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Abstract

Recent work by Marino et al. (2020) showed improved performance in sequential density
estimation by combining masked autoregressive flows with hierarchical latent variable mod-
els. We draw a connection between such autoregressive generative models and the task of
lossy video compression. Specifically, we view recent neural video compression methods (Lu
et al., 2019; Yang et al., 2020b; Agustsson et al., 2020) as instances of a generalized stochas-
tic temporal autoregressive transform, and propose avenues for enhancement based on this
insight. Comprehensive evaluations on large-scale video data show improved rate-distortion
performance over both state-of-the-art neural and conventional video compression methods.

1. Introduction

Recent advances in deep generative modeling have enabled a surge in applications, including
learning-based compression. Generative models have already demonstrated empirical im-
provements in image compression, outperforming classical codecs (Minnen et al., 2018; Yang
et al., 2020d), such as BPG (Bellard, 2014). In contrast, the less developed area of neural
video compression remains challenging due to complex temporal dependencies operating at
multiple scales. Nevertheless, recent neural video codecs have shown promising performance
gains (Agustsson et al., 2020), in some cases on par with current hand-designed, classical
codecs, e.g., HEVC.

Source compression fundamentally involves decorrelation, i.e., transforming input data
into white noise distributions that can be easily modeled and entropy-coded. Thus, im-
proving a model’s capability to decorrelate data automatically improves its compression
performance. Likewise, we can improve the associated entropy model (i.e., the model’s
prior) to capture any remaining dependencies. Just as compression techniques attempt to
remove structure, generative models attempt to model structure. One family of models, au-
toregressive flows, maps between less structured distributions, e.g., uncorrelated noise, and
more structured distributions, e.g., images or video (Dinh et al., 2014, 2016). The inverse
mapping can remove dependencies in the data, making it more amenable for compression.

This paper draws on recent insights in hierarchical sequential latent variable models with
autoregressive flows (Marino et al., 2020). In particular, we identify connections between
this family of models and recently proposed neural video codecs based on motion estimation
(Lu et al., 2019; Agustsson et al., 2020). By interpreting this technique as instantiation of
a type of autoregressive flow transform, we propose various alternatives and improvements
based on insights from generative modeling. Our main contributions are as follows:
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1. A new framework. We interpret existing video compression methods through the
more general framework of generative modeling, variational inference, and autoregres-
sive flows, allowing us to readily investigate extensions and ablations. In particular,
we compare fully data-driven approaches with motion-estimation-based neural com-
pression schemes. This framework also provides directions for future work.

2. A new model. Our main proposed model is an improved version of Scale-Space
Flow (SSF) (Agustsson et al., 2020) model, by augmenting a shift transform by scale-
then-shift inspired by performance gains in extending NICE (Dinh et al., 2014) to
RealNVP (Dinh et al., 2016). Structured priors can improve the performance further.

3. A new dataset. The neural video compression community is lacking large, high-
resolution benchmark datasets. While we performed extensive experiments on the
publicly available Vimeo-90k dataset (Xue et al., 2019), we also collected and utilized
a larger dataset, YouTube-NT1, which is used for our ablation study. Details can be
found in Appendix D.

2. Video Compression through Deep Autoregressive Modeling

We identify commonalities between hierarchical autoregressive flow models (Marino et al.,
2020) and state-of-the-art neural video compression architectures (Agustsson et al., 2020),
and will use this viewpoint to propose improvements on existing models.

2.1. Background

We first review VAE-based compression schemes (Ballé et al., 2017; Theis et al., 2017) and
formulate existing video codecs in this framework; we then review autoregressive flows.

Generative Modeling and Source Compression. Let x1:T ∈ RT×D be a sequence of
video frames. Lossy compression seeks to find a compact description of x1:T that simul-
taneously minimizes the description length R and information loss D. The distortion D
measures how much reconstruction error accrues due to encoding x1:T into a latent repre-
sentation z̄1:T and subsequently decoding it back to x̂1:T , while R measures the bit rate
(file size). In learned compression methods (Ballé et al., 2017; Theis et al., 2017), the above
process is parameterized by flexible functions f (“encoder”) and g (“decoder”) that map
between the input video and its latent representation: z̄1:T = f(x1:T ), x̂1:T = g(z̄1:T ), and
minimize a rate-distortion loss with hyperparameter β > 0:

L = D(x1:T , g(bz̄1:T e)) + βR(bz̄1:T e).

