
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DRAW IT LIKE EUCLID: TEACHING TRANSFORMER
MODELS TO GENERATE CAD PROFILES USING RULER
AND COMPASS CONSTRUCTION STEPS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new method of generating Computer Aided Design (CAD) pro-
files via a sequence of simple geometric constructions including curve offsetting,
rotations and intersections. These sequences start with geometry provided by a
designer and build up the points and curves of the final profile step by step. We
demonstrate that adding construction steps between the designer’s input geometry
and the final profile improves generation quality in a similar way to the intro-
duction of a chain of thought in language models. Similar to the constraints in a
parametric CAD model, the construction sequences reduce the degrees of freedom
in the modeled shape to a small set of parameter values which can be adjusted by
the designer, allowing parametric editing with the constructed geometry evaluated
to floating point precision. In addition we show that applying reinforcement learn-
ing to the construction sequences gives further improvements over a wide range
of metrics, including some which were not explicitly optimized.

BASELINE
MODEL

CONSTRUCTION
SEQUENCE

MODEL

POST-TRAINED
CONSTRUCTION

SEQUENCE
MODEL

Geometric Prompt Generated Profile Example
Parametric
Variations

Supervision

Reward Evaluator

“Chain of Thought”
Construction Sequence Input

“Chain of Thought”
Construction Sequence Output

“Chain of Thought”
Construction Sequence Output

Figure 1: Our model (middle) generates CAD profiles through a sequence of ruler, compass, and
protractor constructions, starting from the designer’s initial “prompt” geometry (left) and building
step by step toward the final profile. Our approach generates profiles that more accurately match
the designer’s input and contain fewer self-intersections, compared to a baseline model (top) which
omits construction steps and maps directly from geometric prompt to profile. We further refine the
construction sequence model during post-training (bottom), where rewards help guide the generation
of valid construction sequences. As the sequences encode parametric relationships, families of
related profiles (right) can be created from a single construction trace.

1 INTRODUCTION

Computer Aided Design (CAD) tools play a key role in shaping nearly all manufactured objects.
CAD models are created by specifying collections of lines, arcs and circles which enclose 2d regions

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

called profiles. These can then be extruded or revolved to define solid volumes, which can be
combined using boolean operations to build complex shapes. Geometric constraints can be added
to the profiles, enforcing relationships between the curves. For example, lines can be constrained
to be parallel, circles concentric and curves can be forced to meet tangentially. The distances and
angles between specific curves can also be controlled using parameters, which can be adjusted to
modify the shape while maintaining critical aspects of the design like symmetries, regular patterns
and constant thicknesses.

While machine learning models for the generation of 2d CAD geometry have shown great advances
in recent years, these methods have two main limitations. Firstly, all current methods suffer from
limited accuracy. Methods which create geometry as a sequence of discrete tokens representing
quantized points or coordinates Seff et al. (2020); Willis et al. (2021); Ganin et al. (2021); Para
et al. (2021); Wu et al. (2023) have their precision limited by the spacing of the quantization grid,
while diffusion methods Xu et al. (2024); Fan et al. (2024); Lee et al. (2025) are limited by the
convergence of the diffusion process and the decoding of latent vectors. Secondly, while some
methods can predict constraints and dimensions, this is done as a second step after the geometry has
been generated. An external constraint solver is then required to post-process the curve geometry
and produce the final shape. It has been shown that applying generated constraints in post-process
can frequently move the geometry Para et al. (2021); Ganin et al. (2021) which is undesirable when
the changes significantly alter the design Casey et al. (2025).

In this work we investigate an alternative strategy for generating 2d profiles, using a unified se-
quence which defines both the geometry and shape properties which would usually be enforced by
constraints. Inspired by recent work in language models, which show that an intermediate chain of
thought (CoT) can greatly improve the accuracy of the final output Wei et al. (2022); Kojima et al.
(2022), we wonder whether the generation of some intermediate geometry might assist with CAD
generations tasks. We notice that when CAD designers build up shapes, they often start by sketching
some intermediate “construction geometry” which defines important aspects of a design like sym-
metry lines or construction circles. Constraints are then added between the construction geometry
and profile curves to enforce properties like coincidence and symmetries. Inside the geometric con-
straint solver, the graph formed by the geometry and constraints is recursively processed to yield
a fine grained sequence of simple geometric constructions which builds up the final shape Owen
(1991); Bouma et al. (1995). These construction sequences play a role similar to the algorithm ex-
ecution traces which have been employed to great effect in a variety of search problems Yang et al.
(2022); Lehnert et al. (2024); Gandhi et al. (2024).

