
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CROSSMPT: CROSS-ATTENTION MESSAGE-PASSING
TRANSFORMER FOR ERROR CORRECTING CODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Error correcting codes (ECCs) are indispensable for reliable transmission in
communication systems. The recent advancements in deep learning have cat-
alyzed the exploration of ECC decoders based on neural networks. Among these,
transformer-based neural decoders have achieved state-of-the-art decoding per-
formance. In this paper, we propose a novel Cross-attention Message-Passing
Transformer (CrossMPT), which shares key operational principles with conven-
tional message-passing decoders. While conventional transformer-based decoders
employ self-attention mechanism without distinguishing between the types of in-
put vectors (i.e., magnitude and syndrome vectors), CrossMPT updates the two
types of input vectors separately and iteratively using two masked cross-attention
blocks. The mask matrices are determined by the code’s parity-check matrix,
which explicitly captures the irrelevant relationship between two input vectors.
Our experimental results show that CrossMPT significantly outperforms exist-
ing neural network-based decoders for various code classes. Notably, CrossMPT
achieves this decoding performance improvement, while significantly reducing
the memory usage, complexity, inference time, and training time.

1 INTRODUCTION

The fundamental objective of digital communication systems is to reliably transmit information
from source to destination through noisy channels. Error correcting codes (ECCs) are crucial for
ensuring the integrity of transmitted data in digital communication systems. The advancements in
deep learning across diverse tasks, such as natural language processing (NLP), image classification,
or object detection (Devlin et al., 2019; He et al., 2016; Girshick et al., 2014; Carion et al., 2020),
have motivated the application of deep learning techniques to ECC decoders. This has led to the de-
velopment of neural decoders (Kim et al., 2018; 2020; Nachmani et al., 2016; 2018; Dai et al., 2021;
Lugosch & Gross, 2017). The key aim of these neural decoders is to improve decoding performance
by overcoming limitations of the conventional decoders such as belief propagation (BP) (Richardson
& Urbanke, 2001) or min-sum (MS) (Fossorier et al., 1999) decoders.

Among neural decoders, model-free neural decoders employ an arbitrary neural network architec-
ture (e.g., deep neural networks (Gruber et al., 2017), recurrent neural networks (Bennatan et al.,
2018) and transformers (Choukroun & Wolf, 2022a; 2023; Park et al., 2023; Choukroun & Wolf,
2024a;b)) as the ECC decoder, without relying on prior knowledge of specific decoding algorithms.
Since model-free neural decoders are not based on specific decoding algorithms, their training is
prone to overfitting, largely due to the exponentially large number of codewords (Bennatan et al.,
2018). To circumvent overfitting, these neural decoders incorporate a preprocessing step where the
magnitude and syndrome vectors from the received codeword are concatenated and used as inputs.
The preprocessing step is essential for integrating an effective network architecture for the ECC
decoder without an overfitting issue (Bennatan et al., 2018). For example, transformer-based ECC
decoders (Choukroun & Wolf, 2022a; 2023; Park et al., 2023; Choukroun & Wolf, 2024a;b) achieve
state-of-the-art decoding performance. However, two important questions have not been addressed:
1) how to effectively manage the two distinct input vectors (magnitude and syndrome), and 2) how
to design an efficient transformer-based decoder architecture.

Conventional transformer-based ECC decoders, initially proposed as Error Correction Code Trans-
former (ECCT) (Choukroun & Wolf, 2022a; 2023; Park et al., 2023; Choukroun & Wolf, 2024a;b),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

receive the concatenated magnitude and syndrome embeddings as a single input and utilize self-
attention blocks, without a distinct process for handling the two different types of vectors. In con-
trast, our approach treats the magnitude and syndrome as multimodal data, recognizing their distinct
informational characteristics. The real-valued magnitude vector contains the reliabilities of all bit
positions, while the binary syndrome vector conveys the information of erroneous bit positions. This
deliberate separation necessitates the development of a novel architecture, specifically designed to
effectively update these separated magnitude and syndrome embeddings, thereby significantly im-
proving decoding performance.

In this paper, we introduce a novel Cross-attention Message-Passing Transformer (CrossMPT) for
ECC decoding. CrossMPT processes the magnitude and syndrome separately to effectively utilize
their distinct informational properties. It employs two cross-attention blocks to iteratively update the
magnitude and syndrome embeddings. Initially, the magnitude embedding is encoded into the query,
while the syndrome embedding is encoded into key and value. The first cross-attention block utilizes
this configuration in its attention mechanism to update the magnitude embedding component. This
procedure is reciprocated for the syndrome embedding, which is encoded into the query, while the
magnitude embedding is encoded into the key and value. This configuration enables the second
cross-attention block to update the syndrome vector component. These two masked cross-attention
blocks iteratively collaborate to refine the magnitude and syndrome embeddings as in the message-
passing algorithm (Richardson & Urbanke, 2001).

To facilitate training, CrossMPT employs a mask matrix for each cross-attention block. The first
cross-attention block uses the transpose of the parity check matrix (PCM) HT as its mask matrix
with the magnitude embedding as the query. In the second cross-attention block, the PCM H⊤

itself is applied as the mask matrix, with the syndrome embedding acting as the query. This strategy
leverages the PCM’s inherent representation of the ‘magnitude-syndrome’ relationship, effectively
aligning with the architecture’s objectives. Moreover, the combined size of the two attention maps of
CrossMPT is at most half that of the attention map of the conventional transformer-decoder, leading
to significantly reduced memory usage. This reduction enables efficient learning and decoding of
longer codes, which previous approaches (concatenating magnitude and syndrome embeddings) are
unable to achieve due to high memory usage and computational complexity. To our knowledge,
CrossMPT is the first architecture to integrate an iterative message-passing framework with a cross-
attention-based transformer architecture.

Experimental results show that CrossMPT consistently outperforms the original ECCT across vari-
ous code classes. Leveraging its shared operational principles with the message-passing algorithm,
CrossMPT demonstrates particularly improved decoding performance, especially in low-density
parity-check (LDPC) codes. Notably, we also demonstrate that CrossMPT closely approaches the
maximum likelihood decoding performance on short codes. In addition to its enhanced decoding
performance, CrossMPT significantly reduces the computational complexity (e.g., floating point op-
erations (FLOPs), training time, and inference time) of the decoder layer compared to the original
ECCT. Given that the decoder layer constitutes a substantial portion of the total computational cost,
this reduction leads to a significant decrease in overall computational complexity.

2 RELATED WORKS

In the field of neural network-based ECC decoders, there are two primary categories: the model-
based decoder and the model-free decoder. First, model-based decoders are constructed based on
the conventional decoding methods (e.g., BP decoder and MS decoder). They map the iterative
decoding process of the conventional decoding methods into neural networks and train the network
weights accordingly. To improve performance over the standard BP decoder, the recurrent neural
network was employed for the decoding of BCH codes (Nachmani et al., 2018). Several recent stud-
ies showed that neural network-based BP and MS decoders outperform the conventional decoding
algorithms over various code types (Dai et al., 2021; Kwak et al., 2023; Lugosch & Gross, 2017;
Nachmani & Wolf, 2019; 2021; Kwak et al., 2022; Buchberger et al., 2021). However, model-based
neural decoders may encounter performance limitations due to their restrictive model architectures,
which are closely tied to underlying decoding methods.

