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Abstract

Entity Linking (EL) aligns entity mentions in001
text to entries in a knowledge base. It usually002
comprises of two phases: candidate generation003
and candidate ranking. While most methods004
focus on the latter phase, it is candidate gener-005
ation that sets the upper bound for both time006
and accuracy of an EL system. We propose a007
simple approach for improving candidate gener-008
ation by efficiently embedding mention-entity009
pairs in dense space through a BERT-based010
bi-encoder. Specifically, we introduce a new011
pooling function and incorporate entity type012
side-information. We achieve a new state-of-013
the-art 84.28% recall of the gold entity in the014
Zero-shot EL dataset with just 50 candidates,015
compared to the previous 82.06% with 64 can-016
didates. We report the results from extensive017
experimentation using our proposed model on018
both seen and unseen entity datasets. Our re-019
sults suggest that our approach could be a use-020
ful complement to existing EL methods.021

1 Introduction022

Entity Linking (EL) aims at matching entity men-023

tions in a document with entries in a knowledge024

base (KB) or a dictionary of entities. Accurately025

linking entity mentions to entities plays a key role026

in various natural language processing (NLP) tasks,027

including information extraction (Lin et al., 2012;028

Hasibi et al., 2016), KB population (Dredze et al.,029

2010), content analysis (Huang et al., 2018) and030

question answering (Li et al., 2020). EL finds appli-031

cation in many fields, including technical writing,032

digital humanities, and biomedical data analysis.033

While EL systems typically rely on external KBs034

and assume entities at inference time known, real-035

world applications are usually accompanied by min-036

imal to zero labeled data, highlighting the impor-037

tance of approaches that can generalize to unseen038

entities. Logeswaran et al. (2019) introduced zero-039

shot EL, where mentions must be linked to unseen040

entities, without in-domain labeled data, given only041

the entities’ text description. By comparing two 042

texts - a mention in context and a candidate entity 043

description - zero-shot EL appears closer to the 044

reading comprehension task. 045

Most EL systems consist of two subsystems: i) 046

Candidate Generation (CG), where for each en- 047

tity mention the system retrieves candidate entities 048

related to the mention and document, and ii) Can- 049

didate Ranking (CR), where the system chooses 050

the most probable entity among the retrieved can- 051

didates. The goal of this work is to advance the 052

state of the art in the CG phase (Wu et al., 2020), 053

in order to set a higher accuracy ceiling for CR and 054

for EL overall. 055

The contributions of this paper can be sum- 056

marised as: i) We introduce a CG approach, based 057

on BERT-based bi-encoder that exploits a new pool- 058

ing function managing to encode mention and enti- 059

ties in the same dense space very effectively. ii) We 060

achieve state-of-the-art results of 84.28% recall at 061

top-50 candidates, compared to 82.06% at top-64 062

of (Wu et al., 2020), measured on the Zero-shot EL 063

test dataset. We thus increase the CR recall by 3%, 064

while requiring 21.88% fewer candidates, allowing 065

for more accurate and faster inference. iii) State-of- 066

the-art results on both seen and unseen entity sets, 067

with and without entity type information, reveal the 068

robustness of our model in both the typical and the 069

zero-shot EL settings. 070

2 Related Work 071

Former work has pointed out the importance of 072

building entity linking systems that can general- 073

ize to unknown named entities, either via a re- 074

duced candidate set or through a more robust can- 075

didate ranker. Our work falls into the first category, 076

namely the candidate generation phase. For CG, 077

traditional methods have been based on string com- 078

parison (Phan et al., 2017) and alias tables, lack- 079

ing rich representation and thus being restricted 080

to a small entity set. Over the last years, several 081
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researchers (Sil et al., 2012; Murty et al., 2018; Lo-082

