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Abstract

Offline reinforcement learning (RL) offers a promising framework for training agents us-
ing pre-collected datasets without the need for further environment interaction. However,
policies trained on offline data often struggle to generalise due to limited exposure to di-
verse states.The complexity of visual data introduces additional challenges such as noise,
distractions, and spurious correlations, which can misguide the policy and increase the risk
of overfitting if the training data is not sufficiently diverse. Indeed, this makes it challenging
to leverage vision-based offline data in training robust agents that can generalize to unseen
environments. To solve this problem, we propose a simple approach—generating additional
synthetic training data. We propose a two-step process, first augmenting the originally col-
lected offline data to improve zero-shot generalization by introducing diversity, then using a
diffusion model to generate additional data in latent space. We test our method across both
continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demonstrat-
ing that it significantly improves generalization without requiring any algorithmic changes
to existing model-free offline RL methods. We show that our method not only increases
the diversity of the training data but also significantly reduces the generalization gap at
test time while maintaining computational efficiency. We believe this approach could fuel
additional progress in generating synthetic data to train more general agents in the future.

1 Introduction

Offline reinforcement learning (RL) offers a compelling approach for training agents using pre-collected
datasets without additional environment interaction (Levine et al., 2020). This paradigm is particularly
valuable in domains like healthcare (Liu et al., 2020), robotics (Singla et al., 2021), and autonomous driving
(Kiran et al., 2021), where real-time data collection can be costly or risky. However, generalizing policies
trained on high-dimensional visual inputs in offline RL remains a significant challenge, and it has received
relatively little attention in the research community. Agents may learn irrelevant correlations between visual
features and actions, reducing their ability to perform well in new settings (Song et al., 2019; Raileanu &
Fergus, 2021). Additionally, offline RL policies tend to exhibit risk-averse behavior, avoiding novel actions in
unfamiliar states, which further hampers generalization (Mediratta et al., 2024). To tackle these challenges,
we propose a two-step method that combines data augmentation with diffusion model-based upsampling
to improve generalization in offline RL. While both data augmentation (Laskin et al., 2020; Yarats et al.,
2021a;b; Raileanu et al., 2021) and the use of diffusion models for replay buffer upsampling (Lu et al., 2023b)
have been explored independently in the online RL domain, our contribution lies in their integration and
adaptation for the unique challenges of offline RL to achieve greater diversity and more robust generalization.
First, we apply data augmentation techniques to the offline dataset, introducing variability that helps reduce
overfitting. Then, we use a diffusion model to upsample the augmented dataset in the latent space, generating
additional synthetic data points that capture unseen transitions. This approach broadens the distribution of
experience replay data without incurring significant computational overhead, allowing policies to generalize
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more effectively to new environments.Our results demonstrate that our method significantly reduces the
generalization gap across various difficulty levels in two recent visual offline RL benchmarks, highlighting
the effectiveness of combining augmentation and diffusion-based upsampling.

Figure 1: V-D4RL (continuous) and Procgen (discrete) benchmarks illustrate the generalization challenge in
offline RL by showcasing visual differences between training and testing environments (a). Jensen-Shannon
divergence heatmaps demonstrate how well each method aligns training and testing distributions, with our
two-stage approach outperforming the data upsampling, and augmentation methods; darker colors indicate
higher divergence (b). The performance of each method in unseen environments, normalized to the baseline,
consistently shows our approach performing best with reduced variability across runs (c). For detailed
analysis, refer to Section 5 for details.

To summarize, our contributions are:

• We introduce a practical method that integrates data augmentation and diffusion-based upsampling
to improve generalization in offline RL from visual inputs, without requiring modifications to existing
model-free offline RL algorithms.

• We show our approach expands data diversity without increasing computational costs, improving
zero-shot generalization across both continuous and discrete control tasks.

• To the best of our knowledge, we are the first to propose a practical, scalable method that addresses
generalization in both continuous (V-D4RL) and discrete (Procgen) control tasks within offline RL.