In this paper we conduct experiments training transformer models on intermediate construction se-
quences of ruler, compass and protractor construction steps similar to those used in geometric con-
straint solvers. As the high level task of shape generation is broken down into small atomic steps
with closed form solutions, the performance of the network at solving these subtasks and combining
them to build a consistent “CAD program” can be measured separately. The shapes can be controlled
using “prompt geometry” provided at the start of the sequence and used as inputs to subsequent con-
structions. Once generated, the sequences can be replayed with floating point precision, allowing
accurate values known at inference time to be propagated through the constructions to build the final
profile. The generated geometry is parameterized using a small number values, which can be varied
when the sequences are replayed allowing parametric edits to the shape as shown in the right of
Figure 1.

We demonstrate quantitatively that the introduction of construction sequences improves the perfor-
mance of the generative models, reducing self-intersections and proving enhanced adherence to the
design requirements. In addition, we show that applying reinforcement learning over the entire con-
struction sequence can further improve results as shown in the language modeling case Shao et al.
(2024); DeepSeek-AI et al. (2025).

Our contributions can be summarized as follows

• We introduce a domain specific language which builds 2d profile geometry as a sequence of
ruler, compass and protractor constructions steps. The construction steps can be replayed
with floating point accuracy, allowing parametric editing of the shape.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We show that geometry generated with sequences which include these intermediate con-
struction steps have fewer self-intersections, superior accuracy when auto-completing par-
tial designs and better adherence to other design requirements like symmetry lines.

• We show that reinforcement learning, with reward functions which discourage self-
intersecting geometry, leads to improvement over a wide range of metrics, many of which
are not explicitly optimized.

2 RELATED WORK

2.1 ALGORITHM TRACES

A number of works have explored training neural networks to mimic the logical steps conducted by
heuristic algorithms. Vinyals et al. (2015) showed that RNNs could replicate some basic geometric
algorithms like finding the convex hull and building a delaunay triangulation. Yang et al. (2022) ex-
perimented with monte carlo tree search traces for maze navigation, robotic manipulation and Atari
games. Lehnert et al. (2024) used traces from A∗ search to learn to solve mazes and Gandhi et al.
(2024) showed how search and backtracking capabilities could be used to play the game Countdown.
In this work we investigate the applicability of these techniques to CAD, utilizing algorithm traces
similar to those used in geometric constraint solvers.

2.2 SKETCH GENERATION

The availability of large scale constrained sketch datasets Seff et al. (2020); Ganin et al. (2021)
opened the task of CAD sketch generation and sketch auto-constraining to the community. Seff
et al. (2020) presented an autoregressive model based on message passing networks which gen-
erated parametric sketches by iteratively predicted the edges and node attributes of the constraint
graph. An external geometric constraint solver was then required to construct the final geometry
and the complexity of the resulting sketches was limited. Willis et al. (2021) showed that uncon-
ditional generation of 2d sketches was possible by first generating a list of points and then using
PointerNetworks Vinyals et al. (2015) to group these to define curves. Ganin et al. (2021), Para
et al. (2021) and Seff et al. (2021) presented networks which generated 2d curves and then, in a
second step, used PointerNetworks to predict constraints and dimensions conditioned on this geom-
etry. Because these architectures predict design intent only after the geometry has been generated,
they cannot leverage the constraints to guide the curve placement. Instead, an external constraint
solver must be applied as a post-process. As shown in Ganin et al. (2021), Para et al. (2021) and
Casey et al. (2025), this can shift the positions of sketch geometry, revealing that the initial curve
placement did not reflect the intended design. In contrast, the construction sequence representation
introduced here enables design intent to be predicted before geometry is constructed, allowing the
network to incorporate it directly when placing points and curves.