geswaran et al., 2019) focused on frequency-based083

methods, with most of them following TF-IDF and084

BM25 approaches. Gillick et al. (2019) introduced085

a simple neural bi-encoder and showed that encod-086

ing mentions and entities in a dense space works087

well. Inspired by this idea, Wu et al. (2020) pro-088

posed the current state-of-the-art CG model, us-089

ing a more robust transformer-based bi-encoder090

(Humeau et al., 2019). Their model uses a BERT-091

based bi-encoder to encode mentions and entity092

descriptions in a dense space, where the top-K en-093

tities are then retrieved based on the two vectors’094

maximum dot product. Our work extends (Wu095

et al., 2020) by investigating other than the default096

BERT (Devlin et al., 2019) pooling functions, ad-097

ditional entity type side-information, and alternate098

retrieval methods.099

3 Our Approach100

This section presents, in brief, the bi-encoder archi-101

tecture, the mentions and entities input format, five102

additional, other than the default [CLS], pooling103

functions proposed for better sequences’ represen-104

tation, and at last, the similarity measures used to105

retrieve candidates.106

3.1 Bi-encoder107

Architecture We use a BERT-based bi-encoder,108

following (Wu et al., 2020) to model the mention-109

entity pairs. The mention context and the entity de-110

scription are encoded into vectors that pass through111

a transformer (BERT) encoder. Upon the result, a112

function that reduces the sequence of vectors into a113

single one is used, typically being the [CLS] token114

of the last hidden layer of each transformer. We in-115

vestigate five additional pooling functions leading116

to a better representation.117

Sequences Representation The default (w.o. en-118

tity type) mention’s representation is shaped by the119

mention itself and its surrounded context, following120

the representation from (Wu et al., 2020):121

[CLS] ctxtl [Ms] mention [Me] ctxtr [SEP ]122

In the case of entity type incorporation, we append123

in the beginning the mention’s type as a special124

token along with the mention itself separated from125

the default input ([CLS] [type] mention [M-SEP]126

ctxtl ... [SEP ]).127

In accordance to this architecture, the default128

entity representation is also composed by the sub-129

words of the entity’s title and description, separated 130

by the special token [ENT ]. 131

[CLS] title [ENT ] description [SEP ] 132

In case of entity type incorporation, the entity’s 133

type is appended in the beginning as a special token 134

([CLS] [type] title [ENT ] description [SEP ]). 135

Sub-words in both mention and entity representa- 136

tions are restricted to a predefined max length (see 137

section 4.2). Namely, in the case of the mention 138

input, we first locate the mention in the document 139

and keep as much surrounding context. In contrast, 140

we keep the title and as many possible sub-words 141

of the description starting from the beginning of 142

the entity input. 143

Regarding entity-type side information we in- 144

corporate 18 generic entity types in total, captured 145

from recognizing mention’s and entity title’s entity 146

types using spaCy (Honnibal et al., 2020) model1. 147

The set of entity types includes the UNK type for 148

unclassified mentions/entity titles. Also, all entity 149

types are encoded as special tokens; consequently, 150

sequence representations that make use of special 151

tokens also consider the entity type embeddings. 152

Pooling Functions Sequence representation 153

plays a significant role in a model’s perfor- 154

mance and researchers have suggested handling 155

the variable-length input in many ways for NLP 156

(Hagiwara, 2021). This section presents five ad- 157

ditional pooling functions, other than the default 158

[CLS], leading to better candidates: i) Average of 159

all tokens: Averages the vectors of all tokens in 160

the last hidden layer, ii) Sum of all tokens: Sums 161

the vectors of all tokens in the last hidden layer, 162

iii) Average of special tokens: Averages only the 163

vectors of special tokens in the last hidden layer, 164

iv) Sum of special tokens: Sums only the vectors of 165

special tokens in the last hidden layer, and v) Con- 166

catenation of special tokens: Concatenates only the 167

vectors of special tokens in the last hidden layer. 168

Optimization The score, s(m, ei), of the entity
candidate ei given a mention m is computed by
the dot-product ym·yei . The network is trained
to maximize the score of the correct entity with
respect to the entities of the same batch. For each
training pair (mi, ei) in a batch of B pairs, the loss

