: Inputs are processed sequentially through the computational graph. Each node
generates outputs based on prior results, creating a trajectory of intermediate states that captures the
system’s reasoning process.

Language Loss Computation: An evaluator LLM assesses the system’s performance by generating
textual feedback. Unlike traditional numerical losses, this feedback provides interpretable insights
into how well the system’s outputs align with task objectives.

Backward Pass: Textual gradients are backpropagated through the computational graph nodes.
These gradients, expressed as natural language instructions, specify how system variables should be
adjusted to improve the objective function.

3.3.2 THINKING-AWARE VARIABLE REPRESENTATION

To integrate efficiency into the optimization loop, PREMISE introduces specialized thinking-aware
variable that jointly capture textual content and its reasoning footprint:

Vthinking = {value, trace, token count, role description}.

Here, value denotes the textual output under optimization, trace records the intermediate reasoning
steps generated by thinking-enabled models (e.g., Claude 3.7 Sonnet’s hidden reasoning text),
token count tracks the computational budget consumed, and role description specifies the function
of the variable within the prompt. This enriched representation allows PREMISE to simultaneously
evaluate semantic correctness and reasoning efficiency, enabling optimization that is sensitive not
only to content quality but also to the cost of inference. Full algorithmic details are provided in
Appendix A.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models & Multi-Agent Systems. We used leading Large Reasoning Models: OpenAI o1-2024-12-
17, o3-mini, Claude-3-7-sonnet-20250219, and Gemini-2.5-flash-preview-04-17, chosen for their
state-of-the-art performance and popularity.

In addition to single-model inference, we also test PREMISE on general-purpose multi-agent system
settings like Multi-Agent Debate (MAD) (Du et al., 2023), Dylan (Liu et al., 2024b), and Promp-
tor (Chen et al., 2025). The results show that PREMISE improves both reasoning accuracy and token
efficiency compared to baseline prompting.

Datasets. To comprehensively evaluate the efficiency and correctness of our method, we conduct
experiments on four widely-used mathematical reasoning datasets: GSM8K (Cobbe et al., 2021a),
SVAMP (Patel et al., 2021), MATH500 (Lightman et al., 2024), and AIME2024.

Metrics. PREMISE is evaluated on accuracy and efficiency. Accuracy is the proportion of correctly
solved question–answer pairs. Efficiency is measured by splitting token usage into input (prompt),
reasoning (hidden thoughts), and output (final answer). We also report monetary cost by applying API-
specific prices to each token type, with PREMISE aiming to maximize accuracy while minimizing
both token usage and cost.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)

GSM8K

Claude-3.7-sonnet
CoT 94.0 117.0 894.9 1,113.0 0.030
SoT 95.9 645.0 430.1 567.7 0.016

PREMISE 96.0 357.0 327.8 364.0 0.011

o3-mini
CoT 96.3 84.4 259.2 410.6 0.003
SoT 96.4 547.4 324.1 403.8 0.003

PREMISE 95.8 305.4 201.6 218.5 0.002

Gemini-2.5-flash
CoT 96.2 78.6 488.8 211.5 0.002
SoT 94.2 576.6 354.3 218.2 0.002

PREMISE 92.6 321.6 300.1 20.9 0.001

MATH-500

Claude-3.7-sonnet
CoT 95.8 128.9 4,721.8 5,184.6 0.148
SoT 95.0 656.9 3,962.3 4,260.1 0.125

PREMISE 95.6 368.9 3,740.7 3,825.2 0.114

o3-mini
CoT 96.4 94.4 731.3 1,139.6 0.008
SoT 95.2 557.4 679.2 814.5 0.007

PREMISE 93.0 315.4 576.6 609.4 0.005

Gemini-2.5-flash
CoT 97.6 88.8 290.8 922.1 0.013
SoT 96.8 586.8 1684.8 575.5 0.007

PREMISE 96.8 331.8 129.1 154.8 0.007

SVAMP

Claude-3.7-sonnet
CoT 94.0 58.0 1,123.0 151.0 0.004
SoT 94.0 602.0 606.0 93.0 0.002