2 Background

2.1 Offline Reinforcement Learning from Visual Observations

Reinforcement learning (RL) typically involves an agent learning interacting with an environment modeled as
a Markov Decision Process (MDP) (Sutton & Barto, 2018), where the objective is to optimize the expected
cumulative return J(π) = Eπ,P,ρ0 [

∑∞
t=0 γtR(st, at)], where J(π) represents the expected return of a policy

π, Eπ,P,ρ0 is the expectation over the policy π, the environment dynamics P (s′|s, a), and the initial state
distribution ρ0. The term γ ∈ [0, 1) is the discount factor, controlling how much future rewards are valued,
and R(st, at) is the reward function at time step t, depending on the state st and action at. The goal is to
find a policy π that maximizes this cumulative discount return over time.

However, in offline RL, the agent must learn from a static dataset D = {(oi, ai, ri, o′
i)}N

i=1, without any
interaction with the environment during training (Levine et al., 2020). This datasetf observations collected
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by one or more behavior policies. When dealing with visual observations (high-dimensional inputs), addi-
tional challenges arise.Unlike proprioceptive observations in standard RL, visual inputs are prone to noise
and spurious correlations (Lu et al., 2023a), making offline RL particularly vulnerable to overfitting. Small
environmental changes (e.g. lighting or background) can cause significant shifts in data distribution. With-
out interaction to correct for these shifts, agents struggle to generalize from visual observations (Raileanu &
Fergus, 2021). Given these challenges, the core problem is: How can we improve the generalization perfor-
mance of model-free offline RL methods from visual observations and ensure the robust deployment of agents
in unseen environments for both continuous and discrete action spaces?

2.2 Diffusion Models

Diffusion models generate data by reversing a noise-adding process, starting from noise and gradually de-
noising to recover the original data distribution (Ho et al., 2020; Rombach et al., 2022). Noiseoval is guided
by a learned denoising model Dθ(x; σ), trained using an L2 objective:

min
θ

Ex∼p,σ,ϵ∼N (0,σ2I)∥Dθ(x + ϵ; σ) − x∥2
2. (1)

This allows the model to estimate the data distribution at different noise levels. Additional details, including
the use of ODEs or SDEs for the reverse process, can be found in Karras et al. (2022). Diffusion models
have shown superior performance in generating diverse synthetic datasets compared to Generative Adver-
sarial Networks (GAN) and Variational Autoencoders (VAEs), which makes them particularly effective for
improving generalization in reinforcement learning Lu et al. (2023b). This is why we chose diffusion models,
as their ability to generate diverse data makes them ideal for our approach.

3 Method

3.1 Overview of the Proposed Method

To address the generalization challenges of off-line RL from visual observations, we present a simple, practical
approach that combines data augmentation and diffusion model-based upsampling.

1. Data Augmentation to Increase Initial Dataset Diversity: We apply specific data augmen-
tation techniques to offline datasets to increase the diversity of the initial dataset D0. This step
aims to introduce variability and reduce overfitting to spurious correlations in visual inputs.

2. Upsampling with Diffusion Models: We employ diffusion model to upsample (SynthER (Lu
et al., 2023b)) the augmented dataset D0, generating additional synthetic samples in the latent
space. This further increases dataset diversity and helps the policy generalize better to unseen
environments.

By integrating data augmentation with diffusion model-based upsampling, our method effectively covers a
wider range of potential scenarios without significantly increasing computational overhead.

3.2 Step 1: Data Augmentation for Initial Dataset Diversity Enchancement

To construct an initial dataset D0 that captures key environment dynamics, we apply a set of data augmen-
tation techniques to improve robustness to variations in visual inputs. Specifically, we focus on rotation,
color jittering, color cutout, and background image overlay, which were empirically found to improve general-
ization. These augmentations introduce variations that prevent the agent from learning spurious correlations
in the visual inputs. However, we believe that data augmentation alone may not fully capture the diversity
of real-world scenarios, particularly in unseen environments, making it necessary to complement this with
synthetic data generation through diffusion models, which has proven to improve diversity even more effec-
tively than augmentation techniques (Lu et al., 2023b). Full details for this part are given in supplementary
material.
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3.3 Latent Space Upsampling with Diffusion Models

We first train an encoder-based model-free visual offline RL algorithm on the augmented dataset D0, using
the selected image augmentation techniques described in Section 3.2. For the V-D4RL benchmark, we use
the DrQ+BC algorithm (Lu et al., 2023a), while CQL is employed for the Procgen benchmark (Kumar
et al., 2020). In both cases, the networks consist of a CNN encoder fξ, policy network πϕ, and Q-function
networks Qθ. This initial training enables the model to learn robust representations from diverse visual
inputs, tailored to the specific requirements of each environment.

