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Abstract

Understanding the similarity of the numerous released large language models
(LLMs) has many uses, e.g., simplifying model selection, detecting illegal model
reuse, and advancing our understanding of what makes LLMs perform well. In
this work, we measure the similarity of representations of a set of LLMs with 7B
parameters. Our results suggest that some LLMs are substantially different from
others.We identify challenges of using representational similarity measures that
suggest the need of careful study of similarity scores to avoid false conclusions.

1 Introduction

Numerous large language models (LLMs) with remarkable natural language understanding and
reasoning capabilities have been released in recent months (Yang et al., 2023; Zhao et al., 2023).
However, a comprehensive understanding of the differences between these models beyond archi-
tectures and benchmark performances is yet to be established. This is partly due to the inherent
challenges in LLMs’ explainability given their scale, their high demand for computational resources,
and the rising trend of proprietary models.

We argue that a thorough understanding of similarities and differences of LLMs is highly desirable:
it may help identify factors that make models perform well, clear up the generalizability of studies
of individual LLMs, simplify model selection, enhance our ability to ensure alignment of model
behavior with human goals, improve ensembling, benchmark models without labeled data, identify
(potentially illegal) model (re)use, and may aid certification of models, which could be required by
future regulation of AI.

LLM similarity can be studied from multiple perspectives, including functional similarity, i.e.,
whether they produce similar outputs, representational similarity, i.e., whether they have similar
internal representations, whether they have similar reliance on specific training data, or whether they
were trained in a similar manner. Methods for these perspectives have been proposed in prior work,
but often focus on non-sequence models (Klabunde et al., 2023) or do not scale to the size of LLMs
(Shah et al., 2023). In this work, we focus on representational similarity in the last layer as it implies
functional similarity, because the final layer has limited options to diverge functionally. Additionally,
it allows studying similarity of how outputs are generated.

Similarity of language models was studied to some extent (Wu et al., 2020; Ethayarajh, 2019), but
these works do not explore similarity of decoder-only models on the scale of recent LLMs, and
instead focus on smaller BERT-style models. As LLMs have developed at break-neck speed, analysis
of the similarity of LLMs is generally limited. Moreover, many novel tools to study the similarity of
representations have emerged relatively recently.

In this paper, we aim to make the first steps towards understanding similarity of LLMs in more detail:
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1. After discussing several options to compare LLMs, we outline how representational similar-
ity measures can be applied to LLMs (Sec. 2).

2. We present first empirical results regarding the representational similarity of a set of 7B
parameter models, offering a preliminary view into LLM similarity for commonsense
reasoning (Winogrande) and code generation (HumanEval) (Sec. 3).

3. We identify challenges of gaining a reliable picture of similarity of LLM representations
(Sec. 3).

Our code and data is publicly available (see Appendix D).

Related Work. Several works study representations of language models and make implicit
comparisons: how contextual they are (Ethayarajh, 2019), what interpretable concepts can be decoded
from them (Liu et al., 2019), or how models can communicate via representations (Moschella et al.,
2023). Wu et al. (2020); Abnar et al. (2019) explicitly compare representations between models.
However, these works have in common that they do not study the current generation of LLMs, and
instead focus on smaller models with different architectures like BERT (Devlin et al., 2019) or ELMo
(Peters et al., 2018). Similarity of these models was also studied from a functional perspective (McCoy
et al., 2020). As an exception, Gurnee et al. (2023) probe the recent Pythia models (Biderman et al.,
2023). Concurrent work (Yousefi et al., 2023) studies representations of modern LLMs. Performance
of LLMs is compared in many benchmarks (e.g., Srivastava et al., 2023).

2 Comparing Large Language Models

In this section, we discuss different ways to study similarity of LLMs and explain representational
similarity in more detail, which we focus on in our experiments.

Multitude of Comparison Approaches. There are multiple different approaches to comparing
LLMs and measuring their similarity. Five approaches are functional similarity, representational
similarity, weight similarity, similarity of training data attribution, and procedural similarity.