1https://github.com/explosion/
spacy-models/releases/tag/en_core_web_
lg-2.3.0
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is computed as:

L(mi, ei) = −s(mi, ei)+log(
B∑
j=1

exp(s(mi, ej)))

3.2 Retrieval Methods169

We retrieve candidates by computing the similarity170

between each mention’s context with each entity171

and construct the candidate set with the h more sim-172

ilar ones. To find the similarity between two vec-173

tors A = [a1, a2, ..., an] and B = [b1, b2, ..., bn],174

the cosine, Euclidean and dot product similarity175

measures were used.176

4 Experiments177

4.1 Datasets & Evaluation Metric178

We evaluate our model on three distinct datasets,179

including both the zero-shot and the standard EL180

setting to show its efficiency across all EL set-181

tings. The first dataset is the Zero-shot EL (Zeshel)182

dataset2, the prevailing benchmark for zero-shot183

EL. The dataset includes documents from sixteen184

distinct domains, among which there is no over-185

lap in the different splits. Precisely, the training186

set includes 49,275 labeled mentions, while the187

validation and test sets consist of 10K unseen men-188

tions each. As a second dataset, we use the extra189

5K mentions of seen entities from the Zeshel train-190

ing set to explore the models’ generalization on191

the typical EL setting. The third dataset is the192

AIDA CoNLL-YAGO (Hoffart et al., 2011) dataset,193

a dataset that contains assignments of entities to194

the mentions of named entities annotated for the195

original [CoNLL] 2003 NER task. The entities are196

identified by YAGO2 entity identifier, by Wikipedia197

URL, or by Freebase mid.198

To evaluate the performance of our model, we199

report the recall at top-K, i.e. we assess the perfor-200

mance on the subset of test instances for which the201

gold entity is among the top-k retrieved candidates.202

4.2 Model Settings203

We use the bert-base-uncased model with hid-204

den layer dimension Dh = 768, which we fine-205

tune with maximum sequence length Dt = 128.206

For fine-tuning, we assigned batch_size = 8,207

epochs = 5, all the BERT’s layers are updated dur-208

ing back-propagation, learning rate lr = 3e−5 and209

weight_decay = 0.01. Moreover, we fine-tune210

our model using the Adam optimization scheme211

2https://github.com/lajanugen/zeshel

(Loshchilov and Hutter, 2017) with β1 = 0.9, β2 = 212

0.999 and a linear learning rate decay schedule. We 213

minimize loss using cross entropy criterion. 214

Experiments were conducted on a PC with 15GB 215

RAM, an AMD FX-8350 @4.00 GHz and NVIDIA 216

TITAN X with 12GB. Training took about 150min, 217

while CG on the zero-shot test set took 90min, 218

60min and 50min for the cosine, Euclidean and dot 219

product methods, respectively. 220

4.3 Model Comparison 221

We compare our CG model and its variants across 222

three entity linking benchmark datasets, covering 223

both the standard and the zero-shot supervision set- 224

tings. However, our focus is primarily on the zero- 225

shot setting due to the inherent difficulties. There- 226

fore, for the zero-shot EL evaluation, we compare 227

our best CG model against its variants and previous 228

state-of-the-art methods on the test set of the Zeshel 229

dataset, while for the standard EL evaluation, we 230

compare our best CG model against its variants on 231

the Heldout Train Seen and AIDA CoNLL-YAGO 232

datasets, which include entities that have been al- 233

ready seen in the training data. 234

Table 1 shows our model to significantly out- 235

perform the previous state-of-the-art works in the 236

zero-shot set with fewer candidates regardless of 237

chosen pooling function. Precisely, the best ver- 238

sion of our model achieves 2.22 and 15.15 higher 239

recall than (Wu et al., 2020) and (Logeswaran et al., 240