After the initial training, we extract latent space parameters from the augmented dataset by passing the
augmented observations through the trained encoder fξ and the linear head layers, which sit between the
encoder and the MLPs of the policy and Q-function networks. For each transition (s, a, r, s′) in D0, the
following computations are made:

h = fξ(Augment(s)), h′ = fξ(Augment(s′)) (2)
zπ = πlin

ϕ (h), z′
π = πlin

ϕ (h′) (3)
zQ = Qlin

θ (h), z′
Q = Qlin

θ (h′) (4)

where πlin
ϕ and Qlin

θ denote the linear head layers of the policy and Q-function networks.

We combine the latent representations to construct the latent transitions:

z = zπ + zQ, z′ = z′
π + z′

Q (5)

resulting in the latent dataset Dlatent = {(z, a, r, z′)}, which is used to train the diffusion model Mdiff.
Following Lu et al. (2023b) and Karras et al. (2022), the diffusion model generates synthetic latent transitions
(zd, ad, rd, z′

d), producing the upsampled dataset Ddiff.

Finally, we combine the original and upsampled datasets to create an expanded dataset:

Dups = Dlatent ∪ Ddiff (6)

The encoder fξ and the linear head layers of the policy and Q-functions are frozen during fine-tuning, allowing
the training to focus on refining the MLP layers of the policy and value networks using the diverse data
provided by Dups. This ensures stable representations while improving the model’s ability to generalize to
unseen environments with minimal computational overhead. Our empirical approach, which combines data
augmentation with synthetic data generation through upsampling in the latent space, significantly increases
dataset diversity, as demonstrated in our results (Section 5). Figure 2 illustrates the architecture of our
method, built on the DrQ+BC model.

4 Experimental Setup

4.1 Environments and Datasets

We evaluated our method on two challenging offline RL benchmarks that test generalization capabilities in
different domains:

• Visual D4RL (V-D4RL) (Lu et al., 2023a): This benchmark is a visual input version of the D4RL
benchmark (Fu et al., 2021) and focuses on continuous control tasks with visual inputs. It features
varying levels of visual distractions (easy, medium, hard) and is designed to assess generalization in
continuous action spaces.

• Offline Procgen (Mediratta et al., 2024): This is an offline version of Procgen benchmark Cobbe
et al. (2020) procedurally generated games that targets discrete control tasks. It tests zero-shot
generalization to entirely unseen levels.
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Figure 2: Illustration of our method in the V-D4RL benchmark using the DrQ+BC network. Green arrows
indicate data augmentation, while blue and orange arrows represent the training flows for the actor and
critic networks, respectively. The red components highlight the diffusion model upsampling process, which
generates additional latent space transitions to increase the dataset diversity.

These offline RL benchmarks were chosen to comprehensively evaluate our method’s performance across
diverse environments, including both continuous and discrete action spaces, as well as its ability to gener-
alize in the presence of visual distractions and to completely novel scenarios. Figure 3 illustrates sample
observations from the V-D4RL and Procgen datasets, highlighting the visual diversity and complexity across
training and testing environments.

Figure 3: Sample screenshots from the V-D4RL (left) and Procgen (right) datasets, showing the training
environments and testing environments.

For our experiments, we generated different dataset variants to evaluate the effectiveness of our method.
We used a Baseline dataset without augmentation or upsampling, which was originally provided by both
benchmarks; an Upsampled dataset where the original dataset was increased in size using diffusion model-
based upsampling, without any augmentation; an Augmented dataset where data augmentation techniques
were applied without changing the dataset size; and an Augmented Upsampled (Ours) dataset that com-
bined both augmentation and upsampling. For more details on the experimental setup, please refer to the
supplementary material

4.2 Implementation Details

For VD4RL we used the DrQ+BC (Lu et al., 2023a) algorithm, which extends DrQ-v2 (Yarats et al.,
2021a), using BC (as in TD3BC, Fujimoto & Gu (2021)). For Procgen we used Conservative Q-Learning
(CQL) (Kumar et al., 2020). The hyperparameters, network architectures, and other implementation details
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follow the standard settings provided in the original benchmark papers. For completeness, we provide all
hyperparameters and network architecture details in supplementary material.