PREMISE 94.0 584.0 176.0 26.0 0.001

o3-mini
Norm 93.3 64.5 293.5 391.4 0.003
SoT 91.6 527.5 292.2 339.3 0.003

PREMISE 95.0 285.5 159.1 168.8 0.001

Gemini-2.5-flash
Norm 93.6 58.7 421.8 111.0 0.001
SoT 93.3 556.7 233.5 94.8 0.001

PREMISE 93.3 301.7 210.5 11.1 0.001

Table 1: Comparison over GSM8K, MATH-500, and SVAMP by single-model across multiple LLMs.
Best accuracy, lowest token usage, and lowest cost are highlighted in bold.

4.2 SINGLE MODEL

Stability and cost reduction across models and benchmarks. Across GSM8K, SVAMP, and
MATH-500, PREMISE consistently balances accuracy and efficiency, achieving near-parity with
or surpassing baseline prompting methods while substantially lowering token usage and cost. With
Claude 3.7 Sonnet, PREMISE delivers the strongest stability: on GSM8K and MATH-500, accuracy
remains above 97%, closely matching CoT and SoT, while cutting the combined reasoning and
completion tokens by 40–60%. For example, on GSM8K PREMISE reduces Claude 3.7 Sonnet’s
cost from $0.080 (CoT) to $0.047, a 41% saving. On SVAMP, accuracy is within 1–1.5% of baselines
but dollar cost drops by nearly 30%. This shows that Claude 3.7 Sonnet’s explicit reasoning channel
aligns well with PREMISE’s compression cues. For OpenAI o3-mini, results reveal a mixed pattern.
PREMISE maintains competitive accuracy (e.g., 97.5% on GSM8K, 96.6% on MATH-500), but token
savings are smaller and sometimes offset by longer completions. On SVAMP, PREMISE improves
accuracy to 94.6% while lowering cost from $0.140 to $0.108. However, the gains are less pronounced
than for Claude 3.7 Sonnet, suggesting that o-series models only partially follow PREMISE’s concise-
reasoning signals. With Gemini 2.5 Flash, PREMISE shows substantial efficiency improvements on
GSM8K and SVAMP. On GSM8K, cost falls from $0.008 to $0.005 with no accuracy loss, and on
SVAMP, PREMISE delivers the lowest cost overall while keeping accuracy at 95.6%. On MATH-500,
however, Gemini requires longer, proof-like reasoning; aggressive compression harms accuracy
slightly (97.0% vs. 98.0% under CoT) even though costs are reduced by ∼20%. This indicates that
Gemini 2,5 Flash is more sensitive to over-compression on complex proofs.

Summary. Overall, PREMISE achieves cost reductions of 20–60% across benchmarks while keeping
accuracy within ±1% of the strongest baseline in most cases. The method aligns particularly well

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)

GSM8K

Claude-3.7-sonnet
CoT 97.0 3,073.2 1,991.1 2,725.4 0.080
SoT 97.0 2,768.0 1,874.1 2,431.0 0.073

PREMISE 97.5 1,469.0 1,292.7 1,531.9 0.047

o3-mini
CoT 97.5 2,564.7 844.2 1,224.3 0.163
SoT 97.1 3,425.9 1,826.8 1,643.3 0.295

PREMISE 97.5 1,069.8 832.3 924.4 0.121

Gemini-2.5-flash
CoT 96.0 2,768.4 1,475.0 576.4 0.008
SoT 95.5 6,908.5 5,255.7 1,769.9 0.026

PREMISE 96.0 1,143.1 1,261.2 157.4 0.005

MATH-500

Claude-3.7-sonnet
CoT 97.6 3,928.6 19,029.2 2,785.3 0.609
SoT 94.8 3,404.7 18,469.1 3,231.1 0.582

PREMISE 97.4 1,875.0 18,552.6 1,932.4 0.575

o3-mini
CoT 97.2 3,065.4 2,525.4 3,735.4 0.422
SoT 96.0 4,037.2 3,611.2 4,525.4 0.537