2019) respectively, using 21.88% fewer candidates. 241

Additionally, we observe that both datasets follow- 242

ing the typical EL set, where mentions are linked 243

to previously seen entities in the training data, ex- 244

hibit significantly higher recall than the zero-shot 245

(Zeshel) dataset. However, it seems that the perfor- 246

mance of each pooling function differs for the two 247

datasets. Still though, concatenating the special 248

tokens of the final input representation yields the 249

best results in two out of three datasets. 250

In order to provide a better overview of the pro- 251

posed model, we show in Figure 1 our best model’s 252

recall across various top-K retrieved candidates for 253

all three datasets. Following observations from 254

Table 1, the Heldout Train Seen and AIDA CoNLL- 255

YAGO datasets present a far better recall than the 256

Zeshel dataset. At the same time, it is worth men- 257

tioning the 80% and 86% recall achieved from 258

the first candidate for the two datasets, respectively. 259

Regarding the Zeshel dataset, although choosing 260

more candidates could further increase recall, we 261

3



Method Test* Heldout Train Seen** AIDA CoNLL-YAGO** Top-K
(Logeswaran et al., 2019) 69.13 - - 64
(Wu et al., 2020) 82.06 - - 64
Ours (sum) 79.64 97.60 99.67 50
Ours (sum special) 82.90 98.26 99.69 50
Ours (CLS) 83.52 98.42 99.78 50
Ours (avg special) 83.83 98.76 99.64 50
Ours (avg) 84.06 98.56 99.75 50
Ours (conc special) 84.28 98.86 99.75 50

Table 1: Candidate Generation recall on the test set of Zeshel, its provided Heldout Train Seen, and the AIDA
CoNLL-YAGO datasets. Baseline models are compared against our model’s various sequence representation
alternatives, with selected pooling function noted in parentheses. ∗ indicates zero-shot datasets and ∗∗ datasets
following the typical EL set where all mentions have been already seen in the training data. All models use the dot
product to retrieve candidates, while no side-information is used.

decided on fifty candidates due to its small enough262

size and performance improvement over the rest263

baselines.264

Moreover, we experimented with all mentioned265

retrieval methods (Euclidean, Cosine, Dot) for all266

datasets to find out that the dot product always held267

the best results. Lastly, you can view examples of268

retrieved entity candidates in the Appendix A.269

Figure 1: Top-K entity retrieval recall of Ours (conc
special) model for the Zeshel Test, Heldout Train Seen
and the AIDA CoNLL-YAGO datasets.

4.4 Effect of Entity Type Side Information270

Analysis up to this point reveals the difficulty of271

linking mentions to unseen entities (zero-shot EL).272

For that reason, we wanted to test whether incor-273

porating additional information, such as the entity274

type of the mentions, would boost our model’s per-275

formance on the zero-shot set.276

Results on Table 2 show that the addition of277

entity type in the majority of the representation278

techniques improves performance only slightly (up279

to 0.63%), while our proposed model continues280

to have the best results without incorporating ad-281

ditional information, a fact which strengthens our 282

proposal. We attribute the low effect of the added 283

entity types to the great number of unknown enti- 284

ties (60%) with manual data inspection showing 285

that these are primarily associated with pronouns 286

or coreferences. 287

Recall@50
Pooling Functions w/o Ent.Type Ent.Type
Ours (sum) 79.64 80.27
Ours (sum special) 82.90 83.23
Ours (CLS) 83.52 83.83
Ours (avg special) 83.83 83.88
Ours (avg) 84.06 84.19
Ours (conc special) 84.28 83.30

Table 2: Comparison of results with and without en-
tity type side-information for each pooling function on
Zeshel (Test) dataset. Reported results use the dot prod-
uct to retrieve candidates.