4.3 Evaluation Metrics

4.3.1 Generalization Performance Metric

To quantify our model’s ability to generalize to unseen environments with visual distractions, we adopt a
generalization performance metric inspired by the normalization approach commonly used in reinforcement
learning (RL) studies, such as the Procgen benchmark Cobbe et al. (2020) which defines the normalized
return (Rnorm) as:

Rnorm = R − Rmin

Rmax − Rmin
, (7)

where R is the agent’s performance, Rmin represents the lowest possible score (e.g., the baseline’s test
performance), and Rmax corresponds to the highest possible score. Inspired by this formulation, we define
our Generalization Performance as the proportion of the baseline’s generalization gap that our method
closes. Specifically, we calculate it by subtracting the baseline’s mean test return (Btest) from our method’s
mean test return (Ttest), then dividing by the difference between the baseline’s mean training return (Btrain)
and Btest. Generalization performance value of 1 indicates that our method completely eliminates the gap,
providing a clear benchmark for comparison.

4.3.2 Latent Space Distribution Analysis

To gain deeper insights into the impact of our method on learned representations, we performed a latent space
distribution analysis using the Jensen-Shannon (JS) divergence (Menéndez et al., 1997). For each dataset
variant, we extracted latent space representations by passing both training and testing observations (collected
during the evaluation steps, as detailed in supplementary material through the trained encoder fξ and the
actor-critic networks. Let htrain and htest represent the sets of latent representations for training and testing
observations, respectively. For each environment, we estimated probability distributions over the latent
space dimensions using kernel density estimation (KDE) to non-parametrically capture the distributions of
htrain and htest. We then computed the JS divergence between the training and testing distributions for
each dimension, resulting in a divergence vector d = [d1, d2, . . . , dn], where n represents the dimensionality
of the latent space. The mean JS divergence d̄ across all dimensions was used to summarize how closely
the training and testing distributions aligned, with lower divergence indicating better generalization. To
facilitate comparison across different environments, we normalized the mean JS divergence values within
each environment, ensuring consistency in scale. A closer match between training and test distributions
suggests improved generalization performance by our method.

5 Experimental Results and Discussion

5.1 V-D4RL Benchmark Results

As seen in Figure 4, models trained on the Baseline and Upsampled datasets showed minimal improvement
in the generalization gap across all environments (cheetah-run, walker-walk, and humanoid-walk), suggesting
that upsampling alone does not significantly improve generalization. The baseline consistently shows a gen-
eralization gap of 0 because the results are normalized over it, and thus its results are not explicitly shown.
In contrast, the Augmented model demonstrated a substantial reduction in the generalization gap, high-
lighting the importance of data augmentation in improving robustness against unseen visual perturbations.
The best results were achieved with the Augmented Upsampled (Ours) dataset, where combining data
augmentation with upsampling further improved generalization across all environments. The JS Divergence
analysis similarly showed that the Ours dataset achieved the lowest divergence, indicating a closer align-
ment between the training and testing distributions in the latent space. This further supports that combining
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Figure 4: (a) Generalization performance averaged across all difficulty levels (easy, medium, hard) for dif-
ferent environments. (b) Normalized JS divergence values for each environment which normalized relative
to that environment. Lower values (lighter colors) indicate a closer alignment between the distributions of
training and test data, suggesting better generalization.

augmentation with upsampling leads to a more consistent latent representation and, consequently, better
generalization. These findings align with the generalization gap and return values in Table 1.

Table 1: Performance evaluation on the V-D4RL benchmark across different datasets and environments,
trained using the DrQ+BC algorithm. All return values are based on the mean over five random seeds.