Unlike model-based decoders, which are constrained by the limitations of their underlying algo-
rithms (e.g., BP), model-free neural decoders use arbitrary architectures to learn decoding without

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1

Parity check matrix Mask matrix of ECCT

Mag-syn

(𝐻𝑇)

Syn-mag

(𝐻)

: Masked

: Unmasked

(a) ECCT (Choukroun & Wolf, 2022a)

1 0 1 1 1 0 0

0 1 0 1 1 1 0

0 0 1 0 1 1 1
𝑯

𝑯𝑻

Parity check matrix Mask matrix of CrossMPT

: Masked

: Unmasked

(b) CrossMPT

Figure 1: The PCM and the mask matrices of ECCT and CrossMPT

such restrictions. While early approaches (Gruber et al., 2017; Cammerer et al., 2017; Kim et al.,
2018) employed fully connected networks, they faced overfitting challenges during training. Sub-
sequently, the introduction of a preprocessing step utilizing the magnitude and syndrome vectors of
the received codeword to learn multiplicative noise has been pivotal in enabling model-free decoders
to address the overfitting issue (Bennatan et al., 2018). Then, ECCT (Choukroun & Wolf, 2022a)
first employed the transformer architecture using the same preprocessing step and demonstrated
that the transformer-based decoder outperforms existing decoders including model-based neural de-
coders. Building on the ECCT framework, denoising diffusion error correction codes (Choukroun
& Wolf, 2023) interpreted the iterative decoding process as a diffusion process and incorporated
a diffusion model to train the original ECCT. Recently, double-masked ECCT (Park et al., 2023)
utilized two different PCMs for the same linear code to capture the diverse multilateral relationships
of the magnitude and syndrome bits and improve the decoding performance. Notably, transformer-
based decoders outperform model-based neural decoders and serve as universal decoders capable of
decoding arbitrary code classes with a unified architecture.

Furthermore, employing cross-attention mechanisms in architecture has enhanced performance
across various domains. In NLP, the transformer decoder (Vaswani et al., 2017) adopted the cross-at-
tention modules. In vision, CrossViT (Chen et al., 2021) utilized cross-attention for improved image
classification. For text-based image generation, latent diffusion models (Rombach et al., 2022) inte-
grated cross-attention layers into the model architecture, enabling diffusion models to become pow-
erful and flexible generators. These works demonstrate the versatility of cross-attention, inspiring
its application to ECC decoding.

3 BACKGROUND

3.1 ERROR CORRECTING CODES

Let C be a linear block code, which is defined by a generator matrix G of size k × n and a parity
check matrix H of size (n− k)× n. They satisfy GH⊤ = 0 over {0, 1} with modulo 2 addition. A
codeword x ∈ C ⊂ {0, 1}n is encoded by multiplying message m with the generator matrix G (i.e.,
x = mG). Let xs be the binary phase shift keying (BPSK) modulated signal of x and let y be
the output of a noisy channel for input xs. We assume the additive white Gaussian noise (AWGN)
channel and the channel output can be represented by y = xs + z, where z ∼ N(0, σ2). The
objective of the decoder (f : Rn → Rn) is to recover the transmitted codeword x by correcting
errors. When y is received, the decoder first determines whether the received signal is corrupted or
not by checking the syndrome s(y) = Hyb, where yb = bin(sign(y)) is the demodulated signal of
y. Here, sign(a) represents +1 if a ≥ 0 and −1 otherwise and bin(−1) = 1, bin(+1) = 0. If s(y) is
a non-zero vector, it is detected that y is corrupted during the transmission, and the decoder initiates
the error correction process.

3.2 ERROR CORRECTION CODE TRANSFORMER

ECCT is the first approach to present a model-free decoder with the transformer architecture. ECCT
outperforms other neural BP-based decoders by employing the masked self-attention mechanism,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑠(𝑦)∙

Embedding

𝒚

⊙ ⊙

Initial embedding layer

𝑛 × 𝑑 𝑛 − 𝑘 × 𝑑

Norm

Norm

FFNN

⨁

⨁

Norm

Norm

FFNN

⨁

Masked
cross-attention

⨁ 𝑯𝑻

𝑯

Decoder layer

× 𝑵

𝑾𝑄

𝑾𝐾

𝑾𝑉

𝑾𝐾

𝑾𝑉

𝑾𝑄

Masked
cross-attention

∙

FC

FC

Norm

ො𝒛𝒔

Output layer

2𝑛 − 𝑘 × 𝑑

2𝑛 − 𝑘 × 1

𝑛 × 1

Figure 2: Architecture of CrossMPT.

whose mask matrix is determined by the code’s PCM (Choukroun & Wolf, 2022a). The first issue
that needs to be addressed when training transformer-based decoders is the overfitting. In (Bennatan
et al., 2018), the overfitting issue in model-free neural decoders is described as a poor generaliza-
tion to untrained new codewords due to the exponentially large number of codewords. However, it
has been resolved by a preprocessing technique that facilitates a syndrome-based decoding (Ben-
natan et al., 2018). It has been theoretically proven that, with this preprocessing step, the decoder’s
performance is invariant to the specific codewords in the training set (Bennatan et al., 2018).

As in (Bennatan et al., 2018), the preprocessing step of ECCT utilizes the magnitude and syndrome
vectors to train multiplicative noise z̃s, which is defined by

y = xs + z = xsz̃s. (1)

ECCT aims to estimate the multiplicative noise in (1), i.e., f(y) = ẑs. Then, the estima-
tion of x is x̂ = bin(sign(yf(y))). If the multiplicative noise is correctly estimated such that
sign(z̃s) = sign(ẑs), then x̂ can be computed as:

x̂ = bin(sign(yf(y))) = bin(sign(xsz̃sẑs)) = bin(sign(xs)) = x.

ECCT employs a masked self-attention module to train the transformer architecture, where the input
embedding is the concatenation of the embedded magnitude and syndrome vector of y. As shown in
Figure 1, the mask matrice of ECCT should clearly distinguish between necessary (unmasked) and
unnecessary (masked) pairwise relationships among magnitude-magnitude, magnitude-syndrome,
and syndrome-syndrome bit relations. In ECCT, the syndrome-syndrome part was only unmasked
for self-relations, while the magnitude-syndrome part was unmasked based on the connections de-
fined by the parity-check matrix (PCM). The magnitude-magnitude part, however, was unmasked for
bit pairs connected at depth 2 (see Algorithm 1 in Choukroun & Wolf (2022a)). While the masking
of magnitude-syndrome relations is intuitive, as it directly uses PCM, determining the relationships
among magnitude themselves is not directly derivable from the PCM. Therefore, the algorithm for
masking magnitude-magnitude part is neither straightforward nor unique. In Figure 1, the white ar-
eas indicate unmasked positions (require the attention calculation) whereas the blue areas represent
masked positions (omit the attention calculation). As the proportion of blue increases, the attention
matrix becomes sparser and more cost-efficient.

4 CROSS-ATTENTION MESSAGE-PASSING TRANSFORMER

In this section, we present the operational mechanism and architecture of CrossMPT. CrossMPT
handles the magnitude and syndrome embeddings separately, applying a cross-attention mechanism
to effectively capture their distinct information. It shares its core principles with message passing
decoding algorithm for decoding linear codes, where the magnitude and syndrome embeddings of
the received codewords are iteratively updated. The overall architecture is illustrated in Figure 2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Masked

CA

Masked

CA

Magnitude Syndrome

Updated 

magnitude

Updated 

syndrome

Product 

operation

Sum 

operation

VN output

message

CN output

message

Message-passing algorithm
Cross-attention

message-passing algorithm

𝐻𝑇

𝐻

Q

K ,V

K ,V
Q

Figure 3: Conceptual comparison of the sum-product message-passing algorithm and the proposed
cross-attention (CA) message-passing algorithm.

4.1 CROSS-ATTENTION MESSAGE-PASSING TRANSFORMER

One cross-attention block updates the magnitude embedding by using it as a query and updates them
with key and value, generated from the syndrome embedding. Given this configuration, the attention
map has the size n× (n−k), effectively representing the ‘magnitude-syndrome’ relation. To reflect
this relationship, we employ the transpose of the PCM H⊤ as the mask matrix. This is because
the n rows of H⊤ correspond to the n bit positions, and its n − k columns are associated with the
parity check equations, directly linking to |y| and s(y), respectively. The other cross-attention block
similarly use s(y) is used as the query, while |y| serves as both key and value. For this operation,
we utilize the PCM H as the mask matrix.