2.3 CHAIN OF THOUGHT IN CAD

Khan et al. (2024) used parametric recipes from the DeepCAD dataset Wu et al. (2021) to define a
natural language description of the CAD modeling features used to created the solids. Guan et al.
(2025) used Deepseek-V3 to convert these descriptions into a natural language CoT followed by
CadQuery code. A Qwen2.5-7B-Instruct model was fine tuned on this data and the GRPO rein-
forcement learning algorithm with a chamfer distance based reward function was used to further
enhance results. Li et al. (2025) used DeepSeek-R1 to generate a natural language CoT and CAD
commands from a text description. The CoT was passed to Gemini-2.0 along with images of the
generated CAD model to provide visual feedback in an iterative refinement loop. The natural lan-
guage CoTs employed by these models were used an an auxiliary representation along side the
executable code. While they includes statements related to design intent, these are not defined in a
formal language which can be directly executed by CAD kernels.

2.4 REINFORCEMENT LEARNING FOR CAD

A number of recent papers have shown promising results applying reinforcement learning to a va-
riety of CAD related tasks. Casey et al. (2025) fine tuned a CAD the auto-constrainer model from

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Seff et al. (2021) with a number of RL algorithms. This was shown to improve the fraction of enti-
ties fully defined by the constraints while reducing the fraction of sketches where geometry moved
when the constraints were applied. Yin et al. (2025) studied the recovery of a parametric feature
recipe from B-Rep models. An Actor-Critic network selected faces of the target B-Rep to extrude
or revolve and rewards were based on the similarity between the recovered and target shapes. Chen
et al. (2025) used Direct Preference Optimization (DPO) to improve the performance of an image to
CAD command sequence network and Kolodiazhnyi et al. (2025) studied the use of reinforcement
learning to improve CAD reconstruction from point clouds.

3 DATA

3.1 DATASET CREATION

Our training data is derived from the CAD models in the ABC dataset Koch et al. (2019). The
Open Cascade (2025) modeling kernel is used to create the profiles, by slicing each B-Rep solid
with 5 equally spaced section planes with normals along each of the three coordinate system axes.
Disjoint regions are separated so that each extracted profile has one outer loop and zero or more
inner loops. This results in closed profile loops consisting of line segments, arcs and circles. The
data deduplicated procedure converted each profile into a graph with nodes as the vertices and curves
as edges. The edges were labeled with the curve type and nodes were labeled using the vertex
coordinates, quantized into 8x8 bins. The Weisfeiler Lehman graph hash Shervashidze et al. (2011)
was then computed and profiles with duplicated hashes were removed. The data was then split into
95% train, 3% validation and 2% test.

The extraction of the construction sequences from the raw profile geometry utilizes a set of sim-
ple heuristic algorithms which are described briefly here. A detailed description of each of the
algorithm’s phases can then be found in Appendix B. To simulate the input of a designer, we start
our sequences with information used for shape control which we refer to as a “geometric prompt”.
Rather than auto-completing a sketch from a random subset of sketch geometry as in Seff et al.
(2021), we extract line segments from the convex hull and the positions of internal circular loops.
The area and bounding box of the profile, along with any symmetry lines are also included. Next in
an “analysis phase”, we identify geometric relationships between curves such as parallel lines, con-
centric circles and fillet arcs. These relationships are translated into construction steps, such as curve
offsetting and filleting operations. We then built a bipartite dataflow graph in which nodes represent
geometry and construction steps and directed edges represent how geometry flows into and out of
the operations. Initially this graph will contain cycles and redundant branches, which are removed in
a “graph simplification phase”. The construction sequence is then obtained using a lexicographical
topological sort, in which the order of the curves in the final profile is used to resolve ambiguities
in the topological sort order. The data extraction process yielded a total of 318,208 profiles with
corresponding construction sequences.

3.2 LEARNED SEQUENCES

Our experiments utilize sequences with the following three components. The sequences start with
the “geometric prompt” which is used to control the shape. Next we include the construction steps,
which act like a chain of thought, starting with the prompt geometry and constructing the points and
curves required to define the final profile. Finally we have the profile geometry, which is analogous
to the final answer returned by a reasoning LLM.

