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Abstract

Sequence parallelism (SP) serves as a prevalent strategy to handle long sequences that exceed
the memory limit of a single device. However, for linear sequence modeling methods like
linear attention, existing SP approaches do not take advantage of their right-product-first
feature, resulting in sub-optimal communication efficiency and usability. In this paper, we
introduce Linear Attention Sequence Parallelism (LASP), an efficient SP approach designed
for linear attention-based transformer models. Specifically, we design an efficient point-to-
point ring-style communication mechanism to leverage the right-product kernel trick of linear
attention, which sharply decreases the communication overhead, comparing with existing
SP methods. We enhance the computation efficiency of LASP by performing kernel fusion
and intermediate state caching, making the implementation of LASP hardware-friendly on
GPUs. Furthermore, we meticulously ensure the compatibility of sequence-level LASP with
all types of batch-level data parallel methods, which is vital for distributed training on large
clusters with very-long sequences. We also discuss the generalization of LASP on other linear
sequence modeling methods. Extensive experiments on linear attention-based models are
conducted with varying sequence lengths from 2K to 4096K. LASP scales sequence length
up to 4096K on 128 GPUs, which is 8× longer than existing SP methods. Code is available
at: https://github.com/OpenNLPLab/LASP.

1 Introduction

Linear sequence modeling methods (Katharopoulos et al., 2020; Choromanski et al., 2022; Sun et al., 2025a)
including linear attention (Qin et al., 2024d), state space models (Dao & Gu, 2024) and linear RNN (Qin et al.,
2024e), are becoming increasingly popular due to their faster training and inference speed and comparable
modeling performance to vanilla Softmax attention-based transformer models (Vaswani et al., 2017; Zeng et al.,
2022; Touvron et al., 2023a;b; Team, 2023). The hybrid architecture, which interleaves Softmax attention and
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linear attention Transformer layers, has proven to be an effective balance between their respective strengths.
This approach has been successfully implemented in large-scale commercial models such as Minimax-01 (Li
et al., 2025) and Tencent Hunyuan Turbo-S (Tencent, 2025), as well as in smaller-scale hybrid models like
Samba (Ren et al., 2024), Jamba (Lieber et al., 2024).

As the size of large language models (LLMs) increases and sequence lengths extend, the capacity limitations of
single GPU’s memory become a significant challenge, constraining the maximum sequence length manageable
by a large model. To address this, Sequence Parallelism (SP) techniques (Li et al., 2022; Korthikanti et al.,
2022) are employed, which partition a long sequence into multiple sub-sequences to be processed on separate
devices. However, current implementations of SP methods do not fully exploit the right-product advantages
of linear-complexity attention mechanisms Qin et al. (2024b). This results in less than optimal parallelism
efficiency and reduced usability on linear sequence modeling methods.

In this paper, we present Linear Attention Sequence Parallelism (LASP) approach for efficient SP on models
with linear sequence modeling. Our approach takes linear attention (Katharopoulos et al., 2020) as an instance
to design a sophisticated point-to-point (P2P) ring-style communication mechanism during both forward and
backward among devices within a node or across multiple nodes. This design maximizes the utilization of
right-product kernel tricks in linear attention, by only exchanging one single intermediate state instead of
both of key and value states in other counterparts. Notably, our approach is independent of attention heads
partitioning, allowing it to be applied to models with varying numbers or styles of attention heads, such as
multi-head, multi-query, and grouped-query attentions. This flexibility exceeds the capabilities of existing SP
methods in Megatron-LM (Shoeybi et al., 2019; Korthikanti et al., 2022) or DeepSpeed (Jacobs et al., 2023).

Our implementation of LASP incorporates system engineering optimizations such as kernel fusion and KV
State caching, resulting in significantly enhanced execution efficiency. Furthermore, we have taken great
care in ensuring compatibility of LASP with various (sharded) distributed data-parallel (DDP) (Li et al.,
2020) training methods during the implementation, which we refer to as the data-sequence hybrid parallelism.
Through extensive experiments with linear transformer models of different parameter numbers, cluster sizes,
and sequence lengths, we demonstrate the performance and efficiency of LASP when used with different DDP
instances. Specifically, LASP can extend sequence length up to 4096K on 128 GPUs, which is 8× longer than
existing SP methods.

Our primary contributions can be summarized as follows:

• A new SP approach called LASP that is designed for linear sequence modeling methods. LASP is
able to perform sequence-level distributed training on 8× longer sequences than existing SP methods
while being significantly faster.

• Sequence length-independent communication overhead. Our proposed P2P ring-style communication
strategy leverages right-product kernel trick of linear attention to ensure that the exchanging of
linear attention intermediate states is sequence length-independent.

• GPU friendly implementation. We optimize the execution of LASP on GPU hardware through
meticulous system engineering, including kernel fusion and KV State caching.

• Data-parallel compatibility. LASP is compatible with all batch-level DDP methods, including
PyTorch/Legacy DDP, FSDP, and ZeRO-series optimizers.

2 Related Work
Linear Attention. Linear Transformer models bypass the use of Softmax attention by adopting various
approximation methods (Katharopoulos et al., 2020; Peng et al., 2021; Qin et al., 2022a; Shen et al., 2024)
instead. The central concept involves using the "kernel trick" to speed up the calculation of the attention
matrix, specifically by multiplying keys and values before tackling the computationally intensive n × n matrix
multiplication (Sun et al., 2025b). For instance, Katharopoulos et al. (2020) use 1 + elu activation function,
Qin et al. (2022b) utilizes the cosine function to imitate Softmax characteristics. TransNormerLLM (Qin
et al., 2024a) proposes Lightning Attention to accelerate linear attention via optimized IO operations, while
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Lightning Attention-2 (Qin et al., 2024c) enhances efficiency by separately processing inter- and intra-
block computations. RetNet (Sun et al., 2023) integrates retention with attention for parallel training and
linear-time inference. GLA (Yang et al., 2023) introduces data-independent gating and a hardware-efficient
training algorithm. DeltaNet (Schlag et al., 2021) and its parallelized version (Yang et al., 2024b) improve
long-context performance using a delta-rule update. GSA (Zhang et al., 2024), inspired by GLA, incorporates
bounded-memory slot control to enhance recall-heavy tasks.

Despite significant research progress, the adoption of linear attention and similar linear sequence modeling
techniques in commercial large-scale models remains limited. However, some companies have started exploring
their use. For example, Minimax-01 incorporates Lightning Attention (Li et al., 2025), a variant of linear
attention; Tencent’s Hunyuan Turbo-S employs Mamba2 (Tencent, 2025), a variant of state-space model ;
and Together.AI integrates StripedHyena (Poli et al., 2023), a long convolution model.

Memory-Efficient Attention. Rabe & Staats (2021) first employs the online Softmax technique to
efficiently compute numerically stable attention scores sequentially, resulting in a linear memory for attention,
yet still needs quadratic time complexity. While FlashAttention (Dao et al., 2022; Dao, 2023) employs tiling
to minimize the number of memory reads/writes between GPU’s high bandwidth memory (HBM) and on-chip
SRAM to reduce time and memory in the training process, PagedAttention (Kwon et al., 2023) optimizes
the utilization of the KV cache memory by reducing waste and enabling adaptable sharing among batched
requests during inference. Ring Attention (Liu et al., 2023) reduces memory requirements for Transformer
models when handling long sequences by distributing sequences across multiple devices and overlapping the
communication of key-value blocks with blockwise attention computation.

