Under review as a conference paper at ICLR 2026

PREMISE: SCALABLE AND STRATEGIC PROMPT OP-
TIMIZATION FOR EFFICIENT MATHEMATICAL REASON-
ING IN LARGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Reasoning Models (LRMs) like Claude 3.7 Sonnet and OpenAl ol achieve
strong performance on mathematical tasks via long Chain-of-Thought (CoT), but
often generate unnecessarily verbose reasoning traces. This inflates token usage
and cost, limiting deployment in latency-sensitive or API-constrained settings. We
present PREMISE (PRompt-based Efficient Mathematical Inference with Strate-
gic Evaluation), a prompt-only framework designed specifically for black-box
commercial LRMs. PREMISE reduces reasoning overhead without modifying
model weights or requiring multiple queries. It combines trace-level diagnos-
tics with gradient-based prompt optimization to minimize redundant computation
while preserving answer accuracy. To jointly optimize for brevity and correctness,
PREMISE uses a multi-objective textual optimization procedure that balances
token length and answer validity via natural language gradients. Unlike prior
approaches, PREMISE operates entirely within a single-pass black-box interface,
enabling efficient reasoning in commercial LLMs. Across GSM8SK, SVAMP, and
MATHS500, PREMISE is able to obtain average accuracy of 94.7%, while reducing
reasoning tokens by up to 84.3% and cutting dollar cost by 82.2%. These results
establish prompt-level optimization as a practical, scalable pathway for efficient
LRM inference without compromising reasoning quality.

1 INTRODUCTION

Large Language Models (LLMs) have emerged as powerful tools for natural language understanding
and multi-step reasoning tasks. The recent development of reasoning specialized LLMs, which
commonly referred to as Large Reasoning Models (LRMs) (Xu et al., 2025a), has pushed the frontier
of advanced logical reasoning, particularly in mathematics (Cobbe et al., 2021b; Hendrycks et al.,
2021)) and programming (Codeforces},|2025;|Chen et al.,2021). Models such as OpenAI’s ol (OpenAll
2024) and DeepSeek-R1 (Guo et al. 2025) build on base pretrained models and use multi-stage
supervised fine-tuning and reinforcement learning to encourage structured reasoning behaviors.
Their boosted reasoning abilities have unlocked applications in domains like real-world settings like
interactive assistants, robotic planning systems, and real-time retrieval applications.

Despite these advances, practical deployment is hindered by efficiency concerns. Token-based billing
and similar bottlenecks make long reasoning chains costly and often infeasible in commercial settings.
Recent work has therefore explored strategies for efficient reasoning, including length-constrained
prompting (Han et al., [2024; | Xu et al., [2025b} Nayab et al., [2025), self-training with compressed
CoT data (Munkhbat et al.| [2025; Kang et al., [2024)), latent-space reasoning (Hao et al.|[2024; |Shen
et al.| 2025} (Cheng & Van Durme, 2024), and dynamic test-time routing (Sun et al., 2024; [Liao
et al.L 2025; Wang et al.|, 2025). These approaches generally fall into two categories: model-level
adaptations that require access to internal weights (e.g., fine-tuning, RL, latent representation training)
and prompt-based methods that rely on static heuristics or rigid length constraints. The model-level
approaches often require weight access, large-scale training data, or reinforcement learning pipelines,
which makes them infeasible for black-box LRMs. Prompt-based approaches, while training-free,
typically rely on static heuristics or rigid length limits that treat all reasoning steps uniformly, offering
no systematic way to diagnose or adaptively control inefficiencies in the reasoning process.

Under review as a conference paper at ICLR 2026

To address these challenges, we present PREMISE (PRompt-based Efficient Mathematical Inference
with Strategic Evaluation). PREMISE leverages natural language gradient methods (Yuksekgonul
et al.} |2024; Zhang et al.,|2024) and extends them with trace-level diagnostics that directly assess
reasoning efficiency. By incorporating these diagnostics into a multi-objective optimization loop,
PREMISE generates reusable prompts that encourage models to maintain logical correctness while
avoiding redundant elaboration. This design makes PREMISE broadly applicable to black-box LRMs
such as Claude 3.7 Sonnet(Anthropic) 2025), OpenAl 03-mini(OpenAll |2025), and Gemini 2.5
Flash(DeepMind, [2025)), enabling efficient reasoning that reduces token usage and inference cost
without sacrificing accuracy.

We evaluate PREMISE across GSM8K, SVAMP, and MATHS500, showing that it matches or exceeds
CoT (Wei et al.||2023) and SoT (Aytes et al.,|2025) prompting in accuracy while reducing reasoning
token usage by up to 84.3%. PREMISE operates entirely through the prompt interface, making it
suitable for any commercial LRM. To the best of our knowledge, this is the first method to combine
trace-level reasoning diagnostics with prompt-driven optimization for efficient inference in black-box
models.

Our contributions are three-fold:

* We introduce PREMISE, an optimization framework that produce prompt solution for efficient
reasoning in black-box LRMs. PREMISE works without model fine-tuning or multi-sample
decoding, making it applicable to commercial models.

* We define and operationalize trace-level diagnostic metrics that capture inefficient reasoning
patterns during inference. These diagnostics provide a principled foundation for prompt-based
reasoning control and enable systematic optimization of reasoning efficiency.

* We demonstrate that PREMISE achieves up to 87.5% reduction in token usage while matching or
improving accuracy compared to standard CoT prompting across GSM8SK, SVAMP, and Math500,
highlighting its effectiveness for real-world efficient inference.