PREMISE 96.6 1,187.0 2,060.8 2,284.7 0.279

Gemini-2.5-flash
CoT 98.0 3,136.8 7,950.0 2,291.0 0.036
SoT 96.4 8,112.1 10,501.4 3,249.0 0.051

PREMISE 97.0 1,539.1 6,666.6 2,149.2 0.029

SVAMP

Claude-3.7-sonnet
CoT 96.3 3,081.3 2,910.4 3,447.3 0.105
SoT 95.6 2,289.9 2,974.7 3,286.9 0.101

PREMISE 95.0 1,294.7 2,261.8 2,397.3 0.074

o3-mini
CoT 94.3 2,422.3 753.0 976.2 0.140
SoT 94.6 3,015.6 1,625.9 1,869.7 0.255

PREMISE 94.6 1,005.3 747.8 801.2 0.108

Gemini-2.5-flash
CoT 96.3 2,577.5 1,091.6 287.5 0.005
SoT 95.3 5,399.6 5,188.7 942.5 0.022

PREMISE 95.6 1,098.9 866.3 110.0 0.004

Table 2: Dylan framework results across GSM8K, MATH-500, and SVAMP. Best accuracy, lowest
token usage, and lowest cost are highlighted in bold.

with Claude 3.7 Sonnet and Gemini 2.5 Flash on lightweight reasoning tasks, while o3-mini shows
weaker but still positive savings. The exception remains Gemini on MATH-500, where efficiency
gains must be balanced against the risk of omitting necessary intermediate steps. These trends
underscore PREMISE’s effectiveness as a general prompt-level optimizer, while also motivating
adaptive strategies for models and datasets with high reasoning complexity.

4.3 MULTI-AGENT SYSTEM

Versatility extends to Multi-Agent Systems We further evaluate PREMISE in multi-agent system
(MAS) frameworks, including Dylan, Multi-Agent Debate, and Promptor. These setups naturally incur
higher token usage due to inter-agent communication, yet PREMISE consistently offsets this overhead
by compressing reasoning traces and reducing redundant exchanges. On GSM8K, PREMISE achieves
stable accuracy across models while lowering overall cost. With Claude 3.7 Sonnet in the Promptor
setting, accuracy remains at 96.5%, but dollar cost drops from $0.160 (CoT) to $0.131, a 18%
reduction. For Gemini-2.5-Flash, PREMISE improves accuracy from 85% to 90% while cutting cost
by 37%. On GPT-based agents, accuracy is preserved at 95% and PREMISE trims more than 8k
input tokens, reducing expenditure by 29% despite slightly longer completions. On MATH-500, the
benefits of PREMISE are amplified by the length of proof-style reasoning. With Claude 3.7 Sonnet
in Promptor, PREMISE lowers cost from $0.623 to $0.441 (a 29% saving) while accuracy decreases
only 2 points. In MAD, PREMISE actually raises accuracy to 96.6% compared to 95.6% under CoT,
while still being cheaper. GPT-based agents show the strongest combined gains: PREMISE delivers
the highest accuracy in the group (92%) and lowers cost by nearly 20%. For Gemini, PREMISE
both improves accuracy by 6 points (from 86% to 92%) and reduces cost by 42%, demonstrating
that compressed agent exchanges can strengthen both correctness and efficiency. On SVAMP, which

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

involves shorter reasoning traces, absolute savings are smaller but still consistent. With Gemini
in MAD, PREMISE matches baseline accuracy while halving dollar cost. In Dylan and Promptor,
PREMISE provides the lowest costs across most models and typically stays within one percentage
point of the strongest accuracy.

Summary. Overall, PREMISE consistently reduces MAS costs by 20–60% while preserving or
slightly improving accuracy across diverse frameworks. Gains are most pronounced with Claude and
Gemini, where token-heavy debate and reviewer exchanges are streamlined into compact, verifiable
derivations. GPT-based agents exhibit weaker but still positive trends, constrained by their single-
channel architecture. These results demonstrate that PREMISE’s efficiency benefits extend beyond
single-model inference, effectively shifting the accuracy–efficiency frontier in collaborative multi-
agent reasoning.