Environment Method Original Easy Medium Hard Test Mean

cheetah-run

Baseline 250.1 ± 10.9 4.2 ± 1.3 3.1 ± 0.6 3.3 ± 0.8 3.53 ± 0.9
Upsampled 315.2 ± 20.1 4.6 ± 0.7 3.5 ± 0.3 4.1 ± 0.9 4.06 ± 0.7
Augmented 350.5 ± 15.5 81.2 ± 8.1 60.7 ± 6.2 41.3 ± 3.4 61.1 ± 5.9
Ours 360.2 ± 10.1 86.1 ± 7.1 71.2 ± 6.0 54.4 ± 2.4 70.6 ± 5.2

walker-walk

Baseline 570.2 ± 6.7 35.4 ± 2.4 31.6 ± 3.3 29.9 ± 2.2 32.3 ± 0.9
Upsampled 665.2 ± 7.2 32.4 ± 1.4 30.3 ± 2.7 28.9 ± 1.8 30.5 ± 2.0
Augmented 799.5 ± 10.5 131.5 ± 10.1 75.1 ± 5.2 50.5 ± 1.4 85.7 ± 5.6
Ours 845.9 ± 6.1 141.1 ± 12.1 92.3 ± 2.3 65.7 ± 1.6 99.7 ± 5.3

humanoid-walk

Baseline 15.4 ± 2.1 1.3 ± 0.2 1.0 ± 0.3 1.1 ± 0.2 1.1 ± 0.2
Upsampled 20.4 ± 2.3 1.3 ± 0.3 1.3 ± 0.4 1.1 ± 0.1 1.2 ± 0.3
Augmented 25.4 ± 2.7 1.6 ± 0.5 1.5 ± 0.3 1.2 ± 0.1 1.4 ± 0.3
Ours 28.5 ± 1.4 2.4 ± 0.2 2.3 ± 0.1 1.7 ± 0.2 2.2 ± 0.2

The results indicate that data augmentation improves generalization amidst visual distractions. Our ap-
proach achieves notable generalization performance in zero-shot testing circumstances.

5.1.1 Leveraging Fixed Distracting Data for Improved Generalization

Building on our findings from the V-D4RL benchmark, where our two-stage approach of augmentation and
upsampling significantly improved generalization, we further tested the robustness of our method. Although
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previous research (Lu et al., 2023a) indicated that training with fixed distracting datasets—containing hand-
crafted distractions—offered minimal benefits for generalization , we hypothesized that our method could
effectively leverage even a small portion of such data. To test this, we incorporated 5% of the fixed distract-
ing data into our training dataset, combining it with 95% of the original baseline data to create a composite
dataset for baseline. We then applied our augmentation and upsampled technique, we called Ours Fixed
Data Distraction (FDD). For more details on the experimental setup, please refer to the supplementary
material.

Figure 5: (a) Generalization performance averaged over all difficulty levels, and (b) comparison of normalized
JS divergence values for cheetah-run expert dataset.

As illustrated in Figure 5, including just 5% of the fixed distracting data improved generalization performance
across all test environments, further narrowing the generalization gap. The latent space distributions also
aligned more closely with the test data, as evidenced by reduced JS divergence values. Notably, we saw
significant improvements, especially on medium and hard difficulty levels, when this fixed distracting data
was combined with our augmentation and upsampling techniques.(Table 2).

Table 2: Performance on the cheetah-run expert dataset with and without incorporating 5% fixed distracting
data (FDD). Results are based on the mean of five random seeds.

Environment Method Original Easy Medium Hard Test Mean

cheetah-run

Baseline 250.1 ± 10.9 4.2 ± 1.3 3.1 ± 0.6 3.3 ± 0.8 3.53 ± 0.9
Upsampled 315.2 ± 20.1 4.6 ± 0.7 3.5 ± 0.3 4.1 ± 0.9 4.06 ± 0.7
Augmented 350.5 ± 15.5 81.2 ± 8.1 60.7 ± 6.2 41.3 ± 3.4 61.1 ± 5.9
Ours 360.2 ± 10.1 86.1 ± 7.1 71.2 ± 6.0 54.4 ± 2.4 70.6 ± 5.2
Ours (FDD) 267.9 ± 7.2 103.4 ± 5.3 85.4 ± 5.0 59.8 ± 3.4 82.8 ± 4.6