We adopt the end-to-end compression approach of Ballé et al. (2017); Lombardo et al.
(2019), which approximates the rounding operations (b·e) by uniform noise injection to en-
able gradient-based optimization during training. With an appropriate choice of probability
model p(z1:T ), the approximated version of the above R-D (rate-distortion) objective then
corresponds to the VAE objective:

L̃ = Eq(z1:T |x1:T )[− log p(x1:T |z1:T )− log p(z1:T )]. (1)

1. https://anonymous.4open.science/r/7fba4f65-e003-446e-81d5-fdd5fed01335/
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In this model, the likelihood p(x1:T |z1:T ) follows a Gaussian distribution with mean x̂1:T =
g(z1:T ) and diagonal covariance β

2 log 2I, the approximate posterior q is chosen to be a unit-
width uniform (thus zero-differential-entropy) distribution whose mean z̄1:T is predicted by
an amortized inference network f . The prior density p(z1:T ) interpolates its discretized
version, so that it measures the code length of discretized z̄1:T after entropy-coding.

Masked Autoregressive Flow (MAF). As a final component in neural sequence mod-
eling, we discuss MAF (Papamakarios et al., 2017), which models the joint distribution of
a sequence p(x1:T ) in terms of a simpler distribution of its underlying noise variables y1:T

through the following autoregressive transform and its inverse:

xt = hµ(x<t) + hσ(x<t)� yt; ⇔ yt =
xt−hµ(x<t)
hσ(x<t)

. (2)

The noise variable yt usually comes from a standard normal distribution. While the forward
MAF transforms a sequence of standard normal noises into a data sequence, the inverse
flow “whitens” the data sequence and removes temporal correlations. Due to its invertible
nature, MAF allows for exact likelihood computations, but as we will explain in Section 2.3,
we will not exploit this aspect in compression but rather draw on its expressiveness in
modeling conditional likelihoods.

2.2. A General Framework for Generative Video Coding

We now describe a general framework that captures several existing low-latency (see Ap-
pendix B) neural compression methods as specific instances and gives rise to the exploration
of new models. To this end, we combine latent variable models with autoregressive flows
into a joint framework. We consider a sequential decoding procedure of the following form:

x̂t = hµ(x̂t−1,wt) + hσ(x̂t−1,wt)� gv(vt,wt). (3)

Eq. 3 resembles the definition of the MAF in Eq. 2, but augments this transform with two
sets of latent variables wt,vt ∼ p(wt,vt). Above, hµ and hσ are functions that transform
the previous reconstructed data frame x̂t−1 along with wt into a shift and scale parameter,
respectively. The function gv(vt,wt) converts these latent variables into a noise variable
that encodes residuals with respect to the mean next-frame prediction hµ(x̂t−1,wt). Our
approach is inspired by Marino et al. (2020) who analyzed a restricted version of the model
in Eq. 3, aiming to hybridize autoregressive flows and sequential latent variable models for
video prediction. In contrast to Eq. 3, their model involved deterministic transforms as well
as residual noise that came from a sequential VAE.

2.3. Example Models and Extensions

Next, we show that the general framework expressed by Eq. 3 captures a variety of state-
of-the-art neural video compression schemes and gives rise to extensions and new models.

Temporal Autoregressive Transform (TAT). The first special case among the class
of models that are captured by Eq. 3 is the autoregressive neural video compression model
by Yang et al. (2020b), which we denote as temporal autoregressive transform (TAT). Shown
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Figure 1: Model Diagrams. Graphical models underlying the generative and inference
procedures for current frame xt of various neural video compression methods.
Random variables are shown in circles, all other quantities are deterministically
computed; solid and dashed arrows describe computational dependencies dur-
ing generation (decoding) and inference (encoding), respectively. Purple nodes
correspond to neural encoders (CNNs) and decoders (DNNs), and green nodes
implement temporal autoregressive transform. (a) TAT; (b) SSF; (c) STAT or
STAT-SSF; optional structured prior shown by red arrow from wt to vt . Hyper
latent variables in (b) and (c) are left out for clarity.

in Figure 1(a), the decoder g implements a deterministic scale-shift autoregressive transform
of decoded noise yt,

x̂t = g(zt, x̂t−1) = hµ(x̂t−1) + hσ(x̂t−1)� yt, yt = gz(zt). (4)

The encoder f inverts the transform to decorrelate the input frame xt into ȳt and encodes

the result as z̄t = f(xt, x̂t−1) = fz(ȳt), where ȳt =
xt−hµ(x̂t−1)
hσ(x̂t−1)

. The shift hµ and scale
hσ transforms are parameterized by neural networks, fz is a convolutional neural network
(CNN), and gz is a deconvolutional neural network (DNN) that approximately inverts fz.

