
Under review as submission to TMLR

Graph Neural Networks for Temporal Graphs: State of the
Art, Open Challenges, and Opportunities

Anonymous authors
Paper under double-blind review

Abstract

Graph Neural Networks (GNNs) have become the leading paradigm for learning on (static)
graph-structured data. However, many real-world systems are dynamic in nature, since the
graph and node/edge attributes change over time. In recent years, GNN-based models for
temporal graphs have emerged as a promising area of research to extend the capabilities
of GNNs. In this work, we provide the first comprehensive overview of the current state-
of-the-art of temporal GNN, introducing a rigorous formalization of learning settings and
tasks and a novel taxonomy categorizing existing approaches in terms of how the temporal
aspect is represented and processed. We conclude the survey with a discussion of the most
relevant open challenges for the field, from both research and application perspectives.

1 Introduction

The ability to process temporal graphs is becoming increasingly important in a variety of fields such as recom-
mendation systems (Gao et al., 2022a; Wu et al., 2022), social network analysis (Deng et al., 2019; Fan et al.,
2019), transportation systems (Jiang & Luo, 2022; Yu et al., 2017), face-to-face interactions (Longa et al.,
2022c), human mobility (Mauro et al., 2022; Gao, 2015), epidemic modeling and contact tracing (Cencetti
et al., 2021; So et al., 2020), and many others. Traditional graph-based models are not well suited for
analyzing temporal graphs as they assume a fixed structure and are unable to capture its temporal evo-
lution. Therefore, in the last few years, several models capable to directly encode temporal graphs have
been developed, such as random walk-based methods (Wang et al., 2021b; Liu et al., 2020; Zhou et al.,
2018), matrix factorization-based approaches (Ahmed et al., 2018), deep learning models (Opolka et al.,
2019; Kumar et al., 2019; Zhou et al., 2020; Singer et al., 2019), temporal motif-based methods (Longa
et al., 2022b) and temporal point process techniques (Trivedi et al., 2019). Recently, also GNNs have been
successfully applied to temporal graphs. Indeed, their success in various static graph tasks, including node
classification (Hamilton et al., 2017) and link prediction (Zhang & Chen, 2018), has not only established
them as the leading paradigm in static graph processing, but has also indicated the importance of exploring
their potential in other graph domains, such as temporal graphs. With approaches ranging from attention-
based methods (Xu et al., 2020) to Variational Graph-Autoencoder (VGAE) (Hajiramezanali et al., 2019),
Temporal Graph Neural Network (TGNN) has achieved state-of-the-art results on tasks such as temporal
link prediction (Sankar et al., 2020), node classification (Rossi et al., 2020) and edge classification (Wang
et al., 2021a). Despite the potential of GNN-based models for temporal graph processing and the variety of
different approaches that emerged, a systematization of the literature is still missing. Existing surveys either
discuss general techniques for learning over temporal graphs, only briefly mentioning temporal extensions of
GNNs (Kazemi et al., 2020; Barros et al., 2021; Xue et al., 2022; Xie et al., 2020), or focus on specific topics,
like temporal link prediction (Qin & Yeung, 2022; Skarding et al., 2021) or temporal graph generation (Gupta
& Bedathur, 2022). This work aims to fill this gap by providing a systematization of existing GNN-based
methods for temporal graphs and a formalization of the tasks being addressed. Our main contributions are
the following:

• We propose a coherent formalization of the different learning settings and of the tasks that can
be performed on temporal graphs, unifying existing formalism and informal definitions that are
scattered in the literature, and highlighting substantial gaps in what is currently being tackled;

1



Under review as submission to TMLR

• We organize existing TGNN works into a comprehensive taxonomy that groups methods according
to the way in which time is represented and the mechanism with which it is taken into account;

• We highlight the limitations of current TGNN methods, discuss open challenges that deserve further
investigation and present critical real-world applications where TGNNs could provide substantial
gains.

2 Temporal Graphs

We provide a formal definition of the different types of graphs analyzed in this work and we structure different
existing notions in a common framework.

Definition 1 (Static Graph - SG) A Static Graph is a tuple G = (V, E, XV , XE), where V is the set of
nodes, E ⊆ V × V is the set of edges, and XV , XE are dV -dimensional node features and dE-dimensional
edge features.

Node and edge features may be empty. Moreover, in the following, we assume that all graphs are directed,
i.e., (u, v) ∈ E does not imply that (v, u) ∈ E.

Extending Qin & Yeung (2022), we define Temporal Graphs as follows.

Definition 2 (Temporal Graph - TG) A Temporal Graph is a tuple GT = (V, E, VT , ET ), where V and
E are, respectively, the set of all possible nodes and edges appearing in a graph at any time, while

VT := {(v, xv, ts, te) : v ∈ V, xv ∈ RdV , ts ≤ te},

ET := {(e, xe, ts, te) : e ∈ E, xe ∈ RdE , ts ≤ te},

are the temporal nodes and edges, with time-dependent features and initial and final timestamps. A set of
temporal graphs is denoted as GT .

Observe that we implicitly assume that the existence of a temporal edge in ET requires the simultaneous
existence of the corresponding temporal nodes in VT . Moreover, the definition implies that node and edge
features are constant inside each interval [ts, te], but may otherwise change over time. Since the same node
or edge may be listed multiple times, with different timestamps, we denote as t̄s(v) = min{ts : (v, xv, ts, te) ∈
VT } and t̄e(v) = max{te : (v, xv, ts, te) ∈ VT } the time of first and last appearance of a node, and similarly
for t̄s(e), t̄e(e), e ∈ E. Moreover, we set Ts(GT ) := min{t̄s(v) : v ∈ V }, Te(GT ) := max{t̄e(v) : v ∈ V } as the
initial and final timestamps in a TG GT . For two TGs Gi

T := (V i, Ei, V i
T , Ei

T ), i = 1, 2, we write G1
T ⊆V G2

T

to indicate the topological inclusion V 1 ⊆ V 2, while no relation between the corresponding timestamps is
required.

