
Medical Imaging with Deep Learning – Under Review 2022 Short Paper – MIDL 2022 submission

Anatomically Constrained Semi-supervised Learning for
Echocardiography Segmentation

Thierry Judge thierry.judge@usherbrooke.ca

Arnaud Judge arnaud.judge@usherbrooke.ca

Pierre-Marc Jodoin pierre-marc.jodoin@usherbrooke.ca

Department of Computer Science, University of Sherbrooke, Sherbrooke, QC, Canada

Editors: Under Review for MIDL 2022

Abstract

Deep convolutional neural networks (CNNs) have had great success for medical imaging
segmentation. Many methods attained nearly perfect Dice scores, sometimes within inter-
expert variability. However, CNNs require large amounts of labeled data and are not
immune to producing anatomically implausible results, especially when applied to ultra-
sound images. In this paper, we propose a method that tackles both of these problems
simultaneously. Our method optimizes anatomical segmentation metrics on both labeled
and unlabeled data using a training scheme analogous to adversarial training. Our method
allows the optimization of several hand-made non-differentiable metrics for any segmenta-
tion model and drastically reduces the number of anatomical errors. The code is available
at https://github.com/ThierryJudge/anatomically-constrained-ssl.
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1. Introduction

Convolutional neural networks (CNNs) are the go-to solution for echocardiography segmen-
tation capable of producing results within inter-expert variability (Leclerc et al., 2019).
They however required large amounts of labeled data and are prone to making predictions
that are not consistent with the underlying anatomy. These anatomical errors often hinder
the credibility that neural networks may have in clinical practice. Recently, (Painchaud
et al., 2020) have shown to what extent these errors occur in state-of-the-art segmentation
methods. While their post-processing method can scrub out anatomical errors, it nonethe-
less requires a large number of labeled images and constitutes a non-negligible processing
overhead which raises questions regarding its real-life usability.

Techniques for enforcing anatomical constraints are essential, especially when little la-
beled data is available. In this paper, we propose a novel training method to directly op-
timize non-differentiable anatomical metrics and leverage them to enforce anatomical prior
for both labeled and unlabeled data. We do so by using a classification neural net whose
back-propagated gradients emulate those that would have been produced by an anatomical
loss. We also show that by its very nature, our method adapts to partly annotated data and
show that adding unannotated data further improves results. The system is also trained on
a scheme that prevents from falling into class imbalance problems.
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Figure 1: a) Illustration of the proposed method. b) Examples of predictions for different
methods. Anatomical errors are indicated with red arrows.

2. Method

Lets consider Dl = {(x(1)l , y
(1)
l ), ..., (x

(n)
l , y

(n)
l )}, where x ∈ ℜC×H×W is an input image, y ∈

{0, 1}K×H×W a ground truth segmentation map, and Gθ(x) : ℜC×H×W → {0, 1}K×H×W a
segmentation network trained with a loss function Lsup(x, y). While segmentation networks
generalize well, they offer no anatomical guarantee what so ever.

At the core of our method is an anatomical constraint function based on 12 anatomical
criteria (region connections, sizes, concavities, etc.) outlined in (Painchaud et al., 2020).
This function f(y) : {0, 1}K×H×W → {0, 1} returns 0 when the segmentation map y is
anatomically invalid (i.e. whenever it violates at least one anatomical criterion) and 1 when
every criterion is satisfied.

Since the constraint function is non-differentiable, one cannot use it as a loss function.
As a workaround, a follow up network Dϕ(y) : [0, 1]K×H×W → [0, 1] is used to emulate
it. As shown in Figure 1, Dϕ(y) predicts if the input segmentation map y is anatomically
valid or not. Since the system is trained end-to-end, the back-propagated gradients force
the segmentation network to learn anatomical concepts better adapted to the task at hand
than those a network gets to learn when trained solely with a Dice or a cross-entropy loss.

Since f(y) does not rely on groundtruth data, one can use unlabeled sets of data Du =

{x(1)u , x
(2)
u , ..., x

(m)
u } to train both networks. This results in the following loss equations:

LG(θ) =
∑
Dl

Lsup(x
(i)
l , y

(i)
l )− λ1 log (Dϕ(Gθ(x

(i)
l ))− λ2

∑
Du

log (Dϕ(Gθ(x
(i)
u )) (1)

LD(ϕ) = −
∑

Dl+Du

f(Gθ(x
(i))) log (Dϕ(Gθ(x

(i)))) + (1− f(Gθ(x
(i)))) log (1−Dϕ(Gθ(x

(i)))) (2)

with λ1 = 0.025 and λ2 = 0.01. As the discriminator is trained on samples generated by Gθ(x),
there is a high chance of class imbalance with respect to the valid and in-valid segmentations. To
alleviate this problem, we use a replay buffer in which is saved an equal number of valid and in-valid
samples at every step. The discriminator is trained with batches made of samples randomly selected
from the buffer.
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Figure 2: Dice and number of anatomically erroneous samples in the test set (200 samples).
Methods trained on datasets containing 5% to 100% of the full training set labels.

3. Results

We trained and tested our method on the CAMUS (Leclerc et al., 2019) dataset which contains
cardiac ultrasound images of 500 patients. The left ventricle, myocardium and left atrium are
manually labeled for end-diastolic and end-systolic instants for both the 2D four-chamber and two-
chamber apical views.

A standard Enet (Paszke et al., 2016) trained with a batch size of 32 was used for all methods.
We trained a baseline Enet with a combination of Dice and cross-entropy loss using a constant
learning rate of 0.001 with weight decay of 1e-4. We tested our method with labeled data (Dl) and
with labeled+unlabeled data (Dl + Du). Gθ was initialized with the baseline weights and Dϕ was
pre-trained for 1000 steps to help it better converge. Results in Figure 2 show an increase in Dice
score when a small amount of labeled data is used to train the system and, most importantly, an
important decrease in the number of anatomical errors. The decrease is even more drastic when
unlabeled images are included.

4. Conclusion

In this paper, we proposed a novel method for optimizing a non-differentiable anatomical prior. As
the computation of the anatomical prior does not require the ground truth, our method is suitable
for semi-supervised learning.

We show that our method drastically reduces the number of anatomical errors in the test set
predictions without requiring any post-processing. We also show that our method improves the dice
score as a result of the regularization induced by the anatomical constraints.

Acknowledgments

This work was funded by the NSERC Graduate Scholarships – Master’s program, the NSERC
Discovery Grant and by MITACS Accelerate.

References

Sarah Leclerc et al. Deep learning for segmentation using an open large-scale dataset in 2d echocar-
diography. IEEE Transactions on Medical Imaging, 38(9):2198–2210, 2019.

Nathan Painchaud et al. Cardiac segmentation with strong anatomical guarantees. IEEE Transac-
tions on Medical Imaging, 39(11):3703–3713, 2020.

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet: A Deep Neural Network Architecture
for Real-Time Semantic Segmentation. In arXiv:1606.02147, 2016.

3


	Introduction
	Method
	Results
	Conclusion

