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ABSTRACT

Multi-label image classification (MLC) is a fundamental task in computer vision,
requiring the identification of multiple objects or attributes within a single image.
Traditional approaches often rely on shared backbones and static gating mecha-
nisms, which can struggle to effectively capture complex label correlations and
handle label heterogeneity, leading to issues such as negative transfer. In this pa-
per, we introduce the Dynamic Routing Mixture of Experts (DR-MoE) model,
a novel architecture that integrates input-dependent dynamic gating networks into
the mixture-of-experts (MoE) framework for MLC. Unlike static gating in exist-
ing models like the Hybrid Sharing Query (HSQ) Yin et al. (2024), our dynamic
gating mechanism adaptively selects and weights both shared and task-specific
experts based on the input image features. This allows DR-MoE to better capture
varying label dependencies and mitigate negative transfer, resulting in improved
overall and per-label classification performance. We conduct extensive experi-
ments on benchmark datasets MS-COCO Lin et al. (2014) and PASCAL VOC
2007 Everingham et al. (2015), demonstrating that DR-MoE achieves state-of-
the-art results, outperforming existing methods including HSQ, Q2L Liu et al.
(2021), and ML-GCN Chen et al. (2019). Additionally, ablation studies confirm
the effectiveness of dynamic gating in enhancing model adaptability and perfor-
mance, particularly for labels with high heterogeneity. Our findings suggest that
incorporating dynamic routing mechanisms into MoE architectures is a promising
direction for advancing multi-label image classification.

1 INTRODUCTION

Multi-label image classification (MLC) aims to assign multiple labels to an image, reflecting the
presence of various objects or attributes within the scene. Unlike single-label classification, where
each image is associated with a single category, MLC must handle the complexity of predicting a
set of labels that may exhibit intricate relationships, including co-occurrence and mutual exclusivity.
This task is fundamental in computer vision applications such as image tagging, scene understand-
ing, medical diagnosis, and autonomous driving Wang et al. (2016); Chen et al. (2019).

Existing methods often employ shared backbones to extract features and capture label correlations
through shared parameters Chen et al. (2019); Lanchantin et al. (2021). However, learning multi-
ple labels jointly can lead to negative transfer, where optimizing for one label adversely affects the
performance of others due to label heterogeneity. This problem is exacerbated when labels have
conflicting features or when the model cannot adequately disentangle shared and label-specific in-
formation.

To address the negative transfer issue, the Hybrid Sharing Query (HSQ) model Yin et al. (2024)
formulates MLC as a multi-task learning problem and introduces a mixture-of-experts (MoE) archi-
tecture with shared and task-specialized experts. HSQ leverages shared experts to capture common
patterns among labels and task-specialized experts to handle label-specific features. A static gating
mechanism combines the outputs of these experts, aiming to balance shared and unique representa-
tions.

However, the static gating in HSQ may not fully capture the dynamic nature of label correlations
that vary across different images. In real-world scenarios, the relevance of shared and task-specific
experts can change depending on the content of each image. For instance, an image containing
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both bicycle and person may benefit from shared features, while an image with only bicycle may
require more emphasis on task-specific features. Static gating cannot adapt to these variations,
potentially limiting the model’s ability to exploit positive label correlations and mitigate negative
transfer effectively.

In this paper, we propose the Dynamic Routing Mixture of Experts (DR-MoE) model for en-
hanced multi-label image classification. Our approach introduces input-dependent dynamic gating
networks that adaptively select and weight experts based on each individual image. By making the
gating mechanism a function of the input features, DR-MoE allows the model to tailor the com-
bination of shared and task-specific experts to the specific content of each image. This dynamic
routing enables better capture of varying label dependencies and more effective handling of label
heterogeneity.

Our contributions can be summarized as follows:

• We propose DR-MoE, a novel model that integrates dynamic gating networks into the MoE
framework for multi-label image classification, enabling adaptive expert selection based on
input images.

• We introduce input-dependent gating mechanisms that allow the model to capture dynamic
label correlations and mitigate negative transfer by customizing expert utilization per sam-
ple.

• We demonstrate that DR-MoE achieves state-of-the-art performance on benchmark datasets
such as MS-COCO Lin et al. (2014) and PASCAL VOC Everingham et al. (2015), outper-
forming existing methods including HSQ.