The construction steps represent simple geometric operations such as curve offsetting, curve-curve
intersections, curve reversal, mirroring points over symmetry lines and the construction of fillet
arcs. A few examples of supported construction steps are provided in Table 1, and the remainder
are listed in Table 6 of Appendix A.1. Each construction step has an operation type, a list of input
geometry and a list of output geometry. The output geometry of one step can be utilized as the input
to subsequent steps, building up a description of the dataflow graph. The construction steps are
ordered such that the curves are created in the order they appear in the profile, with the first curve
chosen so that its end point is closest to the bottom left hand corner. Details of the domain specific
language (DSL) and tokenization used to encode the sequences are in Appendix A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Ruler and compass construction steps. Examples of input geometries to the construction
steps are shown in blue and their output in red.
Description Explanation Example

CircleOffsetCircle
Input: circle1, offset
Output: circle2

Given an oriented circle and a pos-
itive offset distance, find and return
the offset circle.

LineXLine
Input: line1, line2
Output: point

Given two lines, find and return
their intersection point.

LineOffsetLine
Input: line1, offset
Output: line2

Given a directed line and an off-
set distance, find and return the line
offset from this line to the left hand
side by the offset distance.

LineXCicle
Input: line, circle
Output: point(s)

Given a line and a circle, find and
return the intersection point(s).

4 METHOD

4.1 SUPERVISED LEARNING

We train an autoregressive decoder only transformer on the sequences described in 3.2 with a cross
entropy loss. In our experiments we use 8 heads, a depth of 8, and embedding dimension of 1024,
and an attention head dimension of 128. We use the Adam optimizer Kingma & Ba (2014) with a
learning rate of 3e− 4 and dropout of 0.1. Training was performed on 4 RTX 6000 GPUs.

Two variants of the model were trained. A baseline model which includes only the information in
the geometric prompt and then the geometry of the final profile, and a construction sequence model
which additionally includes the intermediate construction steps. A comparison of the performance
of these models is given in Section 5.2

4.2 REINFORCEMENT LEARNING (RL)

The fine-tuning of the profile generation model can be formulated as follows; the profile generation
model πθ(τ |x) generates a profile sequence τ for geometric prompt x. Given a set of geometric
prompts D = {xi}Ni and reward function r that provides a scalar value r(x, τ) which evaluates the
quality of a profile sequence τ and how well it satisfies the geometric constraints prescribed by x.
RL finetuning proceeds by maximizing the expected rewards

max
θ

Ex∼ρEτ∼πθ(·|x)[r(x, τ)], (1)

where ρ represents the distribution of the geometric prompts, and θ ∈ Rd denotes for the training
parameters of the profile generation model.

4.2.1 REWARD DESIGN

While reinforcement learning from human feedback (RLHF) tends to involve vague and subjective
human preferences, the task of CAD profile generation allows for direct and objective evaluation of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the generated profile sequences through measurable validity metrics, which eliminates the need for
a learned reward model. The rewards used for RL are defined as follows:

• Reward for syntactically valid profile sequence τ :

rno self-intersection: fraction of profiles without self-intersecting curves,
rno short edges: fraction of profiles without edges shorter than a predefined minimum length,

• Reward for syntactically invalid profile sequence:

rinvalid profile: penalty for generated sequences that produce syntactically invalid DSL code and
cannot be detokenized.

4.2.2 POLICY GRADIENT METHODS

We focus on three sequence-level policy gradient methods: ReMax (Li et al., 2024), GRPO (Shao
et al., 2024), and RLOO (Ahmadian et al., 2024). These methods compute policy gradients using
the total log-probability of the generated sequence and apply a REINFORCE-style estimator with
learned baselines (Weaver & Tao, 2001). In contrast to PPO (Schulman et al., 2017), which performs
token-level policy updates using individual log-probabilities at each decoding step, these approaches
operate at the sequence level and eliminates the need for a separately trained value network. We
apply them to fine-tune the profile generation policy.

ReMax (Li et al., 2024) uses the reward of a sequence generated by greedily decoding from the
policy network as a baseline to normalize the rewards of sequences sampled stochastically.

