
Under review as submission to TMLR

Hitchhikers’ Guide to Masked Latent Semantic Modeling

Anonymous authors
Paper under double-blind review

Abstract

Masked Latent Semantic Modeling (MLSM) is a pre-training objective which – in contrast
to masked language modeling (MLM) – changes the objective of pre-training from the re-
construction of the exact word forms to their latent semantic properties (LSPs). The LSPs
are determined by performing sparse coding based on the hidden token representations de-
rived from an auxiliary model. In this paper, we identify and carefully evaluate previously
unexplored important properties of MLSM pre-training. Based on the results of our rig-
orous experiments, we formulate a series of recommendations and best practices regarding
MLSM pre-training for improving its efficiency. Among other recommendations, we pro-
pose a recipe for choosing the layer of the auxiliary model to determine the LSPs from,
such that we can reduce the costs of pre-training MLSM pre-training, while maintaining
or even surpassing the downstream fine-tuning capabilities of the resulting model. We also
provide an improved implementation of MLSM, which reduces its computational require-
ments expressed in FLOPS by 33%. Besides the improved computational requirements,
MLSM comes with better fine-tuning transferability, i.e., in our experience, the fine-tuning
performance of MLSM pre-trained model checkpoints is on par or better than that of alter-
natively pre-trained models for twice the update steps. We release our code for reproducing
our experiments at github.com/[MASK]

1 Introduction

Masked Latent Semantic Modeling (MLSM; Berend, 2023) has been recently proposed as a cognitively
inspired alternative to masked language modeling (MLM) that relies on latent concepts inferred in an unsu-
pervised manner. The core idea behind MLSM is that instead of requiring language models to output the
exact identity of the masked words, they are expected to output a context-sensitive semantic characterization
of the masked words in terms of their conceptual latent semantic properties as their pre-training task.

We illustrate the different kinds of outputs that models pre-trained with MLM and MLSM objective are
expected to deliver in Figure 1. In case the masked token happens to be the word dog, the MLM pre-training
loss is minimized if the model outputs all the probability mass to that exact token (Figure 1a).

This means that during the individual updates of MLM, we assume that for a particular masked token, there
exist only a single unique correct substitute. As MLM pre-training progresses, language models become
capable of outputting meaningful probability distributions for the substitutes of masked tokens, however,
this requires vast amounts of diverse training data, something that is not as crucial for MLSM pre-training.

In contrast to MLM pre-training, the target output distribution of the model when using MLSM ranges over
the latent semantic properties (abbreviated as LSP in Figure 1b) of the masked tokens. The LSPs used
during MLSM pre-training are determined in an unsupervised manner from an auxiliary teacher model by
expressing its hidden representations as a sparse linear combination of a codebook of semantic atoms.

Even though MLSM pre-trained models have been shown to outperform MLM pre-trained models regarding
their transferability to downstream tasks, there are important open questions and practical considerations
not discussed thoroughly enough, begging for further investigations and supportive empirical evidences. Our
paper aims at answering those research questions via rigorous experiments for improving the understanding
of MLSM pre-training. More specifically, we investigate the following research questions:

1

github.com/[MASK]

Under review as submission to TMLR

ap
pl

e ... bu
s ...

co
ok

s ...
do

g ...
go

at ...
sh

ip ...
wo

rm ... zo
o0.0

0.2
0.4
0.6
0.8
1.0

Ou
tp

ut
 d

ist
rib

ut
io

n

(a) MLM objective

LS
P

1
LS

P
2

LS
P

3
LS

P
4

LS
P

5
LS

P
6

LS
P

7
LS

P
8

LS
P

90.0
0.2
0.4
0.6
0.8
1.0

Ou
tp

ut
 d

ist
rib

ut
io

n

(b) MLSM objective

Figure 1: Comparisons of the probability distributions required by MLM (a) and MLSM (b) pre-training,
with LSP referring to the latent semantic properties devised from the hidden representations of an auxiliary
model in an unsupervised manner.

• how can we improve the efficiency of MLSM,
• what are the effects of determining LSPs on hidden representations that originate from different

layers of the auxiliary model,
• how can we cheaply anticipate the fine-tuning transferability of an MLSM pre-trained model that is

based on a particular layer of the auxiliary model,
• what are the effects of using different number of LSPs,
• how to test and improve linguistic capabilities of MLSM pre-trained models.

Throughout the paper, we highlight our key findings with colored background. We also release the pre-
trained models that we created for our experiments at HuggingFace Hub, as well as our code base at
github.com/[MASK].

2 Related work

Prior work suggests that sparse representations obtained from dense hidden vectors can convey the seman-
tic properties of the words they describe (Berend, 2020; Yun et al., 2021). The core idea behind MLSM
pre-training is that the latent semantic decomposition of the individual context-sensitive token representa-
tions can be exploited as a pre-training signal. Our paper advances knowledge on MLSM pre-training by
providing a series of thorough experiments, related to various important implementation choices that has
been previously overlooked in the literature. We also investigate the training costs and offer an improved
implementation of MLSM.

MLSM also relates to prior research involving the integration of semantic categories into language model pre-
training (Levine et al., 2020; Bai et al., 2022; Shani et al., 2023). The way MLSM progressed these approaches
is that it determines the semantic properties to recover by the model in a context-sensitive manner, not
requiring any external linguistic resources, such as WordNet (Fellbaum, 1998) or ConceptNet (Speer et al.,
2017), hence it is capable of considering conceptual relations that go beyond hypernymy.