This configuration of separately handling two distinct informational properties resembles the
message-passing decoding algorithm for decoding linear codes. Message-passing algorithms such as
the sum-product algorithm (Richardson & Urbanke, 2001) are widely used for decoding ECCs due
to their outstanding decoding performance with low complexity. The message-passing algorithm
operates by exchanging messages between variable nodes (VNs) and check nodes (CNs) over a Tan-
ner (bipartite) graph (Richardson & Urbanke, 2001). In the Tanner graph, VNs convey information
about the reliability of the received codeword, while CNs indicate the parity check equations. The
edges between VNs and CNs represent the connections (relationships) between them. The message-
passing decoder operates by exchanging messages between VNs and CNs via edges. The output
messages of VNs and CNs are updated in an iterative manner.

Similar to the principles of message-passing algorithms, CrossMPT updates |y| and s(y) by allowing
them to exchange messages with each other. Initially, we update |y| by the masked cross-attention
block, with |y| as the query and s(y) as both the key and value. The syndrome embedding is updated
in the subsequent masked cross-attention block, utilizing the previously updated magnitude embed-
ding. In this block, the syndrome embedding is used as the query, while the updated magnitude
embedding serves as the key and value. The resulting output from this cross-attention block is the
updated syndrome. CrossMPT iteratively updates both the magnitude and syndrome embeddings to
identify the multiplicative noise accurately.

As a representative of the message-passing algorithm, Figure 3 depicts the sum-product algorithm
and the cross-attention message-passing algorithm. In the sum-product algorithm, the VN output
and CN output messages are iteratively updated using the sum and product operations. Similar to
the sum-product algorithm, the magnitude and syndrome embeddings are iteratively updated using
the masked cross-attention (Masked CA in the figure) blocks in CrossMPT. Note that H and H⊤

are utilized for the mask matrices for these cross-attention blocks, and Q, K, and V represent the
query, key, and value of the cross-attention mechanism.

4.2 MODEL ARCHITECTURE

In the initial embedding layer, we generate |y| = (|y1|, . . . , |yn|) and s(y) = (s(y)1, . . . , s(y)n−k)
from the received codeword, and project each element yi and s(y)i into d dimension embedding row

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

vectors Mi and Si, respectively, as follows:

Mi = |yi|Wi, for i = 1, . . . , n,

Si = s(y)iWi+n, for i = 1, . . . , n− k,

where Wi ∈ R1×d for i = 1, . . . , 2n− k denote the trainable positional encoding vector.

These two embedded vectors are processed as separate input vectors in the following N decoding
layers. Each decoding layer contains two cross-attention blocks, each consisting of a cross-attention
module, a feed-forward neural network (FFNN), and a normalization layer.

In the first cross-attention module, the attention module updates the ‘magnitude’ embedding by using
the syndrome. The query vector Q1, key vector K1, and value vector V1 are assigned as follows:

Q1 = MWQ,K1 = SWK , V1 = SWV ,

where M = [M1; · · · ;Mn] ∈ Rn×d and S = [S1; · · · ;Sn−k] ∈ R(n−k)×d denote the magnitude
embedding and the syndrome embedding, respectively, and WQ,WK ,WV denote the weight matri-
ces of query, key, and value, respectively. This architecture is termed the ‘cross-attention’ message-
passing transformer since the query corresponds to the magnitude embedding, while the key and
value correspond to the syndrome embedding. Then, we employ the following scaled dot-product
attention:

Attention(Q1,K1, V1) = softmax

(
Q1K

⊤
1 + g(H⊤)√

d

)
V1,

where g(H⊤) is the mask matrix, and the function g is defined as

g(A)i,j =

{
0 if Ai,j = 1,

−∞ if Ai,j = 0.
(2)

This configuration results in an attention map of size n × (n − k), representing the ‘magnitude-
syndrome’ relationship. Therefore, we use the transpose of the PCM H⊤ as a mask matrix since
the n rows of H⊤ correspond to the n bit positions and the n − k columns of H⊤ to the parity
check equations, which are closely related to |y| and s(y), respectively. Finally, the output vector
embodies a newly updated magnitude embedding M ′ by using the syndrome.

In the second cross-attention module, we update the ‘syndrome’ embedding with the updated M ′

corresponding to the magnitude. In other words, the input of the query becomes syndrome and the
input of key and value becomes M ′. We use the shared weight vectors WQ,WK ,WV as in the first
cross-attention module, and query vector Q2, key vector K2, and value vector V2 are defined as
follows:

Q2 = SWQ,K2 = M ′WK , V2 = M ′WV .

Here, the syndrome and magnitude correspond the row and column of the attention map, respec-
tively. Thus, we employ the mask matrix g(H), whose masking positions are zeros in H . Then
we apply the scaled dot-product attention and the resulting output vector conveys the updated syn-
drome. This output vector is utilized to further refine the magnitude embedding and this process is
iteratively repeated across the N decoder layers.

Finally, these output vectors of the last decoder layer are concatenated and pass through a normal-
ization layer and two fully connected (FC) layers. The first FC layer reduces the (2n − k) × d
dimension embedding to a one-dimensional 2n− k vector, and the second FC layer further reduces
the dimension from 2n − k into n. The final output provides an estimation of z̃s. Since two cross-
attention blocks of CrossMPT share the same weight matrices WQ,WK ,WV and all other layers,
CrossMPT has the same number of parameters as the original ECCT.

The objective of the proposed decoder is to learn the multiplicative noise z̃s in (1) and reconstruct the
original transmitted signal x. We can obtain the multiplicative noise by z̃s = z̃sx

2
s = yxs. Then, the

target multiplicative noise for binary cross-entropy loss function is defined by z̃ = bin(sign(yxs)).
Finally, the cross-entropy loss function for a received codeword y is defined by

L = −
n∑

i=1

{z̃i log(σ(f(y))) + (1− z̃i) log(1− σ(f(y)))} .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison of decoding performance at three different SNR values (4 dB, 5 dB, 6 dB)
for BP decoder, Hyper BP decoder (Nachmani & Wolf, 2019), AR BP decoder (Nachmani & Wolf,
2021), ECCT (Choukroun & Wolf, 2022a), and the proposed CrossMPT. The results are measured
by the negative natural logarithm of BER. The best results are highlighted in bold. Higher is better.

Architecture BP-based decoders Model-free decoders

Codes Parameter BP Hyp BP AR BP ECCT CrossMPT

4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH
(31,16) 4.63 5.88 7.60 5.05 6.64 8.80 5.48 7.37 9.60 6.39 8.29 10.66 6.98 9.25 12.48
(63,36) 4.03 5.42 7.26 4.29 5.91 8.01 4.57 6.39 8.92 4.86 6.65 9.10 5.03 6.91 9.37
(63,45) 4.36 5.55 7.26 4.64 6.27 8.51 4.97 6.90 9.41 5.60 7.79 10.93 5.90 8.20 11.62
(63,51) 4.5 5.82 7.42 4.8 6.44 8.58 5.17 7.16 9.53 5.66 7.89 11.01 5.78 8.08 11.41

Polar

(64,32) 4.26 5.38 6.50 4.59 6.10 7.69 5.57 7.43 9.82 6.99 9.44 12.32 7.50 9.97 13.31
(64,48) 4.74 5.94 7.42 4.92 6.44 8.39 5.41 7.19 9.30 6.36 8.46 11.09 6.51 8.70 11.31

(128,64) 4.1 5.11 6.15 4.52 6.12 8.25 4.84 6.78 9.3 5.92 8.64 12.18 7.52 11.21 14.76
(128,86) 4.49 5.65 6.97 4.95 6.84 9.28 5.39 7.37 10.13 6.31 9.01 12.45 7.51 10.83 15.24
(128,96) 4.61 5.79 7.08 4.94 6.76 9.09 5.27 7.44 10.2 6.31 9.12 12.47 7.15 10.15 13.13

