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ABSTRACT

Multi-negative preference optimization under the Plackett–Luce (PL) model ex-
tends Direct Preference Optimization (DPO) by leveraging comparative signals
across one preferred and multiple rejected responses. However, optimizing over
large pools of negatives is computationally prohibitive, and many candidates con-
tribute redundant gradients due to their similar effects on policy updates. To ad-
dress this, we introduce MASS-DPO, which derives the Fisher information matrix
directly from the PL objective and shows that the problem of selecting negatives
naturally reduces to a D-optimal design formulation. This formulation guaran-
tees maximal informativeness and comprehensive coverage of the current policy’s
weaknesses. Moreover, the log-determinant criterion underlying D-optimal design
admits a submodular structure, which we exploit through an incremental greedy
algorithm that provides the natural computational realization of D-optimality,
combining scalability with theoretical rigor. This incremental greedy strategy ef-
ficiently resolves the combinatorial complexity inherent in selecting a D-optimal
negative set from large candidate pools. We establish convergence guarantees and
finite-sample error bounds under this framework, and empirically demonstrate that
MASS-DPO improves optimization efficiency and enhances downstream perfor-
mance, achieving stronger alignment with substantially fewer negatives.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) aligns models directly with hu-
man preferences by optimizing pairwise comparisons without explicitly constructing reward func-
tions (Christiano et al., 2017; Ouyang et al., 2022; Stiennon et al., 2020b). Recent works have
generalized DPO using the Plackett-Luce (PL) model (Plackett, 1975; Luce et al., 1959) to accom-
modate multiple negative samples, enriching preference signals for more robust alignment. How-
ever, current multi-negative approaches such as Softmax-DPO (S-DPO) (Chen et al., 2024) and
Direct Multi-Preference Optimization (DMPO) (Bai et al., 2024)typically select negatives randomly
or heuristically, leading to redundant gradient information and computational inefficiencies.

To address these limitations, we propose MASS-DPO (Multi-negative Active Sample Selection
for Direct Preference Optimization), a theoretically-grounded active negative selection setting de-
rived from the multi-negative Plackett-Luce preference optimization objective (Plackett, 1975; Luce
et al., 1959). MASS-DPO formulates negative sample selection as a D-optimal design prob-
lem (Pukelsheim, 2006b; Kiefer, 1959; Pukelsheim, 2006a), leveraging the Fisher information ma-
trix to measure the informativeness of each negative candidate (Fisher & Russell, 1922; Chaloner
& Verdinelli, 1995; Flaherty et al., 2005; Kirsch et al., 2019). This selection is non-trivial, as many
negative responses produce highly similar gradients under the PL objective, resulting in overlapping
optimization signals that fail to introduce novel information for improving the policy. Without care-
ful selection, the model repeatedly updates toward already-learned directions, leading to inefficient
learning and slower convergence. To overcome this, MASS-DPO actively selects a diverse and in-
formative subset of negatives by optimizing for coverage and signal diversity through a D-optimal
design formulation.

Although the D-optimal formulation provides theoretical guarantees of optimal negative sampling, it
introduces significant combinatorial complexity when selecting from a large candidate pool (Krause
& Guestrin, 2012; Kirsch et al., 2019). To efficiently overcome this challenge, we further pro-
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pose an incremental greedy algorithm that efficiently identifies a compact subset of negatives, prov-
ably equivalent in optimality to the full combinatorial selection (Nemhauser et al., 1978; Krause &
Guestrin, 2012; Kirsch et al., 2019). This incremental approach effectively balances theoretical rigor
with computational practicality, aligning with previous successful applications of greedy algorithms
in information-theoretic sample selection (Sener & Savarese, 2017; Kirsch et al., 2019; Kveton et al.,
2025).

We provide comprehensive theoretical analyses, establishing finite-sample estimation error bounds
and convergence guarantees under our proposed selection framework. Empirically, we demonstrate
that MASS-DPO significantly enhances optimization efficiency and alignment quality, achieving su-
perior downstream task performance using substantially fewer negatives compared to existing meth-
ods across diverse benchmarks in language modeling and recommendation tasks. We summarize
our contributions as follows:

• We propose MASS-DPO, an active negative sample selection method formulated as a D-
optimal design problem, theoretically derived from the multi-negative Plackett-Luce opti-
mization objective.

• We further introduce an incremental greedy selection algorithm, ensuring theoretical equiv-
alence to the global optimal solution while significantly reducing computational overhead.

• We establish rigorous theoretical guarantees, including finite-sample estimation error
bounds and convergence properties for MASS-DPO.

• Extensive empirical evaluations demonstrate that MASS-DPO outperforms baseline meth-
ods in optimization efficiency and downstream task performance across multiple language
models and both recommendation and multiple-choice QA tasks.

2 RELATED WORKS

Direct Preference Optimization. DPO (Rafailov et al., 2023) aligns language models with hu-
man preferences by optimizing likelihood ratios of preferred over dispreferred responses, avoid-
ing explicit reward modeling and associated complexities such as reward misgeneralization seen in
RLHF (Christiano et al., 2017; Ouyang et al., 2022; Stiennon et al., 2020b). Recent extensions, such
as introducing dynamic margins in ODPO (Amini et al., 2024) and computational optimizations via
prefix sharing (Wang & Hegde, 2024), have further improved DPO’s effectiveness and efficiency.
However, standard DPO methods are typically restricted to binary preference pairs, which limits
the diversity of supervision and often results in inefficient use of available preference data. In con-
trast, our approach extends beyond binary comparisons by leveraging actively selected, informative
multi-negative samples, enabling more efficient and robust alignment.