Functional similarity aims to compare the outputs of models (Klabunde et al., 2023). A common
approach is to compare performance, where performance similarity equates to model similarity.
However, performance alone only gives a partial view of functional similarity: benchmarks represent
only a sample of data and models may differ on individual predictions or subgroups of the data, which
may impact other functional aspects such as fairness. Hence, more facets of model function need to
be compared for a thorough understanding of functional similarity.

Representational similarity compares representations of different layers or models under consideration
of their symmetries, i.e., transformations of representations that keep them equivalent such as changing
neuron order (Klabunde et al., 2023). Studying weight similarity is a related perspective requiring
consideration of symmetries (Wang et al., 2022b). These approaches can identify cases where two
models can be functionally similar but produce the same output differently.

Training data attribution (e.g., Shah et al., 2023; Grosse et al., 2023) is an approach that identifies the
most relevant samples of the training data with respect to influencing the model towards a specific
output. From this perspective, models are similar if they have the same relevant training samples for
a specific prediction.

Finally, procedural similarity is one step removed from the model itself. It takes the perspective that
models are similar if the way they are produced is similar. This includes similarity of datasets used
for training, hyperparameters, and architecture (e.g., Zhao et al., 2023).

In this work, we focus on one perspective: representational similarity. In the following, we explain
how representational similarity measures can be applied to LLMs.

Representational Similarity. Let f (l) be the model that consists of the first l layers of the model
f . Then, given N inputs, their D-dimensional representations in layer l are given as R := R(l) =
f (l)(X) ∈ RN×D, where f (l) is applied row-wise on the inputs X . We denote the representations
R is compared to as R′ = f ′(l

′)(X). A representational similarity measure m(R,R′) then assigns
a similarity (or a dissimilarity) score to two representations. Although representations may not
be identical, they might be seen as equivalent, e.g., if R = −R′. Hence, a measure respecting
these symmetries has certain invariances. A measure is invariant to a set of transformations Φ if
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m(ϕ(R), ψ(R′)) = m(R,R′) ∀ϕ, ψ ∈ Φ. We refer to the survey by Klabunde et al. (2023) for a
more detailed introduction.

In this work, we study the representations of the last layer before the final classifier under the
invariances to orthogonal transformations (OT), which include rotations and reflections, isotropic
scaling (IS), and translation (TR). We justify this selection with the fact that these representations
do not have a privileged basis (Elhage et al., 2021), i.e., there is no reason for the basis dimensions
(neurons) to have special meaning. This is because the representations could be arbitrarily rotated
by applying the same transformation to the weight matrices that add information to the stream. The
arbitrary rotation validates OT invariance; similarly, IS invariance is useful. A translation of the
representations can affect the outcome of the classification layer for models without a bias, but could
also be arbitrarily added by the biases of previous layers. Hence, we study similarity with and without
TR invariance. The measures we use for OT and IS invariance experiments are Orthogonal Procrustes
(Ding et al., 2021), Aligned Cosine Similarity (Hamilton et al., 2016), the norm of the difference of
pairwise similarity matrices (Yin and Shen, 2018), and Jaccard similarity (Schumacher et al., 2021;
Wang et al., 2022a). For the experiment with OT, IS, and TR invariance, we additionally use RSA
(Kriegeskorte et al., 2008) and CKA (Kornblith et al., 2019). To achieve the desired invariances, we
preprocess the representations in some cases by normalizing their scale or centering the columns.
Details are in Appendix A.

All of these measures make two assumptions that are generally violated with LLMs: (i) the rep-
resentation of inputs is deterministic, and (ii) all rows of the representations correspond exactly.
With LLMs, the representation of a part of an input sequence depends on representations of earlier
parts. These parts are usually sampled if new text is generated, which contradicts (i). Further,
differing tokenization can lead to a different number of tokens for the same input text, and thus to
a different number of rows in the representation matrix, which violates (ii). We can sidestep these
problems. First, we only study the representations of fixed input prompts, which avoids the problem
of non-determinism of text generation. Second, we only compare the representations of the final
token in the last layer to avoid the issue of differing tokenization. Since these representations are
used for the next token prediction, we argue that they have similar meaning across models. Other
solutions to this issue based on aligning differing tokenizations were proposed (Liu et al., 2019; Clark
et al., 2019), which enable more fine-grained comparisons at increased computational cost.

