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Point Cloud Upsampling With Geometric Algebra Driven Inverse
Heat Dissipation
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ABSTRACT
Point cloud upsampling is crucial for 3D reconstruction, with recent
research significantly benefitting from the advances in deep learn-
ing technologies. The majority of existing methods, which focus
on a sequence of processes including feature extraction, augmenta-
tion, and the reconstruction of coordinates, encounter significant
challenges in interpreting the geometric attributes they uncover,
particularly with respect to the intricacies of transitioning feature
dimensionality. In this paper, we delve deeper into modeling Partial
Differential Equations (PDEs) specifically tailored for the inverse
heat dissipation process in dense point clouds. Our goal is to de-
tect gradients within the dense point cloud data distribution and
refine the accuracy of interpolated points’ positions along with
their complex geometric nuances through a systematic iterative ap-
proximation method. Simultaneously, we adopt multivectors from
geometric algebra as the primary tool for representing the geomet-
ric characteristics of point clouds, moving beyond the conventional
vector space representations. The use of geometric products of
multivectors enables us to capture the complex relationships be-
tween scalars, vectors, and their components more effectively. This
methodology not only offers a robust framework for depicting the
geometric features of point clouds but also enhances our model-
ing capabilities for inverse heat dissipation PDEs. Through both
qualitative and quantitative assessments, we demonstrate that our
results significantly outperform existing state-of-the-art techniques
in terms of widely recognized point cloud evaluation metrics and
3D visual reconstruction fidelity.

CCS CONCEPTS
• Computing methodologies→ Reconstruction; Shape repre-
sentations.

KEYWORDS
Point cloud upsampling, Partial Differential Equations, Geometric
algebra

1 INTRODUCTION
Point clouds serve as the foundational fabric for 3D modeling[9, 12,
21], rendering intricate details of real-world environments. While
capturing these clouds is now more accessible thanks to advanced
scanning technologies, the raw data often presents itself as sparse
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and inconsistent, with noise that undermines its utility in down-
stream applications such as autonomous navigation[13, 38] and
virtual/augmented reality[7, 33]. Upsampling is thus not merely a
refinement but a necessity to attain a dense, accurate representation
of the spatial continuum.

Classical methods for point cloud upsampling primarily resort
to optimization-based approaches [1, 10, 11, 16, 40]. These methods
utilize shape priors, including global structures which are defined
as objective energy functions to shape and refine the upsampling
results. However, shape priors that assume accurate normal estima-
tion or the presence of a smooth surface in the local geometry limit
optimization-based methods in representing complex and massive
point cloud data and result in degraded reconstruction performance.

Recently, deep learning-based techniques have been widely em-
ployed in point cloud upsampling [14, 15, 18, 26, 28, 42, 43]. Deep
learning based point cloud sampling usually consists of three steps,
including feature extraction that captures point-wise semantics
from low-resolution point clouds, feature expansion tailored to
a specific upsampling rate, and 3D coordinate prediction for up-
sampled points based on the expanded features. Convolutional
neural networks were first adopted to extract global features from
point clouds [25] but suffer from projection distortion due to the
incapability to represent local geometry. Graph convolutions like
EdgeConv [23] were then leveraged to ensure the invariance to
point ordering but cannot accurately capture local geometric shapes
such as surface distances with discretized graphs. Recently, point
transformers [45] have been leveraged to achieve improved perfor-
mance by exploiting the correlations between points using matrices
of learnable parameters. However, similarity measurement through
inner product between high-dimensional vector features neglects
the geometry like angles and oriented planes of the elements in
the high-dimensional spaces and leads to outliers or artifacts in the
upsampled point clouds. Furthermore, deep learning based methods
rely on the upsampling rate and require various models for different
rates. These problems underscore the urgent need for deep learn-
ing models with enhanced generalization capabilities and error
resilience in point cloud upsampling.

The emergence of generative diffusion models [8, 19, 36] sug-
gests the potential of considering 2D/3D signal processing from the
perspective of statistical modeling. Diffusion models learn to gen-
erate data by gradually transforming noise into structured output
through a gradual process like the Markov chain. This can capture
complex data distributions more finely than models that attempt to
learn this in one single step and do not suffer from mode collapse
as GAN [5]. Denoising Diffusion Probabilistic Models (DDPMs) [8]
rely on the distribution of training data. In 2D image processing,
where the data lies on a grid with fixed scale and have no specific
geometric shapes, DDPMs are well-suited for inferring high-quality
images entirely from the predicted distribution. However, point
clouds represent a distribution with defined geometric shapes. If
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Figure 1: Example of the heat dissipitation forward process and the
inverse process for point cloud.

the training data does not adequately represent the geometric varia-
tions in the test point clouds, the model might struggle to accurately
infer and reconstruct the details and structures within the point
cloud. To address this issue, we have moved away from adding
noise, a process that indiscriminately disrupts geometric configura-
tions. Instead, we are considering a diffusion scheme that allows for
the geometric shapes to be traceable and more predictably handled.