General TGs have no restriction on their timestamps, which can take any value (for simplicity, we just
assume that they are non-negative). However, in some applications, it makes sense to force these values to
be multiples of a fixed time-step. This leads to the notion of Discrete Time Temporal Graphs, which are
defined as follows.

Definition 3 (Discrete Time Temporal Graph - DTTG) Let ∆t > 0 be a fixed time-step and let t1 <
t2 < · · · < tn be timestamps with tk+1 = tk + ∆t. A Discrete Time Temporal Graph GDT is a TG where for
each (v, xv, ts, te) ∈ VT or (e, xe, ts, te) ∈ ET , the timestamps ts, te are taken from the set of fixed timestamps
(i.e., ts, te ∈ {t1, t2, . . . , tn}, with ts < te).

2.1 Representation of temporal graphs

In the existing literature, dynamic graphs are often divided into DTTG (as in Definition 3) and continuous-
time temporal graphs (CTTG) (or time sequence graphs), which are defined e.g. in (Kazemi et al., 2020;
Barros et al., 2021; Luo & Li, 2022; Gupta & Bedathur, 2022).

2



Under review as submission to TMLR

However, we find that this separation does not capture well the central difference between various graph
characterizations, which is rather based on the fact that the data are represented as a stream of static
graphs, or as a stream of single node and edge addition and deletion events. We thus formalize the following
two categories for the description of time-varying graphs, based on snapshots or on events. These different
representations lead to different algorithmic approaches and become particularly useful when organizing the
methods in a taxonomy.

The snapshot-based strategy focuses on the temporal evolution of the whole graph. Snapshot-based Temporal
Graphs can be defined as follows.

Definition 4 (Snapshot-based Temporal Graph - STG) Let t1 < t2 < · · · < tn be the ordered set of
all timestamps ts, te occurring in a TG GT . Set

Vi := {(v, xv) : (v, xv, ts, te) ∈ VT , ts ≤ ti ≤ te},

Ei := {(e, xe) : (e, xe, ts, te) ∈ ET , ts ≤ ti ≤ te},

and define the snapshots Gi := (Vi, Ei), i = 1, . . . , n. Then a Snapshot-based Temporal Graph representation
of GT is the sequence

GS
T := {(Gi, ti) : i = 1, . . . , n}

of time-stamped static graphs.

This representation is mostly used to describe DTTGs, where the snapshots represent the TG captured at
periodic intervals (e.g., hours, days, etc.).

The event-based strategy is more appropriate when the focus is on the temporal evolution of individual
nodes or edges. This leads to the following definition.

Definition 5 (Event-based Temporal Graph - ETG) Let GT be a TG, and let ε denote one of the
following events:

• Node insertion ε+
V := (v, t): the node v is added to GT at time t, i.e., there exists (v, xv, ts, te) ∈ VT

with ts = t.

• Node deletion ε−
V := (v, t): the node v is removed from GT at time t, i.e., there exists (v, xv, ts, te) ∈

VT with te = t.

• Edge insertion ε+
E := (e, t): the edge e is added to GT at time t, i.e., there exists (e, xe, ts, te) ∈ ET

with ts = t.

• Edge deletion ε−
E := (e, t): the edge e is removed from GT at time t, i.e., there exists (e, xe, ts, te) ∈

ET with te = t.

An Event-based Temporal Graph representation of TG is a sequence of events

GE
T := {ε : ε ∈ {ε+

V , ε−
V , ε+

E , ε−
E}}.

Here it is implicitly assumed that node and edge events are consistent (e.g., a node deletion event implies
the existence of an edge deletion event for each incident edge). In the case of an ETG, the TG structure can
be recovered by coupling an insertion and deletion event for each temporal edge and node. ETGs are better
suited than STGs to represent TGs with arbitrary timestamps.

We will use the general notion of TG, which comprises both STG and ETG, in formalizing learning tasks
in the next section. On the other hand, we will revert to the STG and ETG notions when introducing the
taxonomy of TGNN methods in Section 4, since TGNNs use one or the other representation strategy in their
algorithmic approaches.

3



Under review as submission to TMLR

Figure 1: Learning settings. Schematic representation of the learning settings on TGs formalized in
Section 3.1. The temporal graphs are represented as sequences of snapshots, with training (red) and inference
(green) nodes connected by edges (solid lines), and where a dotted line connects instances of the same node
(with possibly different features and/or labels) in successive snapshots. The four categories are obtained
from the different combinations of a temporal and a topological dimension. The temporal dimension
distinguishes the future setting, where the training nodes are all observed before the inference nodes (first
row), from the past setting where inference is performed also on nodes appearing before the observation of
the last training node (second row). The topological dimension comprises a transductive setting, where
each inference node is observed (unlabelled) also during training (left column), and an inductive setting,
where inference is performed on nodes that are unknown at training time (right column).

3 Learning tasks on temporal graphs

Thanks to their learning capabilities, TGNNs are extremely flexible and can be adapted to a wide range
of tasks on TGs. Some of these tasks are straightforward temporal extensions of their static counterparts.
However, the temporal dimension has some non-trivial consequences in the definition of learning settings
and tasks, some of which are often only loosely formalized in the literature. We start by formalizing the
notions of transductive and inductive learning for TGNNs, and then describe the different tasks that can be
addressed.

3.1 Learning settings

The machine learning literature distinguishes between inductive learning, in which a model is learned on
training data and later applied to unseen test instances, and transductive learning, in which the input data
of both training and test instances are assumed to be available, and learning is equivalent to leveraging
the training inputs and labels to infer the labels of test instances given their inputs. This distinction
becomes extremely relevant for graph-structured data, where the topological structure gives rise to a natural
connection between nodes, and thus to a way to propagate the information in a transductive fashion. Roughly
speaking, transductive learning is used in the graph learning literature when the node to be predicted and
its neighborhood are known at training time — and is typical of node classification tasks —, while inductive
learning indicates that this information is not available — and is most often associated to graph classification
tasks.