Sequence Parallelism. SP as a widely used method to train long sequences has been integrated into
many large model training frameworks, including Megatron-LM, DeepSpeed, and Colossal-AI. Megatron-
LM (Shoeybi et al., 2019) implements SP along with model (tensor) parallelism (MP) to perform large
matrix multiplications on GPUs. However, MP partitions the attention heads, which limits the maximum
parallelism degree to be less than the number of attention heads. DeepSpeed-Ulysses (Jacobs et al., 2023)
uses an all-to-all communication primitive to reduce communication volume, but also partitions attention
heads and faces similar issues as Megatron-LM.

3 Method
3.1 Preliminary

Softmax Attention. Consider the standard attention (Vaswani et al., 2017) computation with causal
masking in the transformer architecture, formulated as:

O = Softmax(QK⊤/
√

d ⊙ M)V, (1)

where d denotes the hidden dimension. The matrices Q, K, V ∈ RN×d represent query, key, and value
matrices, respectively. These matrices are linear projections of the input X ∈ RN×d, i.e., Q = XWQ,
K = XWK, V = XWV. The output matrix is denoted as O ∈ RN×d, and M ∈ RN×N represents the causal
mask matrix. The Softmax(·) operation introduces quadratic time complexity relative to the input sequence
length N , limiting the scalability of vanilla transformers to extended input sequences.

Linear Attention. Linear attention is originally proposed in (Katharopoulos et al., 2020), with the
elimination of Softmax operation (Vaswani et al., 2017). Qin et al. (2022a; 2024a) propose to replace the
Softmax operation with a normalization operation Norm(·), which turns to

O = Norm((QK⊤ ⊙ M)V). (2)

When considering bidirectional tasks, the above formulation can be simplified as O = Norm((QK⊤)V).
Then by performing the associativity property of matrix products, it can be mathematically equivalently
transformed into a right-product version:

O = Norm(Q(K⊤V)). (3)
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Figure 1: Visualization of LASP. Left: The chunk-level linear attention computation with a causal
mask can be segmented into two categories: intra-chunk and inter-chunk computations. Intra-chunk com-
putations, corresponding to the diagonal elements (in diagonal orange boxes) of the mask matrix, utilize
traditional left-product methods. While inter-chunk computations, corresponding to the lower triangular
boxes, employ efficient right-product methods for computation. Right: This panel illustrates the P2P
communication mechanism employed by LASP. The input sequence X is divided into multiple sub-sequence
chunks {· · · , Xi, Xi+1, · · · }, each processed by different model instances across distinct devices. For each
device i, Qi, Ki, and Vi are computed from its respective input chunk Xi. Notably, the communication
operations between devices are designed to be complementary in the forward and backward passes. Specifically,
in the forward pass, KV matrices are sent from device i to device (i + 1), and in the backward pass, dKV
matrices are sent back from device (i + 1) to device i.

This linear attention formulation facilitates recurrent prediction with a computational complexity of O(Nd2).
And the recurrent update of K⊤V without needing to compute the entire attention matrix makes its inference
efficient.

While linear complexity offers significant advantages in terms of computational efficiency and memory
optimization for linear attention, it still incurs a proportional increase in computation and memory utilization
on a single GPU as the sequence length N grows. This can lead to memory constraints on a single GPU,
such as the 80GB limit in NVIDIA A100, for exceptionally long sequences. The challenge of achieving
zero-redundancy (on sequence level) training for such long sequences using linear attention-based LLMs across
GPU clusters remains an open problem. Furthermore, the complexity of addressing this issue in a casual
setting further intensifies the challenge. To address this, we propose LASP as a solution for parallelizing
linear attention training at the sequence level, even in a casual setting.

3.2 LASP

LASP tiles sequences over the cluster. Follow the thought-of-tiling, LASP partitions the input sequences
into multiple sub-sequence chunks, distributing these chunks individually across different GPUs. For linear
attention in a casual setting, in order to fully exploit the advantage of right-product in linear attention, we
categorize the attention computation for chunks into two distinct types: intra-chunks and inter-chunks. Intra-
chunks involve conventional attention computation, while inter-chunks leverage the kernel tricks associated
with linear attention’s right-product. Further details regarding the intricate mechanisms of LASP in data
distribution, forward pass, and backward pass are expounded upon below. A visualization of LASP is
presented in Fig. 1.

Data Distribution. LASP is designed for training long sequences on linear transformers in a distributed
environment, achieved by partitioning the input data along its sequence dimension. In this situation, each
GPU within the distributed environment undertakes the training of a subset of sub-sequences, which serves
to diminish the large memory footprint associated with activation during the training of long sequences.
Communication operations are introduced between GPUs to transmit intermediate states. The final trained
model assimilates the knowledge derived from the entirety of the long sequences.
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Algorithm 1 LASP Data Distribution
1: Input: An input sequence in embedding space X ∈ RN×d

with sequence length N and hidden dimension d, distributed
world size W and sequence parallel size T .

2: Obtain number of sequence parallel groups G = W/T .
3: Obtain sub-sequence length (or chunk size) C = N/T .
4: Get global rank list R = get_global_rank().
5: Obtain sequence parallel source rank list Rsrc = ⌊R/T ⌋ ∗ T .
6: Along sequence dimension, split X into T chunks

{X1, X2, ...XT }, of size C × d for each.
7: Transfer copies of data chunks {X1, X2, · · · , XT } to GPUs

with rank indices in Rsrc.
8: Scatter {X1, X2, · · · , XT } from Rsrc to all ranks in respec-

tive sequence parallel groups.

Figure 2: LASP Data Distribution. Left: An example of data distribution with two input sequences and
eight GPUs. Right: Complete data distribution algorithm.

For an input sequence of length N , we establish its embedding space representation denoted as X ∈ RN×d

with a feature dimension of d. In the LASP framework, X is evenly partitioned into T chunks, where T is
called the sequence parallel size, which must be divisible by the distributed world size W . These segmented
data chunks are subsequently assigned to the respective GPUs. It is essential to note that different sequence
parallel groups receive dissimilar data batches. However, within the same group, all data chunks originate
from an identical batch of data. A comprehensive depiction of the data distribution process in LASP is
provided in Algorithm 1.

Additionally, an illustrative example of data distribution in LASP is presented in Fig. 2, where the distributed
world size is characterized by W = 8, the sequence parallel size by T = 4, the number of sequence parallel
groups by G = 2, and the sequence parallel source rank list by Rsrc = [0, 4]. For the first batch Seq0,
the input sequence X undergoes partitioning into T chunks {X1, X2, ..., XT } along the sequence dimension,
subsequently transmitted to the first rank in SP-Group0, which corresponds to global rank 0. The data
chunks on global rank 0 are then scattered to global ranks {0, 1, 2, 3} within SP-Group0, where each rank
only retains a single chunk. The subsequent batch Seq1 follows a similar manner, being assigned to global
ranks {4, 5, 6, 7} within SP-Group1.