3 Experiment

Data. As a first step, we use two datasets from different domains. Winogrande (Sakaguchi et al.,
2020) is a benchmark aimed at measuring commonsense reasoning abilities by asking a model to fill
in a blank in a sentence with binary options. We use the Winogrande validation set. Further, we use
HumanEval (Chen et al., 2021), a code generation benchmark. Here, prompts consist of a comment
that describes the functionality of code that should be generated. We always feed data in without
additional examples (zero-shot). We show the prompt styles in Appendix B.

Models. We use a set of 11 freely available LLMs with roughly 7B parameters: RedPajama
(Together.ai, 2023), Bloom (BigScience Workshop et al., 2023), Falcon (Penedo et al., 2023),
Galactica (Taylor et al., 2022), GPT-J (Wang and Komatsuzaki, 2021), Llama (Touvron et al., 2023),
MPT (MosaicML, 2023), OpenLlama (Geng and Liu, 2023), OPT (Zhang et al., 2022), Pythia
(Biderman et al., 2023), and StableLM Alpha (StabilityAI, 2023). All models are base models
without instruction finetunining. For the code data, we add CodeLlama and CodeLlama-Python
(Rozière et al., 2023), which are specifically trained on code. Except for Llama, we use the weights
published on Hugging Face.

3.1 Results

In Figure 1, we report representational similarity with OT and IS invariance. Results are similar with
OT, TR, and IS invariance, which we show in Appendix C due to space constraints.

Significant differences between models. On both datasets, some models have significant differences.
On Winogrande, for example, Falcon stands out for a relatively low similarity by Orthogonal
Procrustes and Jaccard similarity. Similarly, StableLM Alpha seems to be relatively dissimilar to all
other models. On HumanEval, OpenLlama and OPT stand out as dissimilar.
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(a) Winogrande. Models are not uniformly similar as seen by the non-uniform patterns in the heatmaps. Some
models like StableLM Alpha (bottom row) appear relatively dissimilar to all other models. Further, the patterns
differ between measures. A single measure may not be able to tell the full story (average Spearman ρ = 0.35).
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(b) HumanEval. As not all models have similar amounts of code in their training data, similarity patterns are
expectedly different to Winogrande. Of the code-specific models, only the Python variant seems generally
dissimilar to the other models. Compared to (a), correlation between measures is higher (average ρ = 0.65).

Figure 1: Representational similarity on Winogrande (top) and HumanEval (bottom) with OT and IS
invariance. Bright colors show the most similar models, dark colors the most dissimilar ones.

Significant differences between similarity measures. Again looking at Falcon on Winogrande, this
model stands out as dissimilar only with two of the four similarity measures. For both Aligned Cosine
Similarity and Norm RSM-Diff, differences to other models are less pronounced. For these measures,
GPT-J and OPT seem more dissimilar instead. These differences between measures occur despite
them sharing the same invariances. It seems that while these measures share the same (high-level)
view on representational similarity, finer-grained differences have substantial influence. Although
Ding et al. (2021) report a similar result for CKA and Orthogonal Procrustes, our results show this is
a more wide-spread issue. Few dimensions with high mean and variance may mask differences in all
but these few dimensions for cosine similarity-based measures (Timkey and van Schijndel, 2021).

Similarity is application-dependent. Similarity for one task does not imply similarity for another
task: while GPT-J has a similar Orthogonal Procrustes score to the other models on Winogrande, it
stands out as dissimilar on HumanEval. This difference is expected to some degree as not all models
had similar amounts of code in their training data, but still highlights that data dependency is an
important factor when making claims about similarity of LLMs.
Additionally, the measures with discrepancies are not the same across datasets: while Orthogonal Pro-
crustes and Norm RSM-Diff differ on Winogrande, they show highly similar patterns for HumanEval.
The average Spearman correlation between heatmaps on Winogrande versus HumanEval is only 0.34.