Multi-negative Preference Optimization. Recent work has extended standard DPO’s binary pref-
erence pairs to leverage multiple negatives for richer comparative signals and enhanced alignment.
Softmax-DPO (S-DPO) (Chen et al., 2024) generalizes the pairwise Bradley–Terry loss (Bradley
& Terry, 1952) to Plackett–Luce ranking (Plackett, 1975; Luce et al., 1959), providing richer
gradient signals. Direct Multi-Preference Optimization (DMPO) (Bai et al., 2024) averages over
multiple negatives to promote diverse negative learning. Multi Pair-wise Preference Optimization
(MPPO) (Xie et al., 2024) extends DPO by directly modeling multi-negative feedback with average-
likelihood loss, removing the need for a reference model and enabling flexible use of negative sam-
ples. Tree Preference Optimization (TPO) (Liao et al., 2024) structures multi-negative alignment
through hierarchical preference decomposition. Despite these advances in multi-negative prefer-
ence optimization, current methods still largely depend on heuristic or random negative selection
strategies. Our work addresses this limitation by proposing MASS-DPO, which leverages D-optimal
design for theoretically grounded, strategic negative sample selection.

3 PRELIMINARIES

3.1 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (Rafailov et al., 2023) aligns a learned policy with human
pairwise judgments (Christiano et al., 2017; Stiennon et al., 2020a; Ouyang et al., 2022) without
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an explicit reward model. Under the Bradley-Terry-Luce framework (Bradley & Terry, 1952), two
responses y1, y2 to prompt x with latent scores r(x, y1), r(x, y2) satisfy

p∗(y1 ≻ y2 | x) = σ(r(x, y1)− r(x, y2)), (1)

where σ(z) = 1/(1 + e−z). Rearranging the optimal-policy relation gives an implicit reward de-
composition up to an additive normalizer Z(x):

r(x, y) = β log
π∗(y | x)
πref(y | x)

+ Z(x), Z(x) =
∑
y

πref(y | x) · exp
(

1
β r(x, y)

)
(2)

Substituting equation 2 into equation 1 and simplifying leads to the DPO training objective

LDPO(θ) = −E(x,y1,y2)∼D

[
log σ

(
β log πθ(y1|x)

πref (y1|x) − log πθ(y2|x)
πref (y2|x)

)]
. (3)

3.2 MULTI-NEGATIVE PREFERENCE OPTIMIZATION

Multi-negative preference optimization generalizes the Direct Preference Optimization frame-
work (Rafailov et al., 2023) to better align language models with multiple negative preferences.
While traditional DPO employs the Bradley-Terry (BT) model (Bradley & Terry, 1952) to cap-
ture pairwise comparisons, multi-negative preference optimization leverages the Plackett-Luce (PL)
model (Plackett, 1975; Luce et al., 1959) to accommodate the ranking of a preferred item against
multiple disfavored items.

Consider a user prompt xu that is formed from historical interactions, along with a preferred item
ep and a set of dispreferred items Ed. The aim is to maximize the probability that the preferred item
ep is ranked above every item in Ed, as described by

p∗(ep ≻ Ed | xu) =
exp(r(xu, ep))∑

ed∈{ep}∪Ed
exp(r(xu, ed))

, (4)

where r(xu, e) is the latent reward function defined over the prompt-response pairs in the RLHF
framework (Ouyang et al., 2022). From Eq. equation 4, we obtain the following multi-negative
preference loss:

L(θ) = −E(xu,ep,Ed)∼D

[
log σ

(
− log

∑
ed∈Ed

exp
(
β∆(xu, ed, ep)

))]
, (5)

with σ(·) denoting the sigmoid function and ∆(xu, ed, ep) = log πθ(ed|xu)
πref (ed|xu)

− log
πθ(ep|xu)
πref (ep|xu)

. No-
tably, this formulation reverts to the original DPO setup when the set of dispreferred items contains
just a single element (i.e., |Ed| = 1). This naturally extends DPO by incorporating multi-negative
preference alignment into language model training for recommendation tasks.

4 MASS-DPO: MULTI-NEGATIVE ACTIVE SAMPLE SELECTION

In multi-negative preference optimization tasks (e.g., recommendation, multiple-choice QA, infor-
mation retrieval), the selection of negative samples significantly influences alignment efficiency and
effectiveness. Uninformative negatives, already well-separated from preferred responses, waste gra-
dient computations and hinder convergence (Yang et al., 2023; Kalantidis et al., 2020; Robinson
et al., 2020; Zhang et al., 2022). Thus, the key challenge is strategically selecting a compact yet
informative subset of negatives to highlight the policy’s weaknesses while maintaining numerical
stability (Ma et al., 2024; Kirsch & Gal, 2022; Fan et al., 2023). To address this, we propose
MASS-DPO (Figure 1), an active negative selection method formulated as a D-optimal design prob-
lem (Pukelsheim, 2006b; Cohn, 1993; Kirsch et al., 2019), maximizing a Fisher-information surro-
gate (Fisher & Russell, 1922; Jung & Lee, 2021; Liu et al., 2024; Neilsen et al., 2018; Sourati et al.,
2017; Chaloner & Verdinelli, 1995; Ash et al., 2021). By maximizing this surrogate, MASS-DPO
effectively minimizes the volume of the confidence ellipsoid of policy parameters connecting com-
putational efficiency with robust statistical guarantees (Sec. 5). We outline the core assumptions and
derive gradient and curvature expressions central to our analysis and optimization approach.
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Candidate Pool
Optimal Negative Candidate Selection via D-Optimal Design (Sec. 4.2)

Feature Embeddings Diff 𝜑𝑖
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Active Negative Selection (Eq.13)
𝐼𝑘 ← arg max

𝑖
log det 𝐻𝑘−1 + 𝑣𝑖𝑣𝑖

⊤

Selected negative sample

DPO

Update design (Eq.13) 
(𝐻𝑘 ← 𝐻𝑘−1 + 𝑣𝐼𝑘𝑣𝐼𝑘

𝑇)

SDPO

Information Matrix (Eq. 10)
𝑖𝑛𝑖𝑡: 𝐻0 ← 𝛾𝐼𝑑×𝑑

MASS-DPO

Figure 1: Overview of MASS-DPO’s D-optimal selection. Each candidate is scored by its feature-
difference and policy offset via softmax (Equation (8)). The green loop denotes the incremen-
tal greedy update: starting from H0, we incrementally pick the negative that maximally increases
log detH , then update H accordingly until n samples are selected.