DVC (Lu et al., 2019) and Scale-Space Flow (SSF, Agustsson et al. (2020)).
The second class of models captured by Eq. 3 belong to the conventional video compression
framework based on predictive coding (Cutler, 1952; Wiegand et al., 2003; Sullivan et al.,
2012); both models make use of two sets of latent variables z1:T = {w1:T ,v1:T } to capture
different aspects of information being compressed, where w captures motion estimation
used in warping prediction, and v helps capture residual error not predicted by warping.

Like most classical approaches to video compression by predictive coding, the recon-
struction transform in the above models has the form of a prediction shifted by residual
error, without scaling factor hσ compared to the autoregressive transform in Eq. 3

x̂t = hwarp(x̂t−1, gw(wt)) + gv(vt,wt) (5)

where gw and gv are DNNs, ot := gw(wt) has the interpretation of an estimated optical
flow (motion) field, hwarp is the computer vision technique of warping, and the residual
rt := gv(vt,wt) = x̂t − hwarp(x̂t−1,ot) represents the prediction error unaccounted for by
warping.
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Proposed: models based on Stochastic Temporal Autoregressive Transform.
Finally, we consider the most general models as described by the stochastic autoregressive
transform in Eq. 3, shown in Figure 1(c). We study two main variants, categorized by how
they implement hµ and hσ:

1. STAT uses DNNs for hµ and hσ as in (Yang et al., 2020b), but complements it with
the latent variable wt that characterizes the transform. In principle, more flexible
transform functions hµ and hσ should lead to better rate-distortion results; however,
we find the following variant more performant and parameter-efficient in practice:

2. STAT-SSF: a less data-driven variant of the above that still uses scale-space warping
(Agustsson et al., 2020) in the shift transform, i.e., hµ(x̂t−1,wt) = hwarp(x̂t−1, gw(wt)).
This can also be seen as an extended version of the SSF model, whose shift transform
hµ is preceded by a new scale transform hσ.

Besides increasing the flexibility of the reconstruction transform (hence the likelihood
model for xt), we also consider improving the topmost generative hierarchy in the form of
a more expressive latent prior p(z1:T ), corresponding to improving the entropy model for
compression. Specifically, we note that the prior in the SSF model assumes the factoriza-
tion p(wt,vt) = p(wt)p(vt), which can be restrictive. We propose a structured prior by
introducing conditional dependence between wt and vt, so that p(wt,vt) = p(wt)p(vt|wt).
This results in variants of the above models, STAT-SP and STAT-SSF-SP, where the
structured prior is applied on top of the proposed STAT and STAT-SSF models.

3. Experiments

In this section, we present performance comparisons of our model with neural and classical
codecs across multiple evaluation datasets. Ablations study about our new dataset, different
architecture components and efficiency optimization is elucidated in Appendix D and H.

3.1. Training Datasets

Vimeo-90k (Xue et al., 2019) consists of 90,000 clips of 7 frames at 448x256 resolution
collected from vimeo.com. As this dataset has been used in previous works (Lu et al., 2019;
Yang et al., 2020a; Liu et al., 2019), it provides a benchmark for comparing models.

3.2. Evaluation Scheme

We evaluate compression performance on UVG (Mercat et al., 2020) and MCL JCV
(Wang et al., 2016) datasets, which both consist of YUV420 format RAW videos. UVG is
widely used for testing the HEVC codec and contains seven 1080p videos at 120fps with
smooth and mild motions or stable camera moving. MCL JCV contains thirty 1080p videos
at 30fps, which are generally more diverse, with a higher degree of motion and camera
movement.

We compute the bit rate (bits-per-pixel, BPP) and the reconstruction quality as mea-
sured in PSNR, averaged across all frames. We note that PSNR is a more challenging metric
than MS-SSIM (Wang et al., 2003) for learned codecs (Lu et al., 2019; Agustsson et al.,
2020; Habibian et al., 2019; Yang et al., 2020a,c).
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Figure 2: Rate-Distortion Performance of various models and ablations. Results are
evaluated on (a) UVG and (b) MCL JCV datasets. All the neural-based models
(except VCII (Wu et al., 2018)) are trained on Vimeo-90k (Xue et al., 2019).
STAT-SSF (proposed) achieves the best performance.