However, when talking about GNNs with their representation learning capabilities, this distinction is not
so sharp. For example, a GNN trained for node classification in transductive mode could still be applied
to an unseen graph, thus effectively performing inductive learning. The temporal dimension makes this
classification even more elusive, since the graph structure is changing over time and nodes are naturally
appearing and disappearing. Defining node membership in a temporal graph is thus a challenging task in
itself.

4



Under review as submission to TMLR

Below, we provide a formal definition of transductive and inductive learning for TGNNs which is purely
topological, i.e. linked to knowing or not the instance to be predicted at the training time, and we complete
it with a temporal dimension, which distinguishes between past and future prediction tasks. A schematic
representation of these settings is visualized in Figure 1.

Definition 6 (Learning settings) Assume that a model is trained on a set of n ≥ 1 temporal graphs
GT := {Gi

T := (Vi, Ei, XV
i , XE

i ), i = 1, . . . , n}. Moreover, let

T all
e := max

i=1,...,n
Te(Gi

T ), V all := ∪n
i=1Vi, Eall := ∪n

i=1Ei,

be the final timestamp and the set of all nodes and edges in the training set. Then, we have the following
settings:

• Transductive learning: inference can only be performed on v ∈ V all, e ∈ Eall, or GT ⊆V Gi
T with

Gi
T ∈ GT .

• Inductive learning: inference can be performed also on v /∈ V all, e /∈ Eall, or GT ̸⊆V Gi
T , for all

i = 1, . . . , n.

• Past prediction: inference is performed for t ≤ T all
e .

• Future prediction: inference is performed for t > T all
e .

We remark that all combinations of topological and temporal settings are meaningful, except for the case of
inductive graph-based tasks. Indeed, the measure of time used in TGs is relative to each single graph. Moving
to an unobserved graph would thus make the distinction between past and future pointless. Moreover, let
us observe that, in all other cases, the two temporal settings are defined based on the final time of the entire
training set, and not of the specific instances (nodes or edges), since their embedding may change also as an
effect of the change of their neighbors in the training set.

We will use this categorization to describe supervised and unsupervised learning tasks in Section 3.2-3.3,
and to present existing models in Section 4.

3.2 Supervised learning tasks

Supervised learning tasks are based on a dataset where each object is annotated with its label (or class),
from a finite set of possible choices C := {C1, C2, . . . , Ck}.

3.2.1 Classification

Definition 7 (Temporal Node Classification) Given a TG GT = (V, E, VT , ET ), the node classification
task consists in learning the function

fNC : V × R+ → C

which maps each node to a class C ∈ C, at a time t ∈ R+.

This is one of the most common tasks in the TGNN literature. For instance, Pareja et al. (2020); Xu
et al. (2020); Wang et al. (2021a); Zhou et al. (2022); Rossi et al. (2020) focus on a future-transductive
(FT) setting, i.e., predicting the label of a node in future timestamps. TGAT (Xu et al., 2020) performs
future-inductive (FI) learning, i.e. it predicts the label of an unseen node in the future. Finally, DGNN (Ma
et al., 2020) is the only method that has been tested on a past-inductive (PI) setting, i.e., predicting labels
of past nodes that are unavailable (or masked) during training, while no approach has been applied to the
past-transductive (PT) one. A significant application may be in epidemic surveillance, where contact tracing
is used to produce a TG of past human interactions, and sample testing reveals the labels (infection status)
of a set of individuals. Identifying the past infection status of the untested nodes is a PT task.

5



Under review as submission to TMLR

Definition 8 (Temporal Edge Classification) Given a TG GT = (V, E, VT , ET ), the temporal edge clas-
sification task consists in learning a function

fEC : E × R+ → C

which assigns each edge to a class at a given time t ∈ R+.

Temporal edge classification has been less explored in the literature. Existing methods have focused on FT
learning (Pareja et al., 2020; Wang et al., 2021a), while FI, PI and PT have not been tackled so far. An
example of PT learning consists in predicting the unknown past relationship between two acquaintances in
a social network given their subsequent behaviour. For FI, one may predict if a future transaction between
new users is a fraud or not.

In the next definition we use the set of real and positive intervals I+ := {[ts, te] ⊂ R+}.

Definition 9 (Temporal Graph Classification) Let GT be a domain of TGs. The graph classification
task requires to learn a function

fGC : GT × I+ → C

that maps a temporal graph, restricted to a time interval [ts, te] ∈ I+, into a class.

The definition includes the classification of a single snapshot (i.e., ts = te). As mentioned above, in the
inductive setting the distinction between past and future predictions is pointless. In the transductive setting,
instead, a graph GT ∈ GT may be classified in a past mode if [Ts(GT ), Te(GT )] ⊆ [ts, te], or in the future
mode, otherwise.

The only existing method addressing the classification of temporal graphs is found in Micheli & Tortorella
(2022), where the discrimination between STGs characterized by different dissemination processes is for-
malized as a PT classification task. The temporal graph classification task can have numerous relevant
applications. For instance, an example of inductive temporal graph classification is predicting mental disor-
ders from the analysis of the brain connectome (Heuvel et al., 2010). On the other hand, detecting critical
stages during disease progression from gene expression profiles (Gao et al., 2022c) can be framed as a past
transductive graph classification task.

3.2.2 Regression

The tasks introduced for classification can all be turned into corresponding regression tasks, simply by
replacing the categorical target C with the set R. We omit the formal definitions for the sake of brevity.
Static GNNs have already shown outstanding results in this setting, e.g. in weather forecasting (Keisler,
2022) and earthquake location and estimation (McBrearty & Beroza, 2022). However, limited research has
been conducted on the application of TGNNs to regression tasks. Notable exceptions are the use of TGNNs
in two FT regression tasks, the traffic prediction (Cini et al., 2022) and the prediction of the incidence of
chicken pox cases in neighboring countries (Micheli & Tortorella, 2022).