LDPC

(49,24) 6.23 8.19 11.72 6.23 8.54 11.95 6.58 9.39 12.39 6.13 8.71 12.10 6.68 9.52 13.19
(121,60) 4.82 7.21 10.87 5.22 8.29 13.00 5.22 8.31 13.07 5.17 8.31 13.30 5.74 9.26 14.78
(121,70) 5.88 8.76 13.04 6.39 9.81 14.04 6.45 10.01 14.77 6.40 10.21 16.11 7.06 11.39 17.52
(121,80) 6.66 9.82 13.98 6.95 10.68 15.80 7.22 11.03 15.90 7.41 11.51 16.44 7.99 12.75 18.15

MacKay (96,48) 6.84 9.40 12.57 7.19 10.02 13.16 7.43 10.65 14.65 7.38 10.72 14.83 7.97 11.77 15.52

CCSDS (128,64) 6.55 9.65 13.78 6.99 10.57 15.27 7.25 10.99 16.36 6.88 10.90 15.90 7.68 11.88 17.50

Turbo (132,40) N/A N/A N/A N/A N/A N/A N/A N/A N/A 4.74 6.54 9.06 5.55 7.92 10.94

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

1
SNR (𝐸𝑏/𝑁0)

BP

Hyp BP

AR BP

ECCT

CrossMPT

2 3 4 5 6 7

(a) (31, 16) BCH code

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9
1

SNR (𝐸𝑏/𝑁0)

BP

Hyp BP

AR BP

ECCT

CrossMPT

2 3 4 5 6 7

(b) (128, 86) polar code

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

SNR (𝐸𝑏/𝑁0)

BP

Hyp BP

AR BP

ECCT

CrossMPT

2 3 4 5 62.5 3.5 4.5 5.5

(c) (128, 64) CCSDS

Figure 4: The BER performance of various decoders (BP, Hyp BP, AR BP, ECCT) and CrossMPT.

To ensure a fair comparison between CrossMPT and ECCT, we adopt the same training setup used
in the previous work (Choukroun & Wolf, 2022a). We use the Adam optimizer (Kingma & Ba,
2015) and conduct 1000 epochs. Each epoch consists of 1000 minibatches, where each minibatch is
composed of 128 samples. All simulations were conducted using NVIDIA GeForce RTX 3090 GPU
and AMD Ryzen 9 5950X 16-Core Processor CPU. The training sample y is generated by y = xs+z,
where xs is the all-zero codeword and the AWGN channel noise z is from an SNR (Eb/N0) range of
3 dB to 7 dB. The learning rate is initially set to 10−4 and gradually reduced to 5× 10−7 following
a cosine decay scheduler.

5 EXPERIMENTAL RESULTS

In this section, we compare the proposed CrossMPT with the original ECCT across various code
classes. Our experimental results do not include a comparison with the works of (Choukroun &
Wolf, 2024a;b), as they have different objectives, such as generalizing the decoder to unseen codes
(Choukroun & Wolf, 2024a) or jointly training the encoder and decoder (Choukroun & Wolf, 2024b).
It is worth mentioning that our cross-attention architecture and the schemes of (Choukroun & Wolf,
2024a;b) are orthogonal methods, and combining them could present a promising direction for future
research.

To verify the efficacy of CrossMPT, we train it for BCH codes, polar codes, turbo codes, and LDPC
codes (including MacKay and CCSDS codes) and evaluate the bit error rate (BER) performance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ECCT CrossMPT

Figure 5: The average attention scores of all N = 6 layers for ECCT and CrossMPT.

All PCMs are taken from (Helmling et al., 2019). The implementation of the original ECCT is taken
from (Choukroun & Wolf, 2022b). For the testing, we collect at least 500 frame errors at each signal-
to-noise ratio (SNR) value with random codewords. Table 1 compares the decoding performance of
CrossMPT with the BP decoder, BP-based neural decoders (Nachmani & Wolf, 2019; 2021), and
ECCT (Choukroun & Wolf, 2022a). The results of the BP-based decoders in Table 1 are obtained
for 50 iterations. The results for both the proposed CrossMPT and ECCT, which are model-free
decoders, are obtained with N = 6 and d = 128. For all types of codes, CrossMPT outperforms the
conventional ECCT and all the other BP-based neural decoders. This improvement of CrossMPT
is particularly notable in the case of LDPC codes. To provide more visual information, we plot the
BER graphs for several codes in Figure 4.

An important aspect of our research is CrossMPT’s capability to decode long codes (Appendix A),
which remain beyond the reach of ECCT due to its high memory requirements, resulting from large
attention maps. These results demonstrate the practical significance and architectural advantages
of CrossMPT, proving its value in scenarios where ECCT encounters limitations. Especially, it
achieves superior decoding performance for LDPC codes, outperforming the BP decoder with the
maximum iteration of 100 (provided in Appendix B). Also, we demonstrate that for short codes,
CrossMPT closely approaches the optimal maximum likelihood (ML) decoding performance (pro-
vided in Appendix C). Additional experimental results for block error rate (BLER), comparison with
successive cancellation list polar decoder, denoising diffusion ECCT (DDECCT), and the decoding
performance for the Rayleigh channel are provided in Appendices D, E, F, and G, respectively.

6 ABLATION STUDIES AND ANALYSIS

6.1 ANALYSIS OF ATTENTION MECHANISMS IN ECCT AND CROSSMPT

We provide an analysis of the attention scores in ECCT and CrossMPT. Figure 5 shows the average
attention scores across N = 6 layers for both ECCT and CrossMPT for (32, 16) LDPC code (Abu-
Surra et al., 2010). As shown in Figure 5, the attention score map of ECCT reveals different
importance among the relationships: Magnitude-magnitude, syndrome-syndrome, and magnitude-
syndrome. One key observation is that the magnitude-magnitude and syndrome-syndrome relations
exhibit relatively low attention scores compared to the magnitude-syndrome relation, which sug-
gests that the magnitude-syndrome relationship is more significant than the others. Appendix H,
in which we masked the magnitude-magnitude and syndrome-syndrome relationships, revealed no
significant performance difference compared to when these relationships were not masked. This
demonstrates that the conventional ECCT could be enhanced by focusing on the more critical rela-
tionships, as CrossMPT achieves this by eliminating the two relations with low attention scores and
concentrating solely on the magnitude-syndrome relation. Therefore, we can claim that CrossMPT
more efficiently targets the crucial aspect (i.e., magnitude-syndrome relation) compared to ECCT.

6.2 VISUALIZATION OF CROSS-ATTENTION MAP

To further examine how CrossMPT operates, we intentionally corrupt a pre-determined bit of the
(32, 16) LDPC code and analyze the resulting attention maps. Figure 6 shows the attention scores

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Attention scores with a single bit error
0

1

2

3 Error position

(b) Summation of attention
scores with a single bit error

(c) Attention scores without an error
0

0.5

1

1.5

(d) Summation of attention
scores without an error

Figure 6: The attention scores (a), (c) with a single bit error in the first bit position and without an
error. The summation of the attention scores (b), (d) is carried out in the vertical direction.

for the first two layers and the summation of their attention scores when the first bit is corrupted.
The summation is carried out vertically to demonstrate the attention score for each bit. As shown in
Figure 6(b), the attention score of the first bit (or first column) is relatively higher than the others.
However, once the error is corrected, CrossMPT no longer assigns high scores to that position (see
Figure 12 in Appendix I). Figures 6(c) and 6(d) depict the attention scores and the summation of
attention scores without an error. Compared to the previous case, the attention scores are more
uniformly distributed across all positions.

