
Beyond Fine-Tuning:
Transferring Behavior in Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Designing agents that acquire knowledge autonomously and use it to solve new1

tasks efficiently is an important challenge in reinforcement learning. Knowledge2

acquired during an unsupervised pre-training phase is often transferred by fine-3

tuning neural network weights once rewards are exposed, as is common practice4

in supervised domains. Given the nature of the reinforcement learning problem,5

we argue that standard fine-tuning strategies alone are not enough for efficient6

transfer in challenging domains. We introduce Behavior Transfer (BT), a technique7

that leverages pre-trained policies for exploration and that is complementary to8

transferring neural network weights. Our experiments show that, when combined9

with large-scale pre-training in the absence of rewards, existing intrinsic motivation10

objectives can lead to the emergence of complex behaviors. These pre-trained11

policies can then be leveraged by BT to discover better solutions than without12

pre-training, and combining BT with standard fine-tuning strategies results in13

additional benefits. The largest gains are generally observed in domains requiring14

structured exploration, including settings where the behavior of the pre-trained15

policies is misaligned with the downstream task.16

1 Introduction17

Transfer in deep learning is often performed through parameter initialization followed by fine-tuning,18

a technique that allows to leverage the power of deep networks in domains where labelled data19

is scarce [60, 16, 61, 22, 15]. This builds on the intuition that the pre-trained model will map20

inputs to a feature space where the downstream task is easy to perform. When combined with21

methods that can leverage massive amounts of unlabelled data for pre-training, this transfer strategy22

has led to unprecedented results in domains like computer vision [31, 30] and natural language23

processing [15, 50]. The success of these approaches has led to an ever-growing interest in developing24

techniques for pre-training large scale models on unlabelled data [9, 13, 24].25

In the reinforcement learning (RL) context, unsupervised methods that learn in the absence of reward26

have also garnered much research attention [23, 21, 46, 19, 29]. The benefits of unsupervised pre-27

training are typically evaluated by their ability to enable efficient transfer to previously unseen reward28

functions [28]. In spite of their different approaches to unsupervised RL, most of the top-performing29

methods in this setting transfer knowledge through neural network weights. Such approaches deal30

with the data inefficiency associated to training neural networks with gradient descent, similarly to31

what is done in supervised learning, e.g. by pre-training encoders that extract representations from32

observations [59]. However, RL introduces a challenge that is not present in supervised learning: the33

agent is responsible for collecting the right data to learn from. This introduces a second source of34

inefficiency from which transfer approaches can also suffer if they rely on unstructured exploration35

strategies after pre-training, as these can lead to exponentially larger data requirements in complex36
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Figure 1: Comparison of transfer strategies on Montezuma’s Revenge and Defender after pre-training
a policy with NGU [48] in the absence of reward. The benefits of our proposed approach to leverage
pre-trained behavior for exploration, Behavior Transfer (BT), are complementary to the gains provided
by pre-trained weight initialization followed by fine-tuning.

downstream environments [45, 44]. To address this problem, one could consider fine-tuning policies37

that produce meaningful behavior [43, 52], but this approach quickly disregards the pre-trained38

behavior when learning in the downstream task due to catastrophic forgetting.39

In this work, we explicitly separate the transfer of behaviour and weights. We propose to make40

use of the pre-trained behaviour itself (i.e., the pre-trained policy mapping from observations to41

actions) in contrast to pre-trained neural network weights for further fine-tuning. While pre-trained42

behavior has been used before for exploitation [5, 56, 2, 3], our approach employs pre-trained policies43

to aid with exploration as well to collect experience that can be leveraged via off-policy learning.44