Forward Pass. To streamline derivations, the Norm(·) operator in Eq. (2) is temporarily omitted. Addi-
tionally, we consider a normal case where W = T , indicating G = W/T = 1. In this scenario, GPU with rank
0 consolidates all split sub-sequences in a batch, subsequently distributing them to all GPUs across the entire
distributed world. It is noteworthy that the scenario where the sequence parallel size is not equal to world
size is discussed in Sec.3.5.

We first define kv and KV as the intermediate memory state vector and matrix, respectively. Without loss
of generality, we add λ as the decay rate in linear attention with casual masking, choosing λ = 1 yields
the ordinary linear attention (Qin et al., 2024a; Sun et al., 2023). In the forward pass of linear attention
computation with casual masking, the s-th output can be calculated as

o⊤
s = q⊤

s

∑
i≤s

λs−ikiv⊤
i . (4)

Rewrite in a recurrence form, we have

kv0 =0 ∈ Rd×d, kvs = λkvs−1 + ksv⊤
s , o⊤

s = q⊤
s (kvs), (5)

where
kvs =

∑
i≤s λs−ikiv⊤

i (6)

is the activation memory state in the forward pass with s-th input.
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Algorithm 2 LASP Forward Pass
1: Input: input sequence in embedding space X ∈ RN×d with

sequence length N and hidden dimension d, distributed world
size W , sequence parallel size T = W , decay rate λ ∈ R+.

2: Distribute input sequence X according to Algorithm 1.
3: Obtain sub-sequence length (or chunk size) C = N/T .
4: Initialize mask M ∈ RC×C , where Mij = λi−j , if i ≥ j, else

Mij = 0.
5: Initialize Λ = diag{λ, λ2, · · · , λC} ∈ RC×C .
6: Initialize activation state KV = 0 ∈ Rd×d.
7: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · , W} in parallel

do
8: Calculate Qt = XtWQ, Kt = XtWK , Vt = XtWV

according to its own data chunk, of size C × d for each.
9: Compute Ot,intra = [(QtK⊤

t ) ⊙ M]Vt.
10: end for
11: for chunk t ∈ {1, · · · , T} at rank i ∈ {1, · · · , W} do
12: Recv activation KVt−1 from rank (i − 1).
13: Save KVt−1 as KVi for backward computation.
14: Compute Ot,inter = ΛQtKVt−1.
15: Compute Ot = Ot,intra + Ot,inter.
16: Update KVt = λCKVt−1 + (λCΛ−1Kt)⊤Vt.
17: Send activation KVt to rank (i + 1).
18: end for
19: return O = [Ot], with t ∈ {1, · · · , T}.

In SP, given data chunk Xt on rank i,
the query, key and value corresponding
to Xt is Qt = XtWQ, Kt = XtWK ,
Vt = XtWV . Note that we assume T =
W here, their indices are thus equivalent,
i.e., t = i. The output within the t-th
chunk can be calculated as

Ot,intra = [(QtK⊤
t ) ⊙ M]Vt. (7)

The intra-chunk computation has no de-
pendencies with other chunks on other
GPUs, so it can be calculated parallelized
on all ranks in the distributed world. How-
ever, this result does not consider the im-
pact of the previous 1 ∼ (t − 1) chunks on
the t-th chunk, which is called an inter-
chunk. To calculate inter-chunk, let us
rearrange Eq. (4) as

o⊤
s+C =q⊤

s+C

∑
i≤s+C

λs+C−ikiv⊤
i

=q⊤
s+C

C+s∑
i=C+1

λs+C−ikiv⊤
i

+ λsq⊤
s+C

∑
i≤C

λC−ikiv⊤
i .

(8)

The resulted first part in Eq. (8) corresponds to the computation on previous chunks, and the second part
corresponds to the computation on the current chunk. In SP, Eq. (8) can be rewritten in the chunk form as

Ot,inter = ΛQtKVt−1, (9)

where KVt = kvtC . Note that the calculation of the inter-chunk for the t-th chunk depends on the activation
state of previous (t − 1) chunk, i.e., KVt−1, which is calculated on rank (i − 1). Thus a P2P communication
operation Recv should be performed to pull KVt−1 from rank (i − 1) to rank i. Then the activation state
KVt should be updated for subsequent inter-chunk attention computation at (t + 1)-th chunk. The update
rule of KVt at t-th chunk is

KVt =
∑

s≤tC

λtC−sksv⊤
s = λC

∑
s≤(t−1)C

λ(t−1)C−sksv⊤
s +

tC∑
s=(t−1)C+1

λtC−sksv⊤
s

= λCKVt−1 +
(
diag{λC−1, . . . , 1}Kt

)⊤ Vt = λCKVt−1 +
(
λCΛ−1Kt

)⊤ Vt.

(10)

In correspondence to the preceding Recv operation, another P2P communication operation Send is executed
to transmit the acquired KVt in Eq. (10) to the subsequent rank (i + 1) for its inter-chunk computation.

It is noteworthy that in the backward pass, the t-th chunk necessitates KVt−1 as activation to calculate
gradients. To minimize communication operations, we cache KVt−1 on High-Bandwidth Memory (HBM) to
accelerate computation. Integrating both the intra and inter parts, the final forward output is as follows:

Ot = Ot,intra + Ot,inter (11)

We present the complete forward pass of LASP with W = T in Algorithm 2.
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Backward Pass. For the backward pass, given dos, we have (Katharopoulos et al., 2020)

dq⊤
s = do⊤

s kv⊤
s ∈ R1×d, dk⊤

s = v⊤
s dkv⊤

s ∈ R1×d,

dv⊤
s = k⊤

s dkvs ∈ R1×d, dkvs =
∑
i≥s

λi−sqido⊤
i ∈ Rd×d. (12)

By writing dkvs in a recursive form, we have

dkvn+1 = 0 ∈ Rd×d, dkvs−1 = λdkvs + qs−1do⊤
s−1. (13)

In SP, we have {Qt, Kt, Vt, Ot, dOt} which corresponds to the t-th sub-sequence chunk on rank i, where
t ∈ {1, · · · , T} and i ∈ {1, · · · , W}. Same with the forward pass, the following derivations assume t = i,
T = W .

We first calculate dQ with respective to the t-th data chunk, which yields:

dQt,intra = [(dOtV⊤
t ) ⊙ M]Kt. (14)

Since the computation of dQt,intra is independent, its calculation can be parallelized on all GPUs. While the
calculation of dQt,inter reflects the inter-dependence of chunks 1 to t − 1 on chunk t. In order to compute the
inter part, we transform Eq. (12) as

dq⊤
s+C = do⊤

s+C

∑
i≤s+C

λs+C−ivik⊤
i = do⊤

s+C

C+s∑
i=C+1

λs+C−ivik⊤
i + λsdo⊤

s+C

∑
i≤C

λC−ivik⊤
i . (15)

The first part in Eq. (15) corresponds to the intra-chunk, while the second part corresponds to the inter-chunk.
In SP, we can calculate dQt,inter as

dQt,inter = ΛdOtKV⊤
t−1. (16)

Note that KVt has already been computed and cached during the forward pass, so no communication is
required here to obtain KVt. Benefit from the KV state caching, the calculation of dQt,inter can also be
executed in parallel.