3.3. Baseline Analysis

To provide a benchmark comparison with baseline models, listed in Table 1, we primarily
focus on the Vimeo-90k (Xue et al., 2019) training dataset. In Figure 2(a), we compare our
proposed models (STAT-SSF, STAT-SSF-SP) with previous neural codecs and the classical
codec, HEVC, on the UVG evaluation dataset. Our models provide superior performance
at bitrates ≥ 0.12 bits/pixel, outperforming state-of-the-art models SSF (Agustsson et al.,
2020), as well as DVC (Lu et al., 2019). Finally, we note that, as expected, our proposed
STAT model improves over TAT (Yang et al., 2020b) by adding stochasticity to the autore-
gressive transform.

The diversity of the MCL JCV dataset provides a more challenging evaluation bench-
mark. However, our STAT-SSF model still maintains a competitive edge over other base-
line methods. Our structured prior model, STAT-SSF-SP, provides further performance
improvements over STAT-SSF. This suggests that our structured prior may further help
capture intensive motion and camera moving information.

4. Discussion

We provide a unifying perspective on sequential video compression and temporal autore-
gressive flows (Marino et al., 2020), and elucidate the relationship between the two in terms
of their underlying generative hierarchy. From this perspective, we consider several video
compression methods, particularly a state-of-the-art method Scale-Space-Flow (Agustsson
et al., 2020), as instantiations of a more general stochastic temporal autoregressive trans-
form. Further, we provide a new high-resolution video dataset. Together, we hope that this
new perspective and dataset will drive further progress in the nascent yet highly impactful
field of learned video compression.
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Appendix A. Qualitative Result

Previous reconstruction x̂t−1

by STAT-SSF-SP
Magnitude of the proposed scale
parameter σ̂t = hσ(x̂t−1, bw̄te)

Rate savings in residual encoding bv̄te
relative to STAT-SSF (BPP=0.053)

Rate savings in residual encoding bv̄te
relative to SSF (BPP=0.075)

SSF warping (mean) prediction
µ̂t = hµ(x̂t−1, bw̄te) Decoded noise ŷt = gv(bv̄te, bw̄te) Decoded residual r̂t = ŷt � σ̂t

Current reconstruction x̂t = µ̂t + r̂t
by STAT-SSF-SP (BPP=0.046)
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Figure 3: Visualizing the proposed STAT-SSF-SP model on one frame of UVG video
“ShakeNDry”. Two methods in comparison, STAT-SSF (proposed) and SSF
(Agustsson et al., 2020), have comparable reconstruction quality to STAT-SSF-
SP but higher bit-rate; the (BPP, PSNR) for STAT-SSF-SP, STAT-SSF, and
SSF are (0.046, 36.97), (0.053, 36.94), and (0.075, 36.97), respectively. In this
example, the warping prediction µ̂t = hµ(x̂t−1, bw̄te) incurs large error around
the dog’s moving contour, but models the mostly static background well, with
the residual latents bv̄te taking up an order of magnitude higher bit-rate than
bw̄te in the three methods. The proposed scale parameter σ̂t gives the model
extra flexibility when combining the noise ŷt (decoded from (bv̄te, bw̄te)) with
the warping prediction µ̂t (decoded from bw̄te only) to form the reconstruction
x̂t = µ̂t + σ̂t � ŷt: the scale σ̂t downweights contribution from the noise ŷt in
the foreground where it is very costly, and reduces the residual bit-rate R(bv̄te)
(and thus the overall bit-rate) compared to STAT-SSF and SSF (with similar
reconstruction quality), as illustrated in the third and fourth figures in the top
row.

Appendix B. Low-Latency Sequential Compression

We specialize Eq. 1 to make it suitable for low-latency video compression, widely used in
both conventional and recent neural codecs (Rippel et al., 2019; Agustsson et al., 2020). To
this end, we encode and decode individual frames xt in sequence. Given the ground truth
current frame xt and the previously reconstructed frames x̂<t, the encoder is restricted to be
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(a)

(b)