2 RELATED WORK

Chain-of-Thought Prompting. Chain-of-Thought (CoT) prompting (Wei et al., 2022) has emerged as
a central technique for improving reasoning in LLMs, with extensions such as majority voting (Wang
et al.,|[2025)), dynamic selection (Xu et al.| 2025b)), and self-consistency (Sun et al.| [2024). While
these methods improve accuracy, they often produce excessively long reasoning traces, especially on
simple problems (Chen et al.,|2024; |Yang et al., 2025), leading to inefficiency. Other works explore
truncation strategies, such as token-consistency pruning (Su et al.| [2025)), but provide no mechanism
for systematically diagnosing inefficiencies.

Model-Based Efficient Reasoning. Approaches like DeepSeek-R1 (Guo et all, [2025) employ
reinforcement learning to enforce compact templates, while others fine-tune models on variable-
length CoT corpora (Liu et al.|[2024a; |Kang et al., [2024} [Munkhbat et al., |2025) or distill reasoning
into latent representations (Hao et al.,[2024; |Shen et al., 2025 |Cheng & Van Durme)} 2024)). These
methods require access to model weights and large-scale training data, which limits applicability to
black-box LRMs, and they generally lack direct trace-level evaluation.

Prompt-Based Efficient Reasoning. Training-free methods constrain reasoning through prompt
design. Token-Budget prompting (Han et al., [2024)) sets explicit limits, while CCoT (Nayab et al.|
2025)), CoD (Xu et al., 2025b)), and SoT (Aytes et al.,|[2025) encourage minimal intermediate drafts.
Other studies propose compression-based constraints (Lee et al., 2025), but these approaches rely on
static heuristics without dynamic or principled control.

Test-Time and Dynamic Reasoning. Methods such as best-of-n decoding (Wang et al., [2025)),
speculative decoding (Sun et al., 2024; Liao et al.| [2025), and reward-guided sampling (Fu et al.
2024) improve inference by reranking multiple outputs. Dynamic tree search (Ding et al.| [2025),
summarization-based reasoning (Zhang et al., 2025), and iterative inference loops (Yan et al., 2025)
further explore adaptive compute allocation. However, these techniques often require multiple
forward passes, auxiliary scoring models, or batch-mode generation, which introduces substantial
computational overhead.

Under review as a conference paper at ICLR 2026

Summary. In short, prior work has primarily targeted either (1) model-level adaptations that demand
parameter access and heavy supervision or (2) heuristic prompt- and sampling-based strategies that
lack systematic trace-level diagnostics. Our work complements these directions by introducing metrics
of reasoning inefficiency and incorporating them into a prompt-level optimization framework that is
black-box compatible, enabling efficient reasoning without retraining or multi-sample decoding.

3 METHOD

Our objective is to guide black-box LRMs to generate reasoning traces that are not only correct but also
efficient. We first introduce the problem setup and an efficiency assumption, which together motivate
a multi-objective optimization framework inspired by recent advances in textual optimization.

3.1 PROBLEM SETUP

Let ¢ be a question with ground-truth answer A, and let R denote the set of possible reasoning traces
that a model may generate for ¢. Each trace € R is a token sequence:

r= (t17t27 s 7tL(7‘))a

where L(r) € N is the token length of 7. Let a(r) denote the answer extracted from r, and define the
binary correctness indicator:
1, ifa(r) = A,
ace(r,q) = {0, otherwise.

This setup captures the dual challenge: among the many traces a model may produce, we care about
both whether the final answer is correct and how costly the reasoning path is.

3.2 EFFICIENCY ASSUMPTION

Early pilot experiments similar to CCoT (Nayab et al.,|2025) revealed that naively refined prompts
can substantially reduce the length of reasoning traces, but sometimes at the expense of accuracy.
This observation motivates a guiding principle: efficiency is valuable only if correctness is preserved.
We therefore posit the following assumption: among all correct reasoning traces for a given question,
the optimal one is the shortest in terms of tokens. Formally,

r*(q) = argmin {L(r) | acc(r,q) =1}, L*(g) = L(r"(q)).

Equation [3.2] establishes the target we aim to approximate through prompt optimization: concise yet
correct reasoning.

3.3 PREMISE: MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

The efficiency assumption highlights the need to optimize not only for correctness but also for the
length of reasoning traces. Existing prompt optimization systems such as TEXTGRAD (Yuksekgonul
et al.,|2024)) and REVOLVE (Zhang et al.| 2024) provide a natural foundation: they frame prompts as
variables that can be iteratively refined using feedback expressed in natural language. However, these
methods are largely accuracy-driven and do not explicitly incorporate efficiency objectives.

Inspired by their design, we extend textual optimization into a dual-objective framework that balances
both accuracy and efficiency. Concretely, at iteration ¢ we optimize the prompt p; by minimizing:

L(pe,q,7) = - Lace(pesq,7) + (1 — @) - Lepr(pe, g, 1),
where a € [0, 1] governs the trade-off between the two objectives.
The accuracy term penalizes incorrect outputs:
Lace(pr,q,7) = Egug[1 — ace(r, q)],

ensuring the model’s final predictions remain correct. The efficiency term penalizes unnecessarily
long traces:

[’eff(pta Q7T) = I(T7 q)a

Under review as a conference paper at ICLR 2026

where I(r, q) measures the deviation of the observed trace length from the shortest known correct
trace L*(q).

By weaving these two objectives together, PREMISE produces prompts that steer LRMs toward
reasoning paths that are both reliable and compact, addressing the limitations observed in our
preliminary experiments.