This strategy accelerates learning, as the agent is exposed to potentially useful experience earlier in45

training, without compromising the quality of the discovered solution when the pre-trained behavior46

is not aligned with the downstream task. We expose the pre-trained behaviour to the downstream47

agent in two ways: firstly, as an extra exploratory strategy that, when randomly activated, persists for48

a number of steps, and secondly as an additional pseudo-action for the learned value function where49

the agent may elect to defer action selection to the pre-trained policy instead of choosing itself. We50

call this approach Behavior Transfer (BT).51

Defining unsupervised RL objectives remains an open problem, and solutions are generally influenced52

by how the acquired knowledge will be used for solving downstream tasks. Instead of proposing yet53

another objective for unsupervised pre-training, we turn to existing techniques for training policies in54

the absence of reward and make our choice based on two general requirements. First, the objective55

should scale gracefully with increased compute and data. This has been key for the success of56

self-supervised approaches in other domains [9, 35], and we argue that it is an important property for57

unsupervised RL as well. Second, the pre-training stage should return a policy that produces complex58

behavior that may be leveraged in a subsequent transfer stage. The Never Give Up (NGU) [48]59

intrinsic reward meets both requirements, and our experiments show that large-scale pre-training with60

this objective leads to state of the art scores in the reward-free Atari benchmark.61

Figure 1 exemplifies our main findings. We pre-train behaviour using the intrinsic NGU reward during62

a long unsupervised phase without rewards. This gives rise to exploratory behaviors that seek to visit63

many different states throughout an episode, and we then compare different strategies for leveraging64

the acquired knowledge once rewards are reinstated. While fine-tuning the pre-trained weights65

enables faster learning, the exploratory behavior of the pre-trained policy is quickly disregarded as it66

is exposed to rewards. On the other hand, Behavior Transfer (BT) does not modify the pre-trained67

policy while learning in the new task and is able to achieve higher end scores thanks to better68

exploration. These two strategies are not mutually exclusive, and BT also benefits from the faster69

convergence provided by initializing neural networks with pre-trained weights when these encode70

useful information for solving the downstream task.71

Our contributions can be summarized as follows. (1) We propose Behavior Transfer (BT), a technique72

that leverages pre-trained policies for exploration by treating them as black boxes that are not modified73

during learning on the downstream task. BT uses the pre-trained policy to collect experience in74

two ways, namely randomly-triggered temporally-extended exploration and one-step calls based on75

value estimates. (2) Our experiments show that large-scale unsupervised pre-training with existing76

intrinsic rewards can produce meaningful behavior, achieving state of the art results in the reward-free77

Atari benchmark. These results suggest that scale is key for unsupervised RL, akin to what has been78

observed in supervised settings. (3) We provide extensive empirical evidence demonstrating the79
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benefits of leveraging pre-trained behavior via BT. Our approach obtains the largest gains in hard80

exploration games, where it almost doubles the median human normalized score achieved by our81

strongest baseline. Furthermore, we show that BT is able to leverage a single task-agnostic policy82

to solve multiple tasks in the same environment and to achieve high performance even when the83

pre-trained policies are misaligned with the task being solved. (4) BT brings benefits to the table84

that are complementary to those provided by reusing pre-trained neural network weights, and we85

empirically show that combining these two strategies can result in larger gains.86

2 Preliminaries87

The interaction between the agent and the environment is modelled as a Markov Decission Pro-88

cess (MDP) [49]. An MDP is defined by the tuple (S,A, P, d0, R, γ) where S and A are the state89

and action spaces, P (s′|s, a) is the probability of transitioning from state s to s′ after taking action a,90

d0(s) is the probability distribution over initial states, R : S ×A× S −→ R is the reward function,91

and γ ∈ [0, 1) is the discount factor. The goal is to find a policy π(a|s) that maximizes the expected92

return, Gt =
∑∞
t=0 γ

tRt, where Rt = r(St, At, St+1). A principled way to address this problem93

is to use methods that compute action-value functions, Qπ(s, a) = Eπ [Gt|St = s,At = a], where94

Eπ[·] denotes expectation over transitions induced by π [49].95

We consider a setting where the agent is allowed to first learn within an MDP without rewards,96