3.2.3 Link prediction

Link prediction requires the model to predict the relation between two given nodes, and can be formulated
by taking as input any possible pair of nodes. Thus, we consider the setting to be transductive when both
node instances are known at training time, and inductive otherwise. Instead, Qin & Yeung (2022) adopt
a different approach and identify Level-1 (the set of nodes is fixed) and Level-2 (nodes may be added and
removed over time) temporal link prediction tasks.

Definition 10 (Temporal Link Prediction) Let GT = (V, E, VT , ET ) be a TG. The temporal link pre-
diction task consists in learning a function

fLP : V × V × R+ → [0, 1]

which predicts the probability that, at a certain time, there exists an edge between two given nodes.

6



Under review as submission to TMLR

The domain of the function fLP is the set of all feasible pairs of nodes, since it is possible to predict the
probability of future interactions between nodes that have been connected in the past or not, as well as the
probability of missing edges in a past time. Most TGNN approaches for temporal link prediction focus on
future predictions, forecasting the existence of an edge in a future timestamp between existing nodes (FT is
the most common setting) (Pareja et al., 2020; Sankar et al., 2020; Hajiramezanali et al., 2019; You et al.,
2022; Xu et al., 2020; Luo & Li, 2022; Wang et al., 2021a; Ma et al., 2020; Rossi et al., 2020; Zhou et al.,
2022), or unseen nodes (FI) (Hajiramezanali et al., 2019; Xu et al., 2020; Rossi et al., 2020). The only model
that investigates past temporal link prediction is Luo & Li (2022), which devises a PI setting by masking
some nodes and predicting the existence of a past edge between them. Note that predicting past temporal
links can be extremely useful for predicting, e.g., missing interactions in contact tracing for epidemiological
studies.

Definition 11 (Event Time Prediction) Let GT = (V, E, VT , ET ) be a TG. The aim of the event time
prediction task is to learn a function

fEP : V × V → R+

that predicts the time of the first appearance of an edge.

None of the existing methods address this task. Potential FT applications of event time prediction include
predicting when a customer will pay an invoice to its supplier, or how long it takes to connect two similar
users in a social network.

3.3 Unsupervised learning tasks

In this section, we formalize unsupervised learning tasks on temporal graphs, an area that has received little
to no attention in the TGNN literature so far.

3.3.1 Clustering

Temporal graphs can be clustered at the node or graph level, with edge-level clustering being a minor
variation of the node-level one. Some relevant applications can be defined in terms of temporal clustering.

Definition 12 (Temporal Node Clustering) Given a TG GT = (V, E, VT , ET ), the temporal node clus-
tering task consists in learning a time-dependent cluster assignment map

fNCl : V × R+ → P(V ),

where P(V ) := {p1, p2, . . . , pk} is a partition of the node set V , i.e., pi ⊂ VT , pi ∩ pj = ∅, if i ̸= j,
∪N

i=1pi = VT .

While node clustering in SGs is a very common task, its temporal counterpart has not been explored yet for
TGNNs, despite its potential relevance in application domains like epidemic modelling (identifying groups
of exposed individuals, in both inductive and transductive settings), or trend detection in customer profiling
(mostly transductive).

Definition 13 (Temporal Graph Clustering) Given a set of temporal graphs GT , the temporal graph
clustering task consists in learning a cluster-assignment function

fGCl : GT × I+ → P(GT ),

where P(GT ) := {p1, . . . , pk} is a partition of the set of temporal graphs in the given time interval.

Relevant examples of tasks of inductive temporal graph clustering are grouping social interaction networks
(e.g., hospitals, workplaces, schools) according to their interaction patterns, or grouping diseases in terms of
similarity between their spreading processes (Enright & Rowland, 2018).

7



Under review as submission to TMLR

Figure 2: The proposed TGNN taxonomy and an analysis of the surveyed methods. The top
panel shows the new categories introduced in this work with the corresponding model instances (Section 4),
where the colored bullets additionally indicate the main technology that they employ. The bottom table
maps these methods to the task (Section 3) to which they have been applied in the respective original
paper, with an additional indication of their use in the future (F), past (P), inductive (I), or transductive
(T) settings (Section 3.1). Notice that no method has been applied yet to clustering and visualization, for
neither graphs nor nodes. Moreover, only four out of ten models have been tested in the past mode (three
in PT, one in PI).

3.3.2 Low-dimensional embedding (LDE)

LDEs are especially useful in the temporal setting, e.g. to visually inspect temporal dynamics of individual
nodes or entire graphs, and identify relevant trends and patterns. No GNN-based model has been applied
to these tasks, neither at the node nor at the graph level. We formally define the tasks of temporal node
and graph LDE as follows.

Definition 14 (Low-dimensional temporal node embedding) Given a TG GT = (V, E, VT , ET ), the
low-dimensional temporal node embedding task consists in learning a map

fNEm : V × R+ → Rd

to map a node, at a given time, into a low dimensional space.

Definition 15 (Low-dimensional temporal graph embedding) Given a domain of TGs GT , the low-
dimensional temporal graph embedding task aims to learn a map

fGEm : GT × I+ → Rd,

which represents each graph as a low dimensional vector in a given time interval.

4 A taxonomy of TGNNs

This section describes the taxonomy with which we categorize existing TGNN approaches (see Figure 2).
Following the representation strategies outlined in Section 2.1, the first level groups methods into Snapshot-
based and Event-based. The second level of the taxonomy further divides these two macro-categories based
on the techniques used to manage the temporal dependencies. The leaves of the taxonomy in Figure 2
correspond to the individual models, with a colored symbol indicating their main underlying technology.

8



Under review as submission to TMLR

4.1 Snapshot-based models

Snapshot-based models are specifically tailored for STGs (see Def. 4) and thus, consistently with the defini-
tion, they are equipped with a suitable method to process the entire graph at each point in time, and with a
mechanism that learns the temporal dependencies across time-steps. Based on the mechanism used, we can
further distinguish between Model Evolution and Embedding Evolution methods.

4.1.1 Model Evolution methods

We call Model Evolution the evolution of the parameters of a static GNN model over time. This mechanism
is appropriate for modelling STG, as the evolution of the model is performed at the snapshot level.