Inspired by the efficient generative process of diffusion mod-
els [30], in this paper, we design PDE-based heat dissipation as
forward diffusion process distinct from the previous methods. The
defining characteristic of our PDE-based forward process is its com-
mitment to a regular, traceable degradation of the point cloud’s
geometric shapes. It meticulously maintains the dataset’s essen-
tial geometrical features—such as curvature and continuity. This
careful approach guarantees that the diffusion process adheres to
the original structure of the dataset. The alignment with the point
cloud’s inherent design is demonstrated in Figure 1.

Simultaneously, to more precisely capture the geometric features
of point clouds, we have broadened point feature space from the
traditional vector fields used in linear algebra to the more complex
multivector fields of geometric algebra. Unlike the inner product at-
tributes of vector fields, multivector fields incorporate scalar, vector,
and higher-order elements to provide crucial information about the
magnitudes, angles, and oriented planes of the elements involved
in geometric product multiplication. During the training of our
networks, we focus on learning the gradients of geometric distribu-
tion changes under the dissipation of point cloud heat. Accordingly,
each point corresponds to a non-linear trajectory that includes
both direction and length. Representation via geometric algebra
can accommodate to the complex, multi-dimensional geometric
nature of the point data to achieve upsampling. This methodology
not only enhances the ability to discern subtle geometric nuances
but also significantly improves the model’s overall capabilities in
handling complex spatial data.

Similar to conditional generative models, our point cloud upsam-
pling model employs upsampled point clouds, obtained through
rough linear interpolation, as a condition while exploiting prior
knowledge. These coarsely interpolated point clouds undergo a
forward heat dissipation process, followed by several iterations of

approximation through a reverse heat dissipation network, ulti-
mately producing high-quality, dense point clouds.

The contributions of this paper are summarized as below.

• We have developed a PDE-based heat dissipation forward
process specifically for point clouds and have examined its
corresponding inverse heat dissipation as a reverse process
to refine geometric details in point cloud upsampling tasks.
• We represent the geometric features in the multivector fields
via geometric algebra for enhanced ability to capture geo-
metric information through the interactions of multivector
components and their unique geometric products.
• Comprehensive experiments demonstrate the outstanding
capability of our work in generating geometric details in
public benchmarks of point cloud upsampling.

2 RELATEDWORK
2.1 Optimization-based Point Upsampling
In early research, point cloud upsampling was approached as an
optimization problem. Alexa et al. [1] generate new points by con-
structing a Voronoi diagram vertices in the local tangent space.
Lipman et al. [16] crafted an innovative locally optimal projection
operator, leveraging the 𝐿1 median for robust point resampling
and surface reconstruction, exhibiting resilience to noise and out-
liers. Subsequently, the weighted Locally Optimal Projection (LOP)
method [10] implemented an iterative process for normal estima-
tion to refine the consolidated upsampled points. Huang et al. [11]
advanced the field by introducing a progressive technique termed
EAR, designed for edge-aware resampling of point sets. Wu et
al. [40] employed a joint optimization approach for simultaneously
refining inner points and surface points within their innovative
point set representation framework. However, the efficacy of these
methods often hinges on strong a priori assumptions, such as reli-
able normal estimation or inherent smoothness in local geometry.
Consequently, they may falter when faced with complex and volu-
minous point cloud data.

2.2 Learning-based Point Upsampling
The fusion of deep learning, boasting powerful data-driven and
trainable attributes, has significantly propelled advancements in the
field of 3D data processing. Leveraging the potent representational
capacities of deep neural networks has rendered the direct feature
learning from 3D data feasible, as evidenced by pioneering archi-
tectures like PointNet[24], PointNet++[24], and EdgeConv[23].

PU-Net [43][43] stands at the forefront of incorporating deep
neural networks into the realm of point cloud upsampling. It in-
novatively aggregates multi-scale features for each point using
multiple Multilayer Perceptrons (MLPs), subsequently employing a
channel shuffle layer to expand these features into an upsampled
point cloud set. MPU [42] introduces a feature extractor based on
EdgeConv[23], and enhances feature representation by assigning
unique 1D codes for expansion. PUGAN[14] leverages adversar-
ial training and devises an up-down-up unit to refine expanded
features. PUGeoNet [27] innovates by initially generating points
in 2D space before mapping them to 3D space. Meanwhile, PU-
GCN[26] introduces the Inception DenseGCN for nuanced feature
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extraction and employs NodeShuffle for subsequent feature expan-
sion. NePs [4] posits that sampling points from a 2D continuous
space can yield results of higher quality. Additionally, Grad-PU [6]
reconceptualizes point cloud upsampling as a task of coordinate
approximation, thereby obviating the need for designing specific
upsampling modules. these methods usually have two aforemen-
tioned issues: fixed upsampling rate after each training and outliers
or shrinkage artifact due to the difficulty of 3D coordinate estima-
tion. Despite a few recent methods break the former limitation by
meta-learning[41], the latter problem still remains unsolved.