3.3.1 TEXTUAL GRADIENT FOUNDATION

We adopt the general pipeline of textual optimization for LLM-based systems (Yuksekgonul et al.}
2024; [Zhang et al.| [2024), where prompts are optimized using feedback in the form of natural
language gradients, with three key phases:

Forward Pass: Inputs are processed sequentially through the computational graph. Each node
generates outputs based on prior results, creating a trajectory of intermediate states that captures the
system’s reasoning process.

Language Loss Computation: An evaluator LLM assesses the system’s performance by generating
textual feedback. Unlike traditional numerical losses, this feedback provides interpretable insights
into how well the system’s outputs align with task objectives.

Backward Pass: Textual gradients are backpropagated through the computational graph nodes.
These gradients, expressed as natural language instructions, specify how system variables should be
adjusted to improve the objective function.

3.3.2 THINKING-AWARE VARIABLE REPRESENTATION

To integrate efficiency into the optimization loop, PREMISE introduces specialized thinking-aware
variable that jointly capture textual content and its reasoning footprint:

Vininking = {value, trace, token_count, role_description}.

Here, value denotes the textual output under optimization, frace records the intermediate reasoning
steps generated by thinking-enabled models (e.g., Claude 3.7 Sonnet’s hidden reasoning text),
token_count tracks the computational budget consumed, and role_description specifies the function
of the variable within the prompt. This enriched representation allows PREMISE to simultaneously
evaluate semantic correctness and reasoning efficiency, enabling optimization that is sensitive not
only to content quality but also to the cost of inference. Full algorithmic details are provided in

Appendix [A.T]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models & Multi-Agent Systems. We used leading Large Reasoning Models: OpenAl 01-2024-12-
17, 03-mini, Claude-3-7-sonnet-20250219, and Gemini-2.5-flash-preview-04-17, chosen for their
state-of-the-art performance and popularity.

In addition to single-model inference, we also test PREMISE on general-purpose multi-agent system
settings like Multi-Agent Debate (MAD) (Du et al., [2023), Dylan (Liu et al.l 2024b), and Promp-
tor (Chen et al.,[2025). The results show that PREMISE improves both reasoning accuracy and token
efficiency compared to baseline prompting.

Datasets. To comprehensively evaluate the efficiency and correctness of our method, we conduct
experiments on four widely-used mathematical reasoning datasets: GSM8K (Cobbe et al.,|2021a),
SVAMP (Patel et al.| 2021)), MATH500 (Lightman et al.|[2024), and AIME2024.

Metrics. PREMISE is evaluated on accuracy and efficiency. Accuracy is the proportion of correctly
solved question—answer pairs. Efficiency is measured by splitting token usage into input (prompt),
reasoning (hidden thoughts), and output (final answer). We also report monetary cost by applying API-
specific prices to each token type, with PREMISE aiming to maximize accuracy while minimizing
both token usage and cost.

Under review as a conference paper at ICLR 2026

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)
CoT 940 1170 8949 1.113.0 0.030
Claude-3.7-sonnet SoT 959 645.0 430.1 567.7 0.016
PREMISE 960 3570 327.8 3640 0.011
CoT 963 844 2592 4106 0.003
GSMBK 3 mini SoT 964 5474 3241 4038 0.003
PREMISE 958 3054 201.6 2185 0.002
CoT 962 78.6 4888 2115 0.002
Gemini-2.5-flash SoT 942 5766 3543 2182 0.002
PREMISE 926 3216 300.1 209 0.001
CoT 958 1289 47218 51846 0.148
Claude-3.7-sonnet SoT 95.0 656.9 3,962.3 4,260.1 0.125
PREMISE 956 3689 3.7407 38252 0.114
CoT 964 944 7313 11396 0.008
MATH-500 3 ini SoT 952 5574 6792 8145 0007
PREMISE 930 3154 576.6 609.4 0.005
CoT 976 888 2908 9221 0013
Gemini-2.5-flash SoT 96.8 586.8 1684.8 575.5 0.007
PREMISE 968 3318 1291 1548 0.007
CoT 940 580 11230 1510 0.004
Claude-3.7-sonnet ~ SoT 940 6020 6060 930 0.002
PREMISE 940 5840 1760 260 0.001
Norm 933 645 2935 3914 0.003
SVAMP 3 mini SoT 916 5275 2922 3393 0.003
PREMISE 950 2855 1591 1688 0.001
Norm 936 587 4218 1110 0.001
Gemini-2.5-flash SoT 933 5567 2335 948 0.001

PREMISE 93.3 301.7 210.5 111 0.001

Table 1: Comparison over GSM8K, MATH-500, and SVAMP by single-model across multiple LLMs.
Best accuracy, lowest token usage, and lowest cost are highlighted in bold.