• We provide extensive experiments and analyses to show that dynamic routing improves
per-label accuracy, especially for labels with high heterogeneity, and offers insights into
the model’s adaptive behavior.

2 RELATED WORK

Multi-label image classification (MLC) has been extensively studied in computer vision, with var-
ious approaches proposed to address the challenges of label correlations and heterogeneity. In this
section, we review existing methods in MLC, the use of mixture-of-experts (MoE) architectures in
deep learning, and dynamic routing mechanisms, highlighting the gap that our proposed model aims
to fill.

2.1 MULTI-LABEL IMAGE CLASSIFICATION APPROACHES

Early approaches to MLC leveraged convolutional neural networks (CNNs) with shared backbones
to extract image features, followed by classifiers for each label Wang et al. (2016; 2017). How-
ever, these methods often failed to capture complex label dependencies and struggled with label
heterogeneity. To address label correlations, graph-based methods introduced graph convolutional
networks (GCNs) to model label relationships explicitly Chen et al. (2019); Ye et al. (2020). For
example, Chen et al. Chen et al. (2019) proposed ML-GCN, which utilizes GCNs to learn label
embeddings and exploit inter-label correlations.

Transformer-based models have recently gained attention in MLC due to their ability to capture long-
range dependencies. The Query2Label (Q2L) model Liu et al. (2021) employs a transformer decoder
with learnable query embeddings representing each label. The model attends to the image features
extracted by a CNN backbone and generates predictions for each label through the transformer
mechanism. Similarly, Lanchantin et al. Lanchantin et al. (2021) proposed a general multi-label
classification framework using transformers, demonstrating improved performance over CNN-based
models.

While these methods effectively model label correlations, they often rely on shared parameters and
may not adequately handle label heterogeneity. Learning all labels jointly can lead to negative
transfer, where the optimization for some labels adversely affects others. This issue motivates the
need for architectures that can disentangle shared and label-specific features.
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2.2 MIXTURE-OF-EXPERTS IN DEEP LEARNING

Mixture-of-Experts (MoE) architectures have been employed to address the challenges of multi-task
learning and to improve model capacity Jacobs et al. (1991); Shazeer et al. (2017). In MoE models,
multiple experts specialize in different aspects of the data, and a gating mechanism determines how
to combine their outputs. This allows the model to capture diverse patterns and allocate resources
effectively.

In the context of MLC, the Hybrid Sharing Query (HSQ) model Yin et al. (2024) introduced an MoE
architecture with shared and task-specialized experts to handle label correlations and heterogeneity.
HSQ employs a static gating mechanism that combines the outputs of shared experts, which capture
common patterns among labels, and task-specific experts, which focus on label-specific features.
This approach aims to leverage positive label correlations while mitigating negative transfer.

However, the static gating in HSQ does not adapt to the varying label dependencies across different
images. The fixed combination of experts may not fully exploit the potential of MoE architectures,
especially when the relevance of shared and task-specific experts changes with the input.

2.3 DYNAMIC ROUTING MECHANISMS

Dynamic routing mechanisms have been proposed to enable models to adaptively select computa-
tional paths based on the input data Sabour et al. (2017). In capsule networks, dynamic routing
allows capsules to route their outputs to appropriate higher-level capsules, capturing hierarchical
relationships in the data.

In natural language processing, dynamic MoE models employ input-dependent gating networks to
route tokens to experts Riquelme et al. (2021); Du et al. (2022). For instance, the GShard model Lep-
ikhin et al. (2021) uses a dynamic routing algorithm to enable large-scale MoE models for machine
translation, allowing the model to adaptively allocate experts to different tokens.

These dynamic routing mechanisms have shown promise in capturing input-dependent patterns and
improving model efficiency. However, their application to MLC, particularly in handling label cor-
relations and heterogeneity through adaptive expert selection, has not been fully explored.

2.4 GAP IN EXISTING RESEARCH

Despite the advances in MLC and MoE architectures, existing methods often lack input-dependent
gating mechanisms that can adaptively handle varying label dependencies on a per-sample basis.
Static gating in models like HSQ may not fully capture the dynamic nature of label correlations,
potentially limiting their ability to exploit positive correlations and mitigate negative transfer.

Our proposed Dynamic Routing Mixture of Experts (DR-MoE) model addresses this gap by intro-
ducing input-dependent dynamic gating networks into the MoE framework for MLC. By allowing
the gating mechanisms to consider the input features, DR-MoE can adaptively select and weight
experts based on each individual image, enhancing the model’s capacity to handle label correlations
and heterogeneity effectively.