Environment Method (Test Mean) / Train Train - (Test Mean)

cheetah-run

Baseline 0.01 246.6
Upsampled 0.01 311.1
Augmented 0.17 289.4
Ours 0.20 289.6
Ours (FDD) 0.31 185.1

Our approach effectively utilizes this data to add diversity and improve robustness to unseen distractions,
leading to an intriguing question:

Could incorporating a small, strategically chosen subset of data that closely aligns with the evaluation dis-
tribution—when combined with augmentation and upsampling techniques—offer a viable strategy to improve
generalization in few-shot learning scenarios?
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5.2 Results on Procgen Benchmark

Our results on the Offline Procgen Benchmark further validate the generalization capabilities of our method,
demonstrating its effectiveness not only in continuous control environments like V-D4RL but also in discrete
control tasks. Figure 6 illustrates the generalization performance across three different environments across
datasets.

Figure 6: Performance evaluation on the Procgen benchmark across three different games, trained using the
CQL algorithm. (a) Generalization performance for three games in Procgen. (b) Comparison of normalized
JS divergence values.

Table 3: Performance of the CQL algorithm on the Procgen Benchmark, based on the mean over five random
seeds.

Environment Method Train Return Test Return

Coinrun

Baseline 8.51 ± 0.27 7.17 ± 0.27
Upsampled 8.96 ± 0.32 7.37 ± 0.37
Augmented 8.65 ± 0.31 7.50 ± 0.54
Ours 8.74 ± 0.34 8.02 ± 0.44

Ninja

Baseline 5.94 ± 0.23 4.41 ± 0.21
Upsampled 6.18 ± 0.39 4.52 ± 0.41
Augmented 5.83 ± 0.31 4.75 ± 0.35
Ours 6.05 ± 0.27 4.82 ± 0.27

Jumper

Baseline 7.62 ± 0.19 4.23 ± 0.24
Upsampled 7.94 ± 0.32 4.36 ± 0.28
Augmented 7.55 ± 0.28 4.51 ± 0.19
Ours 7.35 ± 0.24 4.72 ± 0.22

Environment Method Test / Train Train - Test

Procgen Averaged

Baseline 0.72 2.09
Upsampled 0.70 2.28
Augmented 0.76 1.76
Ours 0.79 1.53
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As shown in Table 3, applying data augmentation alone to the baseline dataset led to marginal improvements.
However, our proposed method—creating augmented and upsampled dataset—yielded the most significant
improvements across all three games. These results underscore the effectiveness of our solution, confirming
its ability to improve generalization performance in discrete control tasks like Procgen, in line with the gains
observed in the V-D4RL continuous control benchmark. Thus, our method demonstrates its effectiveness
not only in continuous control tasks but also in discrete control environments. While the improvements in
Procgen are consistent with the trends observed in V-D4RL, they validate the generalization capabilities
of our solution across a broader range of offline RL challenges. It is important to note that Mediratta et
al. (Mediratta et al., 2024) provided an offline Procgen dataset collected from only 200 levels, limiting our
ability to compare the effects of increasing the number of levels on generalization performance relative to
our method. Despite this limitation, our results demonstrate that without expanding the dataset’s level
diversity, our approach significantly amplifies generalization performance. This suggests that our method
effectively compensates for the limited number of levels through data augmentation and upsampling alone.

6 Related Work

Generalization in RL has been extensively studied, primarily in the context of online RL. A substantial
body of work has focused on training agents to generalize across novel transition dynamics and reward
functions (Rajeswaran et al., 2018; Machado et al., 2017; Packer et al., 2019; Cobbe et al., 2020; Kirk et al.,
2023; Justesen et al., 2018; Nichol et al., 2018; Küttler et al., 2020; Bengio et al., 2020; Bertran et al.,
2020; Ghosh et al., 2021; Lyu et al., 2024; Ehrenberg et al., 2022; Lyle et al., 2022; Dunion et al., 2023;
Almuzairee et al., 2024). RL environments such as Procgen (Cobbe et al., 2020) and the NetHack Learning
Environment (Kumar et al., 2020) have been specifically developed to assess generalization in online RL.
However, these studies largely focus on interactive settings where agents can gather new data during training,
leaving generalization in offline RL relatively unexplored.