With sequences τ sampled from policy πθ(τ |x), the ReMax baseline bθ,ReMax is argmax(πθ(τ |x)),
and the policy gradient objective for ReMax is:

Eτ∼πθ(·|x)

[(
r(x, τ)− bθ,ReMax

)
· ∇θ log πθ(τ | x)

]
(2)

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) samples a group of G individual
profile sequences {τ}Gg=1 for every geometric prompt x. The advantage of the g-th profile sequence
is calculated by normalizing the group-level rewards {r(x, τg)}Gg=1:

Ag =
r(x, τg)− mean({r(x, τg)}Gg=1)

std({r(x, τg)}Gg=1)
. (3)

The GRPO policy gradient objective is:

E{τg}G
g=1∼πθ(·|x)

[
min(ψgAg, clip

(
ψg, 1− ϵ, 1 + ϵ

)
Ag)− βDKL(πθ∥πref)

]
, (4)

where:

ψg =
∇θπθ(τg | x)
πref(τg | x)

, DKL

(
πθ ∥πref

)
=

1

ψg
+ logψg − 1 (5)

REINFORCE-Leave-One-Out (RLOO) (Ahmadian et al., 2024) samples a group of G individual
profile sequences {τ}Gg=1 for every geometric prompt x. The reward for each sample within a group
rg serves all other samples as a baseline, resulting in the policy gradient objective as follows:

E{τg}G
g=1∼πθ(·|x)

[1
G

G∑
g=1

[
(
rg −

1

G− 1

∑
i ̸=g

ri
)
· ∇θ log πθ(τg | x)]

]
. (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 RESULTS

5.1 EVALUATION METRICS

Evaluation metrics for 2d parametric profile generation can be broadly divided into two categories:
validity metrics, which assess whether a generated profile sequence is syntactically correct and ge-
ometrically sound, and prompt satisfaction metrics, which evaluate how well the generated profile
shape adheres to the constraints and properties specified in the input geometric prompt.

5.1.1 VALIDITY METRICS

Validity metrics measure whether the generated profiles conform to both the syntactic requirements
of the DSL and the implicit geometric expectations of a well-formed profile shape. These metrics
include:

Syntactic validity: Whether a generated sequence can be successfully detokenized under the strict
syntactic rules of the DSL.

No self-intersection: Whether the resulting profile is free of self-intersections.

No short edges: Whether all edges exceed the minimum length defined by the quantization bin size.

These are typically reported as boolean indicators, aggregated as the overall fraction of valid profile
generations.

5.1.2 PROMPT SATISFACTION METRICS

The degree to which a generated profile adheres to the geometric prompt can then be quantitatively
evaluated, enabling direct and objective assessment of prompt satisfaction. Some of the prompt
satisfaction metrics include:

Area: measured by the difference between the area prescribed in the geometric prompt and that of
the generated profile.

Line segments: for each line segment specified in the prompt, the metric is computed based on the
presence of profile line segments that are collinear, overlapping, and equal in length. The distance
between the end points of the requested and generated line segments is also recorded.

Center-of-gravity: measured by the distance between the center of gravity defined in the geometric
prompt and that of the generated profile.

Holes: measured by the distances between the hole centers defined in the geometric prompt and that
of the generated profile.

Symmetry lines: measured by the intersection over union (IoU) of the profile and its reflection
across the symmetry line, averaged over all symmetry lines in the prompts.

Outer bounding box: measured by the intersection over union between the outer bounding box
defined in the geometric prompt and that of the generated profile.

Fraction of tangent continuous vertices: measured by the difference between the fraction of tan-
gent continuous vertices prescribed in the geometric prompt and that of the generated profile.

5.2 QUANTITATIVE RESULTS

Table 2 presents a comparative analysis of evaluation metrics across five models: a baseline model
trained without construction sequences; a construction steps model trained with construction se-
quences with the same hyperparameters as the baseline model; and three RL finetuned variants of
the construction steps model. These aligned variants, ReMax, GRPO, and RLOO, are optimized
using reward functions defined in Section 4.2.1. All models are evaluated with greedy sampling of
top k equals to one.

The introduction of construction sequences leads to substantial improvements over the baseline
across all validity metrics and most of the prompt satisfaction metrics. Syntactic validity increases

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

from 88.1% to 94.0%, while the proportion of non-self-intersecting profiles increases from 81.9%
to 84% and compliance with minimum edge length increased from 88.2% to 94.3%. Among the
prompt satisfaction metrics, the most notable gains are observed in line segment adherence and
mirror symmetry. These results confirm that integrating construction sequences alone significantly
enhances both structural validity and alignment with geometric constraints.