2.3 Diffusion Models for Point Processing
Motivated by the achievements in 2D tasks[31, 32], 3D point cloud
processing has increasingly embraced the capabilities of Denoising
Diffusion Probabilistic Models (DDPM). [19] marks a pioneering
endeavor in leveraging Denoising Diffusion Probabilistic Models
(DDPM) for unconditional point cloud generation. Subsequently,
[46] expand the use of DDPM for point cloud completion tasks by
utilizing a point-voxel CNN [17] during the training phase. How-
ever, the process of voxelization adds a layer of computational
complexity. Furthermore, PDR [24] takes raw point clouds as input.
But this requires training the two stages (coarse-to-fine) of diffusion
models, resulting in a greater time overhead. Moreover, PDR [20]
accepts raw point clouds as input, necessitating the training of two
stages (coarse-to-fine) of diffusion models, which incurs a signifi-
cant increase in time overhead. Recently, a conditional denoising
diffusion probability model PUDM [29] for point cloud upsampling
has been introduced, innovatively leveraging sparse point clouds
as a condition to directly model the gradient of data distribution.
This approach facilitates the learning of geometric shapes without
necessitating an additional upsampling module.

While DDPM showcases some advantageous attributes within
point processing, it also harbors certain potential limitations: Firstly,
while DDPM’s auto-regressive properties enable robust modeling
for objects at fixed scales with no geometric , they falter in produc-
ing high-quality point samples at flexible scales during inference,
and treating multi-scale point upsampling as separate tasks leads
to prohibitive training expenses. Secondly, point cloud generation
networks conditioned on DDPM suffer from inadequate geometric
feature perception due to insufficient effective prior knowledge,
compromising the quality of generated results, despite attempts at
mitigation through cost-intensive two-stage training methods.

3 PROPOSED METHOD
In this section, we first establish the formulation for the PDE-based
heat dissipation applicable to both the forward and reverse dif-
fusion processes in point clouds. Subsequently, we articulate the
representation of point clouds utilizing multivectors derived from
geometric algebra. Lastly, we formulate the objective that guide the
training of our model.

3.1 PDE-based heat dissipation Formulation
3.1.1 motivation.

The conventional approach of Denoising Diffusion Probabilistic
Models[8] (DDPM) is such that, over time, points progressively
disperse into a disordered assembly. This phenomenon is known

as the diffusion process, which morphs the original distribution
into one of noise. However, as described in Section 2.3, the noise
addition approach is not the best choice for point cloud geometric
reconstruction.

We focus reducing point resolution, a less-explored aspect where
scaling typically relies on straightforward point sub-sampling. [2,
39] introduced an alternative approach by executing a Partial Dif-
ferential Equation (PDEs) which characterizes heat dissipation. Sim-
ilarly point subsampling, the heat equation smooth the point cloud
and removes fine detail, but an arbitrary amount of effective resolu-
tions is allowed without explicitly decreasing the number of points.
Thus We investigate diffusion-type point upsampling models based
on directly reversing the heat dissipation and thus increasing the
effective point resolution. The intuition is that as the original geo-
metric details is erased in the forward process, a corresponding
stochastic reverse process produces plausible reconstructions, defin-
ing a reconstruction model. Samples from the prior distribution are
easy obtain due to the low dimensionality of low-resolution point
cloud, and we adopt a training data based kernel density estimate.

3.1.2 PDE-based heat dissipation Formulation.
The formulation of the forward process contract points into a

lower-dimensional subspace. We define it with the heat equation, a
partial differential equation (PDE) that describes the dissipation of
heat:

𝜕u(𝑐, 𝑡)
𝜕𝑡

= Δu(𝑐, 𝑡), (1)

where 𝑐 : R3 are coordinates and𝑢 : R3×R+ → R represents the ide-
alized distribution of a specific attribute (such as heat or intensity) in
a continuous 3D space, andΔ denotes the Laplace operator. This pro-
cess operates independently on each point within the point cloud,
employing Neumann-like boundary (𝜕𝑢/𝜕𝑥 = 𝜕𝑢/𝜕𝑦 = 𝜕𝑢/𝜕𝑧 = 0)
conditions to manage behaviors at the cloud boundaries. As time
progresses, every point in the cloud naturally gravitates towards
its low-resolution state, thus smoothing the cloud and removing
fine details at a larger scale, yet permitting variations in effective
resolution without a significant reduction in the number of points.