Visual offline RL introduces additional challenges, particularly when using large-scale datasets. Datasets
like Atari, StarCraft, and MineRL contain millions of samples but require significant computational resources,
limiting their accessibility to many researchers (Agarwal et al., 2020; Vinyals et al., 2017; Fan et al., 2022).
In contrast, benchmarks such as V-D4RL and offline Procgen (Lu et al., 2023a; Mediratta et al., 2024)
offer more accessible alternatives, with 100,000 and 1 million samples per environment, respectively, while
still supporting meaningful evaluation of generalization in continuous and discrete control tasks. Both
benchmarks highlight the generalization challenges in offline RL, especially with model-free methods. Our
work extends these efforts by evaluating generalization across diverse, procedurally generated environments
in both continuous and discrete control tasks.

Data augmentation in RL has been widely successful in improving generalization in online RL methods
(Yarats et al., 2021b;a; Raileanu et al., 2021; Laskin et al., 2020; Ma et al., 2024), but its application in
offline RL remains underexplored. Our work leverages augmentation to address generalization in offline
settings, demonstrating its potential for visual tasks. Unlike methods such as DrAC (Raileanu et al., 2021)
and SVEA (Hansen et al., 2021), which involve algorithmic changes in online RL settings, our approach
focuses on non-algorithmic enhancements using simple visual augmentations, as demonstrated by (Laskin
et al., 2020) combined with diffusion-based upsampling. This combination improves data diversity and
generalization, providing a scalable, practical solution for offline RL settings.

Diffusion models have emerged as a promising tool for improving RL solutions, though they have primarily
been used as policies or planners rather than as data synthesizers (Zhu et al., 2024; Jackson et al., 2024).
Recent works, such as ROSIE (Yu et al., 2023) and GenAug (Chen et al., 2023), have employed diffusion
models for synthetic data generation to improve generalization. However, these methods operate in online
robotic learning contexts, relying on continuous interaction with the environment. In contrast, our approach
applies diffusion-based upsampling in offline RL, where additional interaction with the environment is not
possible. Inspired by SynthER (Lu et al., 2023b), our method improves data diversity through upsampling,
making it the first diffusion model-based data synthesis aimed at solving the generalization problem in
model-free offline RL with visual inputs, across both continuous and discrete control tasks.

10



Under review as submission to TMLR

7 Conclusion

We presented a practical two-step approach that improves generalization in offline reinforcement learning
from visual inputs. By combining targeted data augmentation with diffusion model-based synthetic data
generation in the latent space, our approach increases training data diversity without significant computa-
tional overhead, allowing model-free offline RL algorithms to better handle risk-averse behavior in unseen
environments. Our experiments on the V-D4RL benchmark (continuous control) and Procgen benchmark
(discrete control) demonstrate that our approach consistently reduces the generalization gap and improves
performance in unseen environments. Additionally, our method effectively leverages small amounts of hand-
crafted, fixed distracting data to further improve generalization, suggesting potential applications for few-shot
learning in offline RL. These benchmarks challenge the development of better offline RL algorithms for vi-
sual observations, and to our knowledge, we are the first to apply this approach across both continuous and
discrete action spaces. By broadening the data distribution in both pixel and latent spaces, we provide a
scalable two-step solution to the generalization challenges in offline RL.

While our method shows significant improvements, there are certain limitations. Although working in the
latent space keeps computational overhead relatively low, extending this approach to the pixel space would
introduce significantly higher costs, especially in environments with high-resolution visual inputs. Addition-
ally, our method required extensive experimentation to identify the best settings for data augmentation and
diffusion model parameters, which may limit its immediate applicability to more complex environments like
robotics or autonomous driving. We opted for model-free algorithms in this work due to their sampling
efficiency and lower computational load. However, these algorithms may face limitations in handling more
complex tasks, particularly those requiring long-horizon planning. Future work will focus on scaling this ap-
proach to such environments and exploring its integration with various RL algorithms, including model-based
ones, to improve generalization in offline RL settings.
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