Figure 4: Qualitative comparisons of various methods on a frame from MCL-JCV video
30. Figures in the bottom row focus on the same image patch on top. Here,
models with the proposed scale transform (STAT-SSF and STAT-SSF-SP) out-
perform the ones without, yielding visually more detailed reconstructions at lower
rates; structured prior (STAT-SSF-SP) reduces the bit-rate further. Left to right:
HEVC BPP=0.087 PSNR=38.099dB; SSF BPP=0.092, PSNR=37.44; STAT-
SSF(ours) BPP=0.0768 PSNR=38.108; STAT-SSF-SP(ours) BPP=0.0551
PSNR=38.0975

of the form z̄t = f(xt, x̂<t), and similarly the decoder computes reconstruction sequentially
based on previous reconstructions and the current encoding, x̂t = g(x̂<t, bz̄te)). Existing
codecs usually condition on a single reconstructed frame, substituting x̂<t by x̂t−1 in favour
of efficiency. In the language of variational inference, the sequential encoder corresponds
to a variational posterior of the form q(zt|xt, z<t), i.e., filtering, and the sequential decoder
corresponds to the likelihood p(xt|z≤t) = N (x̂t,

β
2 log 2I); in both distributions, the proba-

bilistic conditioning on z<t is based on the observation that x̂t−1 is a deterministic function
of z<t. As we show, all sequential compression approaches considered in this work follow
this paradigm, and the form of the reconstruction transform x̂ determines the lowest hier-
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archy of the corresponding generative process of video x. We note that this scheme does
not require future frames x̂>t to help compress frame x̂t and this is so-called low-latency,
which is widely used in some real-time applications such as live streaming.

Appendix C. Comparison Table

Table 1: Overview of models and codecs.
Model Name Category Vimeo-90k Youtube-NT Remark

STAT-SSF Proposed 3 3 Proposed autoregressive transform with efficient scale-space flow model

STAT-SSF-SP Proposed 3 7 Proposed autoregressive transform with efficient scale-space flow model and structured prior

SSF Baseline 3 3 Agustsson et al. 2020 CVPR

DVC Baseline 3 7 Lu et al. 2019 CVPR

VCII Baseline 7 7 Wu et al. 2018 ECCV (Trained on Kinectics dataset (Carreira and Zisserman, 2017))

DGVC Baseline 3 7 Han et al. 2019 NeurIPS without using future frames

TAT Baseline 3 7 Yang et al. 2020b ICML Workshop

HEVC(RGB) Baseline N/A N/A State-of-the-art conventional codec with RGB color format

STAT Ablation 3 3 Replace scale space flow in STAT-SSF with neural network

SSF-SP Ablation 7 3 Scale space flow model with structured prior

Appendix D. New Dataset

YouTube-NT. This is our new dataset. We collected 8,000 nature videos and movie/video-
game trailers from youtube.com and processed them into 300k high-resolution (720p) clips,
which we refer to as YouTube-NT. In contrast to existing datasets (Carreira and Zisserman,
2017; Xue et al., 2019), we provide YouTube-NT in the form of customizable scripts to enable
future compression research. Table 2 compares the current version of YouTube-NT with
Vimeo-90k (Xue et al., 2019) and with Google’s proprietary training dataset (Agustsson
et al., 2020). In Figure 5(b), we display the evaluation performance of the SSF model
architecture after training on each dataset.

Table 2: Overview of Training Datasets.

Dataset name Clip length Resolution # of clips # of videos Public Configurable

Vimeo-90k 7 frames 448x256 90,000 5,000 3 X –

YouTube-NT (ours) 6-10 frames 1280x720 300,000 8,000 3 3

Agustsson 2020 et al. 60 frames 1280x720 700,000 700,000 7 7

Appendix E. Ablation

Using the baseline SSF (Agustsson et al., 2020) model and YouTube-NT training dataset,
we demonstrate the improvements of our proposed components, stochastic temporal au-
toregressive transform (STAT) and structured prior (SP), evaluated on UVG. As shown in
Figure 5(a), STAT improves performance to a greater degree than SP, consistent with the
results in Section 3.3 Figure 2(a).

To quantify the effect of the training dataset on performance, we compare performance
on UVG for the SSF model architecture after training on Vimeo-90k (Xue et al., 2019) and
YouTube-NT. We also compare with the reported results from Agustsson et al. (2020),
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(a) (b)

Figure 5: Ablations & Comparisons. (a) An ablation study on our proposed com-
ponents. (b) Performance of SSF (Agustsson et al., 2020) trained on different
datasets. Both sets of results are evaluated on UVG.

trained on a larger proprietary dataset. This is shown in Figure 5(b), where we see
that training on YouTube-NT improves evaluation performance over Vimeo-90k, in some
cases bridging the gap with the performance from the larger proprietary training dataset
of Agustsson et al. (2020). At higher bitrate, the model optimized with Vimeo-90k(Xue
et al., 2019) tends to have a similar performance with YouTube-NT. This is likely because
YouTube-NT currently only covers 8000 videos, limiting the diversity of the short clips.