Although Rissanen et al. [30] previously proposed a 2D genera-
tive model based on heat dissipation and modeled the process as a
partial differential equation (PDE), they utilized a time-independent
eigenbasis of the Laplace operator to solve the equation. This solu-
tion approach crudely smooths the 2D image to a uniform average.
Consequently, we can interpret their process as completely deter-
ministic degradations. In addressing the unique geometric char-
acteristics of point clouds, We employ the Implicit Euler Method,
integrating it seamlessly with standard PDE solvers for effective
resolution of the equation. In this context, 𝜏 represents a small time
increment, and 𝐼 is the identity matrix, establishing a stable and
accurate computational step from 𝑡 to 𝑡 + 𝜏 through the equation:

(I − 𝜏Δu(𝑐, 𝑡))u(𝑐, 𝑡 + 𝜏) = u(𝑐, 𝑡) (2)

Consequently, the PDE model expressed in Equation (2) can be
reformulated into an evolutionary equation:

u(𝑐, 𝑡) = u(𝑐, 0) +
∫ 𝑡

0
Δu(𝑐, 𝜏)𝑑𝜏 (3)
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For the sake of simplification, Equation (3) can be represented as
u(𝑐, 𝑡) = H(𝑡)u0 (𝑐), whereH encapsulates a nonlinear evolution-
ary operator.

Thus we define the time steps 𝑡1, 𝑡2, . . . , 𝑡𝐾 that correspond to
latent variables 𝑢 (𝑘), each of which has the same dimensionality
as the data 𝑢 (0). Our forward process, or formally the variational
approximation in the latent variable model, is defined as:

𝑞 (u1:𝐾 | u0) =
𝐾∏
𝑘=1

𝑞 (u𝑘 | u0) =
𝐾∏
𝑘=1
N

(
u𝑘 | H (𝑡𝑘 ) u0, 𝜎2𝜖

)
(4)

Following the approach of Rissanen et al. [30], we disrupt the
reversibility by infusing a modest quantity of noise, characterized
by a standard deviation 𝜎 , into the forward process. This integration
acknowledges the existence of branching into multiple plausible
reverse pathways which is proved reasonable in [35].

We have access to a dataset comprising sparse-dense point pairs,
𝑃 = {(𝑢𝑠 , 𝑥𝑑 )}, each initiating from an unspecified conditional
distribution 𝑝 (𝑧 |𝑢𝑠 ). Rather than employing a network to inde-
pendently train for the point cloud feature 𝑧, we adopt Midpoint
Interpolation, as per He et al. [6], to coarsely upsample the point
clouds. This technique also accomplishes the steps to achieve vari-
ous upsampling rates, thereby obviating the need for subsequent
network processes to consider elevation in point cloud dimensions.
This marks a significant departure from the attribute of classical
generative models which feature a one-to-many mapping, wherein
a multitude of target images may align with a single source im-
age. Our interest lies in learning a parametric approximation to
𝑝 (𝑥𝑑 |𝑢𝑠 , 𝑧) via an iterative refinement process that maps a source
point set 𝑢𝑠 to a target point set 𝑥𝑑 .

3.1.3 Training Objective.
The reverse, or geometric reconstruction process, is formulated

as a Markov chain that starts with the prior state u𝐾 and ends at the
observed variable u0. We define it with conditional distributions:

𝑝𝜃 (u0:𝐾 | 𝑧) = 𝑝 (u𝐾 | 𝑧)
𝐾∏
𝑘=1

𝑝𝜃 (u𝑘−1 | u𝑘 , 𝑧)

= 𝑝 (u𝐾 | 𝑧)
𝐾∏
𝑘=1
N

(
u𝑘−1 | 𝝁𝜃 (u𝑘 , 𝑘, 𝑧) , 𝛿2𝜖

)
(5)

Here, 𝜃 represents the model’s parameters, and 𝛿 signifies the stan-
dard deviation of the noise introduced at each step of the reverse pro-
cess. Our objective is to optimize the marginal likelihood of the data
𝑝 (u0), which is expressed as 𝑝 (u0) =

∫
𝑝𝜃 (u0 |u1:𝐾 , z)𝑝𝜃 (u1:𝐾 |𝑧)𝑑u1:𝐾 .

