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Latent Representation Reorganization for Face Privacy Protection
Anonymous Authors

ABSTRACT
The issue of face privacy protection has aroused wide social con-
cern along with the increasing applications of face images. The
latest methods focus on achieving a good privacy-utility trade-
off so that the protected results can still be used to support the
downstream computer vision tasks. However, they may suffer from
limited flexibility in manipulating this tradeoff because the practical
requirements may vary under different scenarios. In this paper, we
present a two-stage latent representation reorganization (LReOrg)
framework for face image privacy protection relying on our condi-
tional bidirectional network which is optimized by using a distinct
keyword-based swap training strategy with a multi-task loss. The
privacy sensitive information are anonymized in the first stage and
the destroyed useful information are recovered in the second stage
according to user requirements. LReOrg is advantageous in: (a)
enabling users to recurrently process fine-grained attributes; (b)
providing flexible control over privacy-utility tradeoff by manipu-
lating which attributes to anonymize or preserve using cross-modal
keywords; and (c) eliminating the need of data annotations for net-
work training. The experimental results on benchmark datasets
have reported the superior ability of our approach for providing
flexible protection on facial information.

CCS CONCEPTS
• Security and privacy → Privacy protections; Usability in
security and privacy.

KEYWORDS
face image, privacy protection, recurrent, reorganization

1 INTRODUCTION
The issue of face privacy protection has aroused wide social con-
cerns along with the increasing application of face images that carry
lots of personal information (e.g. identity or religion) [31, 48, 56].
For example, the AI classifiers and DeepFake tools may easily read
personal information and generate illegal clone avatars, which
may bring about troubles (e.g. economic fraud) to individuals or
organizations if the data are misused. This has led to the set up of
more strict laws and regulations (e.g. GDPR, CCPA, PDPA and PIPA
[1, 35, 38, 57, 58]) on datamanagement. The immediate consequence
is that people need to comply complicated legal or ethical constrains
to avoid making troubles when accessing, using or disseminating
the face data, whichmay blockmany important scientific researches
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Figure 1: Demonstration of LReOrg for face anonymization.

or intelligent applications. One feasible way is to develop effective
anonymization techniques to protect the sensitive attributes and
preserve the desired non-sensitive ones because people may also
expect that the protected data can still be useful (i.e. utility preser-
vation) [11, 41, 45], where we collectively call all facial information
as attributes (e.g. identity, gender and age). Such kind of techniques
usually focuses on cheating both human and machine, and can be
used to support various computer vision tasks (e.g. street-view map,
autonomous drive and medical diagnostics [3, 30, 32, 60]) to clear
up the restrains on privacy, ethics, laws and regulations.

Existing works show that privacy protection and utility preser-
vation is a tradeoff problem, i.e. privacy-utility (PU) tradeoff, be-
cause both items are usually correlated [34, 38, 45, 60]. A higher
performance of the former usually corresponds to a lower perfor-
mance of the latter and vice versa. Recently, the generative methods
[15, 23, 27, 46] receive increasing attention for producing realistic
face images and achieving better PU tradeoff and various excellent
methods have been proposed [5, 7, 16, 21, 22, 30, 38, 47, 54, 58] by re-
placing the original face image with a synthesized anonymous one,
where some privacy protection strategies, like k-anonymity and
differential privacy [12, 14, 40, 45, 49, 50, 54], were also studied to
provide formal privacy guarantees. Although significant progresses
have achieved, the up-to-date works still suffer from limited flexibil-
ity in manipulating the PU tradeoff under practical conditions and
requirements by focusing on protecting the identity because some
attributes may also become sensitive in some cases, especially when
they are correlated to some special entities, events or activities, like
religion, ethnic, laws and so on. Thus, it is reasonable and necessary
to develop a more flexible mechnism for privacy protection.

To address the above problem, this paper presents a latent repre-
sentation reorganization (LReOrg) framework for face privacy pro-
tection based on our conditional disentanglement-fusion network
(CDFNet). LReOrg has several advantages for flexible anonymiza-
tion: (1) it can enable users to recurrently process fine-grained
attributes; (2) it can provide flexible control over PU tradeoff by
manipulating which attributes to anonymize or preserve using
cross-modal keywords; (3) it does not require any data annotations
for network training. Existing works usually treat anonymization
as a binary problem that hides the original identity and struggles
to preserve the other attributes. Differently, we generalize this as
a fine-grained problem by unifying privacy protection and utility
preservation in a recurrent process by letting users to determine

https://doi.org/XXXXXXX.XXXXXXX
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how to perform anonymization (see Figure 1). To our best knowl-
edge, this is the first time that the recurrent framework has been
successfully used for deep face privacy protection. Our main con-
tributions can be summarized as follows:

• A more resonable framework LReOrg is proposed for achiv-
ing amore flexible face anonymization by taking cross-modal
keywords as fine-grained conditions.