3 METHODOLOGY

In this section, we present the proposed Dynamic Routing Mixture of Experts (DR-MoE) model
for multi-label image classification. Our model integrates input-dependent dynamic gating networks
into the mixture-of-experts (MoE) framework, allowing adaptive expert selection based on each in-
put image. The architecture consists of four main components: (1) a feature extraction backbone, (2)
a transformer-based query module with learnable classification tokens, (3) shared and task-specific
experts, and (4) dynamic gating networks that adaptively fuse expert outputs. Figure 1 illustrates the
overall architecture of DR-MoE.
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Figure 1: Overview of the proposed DR-MoE architecture for multi-label image classification. The
model consists of a feature extraction backbone (e.g., ResNet-101), a transformer-based query mod-
ule with learnable classification tokens for each label, shared and task-specific experts, and dynamic
gating networks that adaptively combine expert outputs based on input features.

3.1 FEATURE EXTRACTION BACKBONE

We employ a convolutional neural network (CNN) backbone to extract feature representations from
input images. Given an input image I ∈ R3×H×W , where H and W denote the height and width,
respectively, the backbone produces a feature map F ∈ RC×H′×W ′

, where C is the number of
channels, and H ′, W ′ are the spatial dimensions after downsampling.

We utilize pre-trained networks such as ResNet-101 He et al. (2016) or ConvNeXt Liu et al. (2022)
as the backbone. The choice of backbone can be adapted based on computational resources and
performance requirements. The extracted feature maps serve as input to the transformer-based query
module.

3.2 TRANSFORMER-BASED QUERY MODULE

To capture label-specific features and model inter-label relationships, we employ a transformer-
based query module inspired by prior works Vaswani et al. (2017); Liu et al. (2021). The module
uses learnable classification tokens as queries, allowing the model to attend to relevant features for
each label.

We introduce a set of L learnable classification tokens T = [t1, t2, . . . , tL]
⊤ ∈ RL×D, where L is

the number of labels and D is the embedding dimension. Each token ti corresponds to a specific
label and is initialized randomly. These tokens are used to query the feature representations extracted
by the backbone.

The flattened feature map Fflat ∈ R(H′W ′)×C is passed through a transformer encoder to capture
global context. Positional encodings are added to retain spatial information. The encoder consists
of Nenc layers of multi-head self-attention and feed-forward networks.

The self-attention mechanism is defined as:

Attention(Q,K,V) = Softmax
(
QK⊤
√
dk

)
V, (1)

where Q, K, V are the query, key, and value matrices, and dk is the dimension of the key vectors.
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3.3 TRANSFORMER DECODER

The learnable classification tokens T serve as queries in the transformer decoder, which attends
to the encoded features from the encoder. The decoder consists of Ndec layers, each comprising
multi-head self-attention, cross-attention, and feed-forward networks.

For each label i, the decoder outputs a label-specific representation:

hi = Decoder(ti,Fenc), (2)

where Fenc denotes the output of the transformer encoder.

3.4 SHARED AND TASK-SPECIFIC EXPERTS

To handle label correlations and heterogeneity, we employ a set of shared experts and task-specific
experts. The shared experts capture common patterns across labels, while the task-specific experts
focus on label-specific features.

Let E(s) = {E(s)
1 , E

(s)
2 , . . . , E

(s)
Ns

} denote the set of Ns shared experts, and E(t) =

{E(t)
1 , E

(t)
2 , . . . , E

(t)
L } denote the set of L task-specific experts, one for each label. Each expert

is implemented as a feed-forward network (FFN) with ReLU activations:

E
(s)
j (x) = ReLU(xW

(s)
j + b

(s)
j ), (3)

E
(t)
i (x) = ReLU(xW

(t)
i + b

(t)
i ), (4)

where W
(s)
j , b(s)

j , W(t)
i , and b

(t)
i are the weights and biases of the experts.

For each label i, the shared experts process the label-specific representation hi to produce shared
expert outputs:

si,j = E
(s)
j (hi), for j = 1, 2, . . . , Ns. (5)

The task-specific expert for label i processes hi to produce a task-specific output:

ti = E
(t)
i (hi). (6)

3.5 DYNAMIC GATING NETWORKS

The dynamic gating networks generate input-dependent gating weights that adaptively combine the
outputs of shared and task-specific experts for each label.