By adopting a Variational Autoencoder (VAE)-style evidence lower
bound (ELBO) on thismarginal likelihood and specifying the genera-
tive and inference distributions, we derive the following expression:

− log𝑝𝜃 (u0 |𝑧) ≤ E𝑞
[
− log 𝑝𝜃 (u0:𝐾 |𝑧 )

𝑞 (u1:𝐾 |u0 )

]
= E𝑞

[
− log 𝑝𝜃 (u𝐾 |𝑧 )

𝑞 (u𝐾 |u0 ) −
∑𝐾
𝑘=2 log

𝑝𝜃 (u𝑘−1 |u𝑘 ,𝑧 )
𝑞 (u𝑘−1 |u0 ) − log𝑝𝜃 (u0 | u1, 𝑧)

]
= E𝑞

[
𝐿𝐾 +

∑𝐾
𝑘=2 𝐿𝑘−1 − 𝐿0

]
,

(6)
𝐿𝐾 = DKL [𝑞 (u𝐾 | u0) ∥𝑝 (u𝐾 |𝑧)] (7)

𝐿𝑘−1 = DKL [𝑞 (u𝑘−1 | u0) ∥𝑝𝜃 (u𝑘−1 | u𝑘 , 𝑧)] (8)
𝐿0 = − log𝑝𝜃 (u0 | u1, 𝑧) (9)

Here, the various components of the process exhibit a factorization
that is akin to, yet more straightforward than, that observed in
diffusion probabilistic models. The terms 𝐿𝑘−1 denote the Kullback-
Leibler divergences between sequentially adjacent distributions.

DKL [𝑞 (u𝑘−1 | u0) ∥𝑝𝜃 (u𝑘−1 | u𝑘 , z)]

∝
𝝁𝜃 (u𝑘 , 𝑘) − H (𝑡𝑘−1) u022 (10)

− log𝑝𝜃 (u0 | u1, z) ∝
𝝁𝜃 (u1, 1) − u022 (11)

Eq.(10) (11) 𝑝𝜃 (u𝑘−1 | u𝑘 , z) (𝑘 = 1, . . . ,𝑇 ) are trainable Gaus-
sians as Eq.(5). The losses on all levels are direct point reconstruc-
tion losses where we predict a slightly less smoothed points from a
smoothed points that has added noise with 𝜎2.

3.2 Geometric Algebra Representation for Point
Cloud

Present deep learning methodologies often handle the components
of vector fields identically to scalar fields, aggregating all scalar
fields along the channel dimension. This practice neglects the intri-
cate geometric interplay between the various components within
vector fields and between individual vector and scalar fields.

3.2.1 Background for Geometric Algebra Representation.

Figure 2: The geometric product (GP) is composed of both the inner
product (IP) and the wedge product (WP). The GP of two vectors
yields a zero-dimensional scalar (length) and a two-dimensional
bivector (oriented plane ®A).

Geometric Algebra 𝐺𝑝,𝑞 (R) is generated by 𝑝 + 𝑞 orthonormal
basis elements 𝑒1, . . . , 𝑒𝑝+𝑞 generating vector space R𝑛 , such that
the following quadratic relations hold as 𝑒2

𝑖
= +1 for 1 ≤ 𝑖 ≤ 𝑝 ,

𝑒2
𝑗
= −1 for 𝑝 < 𝑗 ≤ 𝑝 +𝑞 and 𝑒𝑖𝑒 𝑗 = −𝑒 𝑗𝑒𝑖 for 𝑖 ≠ 𝑗 . The pair (𝑝, 𝑞)

is called the signature. By multiplying vectors, one obtains so-called
multivectors, which can represent both geometrical objects and
operators containing scalars, vectors, bivectors, · · ·, k-vectors. For
example, in a𝐺3,0 (R) with orthogonal basis 𝑒1, 𝑒2, 𝑒3, has 𝐵(23 = 8)
basis blades, a general multivector takes the form:

𝑥 = 𝑥𝑠 + 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3 + 𝑥12𝑒1𝑒2 + 𝑥13𝑒1𝑒3
+𝑥23𝑒2𝑒3 + 𝑥123𝑒1𝑒2𝑒3,

(12)

These are characterized by their dimensionality (grade k), such
as scalars (grade 0), vectors 𝑒1(grade 1), bivectors 𝑒1𝑒2(grade 2),
tirvectors 𝑒1𝑒2𝑒3(grade 3).
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In geometric algebra, multiplication is achieved through the geo-
metric product, which encompasses both the inner product and the
wedge product. As a fundamental component of geometric algebra,
the geometric product merges the dimension-reducing properties of
the inner product—which converts a vector into a scalar, represent-
ing length—with the dimension-expanding attributes of the outer
product. Specifically, the outer product of two vectors produces
a bivector, a directed area equivalent to the area of the parallelo-
gram formed by these vectors, oriented perpendicular to their plane.
Consequently, the geometric product retains angular relationships
between vectors and captures normal information of the plane they
span, offering a more comprehensive representation than the inner
product alone, as depicted in Figure 2.

3.2.2 Geometric Algebra Representation for point cloud.
For this task, we aim to utilize a novel point transformer-based

architecture[22, 45], incorporating 𝐺3,0 (R) Representation for fea-
ture expression. Consequently, modifications are necessary for
point cloud embedding, the linear layers within the transformer,
and the attention mechanisms to accommodate this approach.