4.2 SINGLE MODEL

Stability and cost reduction across models and benchmarks. Across GSM8K, SVAMP, and
MATH-500, PREMISE consistently balances accuracy and efficiency, achieving near-parity with
or surpassing baseline prompting methods while substantially lowering token usage and cost. With
Claude 3.7 Sonnet, PREMISE delivers the strongest stability: on GSM8K and MATH-500, accuracy
remains above 97%, closely matching CoT and SoT, while cutting the combined reasoning and
completion tokens by 40—60%. For example, on GSM8K PREMISE reduces Claude 3.7 Sonnet’s
cost from $0.080 (CoT) to $0.047, a 41% saving. On SVAMP, accuracy is within 1-1.5% of baselines
but dollar cost drops by nearly 30%. This shows that Claude 3.7 Sonnet’s explicit reasoning channel
aligns well with PREMISE’s compression cues. For OpenAl 03-mini, results reveal a mixed pattern.
PREMISE maintains competitive accuracy (e.g., 97.5% on GSM8K, 96.6% on MATH-500), but token
savings are smaller and sometimes offset by longer completions. On SVAMP, PREMISE improves
accuracy to 94.6% while lowering cost from $0.140 to $0.108. However, the gains are less pronounced
than for Claude 3.7 Sonnet, suggesting that o-series models only partially follow PREMISE’s concise-
reasoning signals. With Gemini 2.5 Flash, PREMISE shows substantial efficiency improvements on
GSMS8K and SVAMP. On GSMSK, cost falls from $0.008 to $0.005 with no accuracy loss, and on
SVAMP, PREMISE delivers the lowest cost overall while keeping accuracy at 95.6%. On MATH-500,
however, Gemini requires longer, proof-like reasoning; aggressive compression harms accuracy
slightly (97.0% vs. 98.0% under CoT) even though costs are reduced by ~20%. This indicates that
Gemini 2,5 Flash is more sensitive to over-compression on complex proofs.

Summary. Overall, PREMISE achieves cost reductions of 20-60% across benchmarks while keeping
accuracy within £1% of the strongest baseline in most cases. The method aligns particularly well

Under review as a conference paper at ICLR 2026

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)
CoT 97.0 30732 1,991.1 27254 0.080
Claude-3.7-sonnet SoT 97.0 2,768.0 1,874.1 2,431.0 0.073
PREMISE 975 1469.0 12927 15319 0.047
GSMEK CoT 975 25647 8442 12243 0.163
03-mini SoT 97.1 34259 18268 16433 0.295
PREMISE 97.5 1,069.8 8323 9244 0.121
CoT 96.0 27684 14750 5764 0008
Gemini-2.5-flash SoT 955 69085 52557 1,769.9 0.026
PREMISE 960 1,143.1 12612 1574 0.005
CoT 97.6 39286 19,0292 27853 0.609
Claude-3.7-sonnet SoT 948 34047 184691 3231.1 0.582
PREMISE 974 18750 185526 19324 0575
CoT 972 30654 25254 37354 0422
MATH-500 ;3 ini SoT 96.0 40372 36112 45254 0537
PREMISE 966 1,187.0 2,060.8 22847 0.279
CoT 980 3.1368 79500 22910 0.036
Gemini-2.5-flash SoT 964 81121 10,501.4 32490 0.051
PREMISE 970 15391 6,666.6 2,1492 0.029
CoT 963 30813 29104 34473 0.105
Claude-3.7-sonnet SoT 956 22899 29747 32869 0.101
PREMISE 950 12947 22618 23973 0.074
CoT 943 24223 7530 9762 0.140
SVAMP 3 mini SoT 946 30156 1,6259 1.869.7 0255
PREMISE 946 1,053 747.8 8012 0.108
CoT 963 25775 10916 2875 0.005
Gemini-2.5-flash SoT 953 5399.6 51887 9425 0.022

PREMISE 95.6 1,098.9 866.3 110.0 0.004

Table 2: Dylan framework results across GSM8K, MATH-500, and SVAMP. Best accuracy, lowest
token usage, and lowest cost are highlighted in bold.

with Claude 3.7 Sonnet and Gemini 2.5 Flash on lightweight reasoning tasks, while 03-mini shows
weaker but still positive savings. The exception remains Gemini on MATH-500, where efficiency
gains must be balanced against the risk of omitting necessary intermediate steps. These trends
underscore PREMISE’s effectiveness as a general prompt-level optimizer, while also motivating
adaptive strategies for models and datasets with high reasoning complexity.

4.3 MULTI-AGENT SYSTEM

Versatility extends to Multi-Agent Systems We further evaluate PREMISE in multi-agent system
(MAS) frameworks, including Dylan, Multi-Agent Debate, and Promptor. These setups naturally incur
higher token usage due to inter-agent communication, yet PREMISE consistently offsets this overhead
by compressing reasoning traces and reducing redundant exchanges. On GSM8K, PREMISE achieves
stable accuracy across models while lowering overall cost. With Claude 3.7 Sonnet in the Promptor
setting, accuracy remains at 96.5%, but dollar cost drops from $0.160 (CoT) to $0.131, a 18%
reduction. For Gemini-2.5-Flash, PREMISE improves accuracy from 85% to 90% while cutting cost
by 37%. On GPT-based agents, accuracy is preserved at 95% and PREMISE trims more than 8k
input tokens, reducing expenditure by 29% despite slightly longer completions. On MATH-500, the
benefits of PREMISE are amplified by the length of proof-style reasoning. With Claude 3.7 Sonnet
in Promptor, PREMISE lowers cost from $0.623 to $0.441 (a 29% saving) while accuracy decreases
only 2 points. In MAD, PREMISE actually raises accuracy to 96.6% compared to 95.6% under CoT,
while still being cheaper. GPT-based agents show the strongest combined gains: PREMISE delivers
the highest accuracy in the group (92%) and lowers cost by nearly 20%. For Gemini, PREMISE
both improves accuracy by 6 points (from 86% to 92%) and reduces cost by 42%, demonstrating
that compressed agent exchanges can strengthen both correctness and efficiency. On SVAMP, which

Under review as a conference paper at ICLR 2026

involves shorter reasoning traces, absolute savings are smaller but still consistent. With Gemini
in MAD, PREMISE matches baseline accuracy while halving dollar cost. In Dylan and Promptor,
PREMISE provides the lowest costs across most models and typically stays within one percentage
point of the strongest accuracy.