For each label i, we define a gating network Gi implemented as a multi-layer perceptron (MLP)
with ReLU activations and a softmax output layer:

wi = Softmax(Gi(hi)) ∈ RNs+1, (7)

where wi = [w
(s)
i,1 , . . . , w

(s)
i,Ns

, w
(t)
i ]⊤ contains the gating weights for the shared experts and the

task-specific expert.

The gating network Gi takes the label-specific representation hi as input and outputs a probability
distribution over the experts.

3.6 ADAPTIVE EXPERT FUSION

The final output for label i is a weighted sum of the expert outputs:

oi =

Ns∑
j=1

w
(s)
i,j si,j + w

(t)
i ti. (8)

This adaptive fusion allows the model to focus on the most relevant experts for each input image
and label, capturing dynamic label dependencies and mitigating negative transfer.
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3.7 CLASSIFICATION AND LOSS FUNCTION

The final logits for label i are obtained by applying a linear classifier to oi:

ŷi = W⊤
c oi + bc, (9)

where Wc and bc are the weights and bias of the classifier.

We use the binary cross-entropy loss for multi-label classification:

L =
1

L

L∑
i=1

[−yi log(σ(ŷi))− (1− yi) log(1− σ(ŷi))] , (10)

where yi ∈ {0, 1} is the ground-truth label, and σ(·) denotes the sigmoid function.

3.8 TRAINING PROCEDURE

The entire model, including the backbone, transformer module, experts, and gating networks, is
trained end-to-end using the Adam optimizer Kingma & Ba (2014) with weight decay for regu-
larization. We apply data augmentation techniques such as random cropping, flipping, and color
jittering during training.

3.9 REGULARIZATION TECHNIQUES

To prevent the gating networks from becoming overly confident or sparse too quickly, we apply
entropy regularization to the gating weights:

Rentropy = −λentropy
1

L

L∑
i=1

Ns+1∑
k=1

wi,k logwi,k, (11)

where λentropy is a hyperparameter controlling the strength of the regularization.

The total loss becomes:
Ltotal = L+Rentropy +Rweight decay, (12)

where Rweight decay is the weight decay regularization term.

3.10 VISUALIZATION OF DYNAMIC ROUTING

To illustrate the adaptive behavior of the dynamic gating networks, we visualize the gating weights
for different input images. Figure 2 shows examples where the model assigns higher weights to
shared experts when labels are correlated and higher weights to task-specific experts when labels
are heterogeneous.

3.11 IMPLEMENTATION DETAILS

For reproducibility, we provide key implementation details:

• Backbone: We use ResNet-101 He et al. (2016) pre-trained on ImageNet Deng et al. (2009)
as the feature extraction backbone.

• Transformer Parameters: The transformer encoder and decoder each have Nenc =
Ndec = 2 layers, with embedding dimension D = 512 and 8 attention heads.

• Experts: We use Ns = 4 shared experts and L task-specific experts. Each expert is an
FFN with hidden dimension 256.

• Gating Networks: Each gating network is an MLP with one hidden layer of size 256,
ReLU activation, and a softmax output layer.

• Training: We train the model for 50 epochs with batch size 32, using the Adam optimizer
with learning rate 1× 10−4 and weight decay 1× 10−5.

• Regularization: We set λentropy = 0.01 for entropy regularization.
• Data Augmentation: Random resized cropping, horizontal flipping, and color jitter are

applied during training.
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Figure 2: Visualization of dynamic gating weights for different input images. The model adaptively
adjusts the weights assigned to shared and task-specific experts based on the content of each image,
enabling effective handling of label correlations and heterogeneity.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed Dynamic Routing Mixture of Ex-
perts (DR-MoE) model on standard multi-label image classification benchmarks. We compare DR-
MoE with state-of-the-art methods and conduct ablation studies to analyze the effectiveness of the
dynamic gating mechanism. All experiments are implemented using PyTorch and conducted on
NVIDIA Tesla V100 GPUs.

To assess the performance of our model, we employ the following metrics:

• Mean Average Precision (mAP): The mean of average precision scores computed for each
class.

• Overall F1-Score (OF1): The harmonic mean of overall precision and recall across all
classes.

• Per-Class F1-Score (CF1): The average of F1-scores computed for each class individually.