• A CDFNet is designed to support forward feature disen-
tanglement and backward feature fusion, which can recur-
rently support sensitive attributes anonymization and non-
sensitive attributes recovery.

• We introduce a keyword-based swap training strategy su-
pervised by using the CLIP model [44] and a multi-task loss.

• We rely on extensive experiments to quantitatively and qual-
itatively show the state-of-the-art performance of LReOrg
by studying the privacy protection and utility preservation
performances with respect to different attributes.

Note that CDFNet is built by following the architecture of In-
vertible Neural Network (INN) due to its excellent performance in
image generation tasks [2, 25]. The work most related to ours is
HiNet [25] which focuses on image steganography based on INN.
CDFNet can be seen as a generalization of it, but they are quite
different. First, CDFNet focuses on privacy protection, while HiNet
focuses on image steganography. Second, CDFNet presents a new
conditional version of INN based on cross-modal keywords. Third,
the building blocks,their input and output are different. Besides,
the network optimization method is also different.

2 RELATEDWORKS
In this section, we discuss the most related works in contrastive
language-image pretraining (CLIP) and face privacy protection.

Contrastive Language-Image Pretraining. Cross-modal vi-
sion and language representation has received lots of attention in
various tasks these years, such as image caption and visual question
answering. The success of Transformer [52] and BERT [9] has in-
spired many interesting works [43, 44, 55]. The recent CLIP model
[44] has received wide attention by learning a multi-modal embed-
ding space, which can be used to measure the sematic similarity
between text and image. CLIP was trained on a 400 million sized
dataset collected from the Internet, which has demonstrated power-
ful performances on various tasks and datasets. Due to the powerful
ability of CLIP, we employ it as the cross-modal attribute discrimi-
nator to train our network to make it understand the relationships
between text conditions and the anonymized face image.

Face Privacy Protection. Anonymization is regarded as an
effective way to protect the privacy of face images, which is usu-
ally realized by de-identifying or hiding the original face identity
while preserving the data usability. The commonly used simple
anonymization methods, like blurring, pixelation and blacking out
[24, 36], can destroy the data utility which receives increasing at-
tention to enable the reusability of the anonymized data [20, 41, 45].
In recent years, the generative methods [15, 27, 28, 43, 46] exhibit
promising performances on face image synthesis and anonymiza-
tion by playing adversarial games [5, 21, 22, 30, 37–39, 47, 54, 59].
In [21], DeepPrivacy (DP1) relys on inpainting to generate anony-
mous face by blocking out the facial region. In [38], CIAGAN relys

Figure 2: The flowchart of our LReOrg framework.

on masked image, landmarks and one-hot vector to perform condi-
tional inpainting for face anonymization. In [54], IdentityDP relys
on disentanglement and differential privacy [12, 49] for anoymous
face synthesis after adding Laplace noise to identity feature. Al-
though these methods can well protect the face identity, they suffer
from some drawbacks on the naturalness of the anonymous face.
In [22], DeepPrivacy2 (DP2) relys on continuous surface embed-
ding and StyleGAN to further improve DP1. In [47], Clip2Protect
relys on text-guided CLIP [44] and the StyleGAN latent space to
generate anonymous face from the viewpoint of makeup, but it is
time-consuming to finetune a new StyleGAN generator for each
inference. In [30], LDFA presents a similar method as with DP1 by
performing face inpainting based on latent diffusion model [46].
Although the image quality has greatly improved, these up-to-date
works usually work in their predefined manner by mainly process-
ing the identity, but lack of a mechanism to flexibly manipulate
which attributes to anonymize or preserve in a more intuitive man-
ner (i.e. poor flexibility). Differently, in this paper, we present a new
privacy protection mechanism to perform fine-grained anonymiza-
tion with cross-modal keyworks based on our bidirectional CDFNet,
which can work recurrently according to practical requirements.

3 METHOD
In this section, we introduce the proposed LReOrg framework. We
first have a brief overview in Section 3.1. Then, we introduce the
proposed CDFNet network in Section 3.2. Finally, we present our
traning strategy in Section 3.4.

3.1 Overview
In Figure 2, we plot the flowchart of LReOrg for face anonymization
conditioned on the cross-modal keyword-based attribute represen-
tation in set 𝐾 = 𝐾1 ∪ 𝐾2, where 𝐾1 = {𝑘𝑖 , 1 ≤ 𝑖 < 𝑀} is the
sensitive keyword set, 𝐾2 = {𝑘𝑖 , 𝑀 ≤ 𝑖 < 𝑁 } is the non-sensitive
keyword set and each keyword corresponds to a different face
attribute, such as ‘identity’, ‘expression’, ‘gender’ and ‘age”. The
flowchart conissits of four steps. First, we generate a latent repre-
sentation 𝑠0

𝑥 for a given face image 𝑥 by embedding it into some
well defined latent space using encoder 𝐸. Second, we rely on the
anonymous reorganization (AR) module to anonymize the sensi-
tive attributes encoded in 𝑠0

𝑥 according to the keywords in 𝐾1 (e.g.
{‘identity’}) by using our CDFNet and anonymizer 𝐴. Then, we
rely on the recovery reorganization (RR) module to recover the non-
sensitive attributes for the output 𝑠𝑀𝑥 of AR according to 𝐾2 (e.g.
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Figure 3: The architecture of our CDFNet which consists of a forward process and a backward process. The forward process
focuses on disentanglement and the backward process focuses on feature fusion and recovery.