Next, dK within the t-th chunk can be calculated in parallel as

dKt,intra = [(dOtV⊤
t ) ⊙ M]⊤Qt. (17)

Then we transform Eq. (12) as

dk⊤
s = v⊤

s

∑
i≥s

λi−sdoiq⊤
i = v⊤

s

C∑
i=s

λi−sdoiq⊤
i + λC−sv⊤

s

∑
i≥C+1

λi−Cdoiq⊤
i , (18)

where the term before plus sign corresponds to the intra-chunk, and the term after plus sign corresponds to
the inter-chunk. The above equation can be rewritten in terms of chunks as follow:

dKt,inter = λCΛ−1VtdKV⊤
t+1. (19)

Here a Recv operation is required here to pull dKVt+1 from the (t + 1)-th chunk. Then in order to compute
dKV for the (t − 1)-th chunk, dKV should be updated as:

dKVt =
∑

s>tC

λs−tCqsdo⊤
s = λC

∑
s>(t+1)C

λs−(t+1)Cq⊤
s dos +

(t+1)C∑
s=tC+1

λs−tCqsdo⊤
s

= λCdKVt+1 + (ΛQt)⊤ dOt.

(20)
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Then a Send operation is performed to push dKVt to rank (i − 1). Finally, for dV, its intra part can be
calculated as dVt,intra = [(QtK⊤

t ) ⊙ M]⊤dOt. Again we transform Eq. (12) as:

dv⊤
s = k⊤

s

∑
i≥s

λi−sqido⊤
i = k⊤

s

C∑
i=s

λi−sqido⊤
i + λC−sk⊤

s

∑
i≥C+1

λi−Cqido⊤
i . (21)

The first and second terms corresponds to the computation of the intra- and inter-chunks, respectively. In SP,
dVt,inter can be calculated as:

dVt,inter = λCΛ−1KtdKVt+1. (22)

Combine the intra and inter part, we obtain the final results of dQt, dKt and dVt:

dQt = dQt,intra + dQt,inter, dKt = dKt,intra + dKt,inter, dVt = dVt,intra + dVt,inter. (23)

We provide the complete backward pass of LASP in Algorithm 3 in Appendix A.1.

3.3 Comparison

Table 1: Communication Volume Comparison. Sim-
plified Formulation: we eliminate the common factors Bd
for ease of comparison.

Method Full
Formulation

Simplified
Formulation

LASP Bd2/h d/h
Ring Attention 2BNd/h 2N/h
DeepSpeed-Ulysses 4BNd/T 4N/T
Megatron-SP 2BNd + 4BNd/T 2N + 4N/T

In LASP, it is important to note that the forward
pass requires communication for the KV ∈ Rd×d

state in each linear attention module layer. The
communication volume is determined by Bd2/h,
where B is the batch size and h is the number of
heads. In comparison, Ring Attention also adopts
P2P ring-style communication on states K, V ∈
RV ×d, which results a communication volume of
BNd/h. SP in Megatron-LM utilizes all-gather
operations twice after two layer normalization
layers within each transformer layer, and a reduce-
scatter operation after the attention and Feedforward Neural Network (FFN) layers. This results in a
communication volume of 2BNd + 4BNd/T . DeepSpeed uses all-to-all collective communication (Thakur
et al., 2005) for input Q, K, V, and output O of each attention module layer, resulting in a communication
volume of 4BNd/T .

Table 1 displays a comparison of communication volumes across three frameworks. d/h is the head dimension
which is set at 128 as usual (Lan et al., 2020). In practical applications where N/T ≥ 32, LASP is able to
achieve the lowest theoretical communication volume. Furthermore, the communication volume of LASP is
not impacted by changes in sequence length N or sub-sequence length C, which is a huge advantage for SP
with very-long sequences across large clusters.

It is worth to note that, although Ring Attention and LASP both use P2P ring-style communication,
they have differences lie in both communication and computation sides. Communication: In both forward
and backward, Ring Attention involves communicating two states K, V ∈ RV ×d. In contrast, LASP only
communicates one single state KV ∈ Rd×d, which does not depend on the sequence length. LASP has a lower
theoretical communication complexity. This makes LASP more efficient, especially in environments with
slower interconnects where the communication-computation overlap may not be optimal. Computation: Ring
Attention is specifically designed for standard attention, utilizing a left-product manner, i.e., ((QK⊤)V).
On the other hand, LASP is specifically tailored for linear attention-like sequence modeling methods, which
leverages the right-product kernel trick (Q(K⊤V)) to achieve linear-time complexity.

3.4 System Engineering Optimization

Kernel Fusion. To improve the efficiency of LASP on GPU, we perform kernel fusion in both the intra-
chunk and inter-chunk computations, and also fused the updates of KV and dKV into the intra-chunk and
inter-chunk computations.
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KV State Caching. To avoid recomputing activation KV during the backward pass, we choose to store
it in the HBM of the GPU right after computing it in the forward pass. During the subsequent backward
pass, LASP directly accesses KV for use. It is important to note that the size of the KV activation cached
in HBM is d × d, which is not affected by the sequence length N . When the input sequence length N is
exceptionally large, the memory usage of KV becomes negligible.

3.5 Hybrid Parallelism

Data-Sequence Hybrid Parallelism. As illustrated in Fig. 2, LASP allows for the specification of a
smaller sequence parallel size that is divisible by the distributed world size. This configuration results in the
input data being split along both the batch and sequence dimensions, which is a type of hybrid parallelism
called data-sequence hybrid parallelism. The ZeRO-series optimizers (Rajbhandari et al., 2020) in DeepSpeed
and FSDP (Zhao et al., 2023) in PyTorch propose to distribute model states, which include optimizer states,
gradients, and model parameters, across all GPUs within the distributed environment. As variants of data
parallelism, these techniques seamlessly align with LASP. Furthermore, their focus on minimizing the memory
of model states complements LASP’s objective of reducing activation memory on each GPU. By integrating
these techniques, the training of large models handling long sequence lengths is rendered more practical.

Compatibility with Tensor Parallelism and Pipeline Parallelism. LASP supports both tensor
parallelism (TP) and pipeline parallelism (PP). In PP, as exemplified by the GPipe (Kim et al., 2020)
scheduling method, the model is initially partitioned across multiple devices, with each device holding a
segment of the model. Data within a mini-batch is then divided into micro-batches, which are sequentially
fed into the device containing the first segment. Each device processes its micro-batch and forwards the
output to the next device in the sequence, simultaneously preparing to receive and process the subsequent
micro-batch from the preceding device. This method of pipelining inputs effectively minimizes device idle
times. When LASP is integrated with PP, micro-batches are substituted with sub-sequences derived from a
mini-batch. Unlike standard PP, each device retains the intermediate states (KV in the forward and dKV
in the backward) locally, rather than transmitting them to the next device as typically done in LASP alone.
For TP, the integration with LASP is fluid. Linear attention layers utilize TP to segment matrix operations
across both intra-chunk and inter-chunk computations.