6.3 COMPLEXITY ANALYSIS

Two cross-attention blocks of CrossMPT share the same parameters for all decoder layers. They use
the same weight matrices WQ,WK ,WV for two cross-attention modules since the performance
remains nearly identical even when the parameters are trained separately. Also, they share the
parameters for the normalization layer and the FFNN layer. Thus, CrossMPT has the same number
of parameters as the original ECCT.

Figure 1 illustrates the mask matrices of ECCT and CrossMPT. In the original ECCT, Figure 1(a)
shows that a significant portion of the upper n × n submatrix is depicted in white, indicating that
the most positions are unmasked. This n × n submatrix represents depth-2 connections in the
Tanner graph (Choukroun & Wolf, 2022a), which results in an increase in the number of unmasked
positions, thereby leading to a higher computational required. On the other hand, the lower (n −
k) × n submatrix and the right (n − k) × n submatrix, which serve as the masking matrices for
CrossMPT, are predominantly shown in blue, indicating that their attention matrices are sparser.
Figure 7 compares the mask matrix density of CrossMPT and ECCT. For all codes, the mask matrix
of CrossMPT is sparser than ECCT, which implies that CrossMPT can achieve lower computational
complexity compared to the original ECCT.

The complexity of the self-attention mechanism of ECCT, without considering the masking is,
O(N(d2(2n − k) + (2n − k)2d)). When taking masking into account, the complexity can be
reduced to O(N(d2(2n− k) + hd)) (Choukroun & Wolf, 2022a), where h = ρ1(2n− k)2 denotes
the fixed number of computations of the self-attention module and ρ1 denotes the density of the
mask matrix in ECCT. Similarly, the complexity of the two cross-attention modules of CrossMPT,
without considering the masking, is O(N(d2(2n− k) + 2n(n− k)d)). When masking is taken into
account, the complexity can be reduced to O(N(d2(2n−k)+(h1+h2)d)), where h1 = ρ2n(n−k)
denotes the number of computations of the first cross-attention module, h2 = ρ2(n − k)n denotes
the number of computations of the second cross-attention module, and ρ2 denotes the density of
the mask matrix in CrossMPT. Furthermore, since ρ1 > ρ2 as shown in Figure 7, we conclude that

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0

20

40

60

80

100

BCH

(31,16)

BCH

(63,36)

BCH

(63,45)

BCH

(63,51)

Polar

(64,32)

Polar

(64,48)

Polar

(128,64)

Polar

(128,86)

Polar

(128,96)

LDPC

(49,24)

LDPC

(121,60)

LDPC

(121,70)

LDPC

(121,80)

Mackay

(96,48)

CCSDS

(128,64)

Turbo

(132,40)

ECCT (𝜌1)

CrossMPT (𝜌2)

Figure 7: Comparison of the mask matrix density between ECCT and CrossMPT.

Table 2: Comparison of FLOPs, inference time, and training time between ECCT and CrossMPT
for various codes. Inference time is measured for decoding a single codeword and training time is
measured for a single epoch.

Codes Parameter FLOPs Inference (codeword) Training (epoch) Mask density Memory usage

CrossMPT ECCT CrossMPT ECCT CrossMPT ECCT CrossMPT ECCT CrossMPT ECCT

BCH (63,45) 106.4 M 99.8 M 326 µs 328 µs 29 s 29 s 32.45% 53.09% 962 MiB 1828 MiB

LDPC (121,70) 256.8 M 229.7 M 400 µs 450 µs 58 s 80 s 9.09% 24.01% 1980 MiB 3926 MiB
(121,80) 238.0 M 212.5 M 391 µs 436 µs 53 s 76 s 9.09% 21.94% 1936 MiB 3602 MiB

Turbo (132,40) 343.4 M 303.6 M 459 µs 511 µs 83 s 110 s 11.43% 14.25% 2362 MiB 5580 MiB

BCH (255,223) 53.5 M 28.2 M 747 µs 859 µs 56 s 145 s 48.63% 78.21% 1036 MiB 7318 MiB

WRAN (384,320) 111.3 M 53.1 M 1295 µs 1638 µs 104 s 305 s 5.21% 13.25% 3270 MiB 18192 MiB

h > h1 + h2, which indicates that CrossMPT achieves a reduction in computational complexity
compared the original ECCT.

Table 2 compares the total FLOPs, inference time, training time, and memory usage between ECCT
and CrossMPT. The inference time refers to the duration required to decode a single codeword and
the training time measures the duration to complete one epoch of training. All results are obtained
for N = 6 and d = 128, except for (255,223) BCH code and (384,320) WRAN LDPC code, which
are obtained for N = 6 and d = 32. For all three metrics, CrossMPT outperforms ECCT. Since the
inference time and the training time are closely related to the FLOPs, a reduction in FLOPs directly
leads to shorter inference and training times. Notably, CrossMPT significantly reduces memory us-
age compared to ECCT, especially for long codes. This improvement arises from the reduced size
of the attention map; 2n(n− k) for CrossMPT and (2n− k)2 for ECCT. The results in Tables 1
and 2 demonstrate that the proposed CrossMPT not only improves the decoding performance but
also significantly reduces FLOPs, inference time, training time, and memory usage compared to the
original ECCT. Additional analysis of the training time required to achieve the target loss is provided
in Appendix J

CrossMPT’s sequential decoding approach may limit its throughput in certain scenarios. How-
ever, pipelining (Li et al., 2021b; Rowshan et al., 2024) enables CrossMPT to effectively increase
its throughput when decoding multiple codewords (see Appendix K).

7 CONCLUSION

We developed a novel transformer architecture for ECC decoding called CrossMPT, which improves
both decoding performance and computational complexity. CrossMPT achieves this by adopting
a more effective architecture that processes magnitude and syndrome through the cross-attention
mechanism. This approach leverages the clear and compact representation of codeword bit relation-
ships in the PCM, enabling the model to accurately learn these relationships while also reducing
memory usage, FLOPs, inference time, and training time. Most existing research on transformer-
based decoders has primarily focused on short codes due to challenges in training long codes, caused
by high memory usage and complexity. However, CrossMPT offers a potential breakthrough, paving
the way for transformer-based decoders to be effectively applied to long codes.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

A. Abu-Surra, D. DeClercq, D. Divsalar, and W. E. Ryan. Trapping set enumerators for specific
LDPC codes. In Information Theory and Applications (ITA) Workshop, 2010.

S. K. Ankireddy and H. Kim. Interpreting neural min-sum decoders. In IEEE International Confer-
ence on Communications (ICC), 2023.

J. H. Bae, A. Abotabl, H. P. Lin, KB. Song, and J. Lee. An overview of channel coding for 5G NR
cellular communications. APSIPA Transactions on Signal and Information Processing, 8(1):e17,
2019.

A. Bennatan, Y. Choukroun, and P. Kisilev. Deep learning for decoding of linear codes-a syndrome-
based approach. In IEEE International Symposium on Information Theory (ISIT), pp. 1595–1599,
2018.

A. Buchberger, C. Hager, H. D. Pfister, L. Schmalen, and A. G. I. Amat. Pruning and quantizing
neural belief propagation decoders. IEEE Journal of Selected Areas in Communications, 39(7):
1957–1966, 2021.

S. Cammerer, T. Gruber, J. Hoydis, and S. ten Brink. Scaling deep learning-based decoding of polar
codes via partitioning. In IEEE Global Communications Conference (GLOBECOM), 2017.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object
detection with transformers. In European Conference on Computer Vision (ECCV), 2020.

C.-F. Chen, Q. Fan, and R. Panda. CrossViT: Cross-attention multi-scale vision transformer for
image classification. In IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Y. Choukroun and L. Wolf. Error correction code transformer. In Advances in Neural Information
Processing Systems (NeurIPS), 2022a.

Y. Choukroun and L. Wolf. Error correction code transformer. https://github.com/
yoniLc/ECCT, 2022b. Accessed: 2023-05-22.