5 ANALYSIS

5.1 GENERAL EFFECT ON REASONING PROCESS

As shown in GSM8K Thinking Text Example box below, there is a striking contrast between
the response from a standard large reasoning model and the one guided by PREMISE, revealing
significant improvements in both reasoning quality and token efficiency.

GSM8K Thinking Text Example

Large Reasoning Model: Josh bought the house for $80,000 and spent $50,000 on repairs. (omit 314
tokens of inefficient computation). Profit: $200,000 - $130,000 = $70,000. (reached correct answer, but not
committed). Let me double-check... (omit 185 tokens of redundant reasoning). Profit is $70,000. Wait,
maybe I misunderstood—(omit 277 tokens of erroneous reasoning). Let’s assume the repairs added 150%
of purchase value. (omit 507 tokens of circular reasoning). Final answer: $70,000 profit.
(Total token count: 1568)
PREMISE:
1. Purchase = $80,000, Repairs = $50,000
2. Investment = $80,000 + $50,000 = $130,000
3. Value increase = 150% of original → $80,000 × 2.5 = $200,000
4. Profit = $200,000 - $130,000 = $70,000
(Total token count: 152)

Information compression. The free-form CoT occupies 1 568 tokens and includes more than three
detours and errorneous reasoning that do not change the final answer. PREMISE delivers the same
solution in only 152 tokens, a 90.3% reduction in reasoning.

Early commitment to a numeric plan. Because the prompt explicitly asks for a short sequence of
arithmetic steps, the model settles on the correct plan within the first few tokens and no longer revisits
earlier assumptions. This removes unnecessary back-tracking branches that inflate the baseline trace.

Stable, in-line verification. Any internal checks happen inside the same line that introduces a value,
so the external trace remains compact. The “let me double-check” loops that add hundreds of tokens
in the baseline are absent.

Compare to the baseline, PREMISE is significantly closer to the shortest known correct trace for this
question. Across the GSM8K validation set, the average token budget drops significantly without
loss of accuracy, showing that a lightweight prompt scaffold can steer the model toward concise yet
reliable reasoning.

5.2 SYNTHESIS ACROSS SETTINGS.

Beyond single illustrative traces, our results show that PREMISE consistently shifts the accuracy–
efficiency trade-off in both single-model and multi-agent contexts. In single-model inference, Claude
3.7 Sonnet benefits most from PREMISE’s compression signals, achieving large cost reductions with
negligible accuracy loss. OpenAI’s o-series models respond less strongly, since their single-channel
interface exposes all intermediate thoughts as visible output, limiting PREMISE’s leverage. Gemini

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2.5 Flash follows Claude 3.7 Sonnet on lightweight tasks but requires more cautious compression
on proof-heavy datasets like MATH-500. In multi-agent frameworks such as Dylan, MAD, and
Promptor, PREMISE mitigates the overhead of inter-agent communication by streamlining exchanges,
often reducing cost by 20–60% and in some cases improving accuracy. Taken together, these findings
suggest that PREMISE generalizes across diverse architectures and coordination setups, but its impact
depends on how much the underlying model or system exposes reasoning structure for compression.

6 ABLATION STUDY

Figure 1: Comparison of
PREMISE with single-
objective variants that
optimise only token count or
only accuracy.

Figure 2: Comparison of
different optimization strate-
gies on OpenAI o3-mini with
AIME 2024. CoT is the de-
fault result, Eff is our dual-
objective optimized model,
and Acc is solely optimized on
accuracy.

Figure 3: Comparison of ef-
fect of system instruction and
user input with same prompt
on the reasoning text length.

6.1 SINGLE OBJECTIVE VS DUAL OBJECTIVE

Figure 1 contrasts Premise with two ablated baselines with Claude 3.7 Sonnet on MATH500.
Accuracy-only optimisation delivers a minor gain in accuracy, yet it drives up both input- and
reasoning-token usage, opposing the goal of efficient inference. Token-only optimisation attains the
lowest token budget, but this saving costs roughly four percentage points of accuracy.