{‘expression’,‘gender’ and ‘age’}). Finally, we translate the output
𝑠𝑁𝑥 to a real face image 𝑦 by using generator 𝐺 .

Anonymous Reorganization. This module focuses on sen-
sitive attribute anonymization based on feature disentanglement.
Given keyword 𝑘𝑖 ∈ 𝐾1, we first rely on the forward process of
CDFNet to disentangle the latent representation 𝑠𝑖𝑥 into two fea-
tures: the key feature 𝑓 𝑖𝑥 and the residual feature 𝑟 𝑖𝑥 of 𝑠𝑖𝑥 . Second, we
use our anonymizer A to process the sensitive information in 𝑓 𝑖𝑥 and
obtain 𝑓 𝑖𝑥 . Then, 𝑓 𝑖𝑥 and 𝑟 𝑖𝑥 are fused as a new latent representation
𝑠𝑖+1
𝑥 in the backward process of CDFNet. Note that AR can not only
separately anonymize single attribute but also jointly anonymize
multiple attributes by recurrently processing them following the
above steps, where 𝑠𝑖=0

𝑥 is the initial input and 𝑘0=‘identity’ corre-
sponds to the first attribute to be anonymized. The final output is
the reorganized anonymous latent representation 𝑠𝑀𝑥 .

RecoveryReorganization.Thismodule focuses on non-sensitive
attribute recovery in the latent space. Given keyword 𝑘𝑖 ∈ 𝐾2
(𝑀 ≤ 𝑖 < 𝑁 ), we first rely on the forward process of CDFNet to
obtain the residual feature 𝑟 𝑖𝑥 of 𝑠𝑖𝑥 and the key feature 𝑓 𝑖𝑥 of 𝑠0

𝑥 .
Second, 𝑟 𝑖𝑥 and 𝑓 𝑖𝑥 are fused to a latent representation 𝑠𝑖+1

𝑥 in the
backward process of CDFNet. Similar to AR, RR can also jointly re-
cover multiple attributes by recurrently processing them following
the above steps, where 𝑠𝑖=𝑀𝑥 is the initial input. The final output is
the reorganized anonymous latent representation 𝑠𝑁𝑥 .

3.2 The Proposed CDFNet
In this part, we introduce a new Conditional Disentanglement-
Fusion Network (CDFNet) which is invertible and can receive bidi-
rectional input. For easy understanding, we separate the network
into bidirectional processes according to the data flow: the forward
process and the backward process. The two processes share a same
network structure as well as their building blocks and parameters,
but differ only in the fundamental operations of arithmetic in their
building blocks due to the opposite data flow. As shown in Figure 3,
the forward process focuses on feature disentanglement by extract-
ing a key feature 𝑓 𝑖𝑥 and a residual feature 𝑟 𝑖𝑥 from an input latent
representation 𝑠𝑥 conditioned on the cross-modal keyword feature
𝑘
𝑓

𝑖
extracted by using the text encoder of CLIP. The backward pro-

cess focuses on feature recovery by fusing a key feature 𝑓 𝑖𝑥 and a

residual feature 𝑟 𝑖𝑥 as a new latent representation 𝑠𝑥 conditioned on
𝑘
𝑓

𝑖
. To distinguish the two processes, we name the building block

of the forward process as conditional disentanglement block (CDB),
and the building block of the backward process as conditional fu-
sion block (CFB). The corresponding linear and dense blocks in
CDB and CFB share the same parameters, so the reversibility is
entirely determined by changing operators.

Conditional Disentanglement Block can be understood as the
building block of the forward process, which consists of a forward
condition block (CB) and a disentangle block (DB). The DB block
is borrowed from HiNet [25] for disentanglement. The forward
condition block is developed in this paper to process the cross-
modal conditions by following the INN rules [2, 10]. As shown in
Figure 3, for the 𝑗-th CDB block in the forward process, the inputs
are ℎ1

𝑗−1 and ℎ2
𝑗−1, and the outputs ℎ̂1

𝑗
and ℎ̂2

𝑗
are formulated as:

ℎ̂1
𝑗 =ℎ

1
𝑗−1 + 𝜙1 (ℎ2

𝑗−1, 𝑘
𝑓

𝑖
),

ℎ̂2
𝑗 =ℎ

2
𝑗−1 ⊗ 𝑒𝑥𝑝 (𝜎 (𝜙2 (ℎ̂1

𝑗 , 𝑘
𝑓

𝑖
), , 𝑘 𝑓

𝑖
)) + 𝜙3 (ℎ̂1

𝑗 , 𝑘
𝑓

𝑖
),

(1)

where 𝜙1, 𝜙2 and 𝜙3 denote different linear blocks. Each one is re-
alized with three fully connected (FC) layers: 𝜙 (𝑎, 𝑏) = 𝐹𝐶 (𝑐𝑜𝑛𝑐𝑎𝑡 (
𝐹𝐶 (𝑎), 𝐹𝐶 (𝑏))). The DB block is realized in a similar way as:

ℎ1
𝑗 =ℎ̂

1
𝑗 +𝜓1 (ℎ̂2

𝑗 ),

ℎ2
𝑗 =ℎ̂

2
𝑗 ⊗ 𝑒𝑥𝑝 (𝜎 (𝜓2 (ℎ1

𝑗 ))) +𝜓3 (ℎ1
𝑗 ),

(2)

where𝜓1,𝜓2 and𝜓3 denote different densenet blocks [53].
Conditional Fusion Block consists of a backward conditional

block and a fusion block, which can be obtained by reversing the
data flow of CDB, where the backward conditional block (BCB)
corresponds to the forward condition block (FCB) and the fusion
block (FB) corresponds to the DB block of CDB. Given a pair of
input 𝑔1

𝑗−1 and 𝑔2
𝑗−1, the output of FB is formulated as:

𝑔2
𝑗 =(𝑔

2
𝑗−1 −𝜓3 (𝑔1

𝑗−1)) ⊗ 𝑒𝑥𝑝 (−𝜎 (𝜓2 (𝑔1
𝑗−1))),

𝑔1
𝑗 =𝑔

1
𝑗−1 −𝜓1 (𝑔2

𝑗 ) .
(3)

Similarly, we formulate the output of BCB as:

𝑔2
𝑗 =(𝑔

2
𝑗 − 𝜙3 (𝑔1

𝑗 , 𝑘
𝑓

𝑖
)) ⊗ 𝑒𝑥𝑝 (−𝜎 (𝜙2 (𝑔1

𝑗 , 𝑘
𝑓

𝑖
))),

𝑔1
𝑗 =𝑔

1
𝑗 − 𝜙1 (𝑔2

𝑗 , 𝑘
𝑓

𝑖
) .

(4)
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After the inputs go through the sequence of CDB and CFB, the
outputs of the last CFB block contains a information loss Δ𝑟 = 𝑔1

𝑛

and a latent representation 𝑠𝑖𝑥 = 𝑔2
𝑛 which can be fed into generator

G to generate a manipulated face image.

3.3 Anonymizer
We anonymize both the identity and the selected attribute infor-
mation. Since they have different properties, we employ different
strategies to protect them.

Group-based Identity Anonymizer (GIA).We impose a strict
privacy protection strategy to ensure a better identity protection
by using the well defined differential privacy theory [12, 49]. In the
pre-processing step, the features in the latent space 𝑆 are clustered
into𝑚 groups G = {G1,G2, · · · ,G𝑚}, where we use Ḡ𝑗 to denote
the average feature of the 𝑗-th group. Given an identity feature 𝑓 𝑖𝑥 to
be anonymized, we first utilize the classical exponential mechanism
of differential privacy to sample a differentially private group G𝑢
according to the distance between 𝑓 𝑖𝑥 the Ḡ𝑗 under the constrained
condition 𝑎 ≤ 𝑗 ≤ 𝑏 by considering the privacy and utility tradeoff.
Then, in G𝑢 , we adopt the simple random sampling to choose one
identity 𝑓 𝑖𝑥 to replace the original one. Because this process totally
happens in the latent space, 𝑓 𝑖𝑥 can regarded as a virtual identity.
Since differential privacy is resistant to any form of post-processing
[12, 13, 49], the selection of 𝑓 𝑖𝑥 still follows differential privacy.

k-farthest Attribute Anonymizer (KAA). We adopt a sim-
ple method to anonymize each attribute. In the pre-processing
step, we calculate the average feature as the representative of each
sub-category of each attribute. Given an attribute feature 𝑓 𝑖𝑥 , we
anonymize it by using the farthest average feature from the sub-
categories following the k-anonymity rule [40, 50].

3.4 Keyword-based Swap Training
We train our CDFNet in a well defined latent space 𝑆 with the
help of several pre-trained models, incuding generator G, latent
space encoder MLP, image-text encoder CLIP 𝑐 (·) and identity
encoder 𝜌 (·). As shown in Figure 4, we propose a keyword-based
swap training strategy to optimize our network. First, we randomly
sample a pair of latent representations 𝑠1 and 𝑠2 from 𝑆 in each
training step. Then, we alternatively train CDFNet according to the
cross-modal keywords 𝑘𝑖 sampled from 𝐾 .