Summary. Overall, PREMISE consistently reduces MAS costs by 20-60% while preserving or
slightly improving accuracy across diverse frameworks. Gains are most pronounced with Claude and
Gemini, where token-heavy debate and reviewer exchanges are streamlined into compact, verifiable
derivations. GPT-based agents exhibit weaker but still positive trends, constrained by their single-
channel architecture. These results demonstrate that PREMISE’s efficiency benefits extend beyond
single-model inference, effectively shifting the accuracy—efficiency frontier in collaborative multi-
agent reasoning.

5 ANALYSIS

5.1 GENERAL EFFECT ON REASONING PROCESS

As shown in GSM8K Thinking Text Example box below, there is a striking contrast between
the response from a standard large reasoning model and the one guided by PREMISE, revealing
significant improvements in both reasoning quality and token efficiency.

GSMB8K Thinking Text Example
N

Large Reasoning Model: Josh bought the house for $80,000 and spent $50,000 on repairs. (omit 314
tokens of inefficient computation). Profit: $200,000 - $130,000 = $70,000. (reached correct answer, but not
committed). Let me double-check... (omit 185 tokens of redundant reasoning). Profit is $70,000. Wait,
maybe I misunderstood—(omit 277 tokens of erroneous reasoning). Let’s assume the repairs added 150%
of purchase value. (omit 507 tokens of circular reasoning). Final answer: $70,000 profit.

(Total token count: 1568)

PREMISE:

1. Purchase = $80,000, Repairs = $50,000

2. Investment = $80,000 + $50,000 = $130,000

3. Value increase = 150% of original — $80,000 x 2.5 = $200,000

4. Profit = $200,000 - $130,000 = $70,000

(Total token count: 152)

Information compression. The free-form CoT occupies 1 568 tokens and includes more than three
detours and errorneous reasoning that do not change the final answer. PREMISE delivers the same
solution in only 152 tokens, a 90.3% reduction in reasoning.

Early commitment to a numeric plan. Because the prompt explicitly asks for a short sequence of
arithmetic steps, the model settles on the correct plan within the first few tokens and no longer revisits
earlier assumptions. This removes unnecessary back-tracking branches that inflate the baseline trace.

Stable, in-line verification. Any internal checks happen inside the same line that introduces a value,
so the external trace remains compact. The “let me double-check” loops that add hundreds of tokens
in the baseline are absent.

Compare to the baseline, PREMISE is significantly closer to the shortest known correct trace for this
question. Across the GSMS8K validation set, the average token budget drops significantly without
loss of accuracy, showing that a lightweight prompt scaffold can steer the model toward concise yet
reliable reasoning.

5.2 SYNTHESIS ACROSS SETTINGS.

Beyond single illustrative traces, our results show that PREMISE consistently shifts the accuracy—
efficiency trade-off in both single-model and multi-agent contexts. In single-model inference, Claude
3.7 Sonnet benefits most from PREMISE’s compression signals, achieving large cost reductions with
negligible accuracy loss. OpenAl’s o-series models respond less strongly, since their single-channel
interface exposes all intermediate thoughts as visible output, limiting PREMISE’s leverage. Gemini

Under review as a conference paper at ICLR 2026

2.5 Flash follows Claude 3.7 Sonnet on lightweight tasks but requires more cautious compression
on proof-heavy datasets like MATH-500. In multi-agent frameworks such as Dylan, MAD, and
Promptor, PREMISE mitigates the overhead of inter-agent communication by streamlining exchanges,
often reducing cost by 20-60% and in some cases improving accuracy. Taken together, these findings
suggest that PREMISE generalizes across diverse architectures and coordination setups, but its impact
depends on how much the underlying model or system exposes reasoning structure for compression.

6 ABLATION STUDY

AIME2024: Accuracy vs. Thinking Tokens

=3 Accuracy (%) | 600 System v User Prompt ks

75 —e— Thinking Tokens

5000

s / 4000

3000

[—
o e
o s
H o5 ;
2000 Ad 2000
650
) o 625 1000
o S o 20
- e « 00
CoT Eff Acc 3 s

&

Tokens

ki

Accuracy (%)
ing

ind

Thi

o d

Figure 1: Comparison of Figure 2: Comparison of Figure 3: Comparison of ef-
PREMISE with single- different optimization strate- fect of system instruction and
objective variants that gies on OpenAl 03-mini with user input with same prompt

optimise only token count or
only accuracy.

AIME 2024. CoT is the de-
fault result, Eff is our dual-

on the reasoning text length.

objective optimized model,
and Acc is solely optimized on
accuracy.

6.1 SINGLE OBJECTIVE VS DUAL OBJECTIVE

Figure [I] contrasts Premise with two ablated baselines with Claude 3.7 Sonnet on MATH500.
Accuracy-only optimisation delivers a minor gain in accuracy, yet it drives up both input- and
reasoning-token usage, opposing the goal of efficient inference. Token-only optimisation attains the
lowest token budget, but this saving costs roughly four percentage points of accuracy.

By jointly optimising for both objectives, PREMISE preserves high accuracy while substantially
reducing token consumption, demonstrating the necessity of a balanced objective during prompt
optimisation.