4.1 SETTING

Following (Kveton et al., 2025; Riquelme et al., 2018; Das et al., 2024; Mukherjee et al., 2024; Liu
et al., 2024; Thekumparampil et al., 2024) in regret minimization and reward-model active learning,
we linearize the policy’s final layer to obtain a tractable Fisher-information objective. We assume:

Assumption 4.1 To enable tractable analysis and algorithmic design, we assume the policy under
consideration takes a log-linear form:

π(y | x; θ) ∝ exp
(
ϕ(x, y)⊤θ

)
, (6)

where ϕ(x, y) ∈ Rd denotes the feature embedding of the context–response pair (x, y), and θ ∈ Rd

the model parameters.

Under Assumption 4.1, we can represent the relative preference between a preferred response y∗

and a set of negative responses {yi}ni=1 through feature differences. Specifically, defining

ϕi = ϕ(x, yi)− ϕ(x, y∗), bi = log
πref(y

∗ | x)
πref(yi | x)

,

allows us to write the multi-negative DPO loss compactly in terms of the log-sum-exp operator.

L(θ;Sn) = − log σ
(
− log

∑
i∈Sn

exp
(
β (ϕ⊤

i θ + bi)
))

, (7)

where Sn = {y1, . . . , yn} is the chosen negative set, σ(·) the sigmoid. Then, we propose the fol-
lowing lemmas to quantify how each candidate negative alters the gradient and curvature. These
statistics show that negatives whose feature differences are diverse and orthogonal, enlarge the in-
formation matrix the most, while redundant examples leave their volume almost unchanged.

Lemma 4.1 Definition of auxiliary terms: normalization factor Zn and softmax weights pj for
gradient computation

pj =
exp
[
β(ϕ⊤

j θ + bj)
]∑

k∈Sn
exp
[
β(ϕ⊤

k θ + bk)
] , Zn = − log

∑
i∈Sn

exp
[
β(ϕ⊤

i θ + bi)
]

(8)

Then the gradient of equation 7 with respect to θ is given by

∇θL(θ;Sn) = β (1− σ(Zn))
∑
j∈Sn

pj ϕj . (9)

4
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The detailed derivation is provided in Appendix A.1. This result shows that the gradient is a
weighted combination of feature differences, scaled by the probability of misranking, thus facilitat-
ing intuitive interpretations in terms of correction signals. We observe that pj emphasises negatives
whose score margin is small, which are borderline mistakes that have the greatest influence on the
policy, corroborating the need to focus selection on hard yet informative examples.

Lemma 4.2 Let ϕ =
∑

j∈Sn
pj ϕj denote the expected feature difference under the softmax distri-

bution. The Hessian of equation 7 is then

∇2L(θ;Sn) = β2(1− σ(Zn))
[
σ(Zn)ϕϕ

⊤ +

n∑
j=1

pj(ϕj − ϕ)(ϕj − ϕ)⊤
]

⪰ β2(1− σ(Zn))

n∑
j=1

pj(ϕj − ϕ)(ϕj − ϕ)⊤, (10)

which is positive semi-definite and captures both the low-rank and dispersion contributions to cur-
vature. The detailed derivation is provided in Appendix A.2.

Based on the lower bound of the Hessian matrix of the multi-negative DPO objective, we directly
maximize the latter motivates a determinant objective that prefers sets to spread along orthogonal
directions in feature space. These gradient and Hessian expressions form the basis for our multi-
negative active sampling strategies, enabling principled optimization of negative sets under budget
constraints while controlling estimation uncertainty and convergence behavior.

4.2 NEGATIVE SELECTION VIA D-OPTIMAL DESIGN

When selecting from a large-scale negative pool in multi-negative DPO, more negatives can im-
prove parameter estimates, but those samples can add little beyond what is already conveyed by a
smaller, well-chosen subset. MASS-DPO enables negative selection as a D-optimal design (Kiefer,
1959; Pukelsheim, 2006b; Kirsch et al., 2019) problem that explicitly maximizes the information
gain (Chaloner & Verdinelli, 1995) about the policy parameters.

Fisher-information objective. For a candidate negative j ∈ D let vj =
√
pj
(
ϕj−ϕ

)
be its Fisher-

information contribution, where pj is the softmax weight derived in Section 4.1. Given a subset
S ⊆ D we define the regularised information matrix

H(S) = γI + β2(1− σ(Zn))
∑
j∈S

vjv
⊤
j , γ > 0. (11)

The D-optimal criterion seeks to optimize the following objective,
S∗
n = arg max

S⊂D, |S|=n
log detH(S), (12)

which maximizes the volume of the confidence ellipsoid for the policy parameters and promotes bet-
ter convergence of DPO. Problem equation 12 is however NP-hard (Welch, 1982; Allen-Zhu et al.,
2021), as it is a combinatorial optimization over

(|D|
n

)
subsets. To overcome this computational chal-

lenge, we further propose a greedy and iterative sample-selection strategy to incrementally optimize
information gain (Nemhauser & Wolsey, 1978; Krause et al., 2008).

Incremental Greedy Information Maximization.; To overcome the combinatorial optimization
problem, we exploit the matrix-determinant identity

log det
(
H + vv⊤

)
= log detH + log

(
1 + v⊤H−1v

)
, (13)

which is valid for any positive-definite matrix H and vector v. We initialize the design matrix by
H0 = γI , and the incremental greedy algorithm adds one negative at a time. At iteration k it selects

ik = arg max
i/∈Sk−1

v⊤i H
−1
k−1vi, Sk = Sk−1 ∪ {ik}, Hk = Hk−1 + vikv

⊤
ik
, (14)

and updates H−1
k via the Sherman-Morrison formula (Sherman & Morrison, 1950) in O(d2) time.