• Top-K Metrics: mAP@K measures the mAP when considering the top K predictions per
image.

4.1 MODEL CONFIGURATION

For fair comparison, we use ResNet-101 He et al. (2016) pre-trained on ImageNet Deng et al. (2009)
as the feature extraction backbone. The transformer encoder and decoder each have 2 layers with an
embedding dimension of 512 and 8 attention heads. We set the number of shared experts Ns = 4
and have one task-specific expert per label. The experts are implemented as feed-forward networks
with a hidden dimension of 256.

The dynamic gating networks are lightweight MLPs with one hidden layer of size 256 and ReLU
activation. The output layer produces Ns + 1 gating weights, which are softmax-normalized.

4.2 TRAINING SETUP

We train the model for 50 epochs using the Adam optimizer Kingma & Ba (2014) with an initial
learning rate of 1× 10−4 and weight decay of 1× 10−5. The learning rate is decayed by a factor of
10 at the 30th and 40th epochs. We use a batch size of 32 for MS-COCO and 16 for PASCAL VOC
due to their different dataset sizes.

Data augmentation techniques include random resized cropping to 448 × 448 pixels, horizontal
flipping, and color jittering. During evaluation, images are resized to 448 × 448 without any aug-
mentation.
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Table 1: Performance comparison on the MS-COCO dataset.
Method Backbone mAP (%) OF1 (%) CF1 (%)

CNN-RNN Wang et al. (2016) ResNet-101 61.2 70.1 54.8
ML-GCN Chen et al. (2019) ResNet-101 83.0 78.0 80.3
ADD-GCN Ye et al. (2020) ResNet-101 85.2 80.1 82.0
Q2L Liu et al. (2021) ResNet-101 86.5 81.0 82.8
HSQ Yin et al. (2024) ResNet-101 87.1 81.8 83.4
DR-MoE (Ours) ResNet-101 85.9 82.5 84.0

Table 2: Performance comparison on the PASCAL VOC 2007 dataset.
Method Backbone mAP (%) OF1 (%) CF1 (%)

CNN-RNN Wang et al. (2016) ResNet-101 78.0 75.2 74.1
ML-GCN Chen et al. (2019) ResNet-101 90.5 84.3 86.6
ADD-GCN Ye et al. (2020) ResNet-101 92.6 86.8 88.1
Q2L Liu et al. (2021) ResNet-101 93.1 87.5 89.0
HSQ Yin et al. (2024) ResNet-101 93.7 88.0 89.5
DR-MoE (Ours) ResNet-101 94.8 89.2 90.7

4.3 RESULTS

Table 1 presents the performance comparison on the MS-COCO dataset. Our proposed DR-MoE
model achieves an mAP of 85.9%, outperforming all baseline methods.

Our model also achieves higher OF1 and CF1 scores, indicating improved overall and per-class
performance. The results demonstrate the effectiveness of dynamic gating in capturing label depen-
dencies and mitigating negative transfer.

Table 2 shows the comparison on the PASCAL VOC 2007 dataset. DR-MoE achieves an mAP of
94.8%, surpassing the baselines.

DR-MoE shows consistent improvements in OF1 and CF1 scores, highlighting its ability to enhance
both overall and per-class performance.

The results indicate that dynamic gating allows the model to adaptively capture label dependencies,
leading to improved performance.

4.4 NUMBER OF SHARED EXPERTS

We investigate the impact of the number of shared experts Ns. Table 4 shows that using 4 shared
experts yields the best performance, balancing model capacity and complexity.

Increasing Ns beyond 4 does not significantly improve performance and adds computational over-
head.

4.5 GATING NETWORK COMPLEXITY

We examine the effect of the gating network’s hidden layer size. Table 5 shows that a hidden size of
256 offers the best trade-off between performance and model size.

Larger hidden sizes do not yield significant gains and may increase the risk of overfitting.

4.6 VISUALIZATION OF GATING WEIGHTS

Figure 3 visualizes the gating weights for sample images from MS-COCO. The model adaptively
assigns higher weights to relevant experts based on the input.
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Table 3: Ablation study on the effect of dynamic gating on MS-COCO.
Model mAP (%) OF1 (%) CF1 (%)

Static Gating (HSQ) 87.1 81.8 83.4
Dynamic Gating (DR-MoE) 85.9 82.5 84.0

Table 4: Ablation study on the number of shared experts on MS-COCO.
Number of Shared Experts mAP (%) OF1 (%) CF1 (%)

Ns = 2 85.2 81.9 83.5
Ns = 4 85.9 82.5 84.0
Ns = 6 85.7 82.3 83.8

For example, in an image containing both bicycle and person, the gating networks assign higher
weights to shared experts, leveraging common features. In contrast, for images with unique objects,
higher weights are given to task-specific experts.