6.2 EFFECT OF TASK DIFFICULTY ON OPTIMIZATION OBJECTIVES

We observe that the impact of optimization depends strongly on the underlying task difficulty. On
benchmarks where models already attain high accuracy like such as GSM8K, SVAMP, and MATH-
500, optimizing for token efficiency yields substantial reductions in reasoning cost without sacrificing
performance. In contrast, on more challenging datasets where models lack sufficient capability (e.g.,
AIME-2024), aggressive efficiency optimization can degrade accuracy by prematurely truncating
necessary reasoning. Interestingly, when we shift the objective weight entirely toward accuracy (i.e.,
setting the efficiency weight to zero), performance improves while reasoning traces also become
shorter. This suggests that, in low-capability regimes, optimizing for correctness indirectly reduces
perplexity in the reasoning process, thereby lowering token usage as a byproduct. In other words,
when the model struggles with the task, accuracy-focused optimization encourages more coherent
reasoning paths that are both more reliable and more concise.

6.3 EFFECT OF INSTRUCTION HIERARCHY

We further examine how the placement of optimized prompts within the instruction hierarchy
influences their effectiveness. Specifically, we compare settings where the optimized prompt is
injected as system input versus as user input. Across all models, and most notably with OpenAI’s
o-series, we find that positioning the optimized prompt at the user level substantially weakens its

Under review as a conference paper at ICLR 2026

effect, often leading to longer or noisier reasoning traces, as shown in Fig[3] In extreme cases,
accuracy is preserved but the total token footprint increases, undermining the efficiency objective.

We hypothesize that this degradation arises from conflicts between the implicit default system instruc-
tions (e.g., alignment, verbosity, or self-reflection policies) and the injected user-level optimization
cues. When these layers compete, the model may prioritize the higher-level system defaults, in-
terpreting the user-provided optimization guidance as a secondary instruction. This misalignment
introduces additional uncertainty into the reasoning process, raising perplexity and producing verbose
or redundant traces rather than concise derivations.

These findings highlight that prompt-based optimization is not instruction-agnostic: effectiveness
depends critically on the interface layer through which guidance is delivered. For models that expose
a dedicated system channel (e.g., Claude 3.7 Sonnet), placing PREMISE prompts at the system
level yields consistent reductions in reasoning cost without harming accuracy. In contrast, when
only the user channel is available or prioritized, PREMISE’s compression objectives are partially
suppressed. This result underscores the importance of aligning optimization strategies with the
instruction hierarchy of each API, and suggests that future research should explore interface-aware
adaptation mechanisms to ensure robustness across heterogeneous model architectures.

7 CONCLUSION

We introduced PREMISE, a prompt-only optimization framework that enhances the efficiency
of mathematical reasoning in Large Reasoning Models (LRMs) while preserving accuracy. By
integrating trace-level diagnostics into a dual-objective optimization procedure, PREMISE guides
models toward concise yet correct reasoning without requiring access to internal weights or multiple
sampling passes. This design makes PREMISE broadly applicable to black-box commercial APIs.

Empirically, PREMISE consistently reduces reasoning overhead across benchmarks. On GSM8K,
SVAMP, and MATH-500, it achieves accuracy on par with or exceeding standard Chain-of-Thought
and Sketch-of-Thought prompting, while cutting token usage by up to 87% and monetary cost by
as much as 80%. These gains extend beyond single-model inference: in multi-agent frameworks
like Dylan, MAD, and Promptor, PREMISE streamlines inter-agent communication, delivering
20-60% cost savings while often improving accuracy. Together, these results demonstrate that
prompt-level optimization can substantially shift the accuracy—efficiency trade-off in both single-pass
and collaborative reasoning settings.

At the same time, our study reveals boundary conditions. Models that lack a dedicated reasoning
channel, such as GPT-style single-stream architectures, benefit less from PREMISE and can even
incur visible-trace inflation. Similarly, proof-heavy domains like MATH-500 require careful calibra-
tion: overly aggressive compression risks omitting critical intermediate steps. These observations
underscore the need for adaptive strategies that align compression intensity with both task complexity
and interface design.

Looking forward, PREMISE opens multiple avenues for exploration. Future work may extend trace-
level optimization to multilingual reasoning, non-mathematical domains, and real-time interactive
applications. Another promising direction is connecting token allocation with internal computational
states, which could yield deeper insights into how models temporally structure their reasoning. More
broadly, PREMISE provides not only a practical tool for efficient inference but also a framework
for analyzing the dynamics of reasoning itself, offering a scalable path toward both efficiency and
interpretability in large-scale language models.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/claude-3-7-sonnet,
February 2025. Accessed: 2025-09-22.

Simon A. Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-thought: Efficient llm reasoning with
adaptive cognitive-inspired sketching, 2025. URL https://arxiv.org/abs/2503.05179.

Ke Chen, Yufei Zhou, Xitong Zhang, and Haohan Wang. Prompt stability matters: Evaluating and
optimizing auto-generated prompt in general-purpose systems, 2025. URL https://arxiv.org/abs/
2505.13546.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Jeffrey Cheng and Benjamin Van Durme. Compressed chain of thought: Efficient reasoning through
dense representations. arXiv preprint arXiv:2412.13171, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021a. URL https://arxiv.org/abs/2110.
14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Codeforces. Codeforces - competitive programming platform, 2025. URL https://codeforces.com/.
Accessed: 2025-03-18.

DeepMind. Gemini flash. https://deepmind.google/models/gemini/flash/, 2025. Accessed: 2025-09-
22.

Yifu Ding, Wentao Jiang, Shunyu Liu, Yongcheng Jing, Jinyang Guo, Yingjie Wang, Jing Zhang,
Zengmao Wang, Ziwei Liu, Bo Du, et al. Dynamic parallel tree search for efficient Ilm reasoning.
arXiv preprint arXiv:2502.16235, 2025.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https://arxiv
org/abs/2305.14325.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving 1lm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing Ma, Zhenyu Chen, and Zhenting Wang. Token-
budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2021.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2503.05179
https://arxiv.org/abs/2505.13546
https://arxiv.org/abs/2505.13546
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://codeforces.com/
https://deepmind.google/models/gemini/flash/
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325

Under review as a conference paper at ICLR 2026

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-thought
without compromising effectiveness. arXiv preprint arXiv:2412.11664, 2024.