Identity-oriented Swap (IOS) training. IOS focuses on im-
proving the identity disentanglement ability by performing identity
swap training conditioned on keword 𝑘0=‘identity’. First, we rely
on the forward process of CDFNet to disentangle the key feature
𝑓 𝑘1 and the residual feature 𝑓 𝑟1 from 𝑠1, which is the same for 𝑓 𝑘2 and
𝑓 𝑟2 from 𝑠2. Second, we rely on the backward process of CDFNet to
swap the key features of 𝑠1 and 𝑠2, resulting in two latent represen-
tations 𝑠′1 and 𝑠′2, where Δ𝑟1 and Δ𝑟2 are the information loss. By
feeding 𝑠1, 𝑠2, 𝑠′1 and 𝑠

′
2 to generator G separately, we obtain four

face images 𝐼1, 𝐼2, 𝐼 ′1 and 𝐼 ′2. Our network is optimized by using:

𝐿𝐼𝑂𝑆 = 𝜆1𝐿𝐼 + 𝜆2𝐿𝑝 + 𝜆3𝐿𝑓 + 𝜆4𝐿𝑟 . (5)

where 𝐿𝑝 = E[𝜂 (𝐼1, 𝐼 ′1) +𝜂 (𝐼2, 𝐼
′
2)] is the VGGFace based perceptual

loss [6, 26, 42] and 𝐿𝑟 = E[|𝑟1 |1 + ∥𝑟2 |1] is the information loss. 𝐿𝐼
is identity feature loss

𝐿𝐼 = E[𝑑 (𝐼2, 𝐼 ′1) + 𝑑 (𝐼1, 𝐼
′
2) − 𝑑 (𝐼1, 𝐼

′
1) − 𝑑 (𝐼2, 𝐼

′
2)], (6)

Figure 4: The keyword-based swap training strategy.

where 𝑑 (𝑥,𝑦) is the cosine feature distance between 𝑥 and 𝑦. The
latent representation loss 𝐿𝑓 is defined as

𝐿𝑓 = E[∥𝑠1 − 𝑠′1∥2 + ∥𝑠2 − 𝑠′2∥2] . (7)

Attribute-oriented swap (AOS) training. AOS focuses on
improving the attribute disentanglement ability by performing at-
tribute swap training conditioned on keword 𝑘𝑖 , 𝑖 > 0. The training
process is the same as that of IOS, but the loss function is different

𝐿𝐴𝑂𝑆 = 𝛼1𝐿𝐼 ′ + 𝛼2𝐿𝑠 + 𝛼3𝐿𝑓 + 𝛼4𝐿𝑟 , (8)

where 𝐿𝐼 ′ = E[𝑑 (𝐼1, 𝐼 ′1) + 𝑑 (𝐼2, 𝐼
′
2)] is the identity preservation loss.

To associate the correspondence between facial attribute with the
keyword 𝑘𝑖 , we formulate the attribute swapping loss 𝐿𝑠 as an
adversarial game

𝐿𝑠 = E
[
−

|𝐶𝑖 |∑︁
𝑗=1

𝐻 (𝐼1, 𝐼2, 𝐼 ′1, 𝐼
′
2, 𝑡𝑖 𝑗 )

]
, (9)

by taking the cross-modal CLIP as discriminator, where

𝐻 (𝐼1, 𝐼2, 𝐼 ′1, 𝐼
′
2, 𝑡𝑖 𝑗 ) = 𝐷 (𝐼1, 𝑡𝑖 𝑗 ) log(𝐷 (𝐼 ′2, 𝑡𝑖 𝑗 ))+

𝐷 (𝐼2, 𝑡𝑖 𝑗 ) log(𝐷 (𝐼 ′1, 𝑡𝑖 𝑗 )).
(10)

As shown in Figure 4, 𝑡𝑖 𝑗 is a sentence by filling 𝑐 𝑗 ∈ 𝐶𝑖 to 𝑇𝑖 (e.g.
𝑡𝑖 𝑗 = ‘𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜 𝑓 𝑎𝑚𝑎𝑙𝑒.′),𝐶𝑖 is the fine-grained attribute set of the
𝑘𝑖 (e.g. 𝐶𝑖 = ‘𝑚𝑎𝑙𝑒′, ‘𝑓 𝑒𝑚𝑎𝑙𝑒′) and 𝑇𝑖 is the 𝑖-th sentence template
(e.g. 𝑇𝑖 = ‘𝑎 𝑝ℎ𝑜𝑡𝑜 𝑜 𝑓 𝑎 {}.′).

4 EXPERIMENTS
In this section, we perform quantitative and qualitative experiments
to show the effectiveness of the proposed approach. More details
and results are presented in the supplementary material.