Hybrid SP on Inter-layer Hybrid Models. The hybrid SP approach for inter-layer hybrid models applies
the established Ring Attention SP to softmax attention Transformer layers while using LASP for linear
attention Transformer layers simultaneously. Since these two strategies operate independently within their
respective layer types, they do not interfere with each other. This straightforward approach primarily serves
as a practical application of LASP to hybrid models. We conduct experiments to demonstrate the feasibility
of Hybrid SP in Appendix A.5.1.

4 Experiments
We evaluate LASP on two representative linear attention-based models: TransNormerLLM (TNL) (Qin
et al., 2023b; 2024a) and Linear Transformer (Katharopoulos et al., 2020). TNL is the latest large language
model purely built upon linear attention, while Linear Transformer is a classical linear transformer model
recognized in the community. Our assessment focuses on three key areas: 1) the ability of LASP to scale up
sequence length on scaling-out GPUs, 2) the convergence when using LASP, and 3) speed evaluation when
using LASP and its comparison with other SP methods. No activation checkpointing (AC) (Korthikanti
et al., 2022) techniques are used in following experiments to reduce activation memory, except experiments in
Section 4.3.2. This is because although the adoption of AC will further enables longer sequence lengths, it
will cover up the ability of our sequence parallel method LASP. All experiments are conducted on a GPU
cluster equipped with 128x A100 80G GPUs. Our implementation is built on Metaseq (Zhang et al., 2022),
a PyTorch-based sequence modeling framework with FairScale (FairScale authors, 2021) integrated. For
more details of hardware and software, and experimental setup, see Appendix A.2 & A.3. Note that when
implement other SP methods (e.g., Ring Attentoin, DeepSpeed-ulysses and Megatron-SP) on linear attention
instances for the purpose of comparison, we do not use the right-product kernel trick. We maintain the use of
each method’s original communication primitives and computational manners as they originally proposed for
softmax attention.
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Figure 3: Scalability Evaluation of LASP on Throughput (tokens/sec) and Memory Usage. Left:
Integration of LASP with FSDP backend; Right: Integration of LASP with DDP backend. The TNL-1B
model is used, with a batch size of 1 across up to 128x A100 80GB GPUs. The sign "×" with a dotted line
represents occurring an Out of Memory (OOM).
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Figure 4: Speed Comparison (tokens/sec) of LASP Against Ring Attention, DeepSpeed-Ulysses
and Megatron-SP. The sign "×" with a dotted line represents occurring an Out of Memory (OOM). The
evaluation utilizes the TNL-1B and 7B models with a batch size of 1 on 64x A100 80GB GPUs. The
parallelism size for these three methods is configured to 64.

4.1 Scalability and Speed Comparison
The scalability results regarding throughput and memory usage with varying sequence lengths and number
of GPUs are illustrated in Fig. 3. By using LASP, we successfully scale the sequence length up to 4096K
using the FSDP backend and 2048K with the DDP backend on a TNL model with 1B parameters, on 128
GPUs. We keep using a fixed batch size of 1 to thoroughly assess the performance of LASP across a range of
sequence lengths, from a typical 2K to an exceptionally long 4096K. By keeping the batch size constant at 1,
we ensure that the experiment results are directly comparable, with only the sequence length varying.

Importantly, the implementation of LASP allows for a linear increase in the maximum sequence length
capacity, directly proportional (linear) to the number of GPUs used. For instance, a sequence length of 512K
can be trained using 16 GPUs, while 64 GPUs (4×) has is able to train 2048K (4×) sequence length. Enabling
LASP maintains a high throughput level even with more GPUs used. Furthermore, LASP demonstrates
consistent scalability performance under both the FSDP and DDP backends. For more quantitative scalability
results of LASP, see Table 10 in Appendix A.5.

We furthermore conducted comparisons on TNL 1B and 7B models against existing SP methods: Ring
Attention (Liu et al., 2023), DeepSpeed-Ulysses (Jacobs et al., 2023) and Megatron-SP (Korthikanti et al.,
2022). All results presented in Fig. 4 are obtained on 64 GPUs. LASP demonstrates a notable enhancement
in throughput, primarily due to its efficient communication design that facilitates the exchange of linear
attention intermediate states.

4.2 Convergence
Table 2 presents the convergence results of two linear attention based models: TNL (Qin et al., 2024a)
and Linear Transformer (Katharopoulos et al., 2020), and one transformer model (LLaMA (Touvron et al.,
2023a;b)) with Softmax attention, evaluated on an epoch-by-epoch basis. The experiments were conducted
using the same training corpus: the Pile (Gao et al., 2020). Both linear models has 0.4B parameters,
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Table 2: Convergence Performance of LASP. All experiments use 8x A100 80G GPUs, sequence length
of 16K, and batch size of 1. The results cover various DDP backends in conjunction with LASP. We explore
the performance of two linear attention models: TransNormerLLM (TNL) and Linear Transformer, and one
transformer model (LLaMA) with Softmax attention, all with 0.4B parameters, across 50K updates.

Model Parameters Method Loss Method Loss

Transformer 0.4B DDP 3.727 \ \

TNL
(Qin et al., 2024a) 0.4B

DDP 3.719 LASP + DDP 3.715
Legacy DDP 3.709 LASP + Legacy DDP 3.705
FSDP 3.717 LASP + FSDP 3.714
ZeRO-1 3.653 LASP + ZeRO-1 3.653
ZeRO-2 3.655 LASP + ZeRO-2 3.649
ZeRO-3 3.656 LASP + ZeRO-3 3.649

Linear
Transformer

(Katharopoulos et al., 2020)
0.4B

DDP 5.419 LASP + DDP 5.408
Legacy DDP 5.425 LASP + Legacy DDP 5.413
FSDP 5.428 LASP + FSDP 5.441
ZeRO-1 5.114 LASP + ZeRO-1 5.118
ZeRO-2 5.105 LASP + ZeRO-2 5.120
ZeRO-3 5.110 LASP + ZeRO-3 5.123

demonstrated consistent loss values when training with and without LASP. All experiments undergoes
50K steps. The uniform loss convergence across various DDP backends demonstrates that LASP does not
negatively affect model convergence.

4.3 Ablation Study

4.3.1 Ablation on System Engineering Optimization

The system engineering optimization techniques, Kernel Fusion and KV State Caching, are aimed at improving
the practical execution efficiency of LASP. To better understand their effects, we perform ablation studies,
and the results are presented in Table 3. We assess the training throughput and memory usage of a 1B TNL
model with a batch size of 2 and a sequence length of 8K, using 2x A100 GPUs. The findings show that both
Kernel Fusion and KV State Caching significantly enhance training throughput, with only a minimal effect
on memory usage.

Table 3: Ablation on System Engineering Optimizations Techniques Kernel Fusion and KV
State Caching. Experiments are conducted on TNL-1B model with a batch size of 2 and a sequence length
of 8K, utilizing 2x A100 GPUs.

Kernel Fusion KV State Cache Throughput (tokens/s) Memory Usage Per GPU (GB)

No No 37684.4 49.5
Yes No 44691.0 49.5
No Yes 41179.6 49.7
Yes Yes 45915.2 49.6

4.3.2 Ablation on Activation Reducing Methods

LASP effectively reduces activation memory consumption during training on a per-GPU basis, and this
advantage becomes even more pronounced in larger clusters due to the distributed partitioning along the
sequence dimension. Another widely used technique, activation checkpointing (AC), follows a fundamentally
different strategy but also contributes significantly to activation memory reduction. To further analyze their
impact, we conduct ablation experiments to evaluate AC, LASP, and their combined effect. The results are
summarized in Table 4.