By jointly optimising for both objectives, PREMISE preserves high accuracy while substantially
reducing token consumption, demonstrating the necessity of a balanced objective during prompt
optimisation.

6.2 EFFECT OF TASK DIFFICULTY ON OPTIMIZATION OBJECTIVES

We observe that the impact of optimization depends strongly on the underlying task difficulty. On
benchmarks where models already attain high accuracy like such as GSM8K, SVAMP, and MATH-
500, optimizing for token efficiency yields substantial reductions in reasoning cost without sacrificing
performance. In contrast, on more challenging datasets where models lack sufficient capability (e.g.,
AIME-2024), aggressive efficiency optimization can degrade accuracy by prematurely truncating
necessary reasoning. Interestingly, when we shift the objective weight entirely toward accuracy (i.e.,
setting the efficiency weight to zero), performance improves while reasoning traces also become
shorter. This suggests that, in low-capability regimes, optimizing for correctness indirectly reduces
perplexity in the reasoning process, thereby lowering token usage as a byproduct. In other words,
when the model struggles with the task, accuracy-focused optimization encourages more coherent
reasoning paths that are both more reliable and more concise.

6.3 EFFECT OF INSTRUCTION HIERARCHY

We further examine how the placement of optimized prompts within the instruction hierarchy
influences their effectiveness. Specifically, we compare settings where the optimized prompt is
injected as system input versus as user input. Across all models, and most notably with OpenAI’s
o-series, we find that positioning the optimized prompt at the user level substantially weakens its

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

effect, often leading to longer or noisier reasoning traces, as shown in Fig 3. In extreme cases,
accuracy is preserved but the total token footprint increases, undermining the efficiency objective.

We hypothesize that this degradation arises from conflicts between the implicit default system instruc-
tions (e.g., alignment, verbosity, or self-reflection policies) and the injected user-level optimization
cues. When these layers compete, the model may prioritize the higher-level system defaults, in-
terpreting the user-provided optimization guidance as a secondary instruction. This misalignment
introduces additional uncertainty into the reasoning process, raising perplexity and producing verbose
or redundant traces rather than concise derivations.

These findings highlight that prompt-based optimization is not instruction-agnostic: effectiveness
depends critically on the interface layer through which guidance is delivered. For models that expose
a dedicated system channel (e.g., Claude 3.7 Sonnet), placing PREMISE prompts at the system
level yields consistent reductions in reasoning cost without harming accuracy. In contrast, when
only the user channel is available or prioritized, PREMISE’s compression objectives are partially
suppressed. This result underscores the importance of aligning optimization strategies with the
instruction hierarchy of each API, and suggests that future research should explore interface-aware
adaptation mechanisms to ensure robustness across heterogeneous model architectures.

7 CONCLUSION

We introduced PREMISE, a prompt-only optimization framework that enhances the efficiency
of mathematical reasoning in Large Reasoning Models (LRMs) while preserving accuracy. By
integrating trace-level diagnostics into a dual-objective optimization procedure, PREMISE guides
models toward concise yet correct reasoning without requiring access to internal weights or multiple
sampling passes. This design makes PREMISE broadly applicable to black-box commercial APIs.

Empirically, PREMISE consistently reduces reasoning overhead across benchmarks. On GSM8K,
SVAMP, and MATH-500, it achieves accuracy on par with or exceeding standard Chain-of-Thought
and Sketch-of-Thought prompting, while cutting token usage by up to 87% and monetary cost by
as much as 80%. These gains extend beyond single-model inference: in multi-agent frameworks
like Dylan, MAD, and Promptor, PREMISE streamlines inter-agent communication, delivering
20–60% cost savings while often improving accuracy. Together, these results demonstrate that
prompt-level optimization can substantially shift the accuracy–efficiency trade-off in both single-pass
and collaborative reasoning settings.