Further gains are realized through RL-based alignment. The aligned variants consistently outper-
form the unaligned construction steps model across syntactic and geometric validity metrics, includ-
ing self-intersection avoidance and minimum edge length compliance. For instance, both RLOO
and GRPO achieve more than 6% reduction in generating self-intersecting geometries. Notably,
although the reward functions are explicitly designed to optimize geometric validity, we observe
consistent and often substantial gains across a broad set of geometric prompting metrics, including
area accuracy, bounding box alignment, symmetry, and hole placement. This suggests that structural
improvements induced by alignment not only satisfy low-level constraints but also enhance higher-
level geometric properties, even when these are not directly incentivized during optimization.

Table 2: Comparison of key metrics among different models

Metrics Baseline
model

Construction
steps model

Construction
steps model

(ReMax)

Construction
steps model

(GRPO)

Construction
steps model

(RLOO)
Syntactic validity (↑) 0.881 0.940 0.945 0.975 0.976
No self-intersection (↑) 0.819 0.840 0.853 0.903 0.905
No short edges (↑) 0.882 0.943 0.948 0.976 0.978
Difference in area (↓) 0.253 0.238 0.210 0.170 0.162
Line segment distance (↓) 0.00313 0.00152 0.00043 0.00082 0.00111

Line segment ratio (↑) 0.963 0.983 0.981 0.978 0.976

Center-of-gravity
distance (↓) 0.0247 0.0267 0.0285 0.0254 0.0265

Hole center distance (↓) 0.0255 0.0318 0.0153 0.0232 0.0402

Mirror IoU (↑) 0.818 0.859 0.865 0.886 0.886
Outer bounding
box IoU (↑) 0.990 0.984 0.981 0.985 0.983

Tangent continuous
vertices difference (↓) 0.0907 0.0786 0.0799 0.0814 0.0816

6 QUALITATIVE RESULTS

Figure 2 presents qualitative comparisons of profiles generated by different models. The first col-
umn illustrates the geometric prompt used to drive the generation process, while the other columns
show the generated profile geometry. These results demonstrate that in cases where the baseline
model fails to adhere to the complex structural constraints encoded in the prompts, the construction
steps model and its aligned variants can successfully produce geometrically valid generations faith-
ful to the design specification. Further qualitative results are shown in Appendix D and E. These
demonstrate how the geometric prompt can be used to control the shape of the generated profile and
include examples of the full construction sequences and the family of shapes which can be obtained
from them by varying the driving parameters.

7 CONCLUSION

In this work, we introduced a new sequence representation for CAD generation, which constructs
profiles using a sequence of simple geometric construction steps. Adding these construction steps

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Geometric
prompt

Baseline Construc�on ReMax GRPO RLOO

Figure 2: Visual comparison of profiles generated with the base model without construction se-
quences, the construction sequences model and the aligned models.

between the designers input and the final shape improves the generation quality, and promotes ad-
herence to design requirements. Furthermore, we showed that reinforcement learning, guided by
reward functions that penalize self-intersections, achieves consistent improvements across a range
of metrics, including those not explicitly targeted. As the generated sequences can be replayed with
floating point precision, they overcome the accuracy limitations of previous methods. Addition-
ally, by reducing the degrees of freedom into a small set of parameters, the resulting shapes can be
manipulated parametrically, much like edits in a parametric CAD system.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting REINFORCE style optimization for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

learning from human feedback in LLMs, 2024.

William Bouma, Ioannis Fudos, Christoph Hoffmann, Jiazhen Cai, and Robert Paige. Geometric
constraint solver. Computer-Aided Design, 27(6):487–501, 1995. ISSN 0010-4485. doi: https:
//doi.org/10.1016/0010-4485(94)00013-4. URL https://www.sciencedirect.com/
science/article/pii/0010448594000134.

Evan Casey, Tianyu Zhang, Shu Ishida, John Roger Thompson, Amir Khasahmadi, Joseph George
Lambourne, Pradeep Kumar Jayaraman, and Karl D. D. Willis. Aligning constraint generation
with design intent in parametric cad, 2025. URL https://arxiv.org/abs/2504.13178.