The term v⊤i H
−1
k−1vi is the covariance matrix Hk−1 induced norm of vi, so each step chooses the

negative probing the least explored direction of the parameter space (Kveton et al., 2025). We illus-
trate this algorithm in detail in Algorithm 1. We formally demonstrate that this greedy Algorithm 1
achieves the same objective value as the intractable global optimum in Equation (12).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15
0

2

4

6

La
st

FM
Margin

0 5 10 15
0.0

0.2

0.4

Accuracy

0 5 10 15
0.0

0.5

1.0

1.5
Chosen Rewards

0 5 10 15
Step

0

10

20

M
ed

M
CQ

A

0 5 10 15
Step

0.0

0.2

0.4

0.6

0 5 10 15
Step

2

0

2

LlaMA3_MASS-DPO
LlaMA3_S-DPO

Qwen3_MASS-DPO
Qwen3_S-DPO

SmolLM3_MASS-DPO
SmolLM3_S-DPO

Figure 2: Margin, accuracy, and chosen reward comparisons on LastFM and MedMCQA datasets.
MASS-DPO maintains consistently larger margins and higher accuracies, clearly illustrating the
advantage of optimal negative selection over the random weighting approach used in SDPO.

Lemma 4.3 (Optimality of the Incremental Greedy Algorithm) With H0 = γI and γ > 0, the
subset Sn produced by the above procedure satisfies

log detH(Sn) = log detH(S∗
n), (15)

where S⋆
n is the maximizer in equation 12.

We provide the proof of Lemma 4.3 in Appendix A.3. Lemma 4.3 ensures that the incremental
selection mechanism embedded in MASS-DPO realizes the maximal Fisher information attainable
with exactly n negatives, justifying the finite-sample error bounds and convergence rates established
in Section 5. Empirically, this property translates into faster alignment with a fraction of the com-
putational cost required by exhaustive negative processing.

5 THEORETICAL ANALYSIS

We analyze the generalization performance of MASS-DPO under the linearized setting introduced
above. Our goal is to quantify how the error in the estimated policy parameters affects the quality
of logit predictions across all possible negative samples. To do so, we rely on a few standard as-
sumptions necessary for our analysis (feature structure, boundedness, diversity, and culminate in a
finite-sample generalization guarantee); the full statements are deferred to Appendix B. The analysis
then proceeds to our main finite-sample guarantees.

Theorem 5.1 (Maximum Logit Error Bound)

Let θ̂n = argminθ∈Θ L(θ;Sn). Then the maximum logit error under is

E(θ̂n, θ∗) = Õ(d
√
log(1/δ)/n)

with probability at least 1− δ, where Õ hides all logarithmic factors but those in δ.

Theorem 5.2 (Batch Design Estimation Error)
With probability at least 1 − δ, given the total dataset Sk,n of k prompts and selected n negative

samples per prompt, the deviation of the estimated parameter from the true optimum is bounded in
the Σk,n-norm:∥∥∥θ̂k,n − θ∗

∥∥∥
Σk,n

≤

√√√√d

4
log

(
1

δ
+

k · cmin/γ

(1− cmin · k/γ)1/d · δ

)
+ 2 γ1/2. (16)

6
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where γ > 0 is the regularization constant used to define Σk,n = γI + ∇2L(θ∗;Sk,n), and the
weighted sum of the features is ϕ =

∑
i∈Sn

piϕi.

This follows (Abbasi-Yadkori et al., 2011; Kveton et al., 2025) by treating the S-DPO loss as a gen-
eralized linear model and applying self-normalized concentration bounds to the stochastic gradients.
In practice, Theorem 5.1 suggests that with only a small number of negatives, MASS-DPO can al-
ready achieve bounded logit error, which translates into faster convergence in training. Theorem A.1
and Theorem 5.2 further imply that the selected negatives ensure stable generalization and better
margin improvements across prompts, which we will verify in our experiments Section 6.

6 EXPERIMENTS

Datasets. Following recent DPO-based recommendation work (Chen et al., 2024), (Sun et al.,
2024), and (He et al., 2025) we utilize two widely adopted real-world recommendation benchmarks:
LastFM (Bertin-Mahieux et al., 2011) and MovieLens (Harper & Konstan, 2015). For QA tasks,
we adopt two challenging multiple-choice QA datasets: MedMCQA (Pal et al., 2022), a medical-
domain QA benchmark, and QASC (Khot et al., 2020), a scientific reasoning QA dataset. Following
prior works (Rafailov et al., 2023), we report Accuracy, Margin, Chosen Rewards and several addi-
tional utility metrics, with detailed methodology available in Appendix B.2.

Methods. We benchmark MASS-DPO against established preference alignment approaches, cate-
gorized into pairwise methods, DPO (Rafailov et al., 2023) and its multi-negative extension DPO-k,
and multi-negative methods, Softmax-DPO (SDPO) (Chen et al., 2024) and DMPO (Bai et al.,
2024). To maintain fairness and manage computational costs, the number of negative candidates
during training is set to 3 for all multi-negative methods (DPO-k, DMPO, SDPO, MASS-DPO) and
1 for DPO. However, for evaluation and test sets, we include all available negative candidates to
better assess the model’s ability to select the best sample from a larger pool (e.g., 20 candidates),
thereby increasing the search space and providing a more robust measure of real-world performance.

Implementation details are provided in Appendix B.3. Our experiments are designed to validate the
theoretical insights in Sections 4 and 5. In particular:

LLM Usage: We used large language models solely for grammar refinement and minor wording
edits in drafting parts of this paper.

6.1 HOW WELL DOES MASS-DPO OPTIMIZE THE MULTI-NEGATIVE PREFERENCE
LEARNING OBJECTIVE?

We compare MASS-DPO’s active negative selection to the softmax-based random selection in
SDPO on recommendation (LastFM) and QA (MedMCQA). Figure 2 tracks three alignment metrics
during training: margin (logit gap between preferred vs. rejected), accuracy, and chosen rewards.
Additional results for Movielens and QASC appear in Appendix B.2. Across experiments, MASS-
DPO (solid) achieves larger margins and faster early gains than SDPO (dashed) on both datasets,
with the gap emerging early and persisting through training. Accuracy follows the same pattern:
curves for MASS-DPO rise more quickly and attain consistently higher plateaus. Finally, chosen-
reward trajectories under MASS-DPO are smoother and more stable across steps, while SDPO
exhibits noticeably noisier dynamics. Taken together, these trends indicate that actively selecting
informative negatives leads to more efficient optimization of the multi-negative preference objective
than random softmax selection.