4.1 Implementation Details
Settings. We use the pre-trained StyleGAN2 [27, 28] and GAN
Inversion [51] to build the latent space because it would favor
attribute disentanglement, where the latent codes 𝑠1 and 𝑠2 in Figure
4 are generated by the MLP layer of StyleGAN. StyleGAN is used
as G and GAN inversion is used as the encoder E in Figure 2. Note
that the face images we used in the training process were sampled
or synthesized from the latent space of StyleGAN, which would
favor anonymization. Table 1 presents some representative attribute
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Table 1: Example of the keyword set.

Keyword 𝑘𝑖 Content Set𝐶𝑖

‘Gender’ {‘male’,‘female’}
‘Age’ {‘young’, ‘old’}
‘Expression’ {‘smiling’, ‘no smiling’}
‘Makeup’ {‘heavy’, ‘no’}
‘Color’ {‘blond’, ‘black’, ‘brown’, ‘gray’}
‘Curly’ {‘curly’, ‘straight’}
‘Length’ {‘long’, ‘short’}

based keywords. For easy and fair comparison, we employ the inner
face attributes {‘identity’, ‘Gender’, ‘Age’, ‘Expression’, ‘Makeup’}
for anonymization and recovery by setting 𝐾1 ={‘identity’} and
𝐾2 ={‘Gender’, ‘Age’, ‘Expression’, ‘Makeup’} by default, but they can
be changed under different scenarios. Since the attributes ‘Color’,
‘Curly’ and ‘Length’ are related to the outer regions of the face, we
advocate to let the users determine how to use them. We train our
network on 256×256 images by using Adam optimizer (𝛽1 = 0.5 and
𝛽2 = 0.999) with learning rate of 1𝑒−5. We set 𝜆1 = 24, 𝜆2 = 1.2, 𝜆3 =

3.0, 𝛼1 = 0.2, 𝛼2 = 30, 𝛼3 = 3.0 and 𝛼4 = 𝜆4 = 10.
Datasets. The CelebA-HQ [33] and LFW [19] datasets are em-

ployed for evaluation. CelebA-HQ contains 30,000 face images
from 6,216 identities, where 5,000 images are employed as the test
set and the remaining are used for training. LFW consists of 13,233
face images from 5,749 individuals, where 5,000 images are used
for test. We train our model on CelebA-HQ and evaluate it on all.

Baseline Methods. We compare our approach with the follow-
ing representative and up-to-date methods, including: the classical
generative methods CIAGAN and DeepPrivacy (DP1) [21]; the lat-
est blurry method DarBlur [24] and DeepPrivacy2 (DP2) [22]; the
latent represent methods LDFA [30] and Clip2Protect [47]; and
the differentially private identity disentanglement method Identi-
tyDP [54]. Since IdentityDP also employed differential privacy for
anonymization in the feature space, we adjust our approach using
the same manner as a baseline (denoted as IdentityDP) to show the
effectiveness of our group-based identity anonymizer.

Evaluation Criteria.We evaluate our approach for privacy pro-
tection and utility preservation. For privacy protection, we evaluate
the protection success rate (PSR, the higher the better) which is
calculated as the percentage of protected faces missclassified by
the face recognition tools, where the pre-trained ArcFace [8] and
AdaFace [29] models are used. Face alignment [4] is used to detect
face and calculate the detection rate (the higher the better). We use
Fr𝑒chet Inception Distance (FID) [18] to evaluate the image quality
(the lower the better). We evaluate the attribute preservation rate
(APR) by using pre-trained classifiers, the higher the better.

4.2 Main Results
In this part, we show the performance of our approach by compara-
ting with existing methods from different viewpoints.

Protection and Preservation.We hope that the anonymized
face images can still be detected with a high protection successful
rate, which means that a good anonymization method should have
high face detection rate and low PSR rate. We first compare our
results with the representative basic methods DeepPrivacy [21] and
CIAGAN [38] in Table 2. The detection rates of all themethods reach
100%. The PSR rates of our results are higher than DeepPrivacy and

Table 2: Comparison with the representative DeepPrivacy
and CIAGAN methods on CelebA-HQ.

Method PSR (%) ↑ Detection (%) ↑ APR (%) ↑ FID↓
Arcface Adaface

Original 0 0 100 92.2 5.65
CIAGAN 97.4 97.3 100 74.0 102.8
DP1 95.1 95.9 100 73.9 53.3
Ours 98.4 98.8 100 82.0 40.1

Table 3: Comparison with the blurry methods.

Method PSR ↑ Detection ↑ APR ↑ FID↓
Arcface Adaface

Blurring 97.0 98.1 93.2 66.3 57.7
DartBlur 99.9 100 97.8 64.2 128.2
Ours 98.4 98.8 100 82.0 40.1

Table 4: Comparison with the disentanglement method.