Difficulty of interpretation. Scores of measures like Orthogonal Procrustes and Norm RSM-Diff
that do not have a clear upper bound are difficult to interpret. In the absence of an interpretable scale,
it is unclear whether uniform scores imply all models are equally similar or equally dissimilar.

4 Conclusions

We demonstrate measuring representational similarity of LLMs using a set of 7B parameter models.
Representations do not seem to be universal, which may limit generality of study of any single LLM,
but boost abilities to detect specific models. We identify several challenges of using representational
similarity measures for measuring LLM similarity: discrepancies between measures, task-dependency,
and interpretation. These challenges provide interesting avenues for future work.
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A Representational Similarity

Here, we give an overview of the similarity measures we use and their invariances as well as
preprocessing that is applied to the representations in some cases.

A.1 Invariances

The following three invariances are relevant for our work:

• Invariance to orthogonal transformation (OT) of a representational similarity measure means
that m(R,R′) = m(RQ,R′Q′) for any Q,Q′ from the orthogonal group O(D).

• Invariance to isotropic scaling (IS) means m(R,R′) = m(aR, bR′) for any a, b ∈ R+.

• Invariance to translation (TR) means m(R,R′) = m(R + 1NcT,R′ + 1NdT) for any
c,d ∈ RD with 1N being a vector of N ones.

A.2 Preprocessing

Preprocessing of representations allows us to augment the natural invariances of a similarity measures
by eliminating differences that the measure is not invariant to. Centering columns, i.e., setting the
mean of neurons to zero, adds invariance to translation as it removes the same for all representations.
The centered representation is defined as R̃ = HR with H = IN − 1

N 11T. To eliminate scale
differences of representations, we can normalize them by their Frobenius norm: R̃ = R/∥R∥F .
This adds IS invariance.

Finally, some similarity measures require that representations have equal dimensionality. In those
cases, we zero-pad the representation with lower dimension.

A.3 Representational Similarity Measures

Orthogonal Procrustes. This measure aims to find an orthogonal transformation such that repre-
sentations are optimally aligned in terms of minimizing the norm of their difference. Formally:

mOP(R,R
′) = min

Q∈O(D)
∥RQ−R′∥F , (1)

where O(D) is the orthogonal group of D-dimensional matrices and ∥ · ∥F is the Frobenius norm.
Orthogonal Procrustes is invariant to orthogonal transformations only, but, for our experiments,
we add IS invariance by normalizing the representations. For the experiment with OT, IS, and TR
invariance, we first center the representations and then normalize them.

Aligned Cosine Similarity. Aligned Cosine Similarity (Hamilton et al., 2016) is similar to Or-
thogonal Procrustes in that first an optimal orthogonal alignment of the representation is computed.
Then, the cosine similarity cossim(x,y) = xTy

∥x∥2∥y∥2
is computed between corresponding rows of

the representations and aggregated:

mACS(R,R
′) =

1

N

N∑
i=1

cossim((RQ∗)i ,R
′
i) (2)

with Q∗ = argminQ∈O(D) ∥RQ−R′∥F being the optimal alignment. Aligned Cosine Similarity
is invariant to orthogonal transformations and isotropic scaling. For the experiment with OT, IS, and
TR invariance, we first center the representations.

Norm RSM-Difference. This measure uses so-called representational similarity matrices (RSMs),
that capture the pairwise similarities within one representation matrix—different ways to compute
those similarities are possible. The RSMs of both representations are then compared by taking
the norm of their difference. Formally, let s : RD × RD 7→ R be a similarity (distance) function
between vectors such as cosine similarity. The choice of s determines the invariances of this
measure: cosine similarity is invariant to isotropic scaling and orthogonal transformation, whereas
Euclidean distance is invariant to orthogonal transformations and translations. The matrix of pairwise
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similarities (the RSM) S ∈ RN×N between the N representations of R is then defined elementwise
as Si,j = s(Ri,Rj). The similarity between two representations R,R′ is computed as (Shahbazi
et al., 2021; Yin and Shen, 2018):

mNorm(R,R
′) = ∥S − S′∥F . (3)

For the experiment with OT and IS invariance, we use cosine similarity as the similarity function. For
the other experiment, we normalize the representations and use Euclidean distance as the similarity
function.