The experimental results indicate that when using only DDP and FSDP, the maximum sequence lengths that
can be trained on a single node with 8 GPUs are 12K and 16K, respectively. Both activation checkpointing
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(AC) and LASP substantially extend the maximum sequence length by significantly reducing activation
memory consumption per GPU, although with a minor decrease in throughput. A key distinction between
the two is that LASP exhibits scalability directly proportional to the number of GPUs, whereas AC does
not. By combining LASP with AC, we achieve remarkable maximum sequence lengths of 496K and 768K on
a single node using DDP and FSDP backends, respectively. This is made possible by the complementary
benefits of three techniques: linear attention, AC, and LASP, all of which contribute to efficient training with
extremely long input sequences.

Table 4: Ablation on Activation Reducing Methods. Both DDP and FSDP backends are tested. A
single node equipped with 8x A100 80G GPUs is used to train a TNL-1B model.

Method
Maximum
Sequence
Length

Throughput
(tokens/sec) Method

Maximum
Sequence
Length

Throughput
(tokens/sec)

DDP 12K 131286.0 FSDP 16K 145303.6
DDP+AC 64K 117429.5 FSDP+AC 96K 114464.0
DDP+LASP 96K 126829.4 FSDP+LASP 120K 138598.8
DDP+AC+LASP 496K 100837.8 FSDP+AC+LASP 768K 106578.3

5 Discussion
Linear-complexity sequence modeling methods are emerging as important alternatives to traditional trans-
formers (using Softmax attention) for next-generation foundational models due to their significantly faster
training and inference times, coupled with performance that rivals conventional approaches. Recently, the AI
community has seen a rapid development of novel linear-complexity models, gaining considerable interest.
Examples include linear attention models such as TransNormerLLM, state space models (SSM) like Mamba
and Jamba, and linear RNN models including RWKV, HGRN, and Griffin. We contend that the LASP
design can be seamlessly integrated into most linear-complexity models. To underscore LASP’s generalization,
we use a generalized form of linear attention in Appendix A.4 (Qin et al., 2024b), demonstrating that other
linear-complexity models can also be accommodated within this the LASP framework.

Moreover, it is important to explore the compatibility of linear attention and LASP with the widely adopted
softmax attention. Each of these mechanisms has distinct advantages in different scenarios. Softmax
attention is highly effective for modeling short sequences with strong performance but suffers from quadratic
complexity concerning sequence length, which limits its scalability to long-context tasks. On the other hand,
linear attention and similar linear sequence modeling methods provide significantly better efficiency for long
sequences but tend to be less effective in capturing complex dependencies. A practical solution to harness the
benefits of both is a hybrid architecture that alternates softmax attention and linear attention layers within
Transformer models. This strategy has already been implemented in large-scale commercial models such as
Minimax-01 (Li et al., 2025) and Tencent Hunyuan Turbo-S (Tencent, 2025), as well as in smaller hybrid
models like Samba (Ren et al., 2024), Jamba (Lieber et al., 2024), and GatedDeltaNet (Yang et al., 2024a).

6 Conclusion
We presented LASP to effectively address the limitations of existing SP methods on linear-complexity sequence
modeling methods by leveraging their right-product features, which significantly enhanced communication
and parallelism efficiency. Through the design of an efficient P2P ring-style communication mechanism
and elaborated engineering optimizations including kernel fusion and KV state caching, LASP achieved a
notable reduction in communication traffic and improved hardware utilization on GPU clusters. Compatibility
with all types of batch-level DDP methods ensured the practicability of LASP for large-scale distributed
training with very-long sequences. Our experiments highlighted the advantages of LASP on scalability, speed,
memory usage and convergence performance. In specific experimental setup, LASP achieves significant faster
sequence-level distributed training speed on a maximum 8× longer sequence length than the out-of-the-box
SP methods.
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Broader Impact Statement

This work represents a notable advancement in artificial intelligence and machine learning, particularly in
improving the efficiency and scalability of linear attention-based models. LASP enables the processing of
much longer sequences compared to existing methods while significantly accelerating computation, making it
highly beneficial for tasks like natural language understanding, genomic sequence analysis, and time-series
forecasting. However, the enhanced capabilities and efficiency introduced by LASP also raise ethical and
societal considerations, such as the potential for misuse in generating persuasive but misleading content or in
surveillance applications. Nevertheless, the contributions of LASP to reducing computational overhead and
energy consumption in training large models may also bring positive environmental impacts.
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A Appendix

A.1 Backward Pass Algorithm

Algorithm 3 LASP Backward Pass
1: Input: Sequence Length N , Distributed world size W , sequence parallel size T , decay rate λ ∈ R+,

Qt, Kt, Vt, Ot, dOt ∈ RC×d for t ∈ {1, 2, · · · , T}.
2: Obtain sub-sequence length (or chunk size) C = N/T .
3: Initialize mask M ∈ RC×C , where Mij = λi−j , if i ≥ j, else Mij = 0.
4: Initialize Λ = diag{λ, λ2, · · · , λC} ∈ RC×C .
5: Initialize dKV = 0 ∈ Rd×d.
6: for t ∈ {1, 2, · · · , T} at rank i ∈ {1, 2, · · · , W} in parallel do
7: Compute dQt,intra = [(dOtV⊤

t ) ⊙ M]Kt.
8: Compute dQt,inter = ΛdOtKV⊤

t−1.
9: Compute dKt,intra = [(dOtV⊤

t ) ⊙ M]⊤Qt.
10: Compute dVt,intra = [(QtK⊤

t ) ⊙ M]⊤dOt.
11: end for
12: for t ∈ {T, · · · , 2, 1} at rank i ∈ {W, · · · , 2, 1} do
13: Recv activation dKVt+1 from rank (i + 1).
14: Compute dKt,inter = (λCΛ−1Vt)dKV⊤

t+1.
15: Compute dVt,inter = (λCΛ−1Kt)dKVt+1.
16: Load KVi as KVt on rank i.
17: Combine intra- and inter-chunks of dQt, dKt, dVt:

dQt = dQt,intra + dQt,inter,

dKt = dKt,intra + dKt,inter,

dVt = dVt,intra + dVt,inter.

18: Compute dKVt = λCdKVt+1 + (ΛQt)⊤dOt.
19: Send activation dKVt to rank i.
20: end for
21: return dQ = [dQt], dK = [dKt], dV = [dVt], with t ∈ {1, 2, · · · , T}.

A.2 Hardware and Software

Hardware. Our experimental configuration involves a maximum of 16x DGX-A100 servers, each equipped
with 8x A100 GPUs, these GPUs are interconnected through NVSwitch, ensuring an inter-GPU bandwidth
of 600GBps. For inter-node communication, we employ RoCE (RDMA over Converged Ethernet) technology,
utilizing 8 RoCE RDMA adapters in each server. This setup facilitates efficient inter-server communication
with a bandwidth capacity of 800Gbps.