Y. Choukroun and L. Wolf. Denoising diffusion error correction codes. In International Conference
on Learning Representations (ICLR), 2023.

Y. Choukroun and L. Wolf. A foundation model for error correction codes. In International Con-
ference on Learning Representations (ICLR), 2024a.

Y. Choukroun and L. Wolf. Learning linear block error correction codes. In International Conference
on Machine Learning (ICML), 2024b.

J. Dai, K. Tan, Z. Si, K. Niu, M. Chen, H. V. Poor, and S. Cui. Learning to decode protograph LDPC
codes. IEEE Journal of Selected Areas in Communications, 39(7):1983–1999, 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In North American Chapter of the Association for Compu-
tational Linguistics (NAACL), 2019.

M. P. C. Fossorier, M. Mihaljevic, and H. Imai. Reduced complexity iterative decoding of low-
density parity check codes based on belief propagation. IEEE Transactions on Communications,
47(5):673–680, 1999.

R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

T. Gruber, S. Cammerer, J. Hoydis, and T. Brink. On deep learning-based channel decoding. In 51st
Annual Conference on Information Sciences and Systems (CISS), pp. 1–6, 2017.

P. Hailes, L. Xu, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo. A survey of FPGA-based LDPC
decodes. IEEE Communications Surveys & Tutorials, 18(2):1098–1122, 2015.

11

https://github.com/yoniLc/ECCT
https://github.com/yoniLc/ECCT


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, D. Kraft, S. Ruzika, and N. Wehn. Database of
Channel Codes and ML Simulation Results. In https://rptu.de/en/channel-codes,
2019.

H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, and P. Viswanath. Communication algorithms via
deep learning. In International Conference on Learning Representations (ICLR), 2018.

H. Kim, S. Oh, and P. Viswanath. Physical layer communication via deep learning. IEEE Journal
of Selected Topics in Information Theory, 1(1):5–18, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

H.-Y. Kwak, J.-W. Kim, Y. Kim, S.-H. Kim, and J.-S. No. Neural min-sum decoding for generalized
LDPC codes. IEEE Communications Letters, 26(12):2841–2845, 2022.

H.-Y. Kwak, D.-Y. Yun, Y. Kim, S.-H. Kim, and J.-S. No. Boosting Learning for LDPC Codes
to improve the error-floor performance. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2023.

F. Li, C. Zhang, K. Peng, A. E. Krylov, A. A. Katyushnyj, A. V. Rashich, D. A. Tkachenko, S. B.
Makarov, and J. Song. Review on 5G NR LDPC code: Recommendations for DTTB system.
IEEE Access, 9:155413–155424, 2021a.

M. Li, V. Derudder, K. Bertrand, C. Desset, and A. Bourdoux. High-speed LDPC decoders towards
1 Tb/s. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(5):2224–2233, 2021b.

L. Lugosch and W. J. Gross. Neural offset min-sum decoding. In IEEE International Symposium on
Information Theory (ISIT), pp. 1316–1365, 2017.

E. Nachmani and L. Wolf. Hyper-graph-network decoders for block codes. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 2326–2336, 2019.

E. Nachmani and L. Wolf. Autoregressive belief propagation for decoding block codes. arXiv
preprint arXiv:2103.11780, 2021.

E. Nachmani, Y. Beery, and D. Burshtein. Learning to decode linear codes using deep learning. In
54th Annual Allerton Conference on Communications, Control, and Computing (Allerton), pp.
341–346, 2016.

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and Y. Beery. Deep learning
methods for improved decoding of linear codes. IEEE Journal of Selected Topics in Signal Pro-
cessing, 12(1):119–131, 2018.

S.-J. Park, H.-Y. Kwak, S.-H. Kim, S. Kim, Y. Kim, and J.-S. No. How to mask in error correction
code transformer: Systematic and double masking. In arXiv preprint arXiv:2308.08128, 2023.

T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-
passing decoding. IEEE Transactions on Information Theory, 47(2):599–618, 2001.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022.

M. Rowshan, M. Qiu, Y. Xie, X. Gu, and J. Yuan. Channel coding toward 6G: Technical overview
and outlook. IEEE Open Journal of the Communications Society, 5:2585–2685, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2017.

L. Wang, S. Chen, J. Nguyen, D. Dariush, and R. Wesel. Neural-network-optimized degree-specific
weights for LDPC minsum decoding. In IEEE International Symposium on Topics in Cod-
ing (ISTC), 2021.

12

https://rptu.de/en/channel-codes


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PERFORMANCE ON LONGER CODES

We present the BER performance for three longer codes in Figures 8(a), 8(b), and 8(c) for ECCT and
CrossMPT N = 6, d = 32. For all three codes ((a) (529,440) LDPC code, (b) (384,320) wireless
regional area network (WRAN) LDPC code, (c) (512,384) polar code), the proposed CrossMPT
outperforms the original ECCT. Despite its reduced complexity, CrossMPT significantly enhances
the decoding performance compared to ECCT, not only for short-length codes but also for longer
codes. Also, Figures 8(d) and 8(e) show the decoding performance of CrossMPT for much longer
codes. The BER performances of the (648,540) IEEE802.11n LDPC code (N = 10, d = 128) and
(1056,880) WiMAX LDPC code (N = 6, d = 32) demonstrate that CrossMPT efficiently trains
how to decode the codeword even for large N and d and performs well for longer codes. Again,
we emphasize CrossMPT’s capability to decode long codes where ECCT struggles due to high
memory allocation (large attention map). The structure of CrossMPT demonstrates its efficiency
in learning long codes, surpassing the limitations of short or moderate codelengths of transformer-
based decoders.

B
E

R

10−1

10−2

10−3

10−4

10−5

10−6

10−7

1
SNR (𝐸𝑏/𝑁0)

ECCT

CrossMPT

2 3 4 5 6 7

(a) (529,440) LDPC code

B
E

R

SNR (𝐸𝑏/𝑁0)

ECCT

CrossMPT

2 3 4 5 62.5 3.5 4.5 5.5

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(b) (384,320) WRAN LDPC code
B

E
R

10−1

10−2

10−3

10−4

10−5

1
SNR (𝐸𝑏/𝑁0)

ECCT

CrossMPT

2 3 4 5 6 7

(c) (512,384) polar code

B
E

R

SNR (𝐸𝑏/𝑁0)

CrossMPT

3 3.5 4 5 53.25 3.75 4.25 4.75

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

(d) (648,540) IEEE802.11n

B
E

R

SNR (𝐸𝑏/𝑁0)

CrossMPT

3 3.5 4 4.5 53.25 3.75 4.25 4.75

10−1

10−2

10−3

10−4

10−5

10−6

10−7

(e) (1056,880) WiMAX

Figure 8: The decoding performance of long codes.

B COMPARISON WITH THE BP DECODER

Figure 9 shows the decoding performance between the traditional BP decoder with a maximum num-
ber of iterations of 20, 50, and 100 and CrossMPT for both short and long LDPC codes. Figures 9(a)
and 9(b) compare the BER performance for (121,80) LDPC codes (N = 6, d = 128) and (648,540)
IEEE 802.11n LDPC code (N = 10, d = 128), respectively. Notably, the proposed CrossMPT
can outperform the BP decoder for both short and long LDPC codes. These results highlight that
CrossMPT efficiently trains how to decode the codeword across a wide range of code lengths.

C COMPARISON WITH THE ML DECODER

We compare ECCT and CrossMPT with the ML decoder for short BCH codes. Figure 9 demon-
strates the BER performance of (31, 16) BCH code and (31, 21) BCH code. Especially, these results
show that CrossMPT closely approaches the optimal ML performance for short codes.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

BP, 50

BP, 100

ECCT

CrossMPT

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

B
E

R

𝐸𝑏/𝑁0
1 3 52 4 6

BP, 20

(a) (121,80) LDPC code

BP, 20

BP, 50

BP, 100

CrossMPT

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

B
E

R

𝐸𝑏/𝑁0
3 3.5 4 4.5 53.25 3.75 4.25 4.75

(b) (648,540) IEEE 802.11n

Figure 9: Performance comparison between BP decoder (iteration 20, 50, and 100) and CrossMPT.