MR = (S,A, P, d0), for a long period of time. The knowledge acquired during the reward-free97

stage is later leveraged when maximizing reward in new MDPs that share the same underlying98

dynamics but have different reward functions,Mi = (S,A, P, d0, Ri, γi). Interactions between the99

agent and the environment are often assumed to incur a cost, but we will consider this cost to be100

relevant only for transitions with reward [28]. Even if the cost of unsupervised pre-training becomes101

non-negligible, it can be amortized when the acquired task-agnostic knowledge is leveraged to solve102

multiple tasks efficiently [15, 9]. Indeed, we would expect this transfer setting to become more103

relevant as the community moves towards more complex environments, where one may want to104

train agents to maximize multiple reward functions under constant dynamics. In the limit, one could105

consider the real world: it has constant or slowly changing dynamics, and humans are able to leverage106

previously acquired skills to quickly master new tasks.107

3 Behavior Transfer108

Transfer in supervised domains often exploits the fact that related tasks might be solved using similar109

representations. This practice deals with the data inefficiency of training large neural networks110

with stochastic gradient descent. However, there is an additional source of data inefficiency when111

training RL agents: unstructured exploration. Fine-tuning a pre-trained exploratory policy arises as112

a potential strategy for overcoming this problem, as the agent will observe rich experience much113

earlier in training than when initializing the policy randomly, but this approach suffers from important114

limitations. Learning in the downstream task can lead to catastrophically forgetting the pre-trained115

policy, thus prematurely disregarding its exploratory behavior. Moreover, the same neural network116

architecture needs to be used for both the pre-trained and the downstream policies, which in practice117

also imposes a limitation on the type of RL methods that can be employed in the adaptation stage (for118

instance, if the pre-trained policy was trained using a policy-based method, it might not be possible119

to fine-tune it using a value-based approach).120

Let us assume that we have access to a pre-trained policy that exhibits exploratory behavior, and121

defer the discussion on how to train this policy to Section 4. Following such a policy might bring122

the agent to states that are unlikely to be visited with unstructured exploration techniques such as123

ε-greedy [55]. This property has the potential of accelerating learning even when the behavior of124

the pre-trained policy is not aligned with the downstream task, as it will effectively shorten the125

path between otherwise distant states [41]. Leveraging pre-trained policies for exploration differs126

from other approaches in the literature that use such policies directly for exploitation, e.g. via127

zero-shot transfer [19], methods that define a higher-level policy that alternates between the given128

policies [5, 56], or within the framework of generalized policy updates [4]. Exploring with pre-trained129

policies can accelerate convergence by providing useful experience to the agent, which is possible130

even when the pre-training and downstream tasks are misaligned. However, strategies that directly131

use the pre-trained policies for exploitation may result in sub-optimal solutions in such scenario [2].132
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We propose to leverage the behavior of pre-trained policies during transfer to aid with exploration. An133

explicit distinction between behavior and representation is made by considering pre-trained policies as134

black boxes that take observations and return actions. This strategy is agnostic to how the pre-trained135

behavior is encoded and is not restricted to learned policies. We rely on off-policy learning methods136

during transfer to leverage the behavior of a pre-trained policy πp(a|s). We keep πp fixed during137

transfer, which prevents catastrophic forgetting of the original behavior when it is parameterized by a138

neural network (i.e., we instantiate and train a new policy with its own set of parameters). We propose139

Behavior Transfer (BT), which leverages two complementary strategies to achieve this. Since BT140

is agnostic to the method used to pre-train policies, BT (πp) refers to behavior being transferred141

from policy πp. We formalize BT in the context of value-based Q-learning agents, although similar142

derivations are in principle possible for alternative off-policy learning methods. Pseudo-code for BT143

is provided in Algorithm 1.144

Temporally-extended exploration. We draw inspiration from Lévy flights [57], a class of ecological145

models for animal foraging, where a fixed direction is followed for a duration sampled from a146

heavy-tailed distribution. This principle was implemented in the context of exploration in RL by147

εz-greedy [14], which encodes the notion of direction in the environment via exploration options that148

repeat the same action throughout the entire flight. Since πp is more likely to encode a meaningful149

notion of direction in complex environments than action repeats, we propose a variant of εz-greedy150

where πp is used as the exploration option. An exploratory flight might be started at any step with151

some probability. The duration for the flight is sampled from a heavy-tailed distribution (Zeta with152