Method PSR ↑ Detection ↑ APR ↑ FID↓
Arcface Adaface

IdentityDP 87.1 87.9 100 81.5 53.9
Ours 98.4 98.8 100 82.0 40.1

Table 5: Comparison with the SOTA methods.

Method PSR ↑ Detection ↑ APR ↑ FID↓
Arcface Adaface

DP2 96.9 96.8 99.9 77.0 16.0
LDFA 87.6 88.7 98.5 83.6 8.1
CLIP2Protect 44.3 42.2 100 86.9 41.0
Ours 98.4 98.8 100 82.0 40.1

CIAGAN by using both Arcface and FaceNet. The average APR and
FID scores of our result also outperform DeepPrivacy and CIAGAN,
which stay close to the baseline results of the original data.

Comparison with blurry methods. In Table 3, we compare
our method with the tradtional Blurring method and the latest
generative DartBlur method [24]. It is obvious that both Blurring
and DartBlur have very high PSR rates for Arcface and Adaface,
but their attribute preservation rates and FID scores are not ideal.
In contrast, our resutls show competitive PSR performances with
much better APR and FID scores.

Comparison with disentanglement method. In Table 4, we
compare our method with the representative feature disentangle-
ment method IdentityDP which protect face identity by adding
Laplace noise following differential privacy. The results show that
simply adding Laplace noise may not work effectively on identity
protection and may also affect the data utility on APR and FID.

Comparison with the latest methods. In Table 5, we compare
our method with the closely related state-of-the-art (SOTA) meth-
ods. DP2 [22] works with StyleGAN2 generator, which is the im-
proved version of DP1 [21]. LDFA [30] can be also be seen as the im-
provmement of DP1 by using latent diffusion model. CLIP2Protect
[47] is built based on CLIP and StyleGAN2. Compared with DP1
in Table 2, DP2 has significant performance improvement on both
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Figure 5: The visual comparison of our LROrg results with that of SOTA. The first column presents the original input faces.

Figure 6: Example of the generated diverse results for the
faces shown in the first colum.

privacy protection and utility preservation. The excellent FID per-
formance of LDFA can be contributed to the denoise ability of the
diffusion models. Both DP2 and LDFA suffer from some perfor-
mance drop on face detection. The excellent attribute preservation
performance of CLIP2Protect can be contributed to the finetuned
generator for each input image, but the computational costs for
inference is significant high and its identity protection ability is
limited. In contrast, our method show the best identity protection
performances with limited performance decrease on APR and FID.

Image Quality and Diversity. In Figure 5, we present some
representative visual results. DartBlur may easily damage the key
contents of face images, leading to significant degraded image qual-
ity. LDFA and CIAGANmay suffer from some rectangle effect. Iden-
tityDP may suffer some distortions. The results of CLIP2Protect
have a high probability to look similar as the input face except
regardless of makeup, which cannot visually protect the face. DP1,
DP2 and Ours show comparable good visual image quality and they
show significant differences with the original input data. Since our
method has no additonal operations on backgound in the latent

space, it cannot well preserve the original background, but it can be
recovered by employing anothter recovery step following [38]. In
Figure 6, we show that LROrg can also generate diverse anonymiza-
tion results by default, which can be contributed to the random
mechanism used in our group-based identity anonymizer. One can
observe that the generated faces are anonymizd and look different
from each other.

Table 6: The evaluation results on LFW dataset.

Method PSR ↑ Detection ↑ APR ↑ FID↓
Arcface Adaface

CIAGAN 96.9 97.4 100 77.0 29.5
DP1 92.4 94.7 100 83.0 53.7
DartBlur 98.0 99.0 99.2 78.6 59.3
DP2 94.6 96.4 100 83.8 52.2
LDFA 93.4 94.9 99.2 85.0 5.2
Ours 99.6 99.6 100 78.8 73.9

Transfer Capability. We show the transfer capability of our
method on the LFW dataset by using the pre-trained model on
CelebA-HQ. We report the results in Table 6. It is obvious that Our
method show consistent results as with that in previous experi-
ments, which again reflects the superior performance of ourmethod.
The latent information loss of the StyleGAN latent space would
decrease the performance of our FID score, which is a limitation of
our method. Since all the evaluation can achieve almost 100% face
detection rate, we no longer report them next.

Personalized Protection.We regard identity as one attribute
so that users can flexibly choose which attribute to preserve or
not according to the practical applications. In Figure 7, we present
several examples of our personalized fine-grained anonymization
process by removing or preserving some attribute according to
the keyword conditions. It is obvious that our method can flexibly
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Figure 7: Examples of personalized attribute anonymization,
where ‘-’ denotes anonymization and ‘+’ denotes recovery.

Table 7: Results of the joint protection of identity and user-
defined attributes by recoverying the others or not, where ID
denotes our default setting: (a) recover; (b) not recover.