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

𝐸𝑏/𝑁0

ML decoding

ECCT

CrossMPT

1 2 3 4 5 6

(a) (31,16) BCH code

B
E

R

100

10−1

10−2

10−3

10−4

10−5

10−6

𝐸𝑏/𝑁0

ML decoding

ECCT

CrossMPT

1 2 3 4 5 6

(b) (31,21) BCH code

Figure 10: The decoding performance comparison between ML decoder, ECCT, and CrossMPT.

D BLOCK ERROR RATE PERFORMANCE

Table 3 demonstrates BLER results for various code classes (N = 6, d = 128). Also, Figure 11
shows the BLER performance of (31,16) BCH code, (63,51) BCH code, and (648,540) IEEE
802.11n LDPC code. For BCH codes, we compare the decoding performance of CrossMPT with the
traditional Berlekamp-Massey (BM) decoder, maximum liklihood (ML) decoding algorithm, ECCT.
For LDPC codes, we compare the decoding performance of CrossMPT with the traditional BP de-
coder with a maximum number of iterations of 20, 50, and 100. As shown in the table, CrossMPT
outperforms ECCT in BLER performance and also has a comparable BLER results compared to the
traditional decoding algorithms.

In addition, the traditional decoders are code-specific decoders, tailored to each class of codes. For
example, LDPC codes are effectively decoded by the BP decoder, BCH codes by the BM decoder,
and polar codes by the SCL decoder. However, unlike the traditional decoders, a key advantage of
CrossMPT is its versatility. While conventional decoders are good and valid only for respective code
classes, CrossMPT performs effectively across a wide range of code classes. This universality high-
lights the broader applicability and potential of CrossMPT in various decoding scenarios and future
communication paradigm such and semantic communication.

The complexity of transformer-based decoders is relatively high compared to code-specific de-
coders. Reducing their computational requirements will be an important focus for future work.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: The BLER results for ECCT and CrossMPT. The results are measured by the negative
natural logarithm of BLER.

Method ECCT CrossMPT

SNR 4 5 6 4 5 6

(31,16) BCH 4.19 5.98 8.16 5.12 7.24 10.31
(63,36) BCH 2.43 4.10 6.40 2.50 4.23 6.61
(63,45) BCH 2.75 4.75 7.67 3.18 5.33 8.66
(63,51) BCH 2.72 4.85 7.82 2.94 5.16 8.36
(64,32) Polar 4.18 6.47 9.07 4.83 7.26 10.41
(64,48) Polar 3.08 5.06 7.60 3.56 5.68 8.35
(49,24) LDPC 3.62 5.89 9.39 4.47 7.20 10.68

(121,70) LDPC 3.21 6.69 11.91 4.28 8.42 13.35

B
L

E
R

100

10−1

10−2

10−3

10−4

10−5

𝐸𝑏/𝑁0

BM decoder

ECCT

CrossMPT

1 2 3 4 5 6

ML decoding

(a) (31,16) BCH code

B
L

E
R

100

10−1

10−2

10−3

10−4

10−5

𝐸𝑏/𝑁0

BM decoder

ECCT

CrossMPT

1 2 3 4 5 6

ML decoding

(b) (63,51) BCH code

BP, 20

BP, 50

BP, 100

CrossMPT

100

10−1

10−2

10−3

10−4

10−7

10−6

B
L

E
R

𝐸𝑏/𝑁0
3 3.5 4 4.5 53.25 3.75 4.25 4.75

(c) (648,540) IEEE 802.11n

Figure 11: The BLER performance comparison between the traditional decoders and CrossMPT.

E COMPARISON WITH SUCCESSIVE CANCELLATION LIST POLAR DECODER

We compare the BER performance of the SCL decoder, ECCT, and CrossMPT in Table 4. The
performance of the SCL decoder is from (Choukroun & Wolf, 2022a). Although the contribution
of L is significant in long codes, the SCL decoder achieves a great performance with small L, such
as L = 4. As reported in (Choukroun & Wolf, 2022a; 2023), the SCL decoder outperforms ECCT.
This is because the SCL decoder is a decoder specialized for Polar codes and is a state-of-the-
art algorithm that has undergone extensive development over a long period. CrossMPT has made
significant improvements from ECCT and even outperforms the SCL decoder for (64,48) polar code.

Table 4: Comparison of decoding performance at three different SNR values (4 dB, 5 dB, 6 dB) for
SCL decoder, ECCT, and CrossMPT. The results are measured by the negative natural logarithm of
BER. The best results are highlighted in bold and the second best is underlined. Higher is better.

Method SCL (L = 1) SCL (L = 4) ECCT CrossMPT

Parameter 4 5 6 4 5 6 4 5 6 4 5 6

(64,32) 7.30 9.67 13.18 8.11 10.70 14.04 6.99 9.44 12.32 7.50 9.97 13.31
(64,48) 6.19 8.41 10.97 6.69 8.63 11.24 6.36 8.46 11.09 6.51 8.70 11.31
(128,64) 8.37 11.69 13.70 9.60 13.16 17.42 5.92 8.64 12.18 7.52 11.21 14.76
(128,86) 7.54 10.74 15.14 9.26 13.04 17.13 6.31 9.01 12.45 7.86 11.45 15.47
(128,96) 6.74 9.53 13.53 8.02 11.60 18.16 6.31 9.12 12.47 7.15 10.15 13.13

F COMPARISON WITH DDECCT

For a fair comparison with DDECCT, we also apply the denoising diffusion training technique
to CrossMPT. Table 5 compares the BER performance of ECCT (Choukroun & Wolf, 2022a),
CrossMPT, DDECCT, and CrossMPT applying the denoising diffusion model. All four decoders
are model-free decoders using the transformer architecture, and simulations are taken for N = 6,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

d = 128. We conduct simulations for codes where DDECC performs better than CrossMPT. For the
rest of the codes, CrossMPT outperforms DDECC. The proposed CrossMPT shows superior decod-
ing performance compared to the original ECCT. Compared to DDECC, CrossMPT demonstrates
similar BER performance for polar codes, but it even outperforms DDECC for BCH and LDPC
codes. When the denoising diffusion technique is applied to CrossMPT, it achieves the best perfor-
mance among others, where DDECC, CrossMPT, and ECCT follow. This proves that the CrossMPT
architecture provides separate gain from the denoising diffusion algorithm for transformer-based de-
coders.

Table 5: Comparison of decoding performance at three different SNR values (4 dB, 5 dB, 6 dB)
for ECCT (Choukroun & Wolf, 2022a), CrossMPT, and DDECC (Choukroun & Wolf, 2023). The
results are measured by the negative natural logarithm of BER. The best results are highlighted in
bold and the second best is underlined. Higher is better.