µ = 2 in all our experiments), and control is handed over to πp during the complete flight. When not153

in a flight, actions are sampled from the behavior policy obtained while maximizing the task reward154

(e.g. an ε-greedy derived from the estimated Q values).155

Extra action. The previous approach switches to πp during experience collection blindly, and we156

now consider an alternative strategy for triggering these switches based on value. This can be easily157

implemented through an extra action which samples an action from πp, which also allows the agent to158

use the pre-trained policy at test time if deemed beneficial. More formally, this amounts to training a159

policy over an expanded action setA+ = A∪{a+}, where a+ is resolved by sampling an action from160

πp, a′ ∼ πp(s) (with a′ ∈ A). The additional action can be seen as an option that can be initiated161

from any state and always terminates after a single step. Note that selecting the option will lead to162

the same outcome as if the agent had selected a′ as a primitive action, and we take advantage of this163

observation by using the return of following the option as target to fit both Q(s, πp(s)) and Q(s, a′).164

Intuitively, this approach induces a bias that favours actions selected by πp, accelerating the collection165

of rewarding transitions when the pre-trained policy is somewhat aligned with the downstream task.166

Otherwise, the agent can learn to ignore πp as training progresses by selecting other actions.167

Algorithm 1: Experience collection pseudo-code for BT
Input: Action set, A; additional action, a+; extended action set, A+ = A ∪ {a+}; pre-trained

policy, πp; Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A+; probability of
taking an exploratory action, ε; probability of starting a flight, εlevy; flight length
distribution, D(N)

while True do
n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then n ∼ D(N) // sample flight length
if n > 0 then

n←− n− 1
a ∼ πp(s)

else
if random() ≤ ε then a ∼ Uniform(A+) else a←− argmaxa′∈A+ [Qπ(s, a′)]
if a == a+ then a ∼ πp(s)

end
Take action a

end
end
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4 Reward-free pre-training168

It is a common practice to derive objectives for proxy tasks in order to drive learning in the absence169

of reward functions, and there exists a plethora of different approaches in the literature. Model-based170

approaches can learn world models from unsupervised interaction [26]. However, the diversity of171

the training data will impact the accuracy of the model [53] and deploying this type of approach172

in visually complex domains like Atari remains an open problem [27]. Unsupervised RL has also173

been explored through the lens of empowerment [51, 42], which studies agents that aim to discover174

intrinsic options [23, 19]. While these options can be leveraged by hierarchical agents [21] or175

integrated within the universal successor features framework [2, 3, 8, 28], their potential lack of176

coverage generally limits their applicability to complex downstream tasks [12]. An alternative177

objective is that of exploring the environment by finding policies that induce maximally entropic state178

distributions [29, 39], although this might become extremely inefficient in high-dimensional state179

spaces without proper priors [40, 59].180

Recall that our goal is to devise a pre-training objective that can help reduce the amount of interaction181

needed by the agent to collect relevant experience when learning in a downstream task. We argue that182

such objective needs to meet two requirements. First, as suggested by results in other domains [9, 35],183

it should scale gracefully as the amount of compute and experience used for pre-training are increased.184

This contrasts with the training regimes used in most unsupervised RL approaches, which use a185

relatively small amount of experience [28, 40, 59] when compared to distributed agents that do make186

use of rewards [33, 18, 36]. Second, it must encourage the emergence of complex behaviors such as187

navigation or manipulation skills. It has been argued that exploring the environment efficiently will188

serve as a proxy for developing such behaviors [37], and exploration bonuses have been shown to189

produce meaningful behavior in the absence of reward [46, 10]. However, many exploration bonuses190

vanish over the course of training and thus may not be well-suited for a long unsupervised pre-training191

phase. It can be shown that many intrinsic rewards aim at maximizing the entropy of all states visited192

during training, and so the final policy does not necessarily exhibit exploratory behavior [39].193