To the best of our knowledge, the only existing method belonging to this category is EvolveGCN (Pareja
et al., 2020). This model utilizes a Recurrent Neural Network (RNN) to update the Graph Convolutional
Network (GCN) (Kipf & Welling) parameters at each time-step, allowing for model adaptation that is not
constrained by the presence or absence of nodes. The method can effectively handle new nodes without prior
historical information. A key advantage of this approach is that the GCN parameters are no longer trained
directly, but rather they are computed from the trained RNN, resulting in a more manageable model size
that does not increase with the number of time-steps.

4.1.2 Embedding Evolution methods

Rather than evolving the parameters of a static GNN model, Embedding Evolution methods focus on evolving
the embeddings produced by a static model.

There are several different TGNN models that fall under this category. These networks differ from one
another in the techniques used for processing both the structural information and the temporal dynam-
ics of the STGs. DySAT (Sankar et al., 2020) introduced a generalization of Graph Attention Network
(GAT) (Veličković et al., 2017) for STGs. First, it uses a self-attention mechanism to generate static node
embeddings at each timestamp. Then, it uses a second self-attention block to process past temporal embed-
dings for a node to generate its novel embedding. The VGRNN model (Hajiramezanali et al., 2019) uses
VGAE (Kipf & Welling, 2016) coupled with Semi-Implicit Variational Inference (SIVI) (Yin & Zhou, 2018)
to handle the variation of the graph over time. The learned latent representation is then evolved through
an LSTM conditioned on the previous time’s latent representation, allowing the model to predict the future
evolution of the graph. ROLAND (You et al., 2022) is a general framework for extending state-of-the-art
GNN techniques to STGs. The key insight is that node embeddings at different GNN layers can be viewed
as hierarchical node states. To generalize a static GNN for dynamic settings, hierarchical node states are
updated based on newly observed nodes and edges through a Gated Recurrent Unit (GRU) update module
(Chung et al., 2014). Finally, reservoir computing techniques have also been proposed. DynGESN (Micheli
& Tortorella, 2022) presented a method where each node embedding is updated by a recurrent mechanism
using its temporal neighborhood and previous embedding, with fixed and randomly initialized recurrent
weights. SSGNN (Cini et al., 2022) follows a similar approach but introduces trainable parameters in the
decoder and combines randomized components in the encoder: initially, the encoder creates representations
of the time series data observed at each node, by utilizing a reservoir that captures dynamics at various
time scales; these representations are then further processed to incorporate spatial dynamics dictated by the
graph structure.

4.2 Event-based models

Models belonging to the Event-based macro category are designed to process ETGs (see Def. 5). These
models are able to process streams of events by incorporating techniques that update the representation of
a node whenever an event involving that node occurs.

The models that lie in this macro category can be further classified in Temporal Embedding and Temporal
Neighborhood methods, based on the technology used to learn the time dependencies. In particular, the
Temporal Embedding models use recurrent or self-attention mechanisms to model sequential information

9



Under review as submission to TMLR

from streams of events, while also incorporating a time encoding. This allows for temporal signals to be
modeled by the interaction between time embedding, node features and the topology of the graph. Temporal
Neighborhood models, instead, use a module that stores functions of events involving a specific node at a
given time. These values are then aggregated and used to update the node representation as time progresses.

4.2.1 Temporal Embedding methods

Temporal embedding methods model TGs by combining time embedding, node features, and graph topology.
These models use an explicit functional time encoding, i.e., a translation-invariant vector embedding of time
based on Random Fourier Features (RFF) (Rahimi & Recht, 2008).

TGAT (Xu et al., 2020), for example, introduces a graph-temporal attention mechanism which works on the
embeddings of the temporal neighbours of a node, where the positional encoding is replaced by a temporal
encoding based on RFFs. On the other hand, NAT (Luo & Li, 2022) collects the temporal neighbours of
each node into dictionaries, and then it learns the node representation with a recurrent mechanism, using
the historical neighbourhood of the current node and a RFF based time embedding.

4.2.2 Temporal Neighborhood methods

The Temporal Neighborhood class includes all TGNN models that make use of a special mailbox module to
update node embeddings based on events. When an event occurs, a function is evaluated on the details of
the event to compute a mail or a message. For example, when a new edge appears between two nodes, a
message is produced, taking into account the time of occurrence of the event, the node features, and the
features of the new edge. The node representation is then updated at each time by aggregating all the
generated messages.

Several existing TGNN methods belong to this category. APAN (Wang et al., 2021a) introduces the
concept of asynchronous algorithm, which decouples graph query and model inference. An attention-based
encoder maps the content of the mailbox to a latent representation of each node, which is decoded by an
MLP adapted to the downstream task. After each node update following an event, mails containing the
current node embedding are sent to the mailboxes of its neighbors using a propagator. DGNN (Ma et al.,
2020) combines an interact module — which generates an encoding of each event based on the current
embedding of the interacting nodes and its history of past interactions — and a propagate module — which
transmits the updated encoding to each neighbors of the interacting nodes. The aggregation of the current
node encoding with those of its temporal neighbors uses a modified LSTM, which permits to work on non-
constant time-steps, and implements a discount factor to downweight the importance of remote interactions.
TGN (Rossi et al., 2020) provides a generic framework for representation learning in ETGs, and it makes
an effort to integrate the concepts put forward in earlier techniques. This inductive framework is made
up of separate and interchangeable modules. Each node the model has seen so far is characterized by a
memory vector, which is a compressed representation of all its past interactions. Given a new event, a
mailbox module computes a mail for every node involved. Mails will then be used to update the memory
vector. To overcome the so-called staleness problem (Kazemi et al., 2020), an embedding module computes,
at each timestamp, the node embeddings using their neighbourhood and their memory states. Finally, TGL
(Zhou et al., 2022) is a general framework for training TGNNs on graphs with billions of nodes and edges by
using a distributed training approach. In TGL, a mailbox module is used to store a limited number of the
most recent interactions, called mails. When a new event occurs, the node memory of the relevant nodes is
updated using the cached messages in the mailbox. The mailbox is then updated after the node embeddings
are calculated. This process is also used during inference to ensure consistency in the node memory, even
though updating the memory is not required during this phase.