Jaccard Similarity. Jaccard Similarity measures the similarity of the nearest neighbors in the
representation space (Schumacher et al., 2021; Wang et al., 2022a). Let N k

R(i) be the set of k
nearest neighbors of representation Ri with respect to a similarity function s. Then, representational
similarity is computed as follows:

mJac(R,R
′) =

1

N

N∑
i=1

∣∣N k
R(i) ∩N k

R′(i)
∣∣∣∣N k

R(i) ∪N k
R′(i)

∣∣ . (4)

Again, invariances depend on the choice of the similarity function s. We always use cosine similarity.
To add TR invariance, we center the representations first.

Representational Similarity Analysis. Representational Similarity Analysis (RSA) (Kriegeskorte
et al., 2008) uses RSMs similar to Norm RSM-Difference. Given two similarity functions, sinner
and souter, first RSMs are computed with sinner. Then the RSMs are compared with souter by first
vectorizing the lower triangle of the RSMs (because they are symmetric) and then applying the
similarity function:

mRSA(R,R
′) = souter(vec(S), vec(S

′)). (5)
Again, the invariances are decided by the similarity functions. For the experiment with OT and IS
invariance, we use Pearson correlation as the inner similarity function and Spearman correlation
as the outer one. For the other experiment, we normalize the representations, then use Euclidean
distance as the inner similarity function, and finally use Spearman correlation as the outer similarity
function.

Centered Kernel Alignment. Centered Kernel Alignment (CKA) (Cortes et al., 2012; Cris-
tianini et al., 2001; Kornblith et al., 2019) is a measure that uses the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton et al., 2005), which can be used to test for statistical inde-
pendence of two sets of random variables. HSIC operates on RSMs S,S′ and is defined as
HSIC(S,S′) = 1

(N−1)2 tr(SHS′H) with H = IN − 1
N 11T a centering matrix. HSIC is di-

vided by a normalization term to achieve IS invariance in addition to OT and TR invariance:

mCKA(R,R
′) =

HSIC(S,S′)√
HSIC(S,S)HSIC(S′,S′)

. (6)

CKA requires that representations are preprocessed to have mean-centered columns. The RSMs are
typically computed with the linear kernel, i.e., S = RRT, although other options are possible. We
only use this linear version of CKA.

B Prompt Style

For Winogrande, we prompt the model in the following style:

Fill in the _ in the below sentence:
Sentence: Sarah was a much better surgeon than Maria so _ always got the easier cases.
Option 1: Sarah
Option 2: Maria
Does _ in the sentence above refer to Option 1 or 2?
Answer: Option

The sentence and the options differ from input to input. For HumanEval, we follow the prompting
style used in the original paper for code completion:
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(a) Representational similarity on Winogrande. Similar to the other experiment, models show discrepancies and
the patterns are different between different similarity measures.
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(b) Representational similarity on HumanEval.

Figure 2: Representational similarity on Winogrande (top) and HumanEval (bottom) with OT, IS,
and TR invariance. Bright colors show the most similar models, dark colors the most dissimilar ones.

def max_element(l: list):
"""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
"""

C Additional Experiment Results

Additional results for OT, IS, and TR invariance are shown in Figure 2.

D Code and Data Availability

Code is available at https://github.com/mklabunde/llm_repsim. Data is available at
https://doi.org/10.5281/zenodo.8411089.

E Limitations

Our experiments have several limitations.

First, the datasets we use are limited in size. The number of samples is lower than the number of
dimensions, which may allow overfitting of alignment-based measures like Orthogonal Procrustes
and Aligned Cosine Similarity. Thus, their scores may be overestimated compared to when applied on
larger sets of representations. In future work, additional data—not necessarily from benchmarks—can
be used to provide additional evidence.

Second, we only studied models of a specific size. It is unclear, to what extent these patterns
generalize to other models.
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Further, we use a specific prompting format, which may influence model similarity. Importance of
prompts for model outputs was demonstrated in prior work (Kojima et al., 2022; Wei et al., 2022),
but has not been studied in detail for representations.
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