Software. Experiments are implemented in PyTorch 2.1.1 and Triton 2.0.0 with CUDA 11.7, cuDNN 8.0,
and NCCL 2.14.3. Our algorithm is developed upon Metaseq and DeepSpeed.

A.3 Experimental Setup

The training configuration is set with specific hyperparameters: a learning rate of 0.0005 to control the
optimization step size, a cap of 50,000 updates to define the training duration, and a 2,000-update warmup
period to stabilize early training by gradually adjusting the learning rate. Additionally, a weight decay rate
of 0.01 is used for regularization to avoid over-fitting (Sun et al., 2024). The Adam optimizer, with beta
values of 0.9 and 0.999, is chosen for managing the momentum and scaling of gradients, aiding in effective
and stable training convergence (Zhou et al., 2020). Different DDP backends, including PyTorch DDP (abbr.
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DDP), Legacy DDP, FSDP, ZeRO-series, are selected in experiments for cross-validation of compatibility
with LASP.

A.4 Generalization of LASP

While LASP is initially inspired by linear attention mechanisms, we aim to show its broader applicability to
various linear sequence modeling approaches. This section investigates the generalization of LASP through
both theoretical analysis and empirical validation.

In the theoretical aspect, we first define the following terms: Memory State mt ∈ Rk×d, Input State it ∈ Rd,
Expand State et ∈ Rk, Oscillation State ot ∈ Rk×m, Shrink State st ∈ Rk and write a general form of
recurrent memory as (Qin et al., 2024b)

mt = otmt−1 + eti⊤
t . (24)

which is general form of the recurrence form of Linear Attention in Eq. (5) with specified ot and et:

kvt = λkvt−1 + ktv⊤
t . (25)

The design of LASP can be seamlessly applied to models which is able to be generally expressed by Eq. (24).
These models include: S4 (Gu et al., 2022), S5 (Smith et al., 2022), DSS (Gupta et al., 2022), TNN (Qin et al.,
2023a), Linear Attention (Katharopoulos et al., 2020), TNL (Qin et al., 2024a), RetNet (Sun et al., 2023),
Mamba (Gu & Dao, 2023), RWKV-4 (Peng et al., 2023), Cosformer (Qin et al., 2022b), Lrpe (Qin et al.,
2023c), GLA (Yang et al., 2023), GateLoop (Katsch, 2023), DUR (Mao, 2022), GFW (Schlag & Schmidhuber,
2018), HGRN (Qin et al., 2024f;e), and LRN (Martin & Cundy, 2018). We list all these models and their
corresponding elements in Table 5.

Table 5: Checklist for Typical Linear-Complexity Sequence Modeling Methods within the Defined
General Form. For each method, the following states are outlined: Input State, Expand State, Oscillation
State, Shrink State, and Memory State. If the state is directly linked to the input sequence, the subscript i is
emphasized. Note that we use 1(k) ∈ Rk, where 1(k)

j = 1 for j = 1, . . . , k, and J(kd) = 1(k)1(d)⊤ ∈ Rk×d.

Method Input it Expand et Oscillation ot Shrink st Memory k × d

S4 xt B A C k × 1
S5 xt B A C k × d

DSS xt B a1⊤
k C k × d

TNN xt B A C k × d

Linear Attention xt Bt J(kd) Ct k × d

TNL/RetNet xt Bt λJ(k) Ct k × d
Mamba xt Bt At Ct k × d
RWKV4 xt exp(kt) exp(−w) Ct 1 × 1
Cosformer xt Bt exp(iθ)J(kd) Ct k × d

LRPE xt Bt exp(iΘ)1(d)⊤ Ct k × d

GLA/GateLoop xt Bt gt1⊤
d Ct k × d

DUR/GFW xt Bt gtḡ⊤
t Ct k × d

HGRN/LRN xt 1 − At At Ct 1 × 1

We also give the complete explanation for each modeling method as below.

S4. In S4, we obtain ut ∈ Rd through linear projection from input xt and A ∈ Rk×k, B, C ∈ Rk×1 through
SSM parameterization. The calculation is as follows:

mt = Amt−1 + Bu⊤
t , yt = m⊤

t C.

Note that the original definition of S4 is defined as a channel-wise mappings fi, i = 1, . . . , d of Rn×1 → Rn×1.
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S5. The recurrence equation of S5 is the same as S4, with the only difference being the direct definition of
the mapping Rn×d → Rn×d and B, C ∈ Rk×d.

DSS. The recurrence equation of DSS is same as S4/S5, with the only difference being the direct definition
of the mapping Rn×d → Rn×d and B, C ∈ Rk×d, A = Diaga ∈ Rk×k.

TNN. According to (Qin & Zhong, 2023), TNN can be losslessly converted to SSM, where C = J (kd) ∈
Rk×d, B ∈ Rk×d, A = Diagλ1, . . . , λk ∈ Rk×k, get ut from xt through linear projection, and it can be
expressed as a recursive formula:

mt = Amt−1 + Bu⊤
t , yt = m⊤

t C.

Linear Attention. In Linear Attention, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd from the input
xt ∈ Rd through linear projection, and recursively calculation is as follows:

kvt = kvt−1 + ktv
⊤
t , yt = kv⊤

t qt.

TNL/RetNet. TNL/RetNet is a form of Linear Attention with exponential decay and the method for
getting qt, kt, vt are the same as those in Linear Attention, and lambda is a predefined parameter that cannot
be learned. Its recursive calculation is:

kvt = λkvt−1 + ktv
⊤
t , yt = kv⊤

t qt.

Mamba. Mamba can be seen as a data-dependent S4. It uses the similar method to get ut, A, B, C, the
At, Bt, Ct are computed throuth xt and A, B, C. Its recurrence equation is defined as:

mt = At ⊙ mt−1 + Btu
⊤
t , yt = m⊤

t Ct.

RWKV-4. In RWKV-4, we get rt, kt, vt through linear projection from input xt and w as a learnable weight.
Ignoring the denominator of RWKV-4, the recurrence equation can be simplified as:

mt = exp(−w)mt−1 + exp(kt)v⊤
t , yt = m⊤

t rt.

Similar to S4, RWKV4 uses channel-wise mapping fi, i = 1, . . . , d of Rn×1 → Rn×1.

Cosformer. In Cosformer, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd from the input xt ∈ Rd and
a prefined θ(not learnable). Then recursively calculate as follows:

kvt = exp(iθ)kvt−1 + ktv
⊤
t , yt = Rel[kv⊤

t ]qt.

Lrpe. In Lrpe, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd from the input xt ∈ Rd, θ as a learnable
weight and recursively calculate as follows:

kvt = Λkvt−1 + ktv
⊤
t , Λ = diag(exp(iθ1), . . . , exp(iθk)), yt = Rel[kv]t⊤

qt.

.

GLA/GateLoop. In GLA/GateLoop, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd, decay gt ∈ Rk

from the input xt ∈ Rd and recursively calculate as follows:

kvt = Diag(gt)kvt−1 + ktv
⊤
t , yt = kv⊤

t qt.