We propose to use Never Give Up (NGU) [48] as a means for training exploratory policies in an194

unsupervised setting. The NGU intrinsic reward proposes a curiosity-driven approach for training195

persistent exploratory policies which combines per-episode and life-long novelty. The per-episode196

novelty, repisodic
t , rapidly vanishes over the course of an episode, and it is designed to encourage self-197

avoiding trajectories. It is computed by comparing a representation of the current observation, f(st),198

to those of all the observations visited in the current episode, M = {f(s0), f(s1), . . . , f(st−1)},199

where f : S → Rp is an embedding function trained using a self-supervised inverse dynamics200

model [46]. Such a mapping concentrates on the controllable aspects of the environment, ignoring201

all the variability present in the observation that is not affected by the action taken by the agent.202

The life-long novelty, αt, slowly vanishes throughout training, and it is computed by using Random203

Network Distillation (RND) [11]. With this, the intrinsic reward rNGU
t is defined as follows:204

rNGU
t = repisodic

t ·min {max {αt, 1} , L} , with repisodic
t =

1√∑
f(si)∈Nk

K(f(st), f(si)) + c
(1)

where L is a fixed maximum reward scaling, Nk is the set containing the k-nearest neighbors of f(st)205

in M , c is a constant and K : Rp × Rp → R+ is a kernel function satisfying K(x, x) = 1 (which206

can be thought of as approximating pseudo-counts [48]). The episodic component of the reward207

in Equation 1 is reset by emptying M with each episode, thus the NGU reward does not vanish208

throughout the training process. This makes it suitable for driving learning in task-agnostic settings.209

Further details on NGU are reported in the supplementary material.210

5 Experiments211

Agents are evaluated in the Atari suite [7], a benchmark that presents a variety of challenges and that212

is a common test ground for RL agents with unsupervised pre-training [28, 40, 52]. Experiments are213

run using the distributed R2D2 agent [36] with 256 CPU actors and a single GPU learner. Policies214

use the same Q-Network architecture as Agent57 [47], which is composed by a convolutional torso215

followed by an LSTM [32] and a dueling head [58]. Hyperparameters and a detailed description of216

the full distributed setting are provided in the supplementary material. All reported results are the217

average over three random seeds.218
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Reward-free learning. The amount of task reward collected by unsupervised policies is often219

used as a proxy to measure their quality [19]. While the actual utility of these policies will not220

be revealed until they are leveraged for transfer, this proxy lets us evaluate whether the discovered221

behavior changes as longer pre-training budgets are allowed. We compare unsupervised NGU policies222

against VISR [28] and APT [40], which utilize a small amount of supervised interaction to adapt223

the pre-trained policies. We also consider two additional unsupervised baselines: (i) a constant224

positive reward at each timestep that favours long episodes, which correlate with high scores in some225

games [10], and (ii) RND [11], which rewards life-long novelty. Note that the RND reward vanishes,226

but we include it in our analysis because it was previously used by Burda et al. [10] in this setting227

and implementation choices such as reward normalization may prevent it from fading in practice.228

Figure 2 (left) shows how the zero-shot transfer performance of unsupervised policies evolves during229

a long pre-training phase. NGU reaches the highest scores, but both NGU and RND eventually230

outperform VISR and APT even though these used supervised interaction. In Table 2 of Appendix231

C we show that unsupervised NGU policies largely outperform several other baselines using the232

standard pre-training and adaptation setting. These results highlight the importance of large-scale233

unsupervised pre-training in RL, similarly to the trend observed in supervised domains [9].234
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Figure 2: Performance as a function of the pre-training budget. @N represents the number of frames
with reward utilized for transfer. (Left) Median human normalized score across the 57 games in the
Atari suite. We observe the emergence of useful behavior when optimizing an intrinsic reward during
a long unsupervised pre-training of 16B frames, which contrasts with the shorter pre-training of 1B
frames in previous works [28, 40]. (Right) Scores in the games of Montezuma’s Revenge (sparse
rewards) and Pong (dense reward), before and after transfer, as a function of the pre-training budget.
A longer pre-training benefits transfer in hard exploration games even if the zero-shot transfer score
of the unsupervised policies does not increase.