6.2 HOW DOES MASS-DPO IMPROVE DOWNSTREAM POLICY PERFORMANCE COMPARED
TO EXISTING PREFERENCE OPTIMIZATION METHODS?

To evaluate MASS-DPO’s effectiveness in downstream policy performance we benchmark its per-
formance against established preference optimization methods: DPO, DMPO, DPO-k, and SDPO
on four datasets (MedMCQA, QASC, LastFM, MovieLens) using Accuracy. Results are reported
for three base models in Table 1. MASS-DPO consistently outperform baselines across datasets
and language models. Notably, MASS-DPO outperforms prior methods on average for Qwen3 and
SmolLM3, and is a close second to S-DPO for Llama3. Per-dataset, MASS-DPO wins the majority

7
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Model Setting Medmcqa QASC LastFM MovieLens Avg↑

Qwen3

DPO 43.49 68.43 45.75 31.96 47.41
DMPO 28.91 66.78 43.40 25.66 41.19
DPO-k 55.56 71.96 51.10 44.56 55.80
S-DPO 52.56 71.08 50.25 48.19 55.52
MASS-DPO 56.66 72.19 52.30 47.58 57.18

SmolLM3

DPO 33.27 67.00 51.90 37.60 47.44
DMPO 25.50 65.23 50.10 28.68 42.38
DPO-k 44.09 69.98 55.70 51.36 55.28
S-DPO 44.99 69.43 55.90 55.70 56.50
MASS-DPO 44.19 71.63 57.25 54.03 56.78

Llama3

DPO 52.25 71.08 54.60 33.52 52.86
DMPO 25.70 69.87 49.95 28.18 43.42
DPO-k 71.04 73.95 55.65 44.46 61.27
S-DPO 72.19 74.61 56.55 49.55 63.23
MASS-DPO 71.29 73.62 57.35 49.70 62.99

Table 1: Accuracy (%) on four tasks across three base models. Bold = best, underlined = second
best.

Model Method MedMCQA QASC LastFM MovieLens Average↑
MRR/Margin MRR/Margin MRR/Margin MRR/Margin MRR/Margin

Qwen3 S-DPO 69.74 / 9.33 81.87 / 5.29 64.12 / 4.67 61.29 / 4.98 69.26 / 6.07
MASS-DPO 73.30 / 11.76 82.71 / 6.22 66.28 / 5.51 61.61 / 4.94 70.97 / 7.11

SmolLM3 S-DPO 66.64 / 19.10 81.64 / 8.07 70.13 / 7.62 68.73 / 7.32 71.78 / 10.53
MASS-DPO 66.30 / 14.42 82.73 / 7.91 70.79 / 7.29 68.13 / 7.41 71.99 / 9.26

Llama3 S-DPO 83.44 / 23.93 84.13 / 7.26 70.58 / 6.42 63.92 / 5.20 75.52 / 10.70
MASS-DPO 82.86 / 21.36 84.06 / 7.24 70.71 / 6.53 65.58 / 5.75 75.80 / 10.22

Table 2: MRR and Margin across four datasets. Each cell shows MRR / Margin.

of tasks for Qwen3 and matches or surpasses the strongest baseline on two tasks for both SmolLM3
and Llama3, while remaining top–2 in every dataset.

By contrast, simpler pairwise methods (DPO, DMPO, DPO-k) consistently underperform across
tasks, emphasizing the limitations of these methods in effectively exploiting multiple negative sam-
ples. Although SDPO integrates multiple negatives through a softmax-based weighting, its lower
performance relative to MASS-DPO demonstrates the critical importance of strategic negative se-
lection rather than random or heuristic selection. These empirical results directly confirm our theo-
retical insights, maximizing the D-optimal objective (Eq. 12) selects complementary negatives that
expand Fisher-information coverage, yielding higher downstream accuracy than random/softmax
weighting (S-DPO) and pairwise methods that do not strategically use multiple negatives.

6.3 HOW DOES MASS-DPO ACHIEVE BETTER NEGATIVE SELECTION?

We assess negative-selection quality using downstream utility metrics, MRR and Margin (Table 2),
and ranking quality on recommendation and QA via Recall/NDCG at k ∈ {1, 3} (Tables 3 and 5).
Across base models and datasets, MASS-DPO consistently improves MRR over S-DPO, while deliv-
ering higher or comparable Margins. On ranking metrics, MASS-DPO attains the most or tied-best
scores in a majority of {R@1, N@1} cells and remains competitive at {R@3, N@3}, indicating
better performance on both recommendation and QA. These results demonstrate that active neg-
ative selection via MASS-DPO effectively highlights and corrects policy weaknesses, enhancing
downstream alignment and utility beyond standard optimization methods.

6.4 ABLATION STUDIES

MASS-DPO’s behavior is governed by the Fisher-information structure (Equation (11)) and the D-
optimal selection objective (Equation (12)). We therefore ablate two key knobs predicted by theory
to matter most: the KL regularization scale β and the number of selected negatives k.
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Model Method LastFM MovieLens
R@1 R@3 N@1 N@3 R@1 R@3 N@1 N@3

Qwen3

DPO 46.15 72.60 46.15 61.60 29.64 59.48 29.64 46.89
DMPO 44.50 72.05 44.50 60.57 24.50 56.30 24.50 42.88
DPO-k 49.50 76.45 49.50 65.36 41.63 68.95 41.63 57.71
S-DPO 48.55 75.10 48.55 64.14 45.92 71.47 45.92 60.86
MASS-DPO 51.10 77.20 51.10 66.48 45.97 71.52 45.97 61.10

SmolLM3

DPO 51.70 78.15 51.70 67.29 37.25 65.68 37.25 53.77
DMPO 50.30 77.90 50.30 66.54 28.23 60.43 28.23 47.02
DPO-k 56.30 80.55 56.30 70.71 51.01 75.71 51.01 65.41
S-DPO 55.60 81.35 55.60 70.84 55.09 78.18 55.09 68.64
MASS-DPO 57.05 80.70 57.05 71.08 54.18 77.57 54.18 68.03

Llama3

DPO 55.15 80.35 55.15 70.06 34.48 63.56 34.48 51.31
DMPO 49.95 78.35 49.95 66.76 27.82 58.72 27.82 45.69
DPO-k 56.05 80.30 56.05 70.41 43.95 70.77 43.95 59.69
S-DPO 56.50 80.85 56.50 70.95 48.94 73.39 48.94 63.25
MASS-DPO 56.60 81.15 56.60 71.17 50.66 76.01 50.66 65.57

Table 3: Recall (R) and NDCG (N) at k={1,3} on LastFM and MovieLens.