Architecture Without denoising diffusion With denoising diffusion

Codes Parameter ECCT CrossMPT ECCT CrossMPT

4 5 6 4 5 6 4 5 6 4 5 6

BCH (63,36) 4.86 6.65 9.10 5.03 6.91 9.37 5.11 7.09 9.82 5.23 7.20 10.01

Polar
(128,64) 5.92 8.64 12.18 7.52 11.21 14.76 9.11 12.9 16.30 10.21 13.63 17.28
(128,86) 6.31 9.01 12.45 7.51 10.83 15.24 7.60 10.81 15.17 8.56 12.04 15.37
(128,96) 6.31 9.12 12.47 7.15 10.15 13.13 7.16 10.3 13.19 7.57 10.61 13.33

MacKay (96,48) 7.38 10.72 14.83 7.97 11.77 15.52 8.12 11.88 15.93 8.85 12.58 17.69

G DECODING PERFORMANCE FOR RAYLEIGH FADING CHANNEL

The original ECCT architecture shows robustness to non-Gaussian channels (e.g., Rayleigh fading
channel) (Choukroun & Wolf, 2022a, Supplementary). We also measured the decoding performance
of CrossMPT in Rayleigh fading channels. To compare with ECCT, we use the same fading channel
as in (Choukroun & Wolf, 2022a). The received codeword is given as y = hx + z, where h is an
n-dimensional i.i.d. Rayleigh distributed vector with a scale parameter α = 1 and z ∼ N(0, σ2).
The following table demonstrates the BER performance of ECCT and CrossMPT in Rayleigh fading
channel and CrossMPT still outperforms the original ECCT architecture for all types of codes.

Codes (31,16) BCH (64,32) Polar (128,64) Polar (128,86) Polar (121,70) LDPC (128,64) CCSDS

Methods 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

ECCT 5.18 6.04 6.92 5.53 6.62 7.80 4.31 5.37 6.63 4.02 4.81 5.70 3.91 4.97 6.31 2.46 3.97 5.79
CrossMPT 5.53 6.55 7.61 5.91 7.17 8.48 4.70 5.93 7.34 4.41 5.38 6.46 4.25 5.53 7.11 5.25 6.94 8.92

H ABLATION STUDY WITH ADDITIONAL MASKING

To understand the impact of magnitude-magnitude and syndrome-syndrome relationships, we ex-
ammine the decoding performance of ECCT with additional masking applied to all positions cor-
responding to these relationships. Table 6 compares the decoding performance of ECCT with this
additional masking, standard ECCT, and CrossMPT. The results show no significant performance
degradation with the additional masking, indicating that the magnitude-magnitude and syndrome-
syndrome relationships are not critical to decoding performance.

I VISUALIZATION OF CROSS-ATTENTION MAP

Figure 12 illustrates the attention scores for all N = 6 layers with a single bit error (bit error in the
first position). The first three layers have relatively high attention score at the error position (first
bit). Then, when the error is corrected, the attention score becomes lower at the last three layers.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Comparison of decoding performance at three different SNR values (4 dB, 5 dB, 6 dB) for
ECCT with additional masking, standard ECCT, and CrossMPT. The results are measured by the
negative natural logarithm of BER. The best results are highlighted in bold. Higher is better.

Method ECCT + Masking ECCT CrossMPT

Parameter 4 5 6 4 5 6 4 5 6

(31, 16) BCH 6.52 8.55 11.42 6.39 8.29 10.66 6.98 9.25 12.48
(63, 45) BCH 5.53 7.74 10.88 5.60 7.79 10.93 5.90 8.20 11.62
(64, 48) Polar 6.25 8.26 10.93 6.36 8.46 11.09 6.51 8.70 11.31
(121, 60) LDPC 4.98 7.91 12.61 5.17 8.31 13.30 5.74 9.26 14.78

For model-based neural decoders, interpretation and analysis in terms of graphs are feasible be-
cause their structural architecture is inherently based on conventional graph-based decoding al-
gorithms (Wang et al., 2021; Ankireddy & Kim, 2023). However, in the case of model-free ap-
proaches, it remains challenging to determine how attention scores or weights are assigned to spe-
cific nodes and how these assignments are influenced by graph properties such as node degree.

Although we analyzed how the attention scores change depending on where the error occurs in Fig-
ure 12, we have not yet achieved a rigorous analysis beyond this level. This remains a critical issue
in model-free approaches and represents a problem that needs to be addressed in future work.

Figure 12: Attention scores of N = 6 layers with a single bit error.

J TRAINING TIME TO ACHIEVE THE TARGET LOSS

In Table 7, we compare the training time required for ECCT and CrossMPT to achieve the tar-
get loss. The target loss is set as a minimum loss of ECCT during the training. For (128, 86)

polar code, the minimum loss of ECCT during the 1000 epochs is 2.28× 10−2. To achieve the
loss 2.28× 10−2, CrossMPT takes 6912 s, while ECCT requires 72917 s. Similarly, for (128, 64)
CCSDS code, the minimum loss of ECCT is 2.79× 10−2 and CrossMPT requires 2356 s, while
ECCT requires 85770 s. These results demonstrate that CrossMPT achieves the target loss signifi-
cantly faster than ECCT, highlighting its efficiency in terms of training time.

Table 7: Comparison of training time to achieve the target loss for ECCT and CrossMPT.

Codes Methods Target loss Time

(128,86) Polar ECCT 2.28× 10−2 72917 s
CrossMPT 2.28× 10−2 6912 s

(128,64) CCSDS ECCT 2.79× 10−2 86770 s
CrossMPT 2.79× 10−2 2356 s

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

K THROUGHPUT ANALYSIS

Table 2 demonstrates that CrossMPT outperforms ECCT in terms of inference time. However, while
a fully parallel processor can accelerate ECCT, the sequential decoding architecture of CrossMPT
limits its potential for throughput improvement. To address this, a pipelining approach—com-
monly employed in various ECC decoders (Li et al., 2021b; Rowshan et al., 2024)—can be applied
to maximize CrossMPT’s decoding throughput (see Figure 3 in (Li et al., 2021b)). By unrolling two
cross-attention blocks, CrossMPT can simultaneously process two consecutive codewords across
two cross-attention blocks within the same layer. This means that while the second cross-attention
block processes the first codeword, the first cross-attention block concurrently decodes the subse-
quent codeword. This pipelining strategy ensures that CrossMPT maintains speed advantages over
ECCT, in fully parallel scenarios. Figure 13 provides an example of decoding multiple codewords
in CrossMPT with N = 2.

In wireless communications, the decoder’s throughput is often a more critical concern than latency.
This is because the latency from communication protocols and signal processing in preceding re-
ceiver blocks would be longer than the latency introduced by the channel decoder. Throughput
becomes especially important when supporting very high data rates in wireless communication as
the channel decoder can be a bottleneck.

Furthermore, in wireless communication scenarios, a sequential algorithm may be preferred for its
enhanced performance or reduced complexity. The layered decoding algorithm for LDPC codes has
been widely adopted as a de facto standard (Bae et al., 2019; Hailes et al., 2015; Li et al., 2021a),
despite its sequential nature and limitation on parallelism, exemplifying the preference for sequen-
tial algorithms. The layered decoding algorithm is favored for its superior decoding performance
compared to fully parallel sum-product decoding at equivalent computational complexities.

Cross-attention

Block 1

Cross-attention

Block 2

Cross-attention

Block 1

Cross-attention

Block 2

First

decoder layer

Second

decoder layer

𝑁 = 2

𝑐𝑖+2

𝑐𝑖+3

𝑐𝐿…

𝑐𝑖−1

𝑐𝑖

𝑐𝑖+1

𝑐𝑖+4

𝑐𝑖−2…𝑐0Decoded codewords:

Figure 13: Example of decoding multiple codewords in CrossMPT with N = 2.

18


	Introduction
	Related Works
	Background
	Error Correcting Codes
	Error Correction Code Transformer

	Cross-attention Message-Passing Transformer
	Cross-attention Message-passing Transformer
	Model Architecture

	Experimental Results
	Ablation Studies and Analysis
	Analysis of Attention Mechanisms in ECCT and CrossMPT
	Visualization of Cross-attention Map
	Complexity Analysis

	Conclusion
	Performance on Longer Codes
	Comparison with the BP decoder
	Comparison with the ML decoder
	Block Error Rate Performance
	Comparison with Successive Cancellation List Polar Decoder
	Comparison with DDECCT
	Decoding Performance for Rayleigh Fading Channel
	Ablation Study with Additional Masking
	Visualization of Cross-Attention Map
	Training Time to Achieve the Target Loss
	Throughput Analysis