5 Open challenges

Building on existing libraries of GNN methods, two major TGNN libraries have been developed, namely
PyTorch Geometric Temporal (PyGT) (Rozemberczki et al., 2021), based on PyTorch Geometric1, and

1https://pytorch-geometric.readthedocs.io

10



Under review as submission to TMLR

DynaGraph (Guan et al., 2022), based on Deep Graph Library2. While these are substantial contributions
to the development and practical application of TGNN models, several open challenges still need to be faced
to fully exploit the potential of this technology. We discuss the ones we believe are the most relevant in the
following.

Evaluation The evaluation of GNN models has been greatly enhanced by the Open Graph Benchmark
(OGB) (Hu et al., 2020), which provides a standardized evaluation protocol and a collection of
graph datasets enabling a fair and consistent comparison between GNN models. An equally well-
founded standardized benchmark for evaluating TGNNs does not currently exist. As a result, each
model has been tested on its own selection of datasets, making it challenging to compare and rank
different TGNNs on a fair basis. For instance, Zhou et al. (2022) introduced two real-world datasets
with 0.2 billion and 1.3 billion temporal edges which allow to evaluate the scalability of TGNNs to
large scale real-world scenarios, but they only tested the TGL model (Zhou et al., 2022). The variety
and the complexity of learning settings and tasks described in Section 3 makes a standardization of
tasks, datasets and processing pipelines especially crucial to allow a fair assessment of the different
approaches and foster innovation in the field.
Another crucial aspect of evaluating GNN models is explainability, which is the ability to interpret
and understand their decision process. While explainability has been largely explored for standard
GNNs (Luo et al., 2020; Ying et al., 2019; Longa et al., 2022a; Azzolin et al., 2022), only few works
focused on explaining TGNNs (Xia et al.; Vu & Thai, 2022; He et al., 2022).

Expressiveness Driven by the popularity of (static) GNNs, the study of their expressive power has received
a lot of attention in the last few years (Sato, 2020). For instance, appropriate formulations of
message-passing GNNs have been shown to be as powerful as the Weisfeiler-Lehman isomorphism
test (WL test) in distinguishing graphs or nodes (Xu et al., 2018), and higher-order generalizations of
message-passing GNNs have been proposed that can match the expressivity of the k-WL test (Morris
et al., 2019). Moreover, it has been proven that GNNs are a sort of universal approximators on
graphs modulo the node equivalence induced by the WL test (D’Inverno et al., 2021). Finally, also
the expressive power of GNNs equipped with pooling operators have been studied in Bianchi & Lachi
(2023).
Conversely, the expressive power of TGNNs is still far from being fully explored, and the design of
new WL tests, suitable for TGNNs, is a crucial step towards this aim. This is a challenging task
since the definition of a node neighbourhood in temporal graphs is not as trivial as for static graphs,
due to the appearing/disappearing of nodes and edges. In Beddar-Wiesing et al. (2022), a new
version of the WL test for temporal graphs has been proposed, applicable only to DTTGs. Instead,
Souza et al. (2022) proposed a novel WL test for ETGs, and the TGN model (Rossi et al., 2020) has
been proved to be as powerful as this test. Finally, Beddar-Wiesing et al. (2022) proved a universal
approximation theorem, but the result just holds for a specific TGNN model for STGs, composed
of standard GNNs stacked with an RNN.
To the best of our knowledge, these are the only results achieved so far on the expressive power of
TGNNs. A complete theory of the WL test for the different TG representations, such as universal
approximation theorems for event-based models, is still lacking. Moreover, no efforts have been made
to incorporate higher-order graph structures to enhance the expressiveness of TGNNs. This task is
particularly demanding, since it requires not only the definition of the temporal counterpart of the
k-WL test but also some techniques to scale to large datasets. Indeed, a drawback of considering
higher-order structures is that of high memory consumption, which can only get worse in the case
of TGs, as they usually have a greater number of nodes than static graphs.

Learnability Training standard GNNs over large and complex graph data is highly non-trivial, often re-
sulting in problems such as over-smoothing and over-squashing. A theoretical explanation for this
difficulty has been given using algebraic topology and Sheaf theory (Bodnar et al., 2022; Topping
et al., 2021). More intuitively, we yet do not know how to reproduce the breakthrough obtained in

2https://docs.dgl.ai/

11



Under review as submission to TMLR

training very deep architectures over vector data when training deep GNNs. Such a difficulty is even
more challenging with TGNNs, because the typical long-term dependency of TGs poses additional
problems to those due to over-smoothing and over-squashing.
Modern static GNN models face the problems arising from the complexity of the data using tech-
niques such as dropout, virtual nodes, neighbor sampling, but a general solution is far from being
reached. The extension of the above mentioned techniques to TGNNs, and the corresponding theo-
retical studies, are open challenges and we are aware of only one work towards this goal (Yang et al.,
2020). On the other hand, the goal of proposing general very deep TGNNs is even more challenging
due to the difficulty in designing the graph dynamics in a hierarchical fashion.

Real-world applications The analysis of the tasks in Section 3 revealed several opportunities for the use of
TGNNs far beyond their current scope of application. We would like to outline here some promising
directions of application.
A challenging and potentially disruptive direction for the application of TGNNs is the learning of
dynamical systems through the combination of machine learning and physical knowledge (Willard
et al., 2022). Physic Informed Neural Networks (PINNs) (Raissi et al., 2017) are already revolution-
izing the field of scientific computing (Cuomo et al., 2022), and static GNNs have been employed in
this framework with great success (Pfaff et al., 2021; Gao et al., 2022b). Adapting TGNNs to this
field may enable to carry over these results to the treatment of time-dependent problems. Climate
science (Faghmous & Kumar, 2014) is a particularly attractive field of application, both for its crit-
ical impact in our societies and for the promising results achieved by GNNs in climate modelling
tasks (Keisler, 2022). We believe that TGNNs may rise to be a prominent technology in this field,
thanks to their unique capability to capture spatio-temporal correlations at multiple scales. Epi-
demics studies are another topic of enormous everyday impact that may be explored throw the lens
of TGNNs, since a proper modelling of the spreading dynamics needs to be tightly coupled to the
underlying TG structure (Enright & Rowland, 2018). Both fields requires a better development of
TGNNs for regression problem, a task that is still underdeveloped (see Section 3).