(a) β ablation
Model β Medmcqa QASC LastFM MovieLens

Qwen3
0.1 56.660.77 72.191.05 52.300.79 47.580.80
0.5 46.290.79 71.411.06 48.150.81 39.820.79
1.0 43.490.77 69.651.06 44.150.80 34.120.74

SmolLM3
0.1 44.190.79 71.631.07 57.250.79 54.030.77
0.5 39.730.76 71.631.03 54.750.79 56.300.79
1.0 35.420.75 68.981.06 52.000.80 52.120.80

Llama3
0.1 71.290.74 73.621.03 57.350.81 49.700.80
0.5 69.690.74 73.511.01 55.750.80 51.060.78
1.0 66.280.76 72.191.02 52.250.81 45.920.78

(b) Negatives k ablation
Model k Medmcqa QASC LastFM MovieLens

Qwen3
1 50.950.78 68.211.13 47.800.80 32.860.73
3 56.660.77 72.191.05 52.300.79 47.580.80
5 57.310.75 73.731.03 54.500.79 58.110.78

SmolLM3
1 29.260.72 65.671.09 50.700.81 34.580.75
3 44.190.79 71.631.07 57.250.79 54.030.77
5 46.590.79 71.631.04 59.500.77 65.070.74

Llama3
1 46.990.78 71.961.03 52.700.81 32.710.73
3 71.290.74 73.621.03 57.350.81 49.700.80
5 73.550.71 74.940.98 60.050.80 60.990.77

Table 4: MASS-DPO ablations on two hyperparameters. (a) Varying the scale β (0.1, 0.5, 1.0) while
holding the number of negatives k fixed. (b) Varying k (1, 3, 5) while holding β fixed.

6.4.1 EFFECT OF β

The coefficient β tunes the pull toward the reference model and, through the softmax weights pj ,
scales each candidate’s Fisher contribution vj =

√
pj ϕ̃j in the D-optimal criterion. Larger β sharp-

ens pj and can better separate informative from redundant negatives, but too much regularization
restricts useful policy updates. Sweeping β∈{0.1, 0.5, 1.0} across three model families (Table 4a),
we find β = 0.1 consistently yields the strongest results.

6.4.2 NUMBER OF NEGATIVES (k)

D-optimal design predicts that adding more negatives improves parameter estimation until coverage
of the information space saturates. Varying k∈{1, 3, 5} with our greedy selector (Table 4b) shows
monotonic gains from k=1→ 3→ 5 across models and datasets. These results indicate the greedy
procedure reliably assembles complementary negatives that expand log det of the information ma-
trix, aligning empirical improvements with our D-optimal design analysis.

7 CONCLUSION

In this work, we introduced MASS-DPO, a theoretically grounded approach to active negative sam-
ple selection for multi-negative direct preference optimization. By formulating negative sampling as
a D-optimal design problem, we effectively addressed redundancy and computational inefficiencies
inherent in existing methods. Our incremental greedy algorithm ensures computational feasibility
while retaining theoretical optimality. Theoretical analyses confirm the efficiency and convergence
guarantees of MASS-DPO, and comprehensive experiments illustrate its superior performance and
scalability across diverse language modeling and both recommendation and QA tasks.
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A APPENDIX

Lemma A.1 (Gradient Derivation) Consider the loss for a single sample

L(θ) = − log σ
(
Z(θ)

)
, with Z(θ) = − log

 n∑
j=1

exp
[
β
(
ϕ⊤
j θ − bj

)] , (17)

d

dz

[
− log σ(Z(θ))

]
= − 1

σ(Z(θ))
· σ′(Z(θ)) = −σ(Z(θ))(1− σ(Z(θ)))

σ(Z(θ))
= −(1− σ(Z(θ))).

∂L

∂Z(θ)
= −(1− σ(Z(θ))). (18)

A(θ) =

n∑
j=1

exp
[
β
(
ϕ⊤
j θ − bj

)]
,

so that Z(θ) = − logA(θ). Then,
∂Z(θ)

∂θ
= − 1

A(θ)

∂A(θ)

∂θ
,

∂A(θ)

∂θ
=

n∑
j=1

exp
[
β
(
ϕ⊤
j θ − bj

)]
βϕj ,

∂Z(θ)

∂θ
= −β

n∑
j=1

exp
[
β
(
ϕ⊤
j θ − bj

)]
A(θ)

ϕj = −β
n∑

j=1

pjϕj ,

where the softmax weights are defined as

pj =
exp
[
β
(
ϕ⊤
j θ − bj

)]
A(θ)

.

∂L

∂θ
=

∂L

∂Z(θ)
· ∂Z(θ)

∂θ
= −(1− σ(Z(θ))) ·

[
−β

n∑
j=1

pjϕj

]
= β(1− σ(Z(θ)))

n∑
j=1

pjϕj .

Thus, the gradient of the loss is

∇θL = β(1− σ(Z(θ)))

n∑
j=1

pjϕj . (19)
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Lemma A.2 (Hessian Derivation) Recall the multi-negative DPO loss:

L(θ;Sn) = − log σ

(
− log

∑
i∈Sn

exp(β(ϕ⊤
i θ + bi))

)
,

where σ(·) denotes the sigmoid function, and we define the shorthand

Zn = − log
∑
i∈Sn

exp(β(ϕ⊤
i θ + bi)), pj =

exp(β(ϕ⊤
j θ + bj))∑

k∈Sn
exp(β(ϕ⊤

k θ + bk))
, ϕ =

∑
j∈Sn

pjϕj .