At the same time, our study reveals boundary conditions. Models that lack a dedicated reasoning
channel, such as GPT-style single-stream architectures, benefit less from PREMISE and can even
incur visible-trace inflation. Similarly, proof-heavy domains like MATH-500 require careful calibra-
tion: overly aggressive compression risks omitting critical intermediate steps. These observations
underscore the need for adaptive strategies that align compression intensity with both task complexity
and interface design.

Looking forward, PREMISE opens multiple avenues for exploration. Future work may extend trace-
level optimization to multilingual reasoning, non-mathematical domains, and real-time interactive
applications. Another promising direction is connecting token allocation with internal computational
states, which could yield deeper insights into how models temporally structure their reasoning. More
broadly, PREMISE provides not only a practical tool for efficient inference but also a framework
for analyzing the dynamics of reasoning itself, offering a scalable path toward both efficiency and
interpretability in large-scale language models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/claude-3-7-sonnet,
February 2025. Accessed: 2025-09-22.

Simon A. Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching, 2025. URL https://arxiv.org/abs/2503.05179.

Ke Chen, Yufei Zhou, Xitong Zhang, and Haohan Wang. Prompt stability matters: Evaluating and
optimizing auto-generated prompt in general-purpose systems, 2025. URL https://arxiv.org/abs/
2505.13546.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021a. URL https://arxiv.org/abs/2110.
14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Codeforces. Codeforces - competitive programming platform, 2025. URL https://codeforces.com/.
Accessed: 2025-03-18.

DeepMind. Gemini flash. https://deepmind.google/models/gemini/flash/, 2025. Accessed: 2025-09-
22.

Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang,
Zengmao Wang, Ziwei Liu, Bo Du, et al. Dynamic parallel tree search for efficient llm reasoning.
arXiv preprint arXiv:2502.16235, 2025.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https://arxiv.
org/abs/2305.14325.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing Ma, Zhenyu Chen, and Zhenting Wang. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2021.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2505.13546
https://arxiv.org/abs/2505.13546
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://codeforces.com/
https://deepmind.google/models/gemini/flash/
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. arXiv preprint arXiv:2412.11664, 2024.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought? a
token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
v8L0pN6EOi.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
Can language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024a.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration, 2024b. URL https://arxiv.org/abs/2310.02170.

Tergel Munkhbat, Namgyu Ho, Seohyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicolamaria
Manes, and Fabrizio Giacomelli. Concise thoughts: Impact of output length on llm reasoning and
cost, 2025. URL https://arxiv.org/abs/2407.19825.

OpenAI. Learning to reason with llms.
urlhttps://openai.com/index/learning-to-reason-with-llms/, 2024. Accessed: 15 March 2025.

OpenAI. Openai o3-mini system card. https://cdn.openai.com/o3-mini-system-card-feb10.pdf,
January 2025. Accessed: 2025-09-22.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems?, 2021. URL https://arxiv.org/abs/2103.07191.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early
decoding. arXiv preprint arXiv:2503.01422, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025a.

11

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2407.19825
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2201.11903

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic ”differentiation” via text, 2024. URL https://arxiv.org/abs/2406.
07496.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025.

Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, and Haohan
Wang. Revolve: Optimizing ai systems by tracking response evolution in textual optimization,
2024. URL https://arxiv.org/abs/2412.03092.

12

https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2412.03092

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHMIC IMPLEMENTATION

A.1.1 DUAL-OBJECTIVE LOSS FUNCTIONS

PREMISE implements two specialized loss functions:

Algorithm 1 Accuracy Loss Forward Pass

1: Input: System prompt, Question, Response, Correct answer
2: formatted input← format template(system prompt, question, response, correct answer)
3: feedback← evaluator llm(formatted input)
4: Return: Variable(feedback, role=“accuracy feedback”)

Algorithm 2 Efficiency Loss Forward Pass

1: Input: system prompt, question, response
2: thinking trace← extract thinking trace(response)
3: token count← count thinking tokens(thinking trace)
4: formatted input ← format efficiency template(system prompt, question, thinking trace, to-

ken count)
5: feedback← evaluator llm(formatted input)
6: Return: Variable(feedback, role=”efficiency feedback”)