6 Conclusion

GNN based models for temporal graphs have become a promising research area. However, we believe
that the potential of GNNs in this field has only been partially explored. In this work, we propose a
systematic formalization of tasks and learning settings for TGNNs, which was lacking in the literature, and
a comprehensive taxonomy categorizing existing methods and highlighting unaddressed tasks. Building on
this systematization of the current state-of-the-art, we discuss open challenges that need to be addressed
to unleash the full potential of TGNNs. We conclude by stressing the fact that the issues open to date
are very challenging, since they presuppose considering both the temporal and relational dimension of data,
suggesting that forthcoming new computational models must go beyond the GNN framework to provide
substantially better solutions.

12



Under review as submission to TMLR

Acknowledgments

This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and
innovation programme under GA No 952215.

References
N.M. Ahmed, L. Chen, Y. Wang, B. Li, Y. Li, and W. Li. DeepEye: Link prediction in dynamic networks

based on non-negative matrix factorization. Big Data Mining and Analytics, 2018.

S. Azzolin, A. Longa, P. Barbiero, P. Liò, and A. Passerini. Global explainability of GNNs via logic combi-
nation of learned concepts. arXiv preprint arXiv:2210.07147, 2022.

C.D.T. Barros, M.R.F. Mendonça, A. Vieira, and A. Ziviani. A survey on embedding dynamic graphs. ACM
CSUR, 2021.

S. Beddar-Wiesing, G.A. D’Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh, F. Scarselli, and J.M.
Thomas. Weisfeiler–Lehman goes dynamic: An analysis of the expressive power of graph neural networks
for attributed and dynamic graphs. arXiv preprint arXiv:2210.03990, 2022.

F.M. Bianchi and V. Lachi. The expressive power of pooling in graph neural networks. arXiv preprint
arXiv:2304.01575, 2023.

C. Bodnar, F. Di Giovanni, B.P. Chamberlain, P. Liò, and M. Bronstein. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in GNNs. In ICLR, 2022.

G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M. Salathe, and B. Lepri.
Digital proximity tracing on empirical contact networks for pandemic control. Nature Communications,
2021.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

A. Cini, I. Marisca, F.M. Bianchi, and C. Alippi. Scalable spatiotemporal graph neural networks. arXiv
preprint arXiv:2209.06520, 2022.

S. Cuomo, V.S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F Piccialli. Scientific machine learning
through physics–informed neural networks: where we are and what’s next. Journal of Scientific Computing,
2022.

S. Deng, H. Rangwala, and Y. Ning. Learning dynamic context graphs for predicting social events. In ACM
SIGKDD, 2019.

G.A. D’Inverno, M. Bianchini, M.L. Sampoli, and F. Scarselli. A new perspective on the approximation
capability of GNNs. arXiv preprint arXiv:2106.08992, 2021.

J. Enright and R.K. Rowland. Epidemics on dynamic networks. Epidemics, 2018.

J. H. Faghmous and V. Kumar. A Big Data Guide to Understanding Climate Change: The Case for
Theory-Guided Data Science. Big Data, 2(3), 2014.

W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for social recommendation.
WWW ’19, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450366748.

C. Gao, X. Wang, X. He, and Y. Li. Graph neural networks for recommender system. WSDM ’22, pp.
1623–1625, New York, NY, USA, 2022a. Association for Computing Machinery. ISBN 9781450391320.

H. Gao, M.J. Zahr, and J. Wang. Physics-informed graph neural Galerkin networks: A unified framework
for solving PDE-governed forward and inverse problems. Computer Methods in Applied Mechanics and
Engineering, 2022b.

13



Under review as submission to TMLR

R. Gao, J. Yan, P. Li, and L. Chen. Detecting the critical states during disease development based on
temporal network flow entropy. Briefings in Bioinformatics, 2022c.

S. Gao. Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile
age. Spatial Cognition & Computation, 15(2):86–114, 2015.

M. Guan, A.P. Iyer, and T. Kim. DynaGraph: dynamic graph neural networks at scale. In ACM SIGMOD22
GRADES-NDA, 2022.

S. Gupta and S. Bedathur. A survey on temporal graph representation learning and generative modeling.
arXiv preprint arXiv:2208.12126, 2022.

E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou, and X. Qian. Variational graph
recurrent neural networks. NeurIPS, 32, 2019.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NeurIPS, 30,
2017.

W. He, M. N. Vu, Z. Jiang, and M. T. Thai. An explainer for temporal graph neural networks. In GLOBE-
COM - IEEE Global Communications Conference 2022, pp. 6384–6389. IEEE, 2022.

M.P. Van Den Heuvel, R.C.W. Mandl, C.J. Stam., R.S. Kahn, P. Hulshoff, and E. Hilleke. Aberrant
frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. Journal
of Neuroscience, 2010.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open Graph Benchmark:
Datasets for machine learning on graphs. NeurIPS, 33:22118–22133, 2020.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert Systems with
Applications, 207:117921, 2022. ISSN 0957-4174.

S.M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. Representation learning
for dynamic graphs: A survey. Journal of Machine Learning Research, 2020.

R. Keisler. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575, 2022.

T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In ICLR 2016.

T.N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory in temporal interaction
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1269–1278, 2019.

Z. Liu, D. Zhou, Y. Zhu, J. Gu, and J. He. Towards fine-grained temporal network representation via
time-reinforced random walk. In AAAI, volume 34, pp. 4973–4980, 2020.