Starting from the gradient Equation (9),

∇θL(θ;Sn) = β(1− σ(Zn))
∑
j∈Sn

pjϕj ,

we derive the Hessian by differentiating again with respect to θ:

∇2
θL(θ;Sn) = β∇θ

(1− σ(Zn))
∑
j∈Sn

pjϕj

 (20)

= β(1− σ(Zn))∇θ

∑
j∈Sn

pjϕj + βσ(Zn)(1− σ(Zn))
∑
j∈Sn

pjϕj∇θZ
⊤
n . (21)

Expanding the first term using the definition of pj gives:

∇θ

∑
j∈Sn

pjϕj = β
∑
j∈Sn

pjϕjϕ
⊤
j − β

∑
j∈Sn

pjϕj

∑
j∈Sn

pjϕj

⊤

(22)

= β
∑
j∈Sn

pj(ϕj − ϕ)(ϕj − ϕ)⊤. (23)

Note also that:
∇θZn = β

∑
j∈Sn

pjϕj = βϕ.

Thus, substituting back, the Hessian becomes:

∇2
θL(θ;Sn) = β2(1− σ(Zn))

∑
j∈Sn

pj(ϕj − ϕ)(ϕj − ϕ)⊤ + β2σ(Zn)(1− σ(Zn))ϕϕ
⊤ (24)

= β2(1− σ(Zn))

σ(Zn)ϕϕ
⊤ +

∑
j∈Sn

pj(ϕj − ϕ)(ϕj − ϕ)⊤

 . (25)

This demonstrates how the Hessian measures curvature based on the variance of feature differences
under the softmax weights pj , capturing essential geometric insights into policy optimization.

Theorem A.1 (Single Design Estimation Error) Following (Kveton et al., 2025), to bound∥∥∥θ̂n − θ∗

∥∥∥
Σn

, we also show that ∥∇L (θ∗;Sn)∥Σ−1
n

is small with high probability. We recall the

from Lemma A.1,

∇θL(θ∗;Sn) = −β (1− σ(Zn(θ∗)))

n∑
j∈Sn

pjϕj ,

where Zn(θ∗) =
∑

k∈Sn
exp

[
β(ϕ⊤

k θ∗ − bk)
]
. Since the covariant matrix is lower-bounded as

Σn ⪰ Vn = cmin

 γ

cmin
Id − (1− σ(Zn))ϕϕ

⊤ +
∑
j∈Sn

pjϕjϕ
⊤
j

 .
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Then we have

∥∇L(θ∗;Sn)∥Σ−1
n
≤ β(1− σ(Zn))√

cmin

∥∥∥∥∥∑
j∈Sn

pjϕj

∥∥∥∥∥
V −1
n

.

Following (Kveton et al., 2025), we have∥∥∥∥∥∑
i∈Sn

piϕi

∥∥∥∥∥
V −1
n

≤

√√√√d

4
log

(
1 + (1− cmin(1− σ(Zn))∥ϕ∥2/γ)−1/d ·

∑
j∈Sn

pj · cmin∥ϕj∥2/γ
δ

)

≤

√√√√d

4
log

(
1 + (1− cmin∥ϕ∥2/γ)−1/d · cmin/γ

δ

)
Then, with all equations, we have∥∥∥θ̂n − θ∗

∥∥∥
Σn

≤ ∥∇L (θ∗;Sn)∥Σ−1
n

+ 2γ
1
2

≤

√√√√ β2d

cmin
log

(
1 + (1− cmin∥ϕ∥2/γ)−1/d · cmin/γ

δ

)
+ 2γ

1
2 , (26)

holds with probability at least 1− δ.

Theorem A.2 (Batch Design Estimation Error) Now we consider learning with all collected sam-
ples Sk,n, where each i-th prompt is corresponded with n negative samples actively collected Si,n.

Following Lemma A.1, to bound
∥∥∥θ̂k,n − θ∗

∥∥∥
Σk,n

, we also show that ∥∇L (θ∗;Sk,n)∥Σ−1
k,n

is small

with high probability. We recall the from Lemma A.1,

∇θL(θ∗;Sk,n) = −β
k∑

i=1

(1− σ(Zi(θ∗)))

n∑
j∈Si,n

pi,jϕi,j ,

where Zi(θ∗) =
∑

j∈Si,n
exp

[
β(ϕ⊤

i,jθ∗ − bi,j)
]
. Since the covariant matrix is lower-bounded as

Σk,n ⪰ Vk,n = cmin

 γ

cmin
Id −

k∑
i=1

(1− σ(Zi,n))ϕiϕ
⊤
i +

k∑
i=1

∑
j∈Si,n

pi,jϕi,jϕ
⊤
i,j

 .

Then we have

∥∇L(θ∗;Sk,n)∥Σ−1
k,n
≤

β
∑k

i=1(1− σ(Zi,n))√
cmin

∥∥∥∥∥
k∑

i=1

∑
j∈Si,n

pi,jϕi,jϕ
⊤
i,j

∥∥∥∥∥
V −1
k,n

.

Following (Kveton et al., 2025), we have∥∥∥∥∥∥
∑

i∈Sk,n

piϕi

∥∥∥∥∥∥
V −1
k,n

≤

√√√√√√d

4
log

1/δ +

∑k
i=1

∑
j∈Si,n

pi,j · cmin∥ϕi,j∥2/γ(
1− cmin

∑k
i=1(1− σ(Zi,n))∥ϕ∥2/γ

)1/d
· δ


≤

√√√√d

4
log

(
1/δ +

k · cmin/γ

(1− cmin · k/γ)1/d · δ

)
Then, with all equations, we have∥∥∥θ̂k,n − θ∗

∥∥∥
Σk,n

≤ ∥∇L (θ∗;Sk,n)∥Σ−1
k,n

+ 2γ
1
2

≤

√√√√d

4
log

(
1/δ +

k · cmin/γ

(1− cmin · k/γ)1/d · δ

)
+ 2γ

1
2 , (27)

holds with probability at least 1− δ.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Lemma A.3 (Optimality of the Incremental Greedy Algorithm) Let (i1, . . . , in) be the greedy
indices and Hk = γI +

∑k
t=1 vitv

⊤
it

. Iterating equation 13 yields

detHn = det(γI)

n∏
k=1

(
1 + v⊤ikH

−1
k−1vik

)
. (28)

Now consider any other subset S = {j1, . . . , jn} (arbitrary order) and define H̃k analogously.
Because ik maximises v⊤H−1

k−1v among the remaining candidates and Hk−1 ⪰ H̃k−1, we have
v⊤ikH

−1
k−1vik ≥ v⊤jkH̃

−1
k−1vjk for every k. Applying equation 28 to both sequences and multiplying

the n inequalities delivers detHn ≥ det H̃n, and hence detH(Sn) ≥ detH(S) for all admissible
S. Taking logarithms completes the argument.