DUR/GFW In DUR/GFW, we obtain query qt ∈ Rk, key kt ∈ Rk, value vt ∈ Rd, decay gt ∈ Rk, ḡt ∈ Rd

from the input xt ∈ Rd, and recursively calculate as follows:

kvt = (gtḡt⊤) ⊙ kvt−1 + ktv
⊤
t , yt = [kv]⊤t qt.
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HGRN/LRN In HGRN/LRN, we obtain output gate ot ∈ R1, forget gate ft ∈ R1, input state it ∈ R1 from
the input xt ∈ R1, and recursively calculate as follows:

ht = ft ⊙ ht−1 + (1 − ft)i⊤
t , yt = h⊤

t ot.

Similar to S4, HGRN/LRN use channel-wise mapping fi, i = 1, . . . , d of Rn×1 → Rn×1.

To empirically validate the generalization of LASP, we adopt the experimental setup from Table 2 and apply
LASP to three additional linear sequence modeling methods listed in Table 5, namely Cosformer, RetNet,
and Mamba. The convergence results, presented in Table 6, demonstrate that LASP does not negatively
affect convergence and achieves performance on par with the baselines.

Table 6: Convergence Results of LASP on Cosformer, RetNet and Mamba. TNL with 0.4B
parameters are tested with a batch size of 2 and sequence length of 16K.

Model Parameters Method Loss Method Loss

Cosformer 0.4B DDP 4.001 LASP+DDP 4.005
Cosformer 0.4B ZeRO-1 4.013 LASP+ZeRO-1 3.969
RetNet 0.4B DDP 4.312 LASP+DDP 4.306
RetNet 0.4B ZeRO-1 4.312 LASP+ZeRO-1 4.309
Mamba 0.4B DDP 4.116 LASP+DDP 4.122
Mamba 0.4B ZeRO-1 4.108 LASP+ZeRO-1 4.110

A.5 Additional Experiment Results

A.5.1 Hybrid SP Results on Hybrid Models

We perform a small-scale experiment (8× A100, 1B parameters, DDP backend) to evaluate the feasibility of
the hybrid SP approach for hybrid models. In this setup, a “1/4 hybrid” model denotes a configuration where
one out of every four layers is a softmax attention Transformer layer. Using “S” to represent softmax attention
and “L” for linear attention, a 16-layer “1/4 hybrid” model follows the pattern “LLLSLLLSLLLSLLLS.” The
results in Table 7 demonstrate that hybrid SP effectively extends the maximum trainable sequence length for
both TNL and Linear Transformer, while incurring only a slight reduction in training speed.

Table 7: Hybrid SP Results on Inter-layer Hybrid Models. “1/4 hybrid” refers to a model where one
out of every four layers is a softmax attention Transformer layer. Maximum Sequence Length and Throughput
(tokens/sec) are reported.

Model Method Maximum Sequence Length Throughput

1/4 Hybrid TNL No SP 12K 128684
1/4 Hybrid TNL Hybrid SP Solution 90K 125397
1/4 Hybrid Linear Transformer No SP 12K 129253
1/4 Hybrid Linear Transformer Hybrid SP Solution 90K 125883

A.5.2 Evaluation Results on Downstream Tasks

We conduct an experiment with extended training duration of 300K steps (which consumes 40B tokens) to
assess the performance of LASP, and its evaluation results on downstream tasks. Both TNL and Linear
Transformer with 0.4B parameters are investigated. We evaluate the performance of the trained models on
multiple downstream benchmarks, including PIQA, HellaSwag (HS), WinoGrande (WG), ARC-E, ARC-C,
OBQA, and CSR-AVG. The results are presented in the Tables 8 and 9. LASP does not negatively affect
downstream task performance.

A.5.3 Quantitative Scalability Results

See Table 10 in next page.
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Table 8: Convergence Results of LASP with Extended 300K Steps. Both TNL and Linear Transformer
with 0.4B parameters are tested with a batch size of 2 and sequence length of 16K.

Model Parameters Steps Method Loss PPL Method Loss PPL

TNL 0.4B 300K DDP 3.218 9.318 LASP+DDP 3.218 9.321

Linear
Transformer 0.4B 300K DDP 4.164 17.972 LASP+DDP 4.145 17.730

Table 9: Evaluation Results on Downstream Tasks. HS: HellaSwag, WG: WinoGrande. A higher score
indicates better performance.

Model Method Tokens PIQA HS WG ARC-E ARC-C OBQA CSR-AVG

TNL DDP 40B 55.71 28.21 51.30 28.87 23.72 26.00 35.64

TNL LASP+DDP 40B 54.30 28.17 51.54 31.27 24.06 29.60 36.49

Linear
Transformer DDP 40B 52.18 25.68 49.80 26.81 25.60 26.40 34.93

Linear
Transformer LASP+DDP 40B 52.18 26.07 49.25 26.22 26.71 27.00 35.44
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Table 10: Quantitative Scalability Results of LASP on Throughput (tokens/sec) and Memory
Usage Per GPU (GB). Experiments are performed on TNL-1B, scaling sequence length from 2K to 4096K
with a batch size of 1. Both DDP and FSDP backends are tested.

Sequence Length GPUs LASP + DDP LASP + FSDP

Throughput Memory Throughput Memory

2K

16 1893.3 22.5 1780.5 6.9
32 1645.4 22.5 1671.2 6.6
64 1639.7 22.5 1589.8 6.4
128 1610.9 22.5 1566.2 6.2

4K

16 3686.9 22.5 3519.9 6.9
32 3458.4 22.5 3304.4 6.6
64 3245.3 22.5 3152.2 6.4
128 3211.5 22.5 3075.7 6.2

8K

16 7076.9 22.5 6924.8 6.9
32 7319.3 22.5 6472.9 6.6
64 6869.1 22.5 6459.4 6.4
128 6793.6 22.5 6398.4 6.2

16K

16 14036.8 22.5 13513.7 6.9
32 14671.7 22.5 12978.9 6.6
64 13828.6 22.5 12569.4 6.4
128 13484.5 22.5 12184.5 6.2

32K

16 28354.6 24.4 25727.2 6.9
32 27863.6 22.5 26646.4 6.6
64 25275.9 22.5 25201.4 6.4
128 24523.8 22.5 25638.9 6.2

64K

16 52993.1 28.3 48542.8 11
32 53393.2 24.4 49648.6 6.6
64 52024.2 22.5 49780.5 6.4
128 51983.3 22.5 49833.3 6.2

128K

16 107682 36.1 84901.9 19
32 93371.5 28.3 92718.8 10.6
64 100046 24.4 96771.6 6.4
128 95828.5 22.5 98975.9 6.2

256K

16 202057 51.7 136765 35.2
32 190675 36.1 159326 18.7
64 193341 28.3 170996 10.4
128 187347.7 24.4 178628.4 6.3

512K

16 OOM OOM 201791 67.5
32 323596 51.7 250663 34.8
64 304366 36.1 284803 18.5
128 295128.5 28.3 298755 10.1

1024K

16 OOM OOM OOM OOM
32 OOM OOM 358478 67.1
64 523119 51.7 437728 34.6
128 508383 36.1 459794 18.2

2048K

16 OOM OOM OOM OOM
32 OOM OOM OOM OOM
64 OOM OOM 585326 66.9
128 658432 51.7 597953 33.8

4096K

16 OOM OOM OOM OOM
32 OOM OOM OOM OOM
64 OOM OOM OOM OOM
128 OOM OOM 792705 66.2
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