We first embedding the point cloud position lies in vector space
𝑋𝑁×3 ∈ R3 into 𝑋𝑁×𝐶×𝐵 ∈ 𝐺3,0 (R). This step is quite straightfor-
ward; it simply involves embedding the elements of a vector space
into a multivector space according to their corresponding positions.

We further define the geo-linear layers to perform feature map-
ping act as the linear layers in classical transformers, in which
multivector features are mapped into 𝑋𝑁×𝐶0×𝐵 ∈ 𝐺3,0 (R). The
geo-linear is formualted as:

𝑋
(𝑘 )
𝑐1 =

ℓ∑︁
𝑐𝑖𝑛=1

𝑊 1
𝑐𝑜𝑢𝑡𝑐𝑖𝑛𝑘

𝑋
(𝑘 )
𝑐𝑖𝑛 ,

𝑋
(𝑘 )
𝑐2 =

ℓ∑︁
𝑐𝑖𝑛=1

𝑊 2
𝑐𝑜𝑢𝑡𝑐𝑖𝑛𝑘

𝑋
(𝑘 )
𝑐𝑖𝑛 ,

𝑋
(𝑘 )
𝑜𝑢𝑡 =

𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0

𝑊𝑖 𝑗𝑘

{
𝑥
(𝑖 )
𝑐1 𝑥

( 𝑗 )
𝑐2

} (𝑘 )
,

(13)

where the first two lines represent feature mapping along the grade
levels within the multivector, the last line represents the element-
wise geometric product layer.𝑊𝑐𝑜𝑢𝑡𝑐𝑖𝑛𝑘 are learnable coefficients.

Their geometric product terms take the form
{
𝑥
(𝑖 )
𝑐1 𝑥

( 𝑗 )
𝑐2

} (𝑘 )
.

With the incorporation of this final element, we establish the
query, key, and value multivector representations 𝑋𝑁×𝐶×𝐵 , thus
finalizing the attention mechanism for multivectors as:

Attention(𝑞, 𝑘, 𝑣)𝑖′𝑐′ =
∑︁
𝑖

Softmax𝑖

(∑
𝑐

〈
𝑞𝑀𝑉
𝑖′𝑐 , 𝑘𝑀𝑉

𝑖𝑐

〉
√
𝑛

)
𝑣𝑖𝑐′ (14)

Where ⟨·, ·⟩ denotes the inner product in geometric algebra, which
facilitates efficient computations. Additionally, we have extended
this attention mechanism to accommodate a shared multi-head
self-attention structure, utilizing a method akin to the one outlined
in [3]. Since the network ultimately outputs a vector, all that is
required is to perform the inverse of the embedding operation.

3.3 Training and Inference
3.3.1 Training.

As mentioned earlier(Section 3.1.2), the model optimize the re-
construction losses on all time levels directly. In inverse heat dissi-
pation process, the ability to easily obtain a one-to-one mapping
between point clouds across adjacent time segments allows the
model to directly optimize the reconstruction losses at all tempo-
ral levels. Consequently, the Mean Squared Error (MSE) loss is
employed due to its simplicity and effectiveness in mapping rela-
tionships. Furthermore, the Earth Mover’s Distance (EMD) loss has
been demonstrated to exhibit robust and exceptional reconstruction
performance in point cloud processing. Therefore, the final loss
function 𝑓 is formulated by combining these two losses:

𝑓 (𝑠, 𝑡) = 𝑀𝑆𝐸 (𝑠, 𝑡) + 𝜆𝐸𝑀𝐷 (𝑠, 𝑡) (15)

𝐿𝑜𝑠𝑠 = 𝑓 (𝝁𝜃 (u𝑘 , 𝑘, z) ,H (𝑡𝑘−1) u0) (16)
where 𝜆 means a weighting factor ( 𝜆 = 1 in this paper).

3.3.2 Inference.
We employ the completed forward process of interpolated points

as the initial distribution 𝑝𝜃 (u𝐾 | z), feeding it into the network,
which significantly enhances the quality of upsampling during
inference:

u𝑘−1 ← 𝝁𝜃 (u𝑘 , 𝑘, z) + 𝛿2𝜺𝑘 (17)
After 𝑘 iterations, we obtain the mean of the final distribution,
𝑝𝜃 (u0 |z) (with the noise bias removed in the last step), which rep-
resents the result of the final point cloud upsampling.

4 EXPERIMENTS
4.1 Experiment Setup

Dataset.
In our experiment, we employ two well-established public bench-

marks for evaluation purposes: PUGAN[14] and PU1K[26]. We fol-
low the official training and testing partition protocols provided
for these datasets. Utilizing Poisson disk sampling[44], we gen-
erate training datasets comprising 24,000 and 69,000 uniformly
distributed patches, respectively. Each training patch is composed
of 256 points, and its corresponding ground truth contains 256×𝑅
points. For the testing phase, all testing low-res point clouds from
both datasets have 256 points, while the high-res counterparts con-
tain 256 ×𝑅 points.