Transfer setting. Transfer approaches are typically evaluated in the Atari benchmark with a budget235

of 100k RL interactions with reward (400k frames), but we propose to allow a longer adaptation236

phase. Randomly initialized networks tend to overfit in these very low data regimes without strong237

regularization [38], and we are interested in studying the impact of leveraging behavior both in238

isolation and combined with transfer via pre-trained weights. Moreover, since the pre-trained policies239

are already competent in the downstream tasks, 100k interactions are exhausted after few episodes240

and may be insufficient for improving performance. For these reasons, we provide results with up241

to 1.25B RL steps of supervised interaction (5B frames). This allows evaluating both convergence242

speed and asymptotic performance, while still being a relatively small budget for these distributed243

agents with hundreds of actors [47].244

Transfer via behavior. We start by studying the impact of leveraging behavior in isolation, i.e. with-245

out transferring pre-trained weights, when learning in downstream tasks. We compare BT against two246

baselines that do not use pre-trained behavior, namely the standard R2D2 agent [36] that uses ε-greedy247

policies for exploration [55], as well as a variant of R2D2 with εz-greedy exploration [14]. Figure 3248

shows that BT is superior to both baselines for any amount of environment interaction with rewards,249

converging faster early in training and also obtaining higher asymptotic performance. These results250

also demonstrate the generality of the proposed approach, as it is able to benefit from both RND251

and NGU policies. Note that BT performs particularly well in the set of six hard exploration games1252

defined by Bellemare et al. [6], which is aligned with our intuition that reusing behavior helps over-253

coming the inefficiency associated to unstructured exploration. Figure 2 (right) confirms that a long254

pre-training phase is especially important in hard exploration games such as Montezuma’s Revenge,255

even it they do not translate into higher zero-shot transfer scores, as it produces more exploratory be-256

havior. On the other hand, the performance after transfer is independent of the amount of pre-training257

in dense reward games like Pong, where unstructured exploration is enough to reach optimal scores.258

1gravitar, montezuma_revenge, pitfall, private_eye, solaris, venture
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in which it is selected by the agent. The usage peaks early in training and slowly decreases afterwards
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Ablation studies. In order to gain insight on each of the components in BT, we run experiments259

on a subset of 12 games2 requiring different amounts of exploration and featuring both dense and260

sparse rewards. BT(πNGU) achieves a median score of 368 in this subset, which compares favorably261

to the 196 median score of R2D2 with ε-greedy exploration. Removing either the extra action or262

the temporally-extended exploration reduces the median score of BT(πNGU) to 224. These results263

suggest that the gains provided by both strategies are complementary, and both are responsible for the264

strong performance of BT. To provide further insight about the benefits of BT, Figure 4 reports the265

fraction of steps per episode in which the extra action is selected by the greedy policy. It hints at the266

emergence of a schedule over the usage of the pre-trained policy, which increases early in training267

and decays afterwards. We hypothesize that this is due to the fact that the unsupervised policies268

obtain large episodic returns, but their behavior is suboptimal when maximizing discounted rewards.269

These policies take many exploratory actions in between rewards, and so the agent eventually figures270

out more efficient strategies for reaching rewarding states by using primitive actions.271

Transfer to multiple tasks. An appealing property of task-agnostic knowledge is that it can be272

leveraged to solve multiple tasks. In the RL setting, this can be evaluated by leveraging a single273

task-agnostic policy for solving multiple tasks (i.e. reward functions) in the same environment. We274

evaluate whether the unsupervised NGU policies can be useful beyond the standard Atari tasks by275

creating two alternative versions of Ms Pacman and Hero with different levels of difficulty. The276

goal in the modified version of Ms Pacman is to eat vulnerable ghosts, with pac-dots giving 0 (easy277

version) or −10 (hard version) points. In the modified version of Hero, saving miners gives a fixed278

return of 1000 points and dynamiting walls gives either 0 (easy version) or−300 (hard version) points.279