Method PSR ↑ APR ↑ FID↓
Arcface Adaface

ID (default) 98.4 98.8 82.0 40.1

(a)

ID+Gender 99.4 99.7 72.4 60.5
ID+Age 98.5 99.2 68.8 62.3
ID+Expression 99.0 99.1 53.4 52.0
ID+Makeup 98.6 98.8 79.6 53.8

(b)

ID+Gender 99.6 99.7 39.9 53.9
ID+Age 99.4 99.5 47.7 47.5
ID+Expression 99.3 99.5 47.3 35.9
ID+Makeup 99.0 99.0 51.4 40.3

Figure 8: Visual results of the joint protection of identity and
user-defined attributes while preserving the others.

anonymize and recover the given attributes according to the key-
word conditions, resulting in realistic and desired face images. In
Table 7, we report the quantitative evaluation results of protecting
the identity and one user-defined attribute, such as ID+Gender.
One can observe that, compared with our default settings, the joint
protection strategy can further improve the PSR performance, but
the data utility may suffer from different extent of drops. Without
recovering the attributes, (b) suffer from lower APR and FID scores.
Figure 8 demonstrates the corresponding visual examples.

Figure 9: Illustration of the reversible abiilty of our approach
after anonymization. In each face pair, the left one denotes
anonymized version and the right one denotes the recovered
version. Inversionmeans the face is reconstructed from GAN
Inversion using StyleGAN.

Table 8: The recovery rate of each attribute.

Attribute identity Gender Age Expression Makeup
Rec rate 59.5 99.0 84.7 81.4 84.1

Table 9: Ablation studies on the anonymization mechanisms.

Method PSR ↑ APR ↑ FID↓
Arcface Adaface

k-anonymity 98.2 99.1 64.3 69.0
Ours 98.4 98.8 82.0 40.1

Figure 10: Viusal comparison with k-anonymity.

Reversibility. Since LROrg is built based on cINN [2], the pro-
tection is theoretically reversible. In Figure 9, we demonstrate
the anonymization-recovery process for several representative at-
tributes. The results show that our approach can well recover the
anonymized attributes. In Table. 8, we report the recovery rate
of different facial attributes after anonymization. The identity re-
covery ability suffer from significant drops. The reason may lie in
the information loss during the disentangle-fusion process of our
CDFNet as well as the information loss between StyleGAN and
GAN Inversion, which is a limitation of our method to be addressed
in the follow up works.

4.3 Ablation Studies
In this part, we conduct ablation studies to show the ability of our
framework by varying the configurations.

Anonymization Strategy. For identity anonymization, we com-
pare our differential privacy based method with that of the k-
anonymity strategy [50] by using the farthest group center for iden-
tity anonymization to ensure a good protection. The results in Table
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Figure 11: Demonstration of non-identity attribute anonymization.

Figure 12: Demonstration of the clustering performances of the disentangled features in the latent space.

Table 10: Impact of non-identity anonymization on PSR.

Gender ↑ Age ↑ Expression ↑ Makeup ↑
Arcface 69.2 27.8 27.9 22.0
Adaface 51.0 13.6 11.5 9.5

9 show that our method not only has significant advantage over the
k-anonymity strategy on APR but also outperforms k-anonymity
on PSR. Figure 10 visually illustrates that the k-anonymity may
suffer from more utility drops than ours, like age.

Impact of Non-Identity Anonymization. As shown in Figure
11, we also wonder the impact of non-identity attribute anonymiza-
tion by processing one attribute each time without recovery. Table
10 reports the result. One can observe that anonymizing gender can
produce much higher PSR scores than processing age, expression
and makeup, which indicates that gender share more correlations
with the face identity, which would makes it harder to preserve the
gender attribute in privacy protection. And changing the makeup
attribute may have the least impacts on identity protection.

Latent Feature Distributions.We studied the features disen-
tangled by our CDFNet by clustering them into different groups.
According to the plots shown in the Figure 12, we can observe that
our disentangled features show good clustering performances for

different kinds of attributes. This reveals that our model has good
representation ability.

5 CONCLUSION
These years, the issue of face privacy protection has received in-
creasingly attentions. In this paper, we present a keyword condi-
tioned LROrg framework for fine-grained face privacy protection.
On top of extensive experiments, we have verified the state-of-the-
art performances of LROrg on achieving a better privacy-utility
tradeoff, where the protection ability can achive further improve-
ment by flexibly manipulating which attribute to anonymize or
preserve according to practical requirements. We also find that
gender is closely correlated with face identity which may inspire
follow up works in aonymization. In comparison with previous
methods, our solution is more flexible and effective by working in
a distinct recurrent manner.

Although LROrg does not rely on data annotations, it suffers
from the problem of incomplete latent space which is built by using
StyleGAN and GAN Inversion. This would lead to the problem of
information loss and further affect image synthesis. Besides, our
CDFNetmodel may also suffer from the same problem, whichwould
limit its performance. We will explore to address the problems in
the future work.
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