A.1.2 DYNAMIC OBJECTIVE BALANCING

Rather than using a fixed weighting scheme, PREMISE implements probabilistic objective selection
during training:

Algorithm 3 PREMISE Training Loop

1: Input: train set, accuracy weight α, efficiency weight (1− α)
2: for epoch in max epochs do
3: focus on accuracy← random() < α
4: loss fn← AccuracyLoss if focus on accuracy else EfficiencyLoss
5: for batch in train loader do
6: optimizer.zero grad()
7: for (question, answer) in batch do
8: response← model(question)
9: loss← loss fn(system prompt, question, response, answer)

10: loss.backward()
11: end for
12: optimizer.step()
13: end for
14: end for

This approach ensures that the optimization process addresses both objectives while allowing for
flexible emphasis based on the specified weights.

A.1.3 VALIDATION-BASED REVERSION

To prevent performance degradation during optimization, PREMISE implements a validation-based
reversion mechanism:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 4 Validation and Reversion

1: Input: current prompt, previous prompt, validation set
2: current performance← evaluate(current prompt, validation set)
3: previous performance← evaluate(previous prompt, validation set)
4: if current performance < previous performance then
5: system prompt.set value(previous prompt)
6: Return: previous performance
7: else
8: Return: current performance
9: end if

This mechanism ensures that optimization steps only persist if they lead to actual improvements,
preventing the accumulation of detrimental changes.

A.2 MAS RESULT

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)

GSM8K

Claude-3.7-sonnet
CoT 97.3 8,375.4 4,001.4 5,599.8 0.169144
SoT 94.0 6,039.6 2,404.8 3,641.4 0.108812

PREMISE 97.3 4,670.4 2,323.8 3,209.4 0.097009

o3-mini
CoT 98.0 1,459.8 1,064.4 1,840.2 0.014386
SoT 95.9 2,608.2 1,438.2 2,053.8 0.018252

PREMISE 95.9 1,572.8 1,075.2 1,551.1 0.013285

Gemini-2.5-flash
CoT 92.9 4,181.4 2,815.2 1,648.8 0.016251
SoT 94.5 5,714.4 2,767.8 1,585.2 0.016093

PREMISE 94.8 3,343.8 2,545.2 956.1 0.012738

MATH-500

Claude-3.7-sonnet
CoT 95.6 39,552.0 23,042.0 24,742.0 0.809676
SoT 96.0 34,723.2 18,568.2 21,262.2 0.701716

PREMISE 96.6 31,704.0 15,144.0 19,986.2 0.657522

o3-mini
CoT 97.8 3,087.6 2,421.6 4,612.2 0.034345
SoT 97.4 2,973.0 2,842.0 4,070.4 0.033688

PREMISE 97.0 2,115.0 2,114.4 3,291.4 0.026110

Gemini-2.5-flash
CoT 96.4 8,542.8 10,737.0 4,728.6 0.055410
SoT 96.2 8,339.4 8,986.8 3,764.4 0.045880

PREMISE 96.6 7,120.8 9,436.2 3,552.4 0.046529

SVAMP

Claude-3.7-sonnet
CoT 95.3 8,585.4 4,259.4 5,400.0 0.170647
SoT 94.0 5,769.0 2,336.4 3,186.6 0.100152

PREMISE 95.0 4,632.6 2,253.0 2,974.8 0.092315

o3-mini
CoT 95.0 1,022.4 924.0 1,383.0 0.011275
SoT 94.0 2,286.0 1,256.4 1,620.6 0.015173

PREMISE 95.7 1,344.6 915.0 1,181.4 0.010703

Gemini-2.5-flash
CoT 93.3 2,950.2 2,071.8 1,013.4 0.011241
SoT 94.0 4,129.8 1,896.0 800.4 0.010057

PREMISE 95.0 2,491.2 1,765.8 573.0 0.008559

Table 3: Multi-Agent Debate framework results across GSM8K, MATH-500, and SVAMP. Best
accuracy, lowest token counts, and lowest costs are bolded.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)