Algorithm 1 Greedy D-Optimal Multi-negative Active Sample Selection

1: Input: context x, preferred response y∗, candidate set D = {yi}Ni=1, policy parameter θ, scale
β, number of negatives n

2: Compute feature differences and offsets, for each i ∈ [N ],
ϕi ← ϕ(x, yi)− ϕ(x, y∗), bi ← log πref(y

∗ | x)− log πref(yi | x)
3: Compute scores and softmax weights, for each i ∈ [N ],

si ← β
(
ϕ⊤
i θ + bi

)
, pi ← exp(si)/

∑N
k=1 exp(sk)

4: Center and weight features, for all i ∈ [N ]

ϕ←
∑N

j=1 pj ϕj , ϕ̃i ← ϕi − ϕ, vi ←
√
pi ϕ̃i

5: Initialize matrices and set: H0 ← γId×d, S0 ← ∅
6: for k = 1, . . . , n do
7: Incremental selection Ik ← argmaxi∈[N ]\Sk−1

log det
(
Hk−1 + viv

⊤
i

)
8: Incremental update selection and design: Sk ← Sk−1 ∪ {Ik}, Hk ← Hk−1 + vIkv

⊤
Ik

9: end for
10: Output: selected negatives set Sn

B TECHNICAL ASSUMPTIONS

B.1 ASSUMPTION DETAILS

Assumption B.1 (Bounded Feature and Bias) For any (x, y) pair, the feature vectors and refer-
ence policy log-ratio are bounded:

∥ϕ(x, y)∥2 ≤ 1, |bi| ≤ 1.

Additionally, we constrain the parameter space to a unit ball: ∥θ∥2 ≤ 1.

Assumption B.2 (Bounded Design Weights) Let pi = exp[β(ϕ⊤
i θ − bi)]/

∑
j exp[β(ϕ

⊤
j θ − bj)].

Then there exist constants 0 < cmin ≤ cmax ≤ 1
4β

2 such that:

cmin ≤ β2(1− σ(Z(θ)))pi ≤ cmax, ∀i.

B.2 EXPERIMENTAL SETTINGS

To further manage computational costs, we cap the number of response candidates at 20 for the
LastFM, MovieLens, and MedMCQA datasets, and at 8 for QASC. Although MedMCQA natively
provides only four options per question, we expand this to 20 by pooling all candidates with the
same subject name field. We also subsample each dataset to 20k training samples, 200 samples
for online evaluation, and 2,000 samples for testing. All prompts are formatted using each model’s
provided chat template to ensure consistent input structure across tasks.
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Figure 3: Comparison of MASS-DPO and SDPO on the MovieLens and QASC datasets. MASS-
DPO consistently achieves higher margins, superior accuracy, and stable improvements in chosen
rewards, highlighting the benefits of active negative sample selection. The x-axis (Step) counts the
on-the-fly evaluations during training.

Model Method MedMCQA QASC
R@1 R@3 N@1 N@3 R@1 R@3 N@1 N@3

Qwen3

DPO 39.25 84.51 39.25 65.37 67.77 90.62 67.77 81.29
DMPO 26.02 74.89 26.02 53.60 68.21 90.51 68.21 81.40
DPO-k 54.59 89.67 54.59 74.86 71.08 92.72 71.08 83.95
S-DPO 51.03 86.52 51.03 71.54 70.42 91.50 70.42 83.04
MASS-DPO 56.34 89.72 56.34 75.62 71.85 91.61 71.85 83.73

SmolLM3

DPO 33.33 81.75 33.33 61.01 67.11 90.07 67.11 80.70
DMPO 26.02 75.39 26.02 53.93 66.11 88.74 66.11 79.54
DPO-k 44.16 85.91 44.16 68.09 70.31 90.18 70.31 82.06
S-DPO 45.46 87.22 45.46 69.54 70.53 91.39 70.53 82.80
MASS-DPO 44.81 87.47 44.81 69.40 72.52 91.83 72.52 83.82

Llama3

DPO 51.48 87.82 51.48 72.30 71.30 91.72 71.30 83.41
DMPO 24.36 74.99 24.36 52.84 69.32 91.94 69.32 82.67
DPO-k 71.13 93.88 71.13 84.51 73.95 92.38 73.95 84.93
S-DPO 72.33 94.34 72.33 85.20 74.17 92.38 74.17 85.13
MASS-DPO 71.23 94.49 71.23 84.84 73.84 92.60 73.84 85.13

Table 5: Recall (R) and NDCG (N) at k={1,3} on MedMCQA and QASC.

B.3 IMPLEMENTATION DETAILS

We implement our experiments using PyTorch, leveraging three widely used pre-trained LLMs:
LlaMA-3.2-3B-Instruct (Grattafiori et al., 2024), SmolLM3 (Bakouch et al., 2025), and Qwen3-
4B (Team, 2025). Each model is fine-tuned on 8 NVIDIA A100 GPUs with a per-device batch
size of 2, gradient accumulation steps of 8, learning rate of 10−5, a cosine learning-rate scheduler
with warmup ratio 0.05, and the Paged AdamW optimizer for 3 epochs with a fixed KL penalty
coefficient at β = 0.1 across all experiments. More details included in We enable gradient check-
pointing, gradient clipping is applied with a maximum norm of 0.3, and evaluation uses a batch
size of 2. We extract representation vectors by mean-pooling the final hidden states, using either (a)
all tokens from the concatenated prompt–response sequence or (b) only the response tokens, where
prompt positions are masked out. Both strategies use the same pretrained LLM and tokenization
pipeline.

B.4 RESULTS
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