Cheng Chen, Jiacheng Wei, Tianrun Chen, Chi Zhang, Xiaofeng Yang, Shangzhan Zhang, Bingchen
Yang, Chuan-Sheng Foo, Guosheng Lin, Qixing Huang, and Fayao Liu. Cadcrafter: Generat-
ing computer-aided design models from unconstrained images, 2025. URL https://arxiv.
org/abs/2504.04753.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. CoRR, abs/2501.12948, January 2025.
URL https://doi.org/10.48550/arXiv.2501.12948.

Jiajie Fan, Babak Gholami, Thomas Bäck, and Hao Wang. Neuronurbs: Learning efficient surface
representations for 3d solids. arXiv preprint arXiv:2411.10848, 2024.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D. Goodman. Stream of search (sos): Learning to search in language. ArXiv,
abs/2404.03683, 2024. URL https://api.semanticscholar.org/CorpusID:
268987503.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided
design as language. In Proceedings of the 35th International Conference on Neural Informa-
tion Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN
9781713845393.

Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang, Dong Xu, and Qian Yu. Cad-coder: Text-
to-cad generation with chain-of-thought and geometric reward, 2025. URL https://arxiv.
org/abs/2505.19713.

Mohammad Sadil Khan, Sankalp Sinha, Sheikh Talha Uddin, Didier Stricker, Sk Aziz
Ali, and Muhammad Zeshan Afzal. Text2cad: Generating sequential CAD designs
from beginner-to-expert level text prompts. In Advances in Neural Information Pro-
cessing Systems, volume 37, pp. 7552–7579. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:
6628106.

10

https://www.sciencedirect.com/science/article/pii/0010448594000134
https://www.sciencedirect.com/science/article/pii/0010448594000134
https://arxiv.org/abs/2504.13178
https://arxiv.org/abs/2504.04753
https://arxiv.org/abs/2504.04753
https://doi.org/10.48550/arXiv.2501.12948
https://api.semanticscholar.org/CorpusID:268987503
https://api.semanticscholar.org/CorpusID:268987503
https://arxiv.org/abs/2505.19713
https://arxiv.org/abs/2505.19713
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/0e5b96f97c1813bb75f6c28532c2ecc7-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geometric
deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 9593–9603, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Maksim Kolodiazhnyi, Denis Tarasov, Dmitrii Zhemchuzhnikov, Alexander Nikulin, Ilya Zisman,
Anna Vorontsova, Anton Konushin, Vladislav Kurenkov, and Danila Rukhovich. cadrille: Multi-
modal cad reconstruction with online reinforcement learning. arXiv preprint arXiv:2505.22914,
2025.

Mingi Lee, Dongsu Zhang, Clément Jambon, and Young Min Kim. Brepdiff: Single-stage b-rep
diffusion model. In Proceedings of the Special Interest Group on Computer Graphics and In-
teractive Techniques Conference Conference Papers, SIGGRAPH Conference Papers ’25, New
York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400715402. doi:
10.1145/3721238.3730698. URL https://doi.org/10.1145/3721238.3730698.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong Tian. Beyond
a*: Better planning with transformers via search dynamics bootstrapping. ArXiv, abs/2402.14083,
2024. URL https://api.semanticscholar.org/CorpusID:267782588.

Chuan Li, Michael Wand, Xiaokun Wu, and Hans-Peter Seidel. Approximate 3d partial symmetry
detection using co-occurrence analysis. In 2015 International Conference on 3D Vision, pp. 425–
433, 2015. doi: 10.1109/3DV.2015.55.

Xueyang Li, Jiahao Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Seek-cad: A self-refined
generative modeling for 3d parametric cad using local inference via deepseek, 2025. URL
https://arxiv.org/abs/2505.17702.

Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: a
simple, effective, and efficient reinforcement learning method for aligning large language models.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Open Cascade. Open Cascade Technology (OCC). https://www.opencascade.com/
open-cascade-technology/, 2025. Accessed: 2025-05-21.

J. C. Owen. Algebraic solution for geometry from dimensional constraints. In Proceedings of
the First ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA
’91, pp. 397–407, New York, NY, USA, 1991. Association for Computing Machinery. ISBN
0897914279. doi: 10.1145/112515.112573. URL https://doi.org/10.1145/112515.
112573.