A. Longa, S. Azzolin, G. Santin, G. Cencetti, P. Liò, B. Lepri, and A. Passerini. Explaining the explainers
in graph neural networks: a comparative study. arXiv preprint arXiv:2210.15304, 2022a.

A. Longa, G. Cencetti, S. Lehmann, A. Passerini, and B. Lepri. Neighbourhood matching creates realistic
surrogate temporal networks. arXiv preprint arXiv:2205.08820, 2022b.

A. Longa, G. Cencetti, B. Lepri, and A. Passerini. An efficient procedure for mining egocentric temporal
motifs. Data Mining and Knowledge Discovery, 2022c.

D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for graph
neural network. Advances in Neural Information Processing Systems, 33:19620–19631, 2020.

Y. Luo and P. Li. Neighborhood-aware scalable temporal network representation learning. arXiv preprint
arXiv:2209.01084, 2022.

14



Under review as submission to TMLR

Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin. Streaming graph neural networks. In ACM SIGIR, 2020.

G. Mauro, M. Luca, A. Longa, B. Lepri, and L. Pappalardo. Generating mobility networks with generative
adversarial networks. EPJ Data Science, 11(1):58, 2022.

I.W. McBrearty and G.C. Beroza. Earthquake location and magnitude estimation with graph neural net-
works. In IEEE ICIP, 2022.

A. Micheli and D. Tortorella. Discrete-time dynamic graph echo state networks. Neurocomputing, 496:85–95,
2022.

C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and
Leman go neural: Higher-order graph neural networks. In AAAI, 2019.

F. L. Opolka, A. Solomon, C. Cangea, P. Veličković, P. Liò, and R.D. Hjelm. Spatio-temporal deep graph
infomax. arXiv preprint arXiv:1904.06316, 2019.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, and C. Leis-
erson. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In AAAI, 2020.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based simulation with graph
networks. In ICLR, 2021.

M. Qin and D Yeung. Temporal link prediction: A unified framework, taxonomy, and review. arXiv preprint
arXiv:2210.08765, 2022.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NeurIPS, 2008.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López,
N. Collignon, et al. Pytorch Geometric Temporal: Spatiotemporal signal processing with neural machine
learning models. In ACM CIKM, 2021.

A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural representation learning on dynamic
graphs via self-attention networks. In WSDM, 2020.

R. Sato. A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078, 2020.

U. Singer, I. Guy, and K. Radinsky. Node embedding over temporal graphs. arXiv preprint arXiv:1903.08889,
2019.

J. Skarding, B. Gabrys, and K. Musial. Foundations and modeling of dynamic networks using dynamic
graph neural networks: A survey. IEEE Access, 9:79143–79168, 2021.

M. K.P. So, A. Tiwari, A. M.Y. Chu, J. T.Y. Tsang, and J. N.L. Chan. Visualizing covid-19 pandemic risk
through network connectedness. International Journal of Infectious Diseases, 96:558–561, Jul 2020.

A.H. Souza, D. Mesquita, S. Kaski, and V. Garg. Provably expressive temporal graph networks. NeurIPS,
2022.

J. Topping, F. Di Giovanni, B.P. Chamberlain, X. Dong, and M. Bronstein. Understanding over-squashing
and bottlenecks on graphs via curvature. arXiv preprint arXiv:2111.14522, 2021.

R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. Dyrep: Learning representations over dynamic graphs. In
International Conference on Learning Representations, 2019.

15



Under review as submission to TMLR

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

M. N. Vu and M. T. Thai. On the limit of explaining black-box temporal graph neural networks. arXiv
preprint arXiv:2212.00952, 2022.

X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui, Y. Yang, B. Sun, et al. APAN:
Asynchronous propagation attention network for real-time temporal graph embedding. In SIGMOD, 2021a.

Y. Wang, Y. Chang, Y. Liu, J. Leskovec, and P. Li. Inductive representation learning in temporal networks
via causal anonymous walks. arXiv preprint arXiv:2101.05974, 2021b.

J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating scientific knowledge with machine
learning for engineering and environmental systems. ACM Computing Surveys, 55(4), 2022.

S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recommender systems: a survey.
ACM CSUR, 2022.

W. Xia, M. Lai, C. Shan, Y. Zhang, X. Dai, X. Li, and D. Li. Explaining temporal graph models through an
explorer-navigator framework. In The Eleventh International Conference on Learning Representations.

Y. Xie, C. Li, B. Yu, C. Zhang, and Z. Tang. A survey on dynamic network embedding. arXiv preprint
arXiv:2006.08093, 2020.

D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on temporal
graphs. arXiv preprint arXiv:2002.07962, 2020.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong. Dynamic network embedding survey. Neurocom-
puting, 2022.

M. Yang, Z. Meng, and I. King. Featurenorm: L2 feature normalization for dynamic graph embedding. In
ICDM, 2020.

M. Yin and M. Zhou. Semi-implicit variational inference. In ICML, 2018.

Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

J. You, T. Du, and J. Leskovec. ROLAND: graph learning framework for dynamic graphs. In ACM SIGKDD,
2022.

B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: A deep learning framework for
traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. NeurIPS, 2018.

D. Zhou, L. Zheng, J. Han, and J. He. A data-driven graph generative model for temporal interaction
networks. In ACM SIGKDD, pp. 401–411, 2020.

H. Zhou, D. Zheng, I. Nisa, V. Ioannidis, X. Song, and G. Karypis. TGL: A general framework for temporal
GNN training on billion-scale graphs. arXiv preprint arXiv:2203.14883, 2022.

L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. Dynamic network embedding by modeling triadic closure
process. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

16


	Introduction
	Temporal Graphs
	Representation of temporal graphs

	Learning tasks on temporal graphs
	Learning settings
	Supervised learning tasks
	Classification
	Regression
	Link prediction

	Unsupervised learning tasks
	Clustering
	Low-dimensional embedding (LDE)


	A taxonomy of TGNNs
	Snapshot-based models
	Model Evolution methods
	Embedding Evolution methods

	Event-based models
	Temporal Embedding methods
	Temporal Neighborhood methods


	Open challenges
	Conclusion