5 Conclusion 288

We proposed a simple, yet effective CG model that 289

sets a higher performance bar for CR and EL over- 290

all. Our model achieves a 2.22 higher threshold 291

for CR and EL using 22% fewer candidates, com- 292

pared to the previous state-of-the-art method in the 293

zero-shot set. Our model accomplishes great in- 294

domain results too, with the same parameters as in 295

zero-shot EL, showing that the suggested method 296

can be a valuable complement to any existing EL 297

approach. Lastly, experiments using entity type 298

side information highlight our model’s robustness 299

regardless of side information. 300
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Mention
... When he took it off , a boy working for Insector Haga swiped it and inserted the card
P̈arasite Paracide ïnto his Deck as he ran away with it . Jonouchi managed to catch the
boy and met up with Anzu , Bakura and Sugoroku as he did so . ....

Haga ’ s helper ( manga )

Haga ’ s helper ( manga ) Haga ’ s helper was a boy
employed by Insector Haga to help him cheat in a Duel
against Katsuya Jonouchi . Biography . Haga promised
the boy a rare card if he could sneak the card " Parasite
Paracide " into Jonouchi ’ s Deck . ...

Queue cutter

Queue cutter The " queue cutter " is an elementary
or junior high school kid , who appeared once in the
manga . Biography . The boy cut past Yugi in a queue
to a Capsule Monster Chess coin machine , outside Old
Man Dentures store . ...

Daichi
Daichi Daichi is one of the children in Crow ’ s care in
" Yu - Gi - Oh ! 5D ’ s " . He has black hair in a bowl
cut and dark blue eyes . ...

Table 3: Example of mention and top-3 retrieved entity candidates on the Zeshel (Test) dataset. The correct entity
link is the first from the candidate set.

Mention ... He stole the Type 7 shuttlecraft " " , intending to join a freighter on Beltane IX and
asked Captain Picard to tell his father he ’ s sorry but had to do this . ...

Jack Crusher

Jack Crusher Lieutenant Commander Jack R . Crusher
was a Starfleet officer . Considered by Jean - Luc Picard
to have been his best friend , he served under Picard ’ s
command on the . He was husband to Beverly Crusher
and father to Wesley Crusher . ...

Kurland

Kurland Kurland was a Human male aboard the in 2364
. He had one son , Jake Kurland . When Jake tried to
leave the " Enterprise " - D with a shuttlecraft that year ,
he asked Captain Picard to tell his father he was sorry
but he could not stay aboard the ship . Picard told him
he should bring back the shuttle and tell this his father
himself . ( ) ...

Gabriel Lorca

Gabriel Lorca Captain Gabriel Lorca was a male Human
Starfleet officer who lived during the mid - 23rd century
. He served as the commanding officer on board at least
one Federation starship , ...

Table 4: Example of mention and top-3 retrieved entity candidates on the Zeshel (Test) dataset. The correct entity
link is the second from the candidate set.
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Mention
... Riker argues with him and is generally uncooperative . Remmick asks La Forge in
engineering about the incident with Kosinski and the Traveler , and La Forge is forced
to acknowledge that the captain lost control of the ship . ...

USS Enterprise bridge
holoprogram

USS Enterprise bridge holoprogram The USS "
Enterprise " bridge holoprogram was a holodeck
recreation of the bridge of the original . The program
was accessed by Captain Montgomery Scott when he
was on board the in 2369 after having been rescued
from transporter stasis on the . ...

Captain ’ s log , USS En-
terprise ( NCC - 1701 )

Captain ’ s log , USS Enterprise ( NCC - 1701 ) The
captain ’ s log on the was the method used by the
commanding officer to record the ship ’ s events . These
logs included Captain James T . Kirk ’ s famous five -
year mission . ( ) ...

Traffic accident

Traffic accident A traffic accident was an incident involv-
ing vehicle s and their occupants in which the vehicle
in question malfunctioned or crashed . Some accidents
resulted in death . In 1930 , Edith Keeler died in a traf-
fic accident after she crossed the street to find out why
James T . Kirk had left her abruptly . ...

Table 5: Example of mention and top-3 retrieved entity candidates on the Zeshel (Test) dataset. The correct entity
link is not part of the candidate set.
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