Wamiq Reyaz Para, Shariq Farooq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas Guibas,
and Peter Wonka. Sketchgen: generating constrained cad sketches. In Proceedings of the 35th
International Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY,
USA, 2021. Curran Associates Inc. ISBN 9781713845393.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Ari Seff, Yaniv Ovadia, Wenda Zhou, and Ryan P. Adams. SketchGraphs: A large-scale dataset
for modeling relational geometry in computer-aided design. In ICML 2020 Workshop on Object-
Oriented Learning, 2020.

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P. Adams. Vitruvion: A generative
model of parametric cad sketches. ArXiv, abs/2109.14124, 2021. URL https://api.
semanticscholar.org/CorpusID:238215827.

11

https://doi.org/10.1145/3721238.3730698
https://api.semanticscholar.org/CorpusID:267782588
https://arxiv.org/abs/2505.17702
https://www.opencascade.com/open-cascade-technology/
https://www.opencascade.com/open-cascade-technology/
https://doi.org/10.1145/112515.112573
https://doi.org/10.1145/112515.112573
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://api.semanticscholar.org/CorpusID:238215827
https://api.semanticscholar.org/CorpusID:238215827

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borg-
wardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12(null):2539–2561, November
2011. ISSN 1532-4435.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. nips, 2015.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement learn-
ing. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
UAI’01, pp. 538–545, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558608001.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Karl D. D. Willis, Pradeep Kumar Jayaraman, Joseph G. Lambourne, Hang Chu, and Yewen Pu.
Engineering sketch generation for computer-aided design. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2105–2114, 2021. doi: 10.
1109/CVPRW53098.2021.00239.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-guided vector icon synthesis
with autoregressive transformers. ACM Trans. Graph., 42(6), December 2023. ISSN 0730-0301.
doi: 10.1145/3618364. URL https://doi.org/10.1145/3618364.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2021.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. Skexgen: Autoregressive generation of cad construction sequences with
disentangled codebooks. In International Conference on Machine Learning, pp. 24698–24724.
PMLR, 2022.

Xiang Xu, Joseph Lambourne, Pradeep Jayaraman, Zhengqing Wang, Karl Willis, and Yasutaka
Furukawa. Brepgen: A b-rep generative diffusion model with structured latent geometry. ACM
Transactions on Graphics (TOG), 43(4):1–14, 2024.

Mengjiao Yang, Dale Schuurmans, P. Abbeel, and Ofir Nachum. Chain of thought imitation with
procedure cloning. ArXiv, abs/2205.10816, 2022. URL https://api.semanticscholar.
org/CorpusID:248986984.

Xiaolong Yin, Xingyu Lu, Jiahang Shen, Jingzhe Ni, Hailong Li, Ruofeng Tong, Min Tang, and
Peng Du. Rlcad: Reinforcement learning training gym for revolution involved cad command
sequence generation, 2025. URL https://arxiv.org/abs/2503.18549.

12

https://doi.org/10.1145/3618364
https://api.semanticscholar.org/CorpusID:248986984
https://api.semanticscholar.org/CorpusID:248986984
https://arxiv.org/abs/2503.18549

	Introduction
	Related work
	Algorithm traces
	Sketch generation
	Chain of thought in CAD
	Reinforcement Learning for CAD

	Data
	Dataset creation
	Learned sequences

	Method
	Supervised learning
	Reinforcement learning (RL)
	Reward design
	Policy gradient methods

	Results
	Evaluation metrics
	Validity metrics
	Prompt satisfaction metrics

	Quantitative results

	Qualitative results
	Conclusion
	Domain specific language and tokenization for construction sequences
	Geometry
	Geometric prompt
	Construction steps
	Parameters
	Profile geometry

	Extracting construction sequences from profile geometry
	Pre-processing
	Extracting geometric prompts
	Construction sequence extraction
	Analysis phase
	Identification of frequently used distances
	Identification of source lines
	Identification of offsets between parallel lines
	Identification of offsets between circles
	Creating the construction steps
	Graph completion
	Parameters
	Cycle breaking
	Graph pruning
	Sequence ordering

	Additional results
	RL algorithms
	Construction step precision

	Shape control via geometric prompting
	Generated construction sequence examples