In addition to the aforementioned synthetic datasets, we also
utilized mesh data [37] and real-scanned 3D Mobile Laser Scanning
(MLS) data [34] for both quantitative and qualitative evaluation.

Baselines and Evaluation Metrics.
we have trained PU-Net[43], PU-GAN[14], PU-GCN[26], Meta-

PU[41], Grad-PU [6] [29] and Neural Points (NePs)[4] with the
default settings in the respective papers as baselines.

Following pioneers, we adopt the Chamfer distance (CD), Earth
mover distance (EMD) and Hausdorff Distance (HD) as metrics. For
all the metrics, the smaller the metric, the better the quality of the
results.

4.2 Results and Comparisons
We integrated the test results of PU1K[26]and PUGAN[14]into a
single dataset to save space and provide clear insights. The results
and comparisons of 4× and 16× are given in Table 1, Figure 3
and Figure 4. Our method achieves the best performance both
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PU1K PUGAN
up ratio 4x 16x 4x 16x
model CD↓ HD↓ EMD ↓ CD ↓ HD ↓ EMD ↓ CD ↓ HD ↓ EMD ↓ CD ↓ HD ↓ EMD ↓
PU-NET 7.649 0.371 11.97 14.07 1.853 22.11 35.80 1.538 55.48 66.43 8.30 102.8
PU-GAN 7.894 0.5788 13.57 5.261 0.7407 10.58 32.79 4.074 56.38 21.75 3.793 42.96
PU-GCN 6.661 0.5054 19.10 6.048 0.6019 12.26 29.92 1.967 4.615 27.01 2.450 55.04
Meta-PU 6.237 0.4199 10.33 3.349 0.4172 8.008 25.91 1.346 4.607 14.28 1.917 33.56
Grad-PU 13.48 1.486 21.917 8,922 1.276 23.57 50.49 5.703 12.68 34.96 4.468 89.95
NePs 5.195 0.445 9.232 3.287 0.5630 7.249 2.332 1.304 4.060 13.81 1.645 29.29
Ours 4.877 0.4138 7.566 2.316 0.438 5.056 2.347 1.198 3.951 9.505 1.555 18.69

Table 1: Results and comparisons for 4× and 16× upsampling, which metrics CD(×10−6), HD(×10−4), EMD(×10−6).

Figure 3: 4× results and comparison on the PU1K[26]dataset, with error metrics including CD(×10−6) and HD(×10−3). Some chosen viewpoints
are selected to highlight the detailed improvements. The same visualization approaches apply to subsequent sections.

quantitatively and qualitatively. The outcomes from PU-Net[43]
are generally disorganized. While PU-GAN[14] outperforms PU-
Net[43], it still introduces some unusual noise and outliers. PU-
GCN[26] surpasses both in performance, effectively maintaining
flat areas while only generating minor noise points within regions
abundant in features. We exerted our effort to train Grad-PU [6]
using the default parameters; however, the outcomes fell short of
expectations, nearly resulting in the loss of a significant portion of
the point cloud’s geometric information. Meta-PU[41] and Neps[4]
are recently point cloud upsampling methods with outstanding
performance, and the authors have generously provided the pre-
trained model parameters. The point cloud distributions generated
by Meta-PU[41] are consistently uniform, often surpassing our
expectations to some degree. However, in regions of high curvature,

Meta-PU struggles to produce high-quality results. Neps[4] achieves
performance closest to ours in terms of results, yet it falls short
in handling details perfectly. Additionally, the Neps[4] network
incorporates normal vector information of point clouds during
training. Thus, our significant advantage lies in accomplishing
point cloud upsampling without relying on normal vectors.

4.3 Ablation Study
We conduct ablation studies to demonstrate the effectiveness of our
proposed method and to illustrate how each component contributes
to the final results.

Firstly, we aimed to validate the diffusion-type network par-
adigm. Our focus was on determining if enhancement based on
reverse heat dissipation geometry resolution surpasses traditional
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Figure 4: 4× upsampling results and comparison on the PUGAN[14]dataset, with error metrics including CD(×10−6) and HD(×10−3).

denoising approaches. This concept bears similarities to the ideas
presented in [29]. However, due to the absence of source code from
the authors, we defined the hyperparameters and fine-tuned a Con-
ditional DDPM for Point Cloud Upsampling ourselves. Secondly,
we aim to validate whether our proposed approach of extending
features into the multivector space through a geometric algebra rep-
resentation(GAR) offers a geometric enhancement advantage over
the traditional method of features lying in vector spaces(VSF). We
can see that the result with the conditional DDPM scheme is much
worse than the inverse dissitipation scheme. In the comparison be-
tween Geometric Algebra Representation (GAR) and Vector Space
Features, GAR demonstrates superior advantages, both quantita-
tively and qualitatively. The evidence supporting these arguments
is verified in Table 2. It is particularly noteworthy that within a mul-
tivector, elements of different grades can participate in geometric
multiplication.