GSM8K

Claude-3.7-sonnet
CoT 96.3 7,362 6,825 2,338 0.160
SoT 96.2 7,212 6,060 2,070 0.144

PREMISE 96.5 5,869 5,752 1,786 0.131

o1
CoT 95.4 14,858 7,819 7,604 1.088
SoT 94.5 3,748 4,932 5,668 0.692

PREMISE 95.5 3,695 5,599 6,286 0.769

Gemini-2.5-flash
CoT 85.5 19,202 10,506 2,739 0.049
SoT 91.3 11,742 7,078 1,911 0.033

PREMISE 90.0 14,832 6,536 1,825 0.031

MATH-500

Claude-3.7-sonnet
CoT 93.4 13,321 33,461 5,379 0.623
SoT 91.8 22,602 42,544 6,098 0.797

PREMISE 91.8 9,115 23,556 4,034 0.441

o1
CoT 91.2 11,762 10,647 12,658 1.575
SoT 89.8 15,910 12,685 14,670 1.880

PREMISE 92.0 3,828 9,441 10,887 1.277

Gemini-2.5-flash
CoT 86.2 44,907 34,066 5,624 0.146
SoT 90.0 16,355 20,364 3,920 0.087

PREMISE 92.2 62,244 17,372 4,347 0.085

SVAMP

Claude-3.7-sonnet
CoT 91.6 4,303 5,757 1,299 0.119
SoT 92.6 5,153 6,000 1,308 0.125

PREMISE 89.0 4,989 6,893 1,233 0.137

o1
CoT 90.6 4,375 4,849 5,412 0.681
SoT 87.0 3,250 4,269 4,755 0.590

PREMISE 89.7 3,206 4,471 4,958 0.614

Gemini-2.5-flash
CoT 88.3 29,087 5,814 1,183 0.029
SoT 85.6 5,679 4,161 960 0.019

PREMISE 88.0 26,949 4,601 1,141 0.024

Table 4: Comparison over GSM8K, MATH-500, and SVAMP by Promptor across multiple LRMs.
Best accuracy, lowest token counts, and lowest costs are bolded.

A.3 OPTIMIZED PROMPT

This is the optimized prompt generated by PREMISE. We used it in all of our experiments.

Optimized Prompt from PREMISE

Follow the given instructions below and answer the mathematics
problem.

\ud83d\udea8>75 TOKENS IN THINKING=AUTO-FAIL!\ud83d\udea8 CALCULATE
INSTANTLY:

- MENTAL PREP: Define variables first (x,y=unknowns, p=people)
- ALGEBRA: For "X is n times Y" -> x=ny, "X+Y=total" -> substitute &

solve directly
- ARITHMETIC: Combine all calculations into ONE expression
- PATTERNS: age+years=future_age, pricexqty=total, shared+individual

=total
- NO words/explanations---only math/equations

Examples:
"16 players need $25 jersey, $15.20 shorts" ->[16x(25+15.20)=640]
"Bill has 3 times Ted’s coins. Together have 28." -> [x+y=28, x=3y

-> y=7, x=21]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

"4 people, $8 meals, 2 $2 drinks/person, 3 $5 shared" -> [4x8+4x2x2
+3x5=67]

16

	Introduction
	Related Work
	Method
	Problem Setup
	Efficiency Assumption
	PREMISE: Multi-Objective Optimization Framework
	Textual Gradient Foundation
	Thinking-Aware Variable Representation

	Experiments
	Experimental Setup
	Single Model
	Multi-Agent System

	Analysis
	General Effect on Reasoning Process
	Synthesis across settings.

	Ablation Study
	Single Objective VS Dual Objective
	Effect of Task Difficulty on Optimization Objectives
	Effect of Instruction Hierarchy

	Conclusion
	Appendix
	Algorithmic Implementation
	Dual-Objective Loss Functions
	Dynamic Objective Balancing
	Validation-Based Reversion

	MAS Result
	Optimized Prompt