Ayeong Lee, Ethan Che, and Tianyi Peng. How well do 1lms compress their own chain-of-thought? a
token complexity approach. arXiv preprint arXiv:2503.01141, 2025.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In International
Conference on Learning Representations (ICLR), 2024. URL https://openreview.net/forum?id=
v8LOpN6EOL.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
Can language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024a.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration, 2024b. URL https://arxiv.org/abs/2310.02170.

Tergel Munkhbat, Namgyu Ho, Seohyun Kim, Yongjin Yang, Yujin Kim, and Se-Young Yun. Self-
training elicits concise reasoning in large language models. arXiv preprint arXiv:2502.20122,
2025.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicolamaria
Manes, and Fabrizio Giacomelli. Concise thoughts: Impact of output length on llm reasoning and
cost, 2025. URL https://arxiv.org/abs/2407.19825,

OpenAl. Learning to reason with llms.
urlhttps://openai.com/index/learning-to-reason-with-1lms/, 2024. Accessed: 15 March 2025.

OpenAl. Openai 03-mini system card. https://cdn.openai.com/03-mini-system-card-feb10.pdf,
January 2025. Accessed: 2025-09-22.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems?, 2021. URL https://arxiv.org/abs/2103.07191.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025.

DiJia Su, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinging Zheng. Token
assorted: Mixing latent and text tokens for improved language model reasoning. arXiv preprint
arXiv:2502.03275, 2025.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early
decoding. arXiv preprint arXiv:2503.01422, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan,
Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of
reinforced reasoning with large language models. arXiv preprint arXiv:2501.09686, 2025a.

11

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2407.19825
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2201.11903

Under review as a conference paper at ICLR 2026

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b.

Yuchen Yan, Yongliang Shen, Yang Liu, Jin Jiang, Mengdi Zhang, Jian Shao, and Yueting Zhuang.
Inftythink: Breaking the length limits of long-context reasoning in large language models. arXiv
preprint arXiv:2503.06692, 2025.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time
compute for llm reasoning. arXiv preprint arXiv:2502.18080, 2025.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic “differentiation” via text, 2024. URL https://arxiv.org/abs/2406.
07496.

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo, Shuofei Qiao, Lun Du, Da Zheng, Huajun
Chen, and Ningyu Zhang. Lightthinker: Thinking step-by-step compression. arXiv preprint
arXiv:2502.15589, 2025.

Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, and Haohan
Wang. Revolve: Optimizing ai systems by tracking response evolution in textual optimization,
2024. URL https://arxiv.org/abs/2412.03092.

12

https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2412.03092

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHMIC IMPLEMENTATION
A.1.1 DUAL-OBIJECTIVE LOSS FUNCTIONS

PREMISE implements two specialized loss functions:

Algorithm 1 Accuracy Loss Forward Pass

1: Input: System_prompt, Question, Response, Correct_answer

2. formatted_input <— format_template(system_prompt, question, response, correct_answer)
3: feedback <— evaluator_llm(formatted_input)

4: Return: Variable(feedback, role="accuracy_feedback™)

Algorithm 2 Efficiency Loss Forward Pass

1: Input: system_prompt, question, response

2: thinking_trace < extract_thinking_trace(response)

3: token_count <— count_thinking_tokens(thinking_trace)

4: formatted_input < format_efficiency_template(system_prompt, question, thinking_trace, to-
ken_count)

feedback <— evaluator_llm(formatted_input)

6: Return: Variable(feedback, role="efficiency_feedback’)

bl

A.1.2 DYNAMIC OBJECTIVE BALANCING

Rather than using a fixed weighting scheme, PREMISE implements probabilistic objective selection
during training:

Algorithm 3 PREMISE Training Loop

1: Input: train_set, accuracy_weight «, efficiency_weight (1 — «)

2: for epoch in max_epochs do

3: focus_on_accuracy «— random() < «

4 loss_fn <— AccuracyLoss if focus_on_accuracy else EfficiencyLoss
5: for batch in train_loader do

6 optimizer.zero_grad()

7 for (question, answer) in batch do

8 response <— model(question)

9: loss +— loss_fn(system_prompt, question, response, answer)
10: loss.backward()
11: end for
12: optimizer.step()
13: end for
14: end for

This approach ensures that the optimization process addresses both objectives while allowing for
flexible emphasis based on the specified weights.

A.1.3 VALIDATION-BASED REVERSION

To prevent performance degradation during optimization, PREMISE implements a validation-based
reversion mechanism:

13

Under review as a conference paper at ICLR 2026

Algorithm 4 Validation and Reversion

—

Input: current_prompt, previous_prompt, validation_set
current_performance <— evaluate(current_prompt, validation_set)
previous_performance <— evaluate(previous_prompt, validation_set)
if current_performance < previous_performance then
system_prompt.set_value(previous_prompt)
Return: previous_performance
else
Return: current_performance
end if

R A A ol

This mechanism ensures that optimization steps only persist if they lead to actual improvements,
preventing the accumulation of detrimental changes.