The rest of rewards are removed, e.g. eating fruit in Ms Pacman or the bonus for unused power units280

in Hero. Note that even in the easy version of the games exploration is harder than in their original281

counterparts, as there are no small rewards guiding the agent towards its goals. Exploration is even282

more challenging in the hard version of the games, as the intermediate rewards work as a deceptive283

signal that takes the agent away from its actual goal. In this case, finding rewarding behaviors requires284

a stronger commitment to an exploration strategy. Unsupervised NGU policies often achieve very low285

or even negative rewards in this setting, which contrasts with the strong performance they showed286

when evaluated under the standard game reward. Figure 5 shows that leveraging the behavior of287

pre-trained exploration policies provides important gains even in this adversarial scenario. These288

results suggest that the strong performance observed under the standard game rewards is not due to an289

2Obtained by combining games used to tune hyperparameters in [28] with games where εz-greedy pro-
vides clear gains over ε-greedy as per [14]: asterix, bank_heist, frostbite, gravitar, jamesbond,
montezuma_revenge, ms_pacman, pong, private_eye, space_invaders, tennis, up_n_down.

7



0

5 k

10 k

MsPacman

0

5 k

10 k
MsPacman: eating ghosts (easy)

0

5 k

10 k
MsPacman: eating ghosts (hard)

Without rewards
NGU (reward-free)

With rewards
R2D2
R2D2 + z-greedy
R2D2 + BT( NGU)

0 1 B 2 B 3 B 4 B 5 B
0

20 k

40 k

Hero

0 1 B 2 B 3 B 4 B 5 B
0

2 k

4 k

Hero: rescuing miners (easy)

0 1 B 2 B 3 B 4 B 5 B

0

2 k

4 k

Hero: rescuing miners (hard)

Figure 5: Scores in Atari games with modified reward functions. We train a single task-agnostic
policy per environment, and leverage it to solve three different tasks: the standard game reward, a
task with sparse rewards (easy), and a variant of the same task with deceptive rewards (hard).

alignment between the NGU reward and the game goals, but due to an efficient usage of pre-trained290

exploration policies.291

Combining pre-trained behavior and weights. Our last batch of experiments focuses on studying292

transfer via pre-trained weights and its compatibility with BT. Policies are composed of a convo-293

lutional torso, an LSTM, and a dueling head. We consider two initialization strategies: a partial294

initialization approach that loads the torso and the LSTM, but initializes the head randomly; and a295

full initialization scheme where all weights are loaded. The former can be understood as transferring296

learned representations [59], but deferring exploration to a random policy. On the other hand, the297

full initialization approach can be seen as directly transferring the policy and is usually referred to as298

fine-tuning the pre-trained policy [43, 40, 52]. Note that these approaches only change how weights299

are initialized before training. As in previous experiments, all parameters in the new policy are trained300

and πp is kept fixed when using BT. Figure 6 (top) compares agents with and without BT for different301

amounts of transfer via weights on the Atari benchmark. Loading pre-trained weights results in faster302

learning early in training, both with and without BT. The largest gains are observed in dense reward303

games, which translates into higher median scores across the full suite because most games belong304

to this category. Weights alone are not enough in hard exploration games, where leveraging the305

pre-trained policy via BT provides clear benefits. Perhaps surprisingly, we observe that transferring306

representations outperforms fine-tuning the pre-trained policy, and we hypothesize that the former307

is more robust to misalignments between the pre-trained policy and the downstream task. This308

intuition is further supported by the experiments on games with modified reward functions reported309

in Figure 6 (middle & bottom), where the faster learning provided by pre-trained weights often comes310

at the cost of lower end scores. On the other hand, BT is crucial in tasks with sparse and deceptive311

rewards and also benefits from pre-trained weights in tasks where positive transfer is observed.312