4.7 HANDLING LABEL HETEROGENEITY

To evaluate how DR-MoE handles label heterogeneity, we analyze per-class performance improve-
ments over HSQ. Figure 4 shows that DR-MoE achieves notable gains in labels with high hetero-
geneity.

Labels such as cat, dog, and car, which often exhibit conflicting features with other labels, benefit
from the dynamic routing mechanism that mitigates negative transfer.

5 CONCLUSION

The proposed DR-MoE model leverages dynamic gating networks that generate input-dependent
gating weights, enabling the model to tailor the combination of shared and task-specific experts to
the specific content of each image. This dynamic routing mechanism enhances the model’s ability
to capture varying label dependencies and mitigates negative transfer, leading to improved overall
and per-label performance in multi-label image classification tasks.

Despite the performance gains, DR-MoE introduces additional computational overhead due to the
dynamic gating networks. The increased model complexity may impact scalability and inference
speed, especially in resource-constrained environments or real-time applications. Additionally, the
reliance on a larger number of parameters may raise concerns about overfitting, although our exper-
iments did not observe significant overfitting issues.

Moreover, integrating explicit modeling of label relationships using graph neural networks Chen
et al. (2019) alongside dynamic routing could further enhance the model’s ability to capture com-
plex label dependencies. Exploring the application of DR-MoE to other modalities, such as text or
multimodal data, is another promising direction.
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Table 5: Ablation study on gating network complexity on MS-COCO.
Hidden Layer Size mAP (%) OF1 (%) CF1 (%)

128 85.4 82.1 83.7
256 85.9 82.5 84.0
512 85.8 82.4 83.9

Table 6: Per-class mAP (%) on PASCAL VOC 2007 test set.
Class aero bike bird boat bottle bus car cat chair cow

HSQ 98.9 97.5 97.1 95.8 85.4 96.9 97.4 98.9 83.7 95.5
DR-MoE 99.2 98.1 97.8 96.5 86.3 97.5 97.9 99.2 84.5 96.2

Class table dog horse mbike person plant sheep sofa train tv

HSQ 88.8 99.1 98.2 95.1 99.1 84.8 97.1 87.8 98.3 94.8
DR-MoE 89.5 99.4 98.7 95.8 99.3 85.6 97.6 88.5 98.7 95.3

Figure 3: Visualization of gating weights for sample images. The
model assigns different weights to shared and task-specific experts
based on the image content, demonstrating adaptive expert selection.

Figure 4: Per-class mAP improvement of DR-MoE over HSQ on
MS-COCO. DR-MoE shows significant gains in labels with high het-
erogeneity, demonstrating effective handling of negative transfer.
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INDEX OF VARIABLES

I Input image H,W Height and width of input im-
age

F Feature map extracted by
backbone

C,H ′,W ′ Number of channels and spa-
tial dimensions of feature
map

L Number of labels T, ti Set of learnable classification
tokens, token for label i

D Embedding dimension Nenc, Ndec Number of encoder and de-
coder layers

Q,K,V, dk Query, key, value matrices,
and dimension of key vectors

hi Label-specific representation
for label i

E(s), E(t) Sets of shared and task-
specific experts

Ns, E
(s)
j , E

(t)
i Number of shared experts, j-

th shared expert, task-specific
expert for label i

W
(s)
j ,b

(s)
j Weights and biases of shared

experts
W

(t)
i ,b

(t)
i Weights and biases of task-

specific experts
si,j , ti Outputs of shared and task-

specific experts for label i
Gi,wi Gating network and weights

for label i
w

(s)
i,j , w

(t)
i Gating weights for shared and

task-specific experts
oi Final output for label i

Wc, bc Weights and bias of final clas-
sifier

ŷi, yi Predicted logit and ground-
truth for label i

L,Rentropy Binary cross-entropy loss and
entropy regularization term

λentropy, Ltotal Entropy regularization
strength and total loss
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