4.3.1 Generalization and Robustness.
Generalizing Across Different Point Cloud Sources.
We tested the 4× and 16× upsampling performance on the PU1K

and PUGAN test sets, which utilize synthetic data, and we used

Ablation Settings CD↓ HD↓ EMD↓
Conditional DDPM + VSF 6.08 9.88 14.1

Inverse Heat + VSF 4.32 4.37 9.85
Inverse Heat + GAR 3.42 2.31 8.99

Table 2: Results of the ablation study on mesh data [37],
with 4×upsampling factor.which metrics CD(×10−6), HD(×10−3),
EMD(×10−6)

mesh data in the previous section’s ablation study. We also con-
ducted experiments on real-scanned point clouds from the Paris-
rue-Madame database[34]. Given that these point clouds contain
millions of points, we limited our comparison to qualitative as-
sessments and excluded methods that do not support inference
on such large-scale point clouds or consistently yield inferior re-
sults. Scanned data are frequently sparse and noisy, and often con-
tain small holes or gaps that compound their complexity. Figure 5
demonstrates that our results are more complete, smooth, and ac-
curate, whereas other methods often retain these holes.

Robustness to different upsampling factor.
We examine the upsampling effects of various techniques using

large upsampling factors. It should be noted that all methods tested,
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Figure 5: Upsampled results on the Paris-Rue-Madame dataset. This dataset features radar scenes of streets and roadside parking. Our
upsampling method closely approximates the ground truth.

including ours, are trained with a 4× supervision data. Due to the
simplicity ofMidpoint Interpolation, we can easily generate a coarse
upscaled point cloud, facilitating the training of an Rx supervision
signal if conditions permit. In fact, due to the high computational
costs of 4× supervision training, we use the model twice to achieve
16× upsampling, still yielding favorable outcomes. However, the
cascading upsampling approach employed by PU-GAN, PU-GCN,
and Grad-PU exhibits noticeable flaws. Therefore, if we train a
model under 𝑅× supervision, in theory, we could achieve point
cloud upsampling at any integer power of 𝑅.

Robustness to different point density.
We continue to investigate the upsampling effects of different

techniques with different point density. In this context, density
primarily refers to the number of points per unit space within the
point cloud that is to be upsampled, compared to the 256-point
clouds used as input during training. Excluding the Neps model,
which cannot alter input sizes, and the PU-Net, which shows a
significant performance gap, our model remains highly competitive
across various input densities as described in Table 3.

512 points 1024 points 2048 points
Model CD↓ HD ↓ EMD ↓ CD ↓ HD ↓ EMD ↓ CD ↓ HD ↓ EMD ↓

PU-GAN 15.2 1.47 26.4 4.06 0.61 7.16 2.28 4.49 4.18
PU-GCN 7.21 0.66 12.6 4.38 0.45 7.80 2.91 0.32 5.29
Meta-PU 5.57 0.54 10.8 2.81 0.33 5.63 1.38 0.15 2.78
Grad-PU 5.91 0.72 12.7 2.89 0.44 5.75 1.41 0.20 2.77
Ours 5.54 0.75 10.2 2.72 0.42 5.40 1.20 0.23 2.73

Table 3: 4× upsampling results and comparisons for 512, 1024 and
2048 inputs, which metrics CD(×10−6), HD(×10−4), EMD(×10−6).

4.4 Conclusion and Limitation
In summary, this paper introduces a novel point cloud upsampling
method based on PDEs, tailored specifically for dense point clouds
through a forward heat dissipation process and its refined inverse.
By integrating geometric algebra to articulate complex geometric
features within multivector fields, our approach not only signifi-
cantly enhances the precision and expression of geometric char-
acteristics but also surpasses existing techniques in generating

intricate geometric forms. Extensive experimental validations un-
derscore the superiority of our method. Moreover, the successful
application of inverse heat dissipation and geometric algebra in this
context not only proves effective for point cloud upsampling but
also paves the way for future advancements in handling complex
geometric data, potentially benefiting a wide range of applications
from 3D modeling to autonomous navigation.

Currently, our diffusion-type point cloud upsampling method
requires a longer inference time to achieve enhanced upsampling
results. This is despite the fact that our supervised training ap-
proach significantly reduces the number of inference iterations
compared to DDPM’s denoising scheme. Moreover, the use of geo-
metric algebra representation through geometric products also
demands substantial computational resources. Therefore, in upsam-
pling tasks with particularly high upsampling factors, it is necessary
to reconsider the balance between performance and computational
efficiency.
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