Appendix F. Command for HEVC codec

To avoid FFmpeg package taking the advantage of the input file color format (YUV420), we
first need to dump the video.yuv file to a sequence of lossless png files:

ffmpeg -i video.yuv -vsync 0 video/%d.png

Then we use the default low-latency setting in ffmpeg to compress the dumped png

sequences:

ffmpeg -y -i video/%d.png -c:v libx265 -preset medium \

-x265-params bframes=0 -crf {crf} video.mkv

where crf is the parameter for quality control.

Appendix G. Training schedule

Training time is about four days on an NVIDIA Titan RTX. Similar to Agustsson et al.
(2020), we use the Adam optimizer (Kingma and Ba, 2014), training the models for 1,050,000
steps. The initial learning rate of 1e-4 is decayed to 1e-5 after 900,000 steps, and we increase
the crop size to 384x384 for the last 50,000 steps. All models are optimized using MSE loss.
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Appendix H. Efficient scale-space-flow

Agustsson et al. (2020) leverages a simple implementation of scale-space flow by con-
volving the previous reconstructed frame x̂t−1 with a sequence of Gaussian kernel σ2 =
{0, σ20, (2σ0)2, (4σ0)2, (8σ0)2, (16σ0)

2}. However, this may lead to a large kernel size when σ
is increasing and significantly reduce the efficiency. For example, Gaussian kernel with σ2 =
256 usually requires kernel size 97x97 to avoid artifact (usually kernel size = (6∗σ+1)2). To
alleviate the problem, we leverage an efficient version of Gaussian scale-space by using Gaus-
sian pyramid with upsampling. In our implementation, we use σ2 = {0, σ20, σ20 +(2σ0)

2, σ20 +
(2σ0)

2+(4σ0)
2, σ20+(2σ0)

2+(4σ0)
2+(8σ0)

2, σ20+(2σ0)
2+(4σ0)

2+(8σ0)
2+(16σ0)

2}, because
by using Gaussian pyramid, we can always use Gaussian kernel with σ = σ0 to consecu-
tively blur and downsample the image to build a pyramid. At the final step, we only need
to upsample all the downsampled images to the original size to approximate a scale-space
3D tensor.

Result: sst : Scale-space 3D tensor
Input: input input image; σ0 base scale; M scale depth sst = [input] kernel = Cre-
ate Gaussian Kernel(σ0) for i=0 to M-1 do

input = GaussianBlur(input, kernel) if i == 0 then
sst.append(input)

else
tmp = input for j=0 to i-1 do

tmp = UpSample2x(tmp); {step upsampling for smooth interpolation}
end
ssv.append(tmp)

end
input = DownSample2x(input)

end
return Concat(sst)

Algorithm 1: An efficient algorithm to build a scale-space 3D tensor

Appendix I. Architecture

Figure 6 illustrates the low-level encoder, decoder and hyper-en/decoder modules used in
our proposed STAT-SSF and STAT-SSF-SP models, as well as in the baseline TAT and SSF
models, based on Agustsson et al. (2020). Figure 7 shows the encoder-decoder flowchart
for wt and vt separately, as well as their corresponding entropy models (priors), in the
STAT-SSF-SP model.
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Figure 6: Backbone module architectures, where “5x5/2, 128” means 5x5 convolution kernel
with stride 2; the number of filters is 128.
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Figure 7: Computational flowchart for the proposed STAT-SSF-SP model. The left two
subfigures show the decoder and encoder flowcharts for wt and vt, respectively,
with “AT” denoting autoregressive transform. The right two subfigures show the
prior distributions that are used for entropy coding wt and vt, respectively, with
p(wt,w

h
t ) = p(wh

t )p(wt|wh
t ), and p(vt,v

h
t |wt,w

h
t ) = p(vh

t )p(vt|vh
t ,wt,w

h
t ), with

wh
t and vh

t denoting hyper latents (see (Agustsson et al., 2020) for a description of
hyper-priors); note that the priors in the SSF and STAT-SSF models (without the
proposed structured prior) correspond to the special case where the HyperDecoder
for vt does not receive wh

t and wt as inputs, so that the entropy model for vt is
independent of wt: p(vt,v

h
t ) = p(vh

t )p(vt|vh
t ).
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