A.2 MAS RESULT

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)
CoT 973 83754 40014 55998 0.169144

Claude-3.7-sonnet ~ SoT 940 6039.6 24048 3.6414 0.108812

PREMISE 973 4.670.4 23238 32094 0.097009

GSMEK CoT 98.0 14598 1,0644 158402 0.014386
03-mini SoT 959 26082 14382 2053.8 0.018252

PREMISE 959 15728 10752 15511 0.013285

CoT 929 41814 28152 16488 0.016251

Gemini-2.5-flash SoT 945 57144 27678 15852 0.016093

PREMISE 948 33438 25452 9561 0.012738

CoT 956 39,5520 23,0420 247420 0.809676

Claude-3.7-sonnet ~ SoT 96.0 347232 185682 212622 0.701716

PREMISE 96.6 31.704.0 15,1440 199862 0.657522

CoT 978 3087.6 24216 46122 0.034345

MATH-500 3 rini SoT 97.4 2973.0 28420 40704 0.033688
PREMISE 97.0 21150 2,144 32914 0.026110

CoT 964 85428 10,7370 47286 0.055410

Gemini-2.5-flash SoT 962 83394 89868 3.7644 0.045880

PREMISE 96.6 7.1208 94362 35524 0.046529

CoT 953 85854 42594 54000 0.170647

Claude-3.7-sonnet ~ SoT 940 57690 23364 3.1866 0.100152

PREMISE 950 4,632.6 2253.0 29748 0.092315

SVAMP CoT 950 1,224 9240 13830 0011275
03-mini SoT 940 22860 12564 16206 0.015173

PREMISE 957 13446 9150 1,181.4 0.010703

CoT 933 29502 2,071.8 10134 0011241

Gemini-2.5-flash SoT 940 41298 18960 8004 0.010057

PREMISE 95.0 2,491.2 1,765.8 573.0 0.008559

Table 3: Multi-Agent Debate framework results across GSM8K, MATH-500, and SVAMP. Best
accuracy, lowest token counts, and lowest costs are bolded.

14

Under review as a conference paper at ICLR 2026

Dataset Model Method Acc. (%) Input Thinking Output Cost ($)
CoT 963 7362 6825 2338 0.160
Claude-3.7-sonnet SoT 96.2 7,212 6,060 2,070 0.144
PREMISE 965 5869 5752 1786 0.131
CoT 954 14858 7819 7.604 1088
GSM8K | SoT 945 3748 4932 5668 0.692
PREMISE 955 3,695 5599 6286 0.769
CoT 855 19202 10,506 2739 0.049
Gemini-2.5-flash SoT 913 11742 7078 1911 0.033
PREMISE 900 14832 6536 1,825 0.031
CoT 934 13321 33461 5379 0623
Claude-3.7-sonnet SoT 91.8 22,602 42,544 6,098 0.797
PREMISE 918 9115 23556 4,034 0.441
CoT 912 11,762 10,647 12,658 1.575
MATH-500 SoT 80.8 15910 12,685 14670 1.880
PREMISE 920 3828 9441 10887 1277
CoT 862 44907 34066 5624 0.146
Gemini-2.5-flash SoT 90.0 16355 20364 3920 0.087
PREMISE 922 62244 17372 4347 0.085
CoT 91.6 4303 5757 1299 0.119
Claude-3.7-sonnet SoT 92.6 5,153 6,000 1,308 0.125
PREMISE 890 4989 6893 1233 0.137
CoT 90.6 4375 4849 5412 0.681
SVAMP ol SoT 87.0 3250 4269 4755 0590
PREMISE 897 3206 4471 4958 0.6l4
CoT 883 29087 5814 1183 0.029
Gemini-2.5-flash SoT 85.6 5679 4161 90 0.019

PREMISE 88.0 26,949 4,601 1,141 0.024

Table 4: Comparison over GSM8K, MATH-500, and SVAMP by Promptor across multiple LRMs.
Best accuracy, lowest token counts, and lowest costs are bolded.

A.3 OPTIMIZED PROMPT

This is the optimized prompt generated by PREMISE. We used it in all of our experiments.

Optimized Prompt from PREMISE

Follow the given instructions below and answer the mathematics
problem.

\ud83d\udea8>75 TOKENS IN THINKING=AUTO-FAIL!\ud83d\udea8 CALCULATE
INSTANTLY:

— MENTAL PREP: Define variables first (x,y=unknowns, p=people)

— ALGEBRA: For "X is n times Y" -> x=ny, "X+Y=total" -> substitute &
solve directly

— ARITHMETIC: Combine all calculations into ONE expression

— PATTERNS: age+tyears=future_age, pricexgty=total, shared+individual

=total
- NO words/explanations---only math/equations
Examples:
"16 players need $25 Jjersey, $15.20 shorts" ->[16x(25+15.20)=640]
"Bill has 3 times Ted’s coins. Together have 28." -> [x+y=28, x=3y
-> y=7, x=21]
. J/

15

Under review as a conference paper at ICLR 2026

"4 people, $8 meals, 2 $2 drinks/person, 3 $5 shared" —-> [4x8+4x2x2
+3x5=67]

16

	Introduction
	Related Work
	Method
	Problem Setup
	Efficiency Assumption
	PREMISE: Multi-Objective Optimization Framework
	Textual Gradient Foundation
	Thinking-Aware Variable Representation

	Experiments
	Experimental Setup
	Single Model
	Multi-Agent System

	Analysis
	General Effect on Reasoning Process
	Synthesis across settings.

	Ablation Study
	Single Objective VS Dual Objective
	Effect of Task Difficulty on Optimization Objectives
	Effect of Instruction Hierarchy

	Conclusion
	Appendix
	Algorithmic Implementation
	Dual-Objective Loss Functions
	Dynamic Objective Balancing
	Validation-Based Reversion

	MAS Result
	Optimized Prompt