6 Related work313

Our work uses the experimental methodology presented by Hansen et al. [28]. Whereas that work only314

considered a fast, simplified adaptation process that limited the final performance on the downstream315

task, we focus on the more general case of using a previously trained policy to aid in solving the316

full RL problem. Hansen et al. [28] use successor features to identify which of the pre-trained tasks317

best matches the true reward structure, which has previously been shown to work well for multi-task318

transfer [3]. Bagot et al. [1] augments an agent with the ability to utilize another policy, which is319

learned in tandem based on an intrinsic reward function. This promising direction is complementary320

to our work, as it handles the case wherein there is no unsupervised pre-training phase.321

Gupta et al. [25] provides an alternative method to meta-learn a solver for reinforcement learning prob-322

lems from unsupervised reward functions. This method utilizes gradient-based meta-learning [20],323

which makes the adaptation process standard reinforcement learning updates. This means that even if324

the downstream reward is far outside of the training distribution, final performance would not neces-325

sarily be affected. However, these methods are hard to scale to the larger networks considered here,326

and followup work [34] changed to memory-based meta-learning [17] which relies on information327

about rewards staying in the recurrent state. This makes it unsuitable to the sort of hard exploration328

problem our method excels at. Recent work has shown success in transferring representations learned329

in an unsupervised setting to reinforcement learning tasks [54]. Our representation transfer experi-330
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Figure 6: Performance of R2D2-based agents with different amounts of transfer via weights. Policies
are composed of a CNN encoder followed by an LSTM and a dueling head. We compare training
from scratch, loading all weights (Full πNGU init) or all weights except those in the dueling head
(Partial πNGU init). (Top) Median human normalized scores (HNS) in the full Atari suite (left) and
the subset of hard exploration games (right). (Middle & Bottom) Games with modified reward
functions as in Figure 5.

ments suggest that this might handicap final performance, but the possibility also exists that different331

unsupervised objectives should be used for representation transfer and policy transfer.332

7 Discussion333

We studied the problem of transferring pre-trained behavior for exploration in reinforcement learning,334

an approach that is complementary to the common practice of transferring neural network weights.335

Our proposed approach, Behavior Transfer (BT), relies on the pre-trained policy for collecting336

experience in two different ways: (i) through temporally-extended exploration, which can be triggered337

with some probability at any step, and (ii) via one-step calls to the pre-trained policy based on value338

estimates. BT results in strong transfer performance when combined with exploratory policies pre-339

trained in the absence of reward, with the most important gains being observed in hard exploration340

tasks. These benefits are not due to an alignment between our pre-training and downstream tasks,341

as we also observed positive transfer in games where the pre-trained policy obtained low scores.342

In order to provide further evidence for this claim, we designed alternative tasks for Atari games343

involving hard exploration and deceptive rewards. Our transfer strategy outperformed all considered344

baselines in these settings, even when the pre-trained policy obtained very low or even negative scores,345

demonstrating the generality of the method. Besides disambiguating the role of the alignment between346

pre-training and downstream tasks, these experiments demonstrate the utility of a single task-agnostic347

policy for solving multiple tasks in the same environment. Finally, we also demonstrated that BT can348

be combined with transfer via neural network weights to provide further gains.349

Our experimental results highlight the importance of scale when training RL agents in reward-free350

settings, which is one of the key factors behind the recent success of unsupervised approaches in other351

domains. This contrasts with the small budgets considered for reward-free RL in previous works and352

motivates further research in unsupervised RL approaches that scale with increased data and compute.353

We argue that scale is one of the missing components in reward-free RL, and it will be a necessary354

condition to unfold its full potential. Beyond improving the unsupervised learning phase, we are also355

excited about the possibilities unlocked by BT and that are not possible when transferring knowledge356

through weights, such as leveraging multiple pre-trained policies and deploying BT in continual357

learning scenarios where the agent never stops learning and keeps accumulating knowledge and skills.358

Future work should also study improved mechanisms for handing over control to pre-trained policies,359

as well as prioritizing the usage of certain behaviors over others when multiple such policies are360

available to the agent. This could overcome one of the current limitations of BT, which assumes that361

flights can be started from any state and still produce meaningful behavior.362
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