Since MLSM requires an auxiliary teacher model for determining the distribution of latent semantic properties
of the masked tokens that the language model needs to recover as its pre-training task, it can be naturally
framed as a special kind of knowledge distillation technique (Hinton et al., 2015; Aguilar et al., 2020).
MLSM pre-training is also related to the line of research that incorporates alternative pre-training objectives
as opposed to outputting the exact identity of the masked token (Levine et al., 2020; Yamaguchi et al., 2021;
Alajrami & Aletras, 2022).

Despite the growing prominence of decoder-only generative large language models, encoder-based language
models remain highly relevant in contemporary applications, such as retrieval-augmented generation (RAG).
This is evidenced by the recent release of advanced encoder-based models like ModernBERT (Warner et al.,
2024), NeoBERT (Breton et al., 2025) or EuroBERT (Boizard et al., 2025).

2

github.com/[MASK]

Under review as submission to TMLR

Our research also relates to research efforts that aim at enhancing the efficiency of pre-training for encoder-
based language models (Izsak et al., 2021; Portes et al., 2023; Geiping & Goldstein, 2023). Our approach,
however, differs from these earlier works, as they were focusing on architectural speedups and design choices
of encoder models trained with the traditional pre-training paradigm, whereas we focus on modification of
the learning objective in order to make pre-training more effective in terms of transferability to downstream
tasks and better aligned with human perception.

Most recently, sparse autoencoders (SAEs) have became a popular tool for offering post-hoc interpretabiliy
of LLM behavior (Huben et al. 2024; Lieberum et al. 2024; He et al. 2024; inter alia). This line of research
relates to ours in that both involve sparse coding of neural activations, with the core difference being that
we make use of the sparsified representations for improving the pre-training phase of encoder-based models.
Concept features derived from a SAE have recently also been used for pre-training autoregressive large
language models (Tack et al., 2025).

3 Masked Latent Semantic Modeling

We first overview how MLSM pre-training works, as it plays a central role in our experiments. A crucial
difference in MLSM is that it does not output a distribution over the vocabulary of the model, but over the
LSPs that are extracted from an auxiliary model as illustrated in Figure 1.

The way MLSM determines the LSP distribution of a token is by relying on an auxiliary model T . In
a preparatory phase, a sample of hidden representations produced by T is collected from its layer l as
{h

(l)
1 , . . . , h

(l)
N }. A dictionary learning problem (Mairal et al., 2009) is then solved of the form

arg min
D(l),α

(l)
j

∈Rk
≥0

N∑
j=1

1
2∥h

(l)
j − D(l)α

(l)
j ∥2

2 + λ∥α
(l)
j ∥1, (1)

where D(l) ∈ Rd×k is a dictionary matrix, with column vector norms bounded by 1, α
(l)
j ∈ Rk contains the

sparse linear coefficients that indicate the extent to which the vectors from D(l) are used in reconstructing
the d-dimensional hidden representation from the l-th layer of T , h

(l)
j ∈ Rd. λ serves as a regularization

coefficient, controlling for the level of sparsity in α
(l)
j .

Solving (1) is a one time effort, performed before the actual pre-training phase, having a negligible (≪ 1%)
computational overhead compared to the typical costs of pre-training. Once the dictionary matrix D(l) is
determined, it is used for determining the sparse contextualized representation for any h

(l)
i , i.e., a hidden

state from layer l of T as
arg min
α

(l)
i

∈Rk
≥0

1
2∥h

(l)
i − D(l)α

(l)
i ∥2

2 + λ∥α
(l)
i ∥1. (2)

Objective (2) is computationally convenient, as it does not require optimizing towards D(l). With D(l)

being fixed from (1), obtaining the sparse linear coefficients α
(l)
i constitutes an efficient to solve LASSO

optimization problem.

We ensure in (2) that the coefficients of α
(l)
i are all non-negative, but it is not guaranteed by default that it

can be considered as a proper probability distribution. The non-negativity of α
(l)
i allows us to conveniently

turn it into a proper probability distribution via ℓ1-normalization. Intuitively, the ℓ1-normalized version of
α

(l)
i provides us the relative importance for each of the LSPs in the semantic characterization of the given

token (producing distributions similar to the one in Figure 1b).

The probability distributions over the k distinct LSPs are then used during the course of pre-training as
the basis of calculating the loss function via the Kullback–Leibler divergence. That is, assuming that the
distribution over the LSPs for a token is given by distribution P , and the output distribution provided by the
network for the same token is given by distribution Q, the loss function is determined by

∑k
j=1 P (j) log P (j)

Q(j) .

We also provide a schematic overview of the MLSM pre-training in Figure 2.

3

Under review as submission to TMLR

0.00

⋮
0.61

0.00

⋮
0.39

0.00

-1.21

⋮
0.51

⋮
0.08

h=α =

Transformer encoder

E(Sarah) E(ate) E(a) E(delicious) E([MASK])

Sarah ate a delicious [MASK]

Sarah ate a delicious cake

Auxiliary transformer

encoder (frozen)

E(Sarah) E(ate) E(a) E(delicious) E(cake)

Solve argmin ||h – Dα||2 + λ ||α||1
α

Figure 2: A schematic overview of MLSM pre-training.

3.1 Improving the efficiency of MLSM

Intuitively, MLSM pre-training may appear to be strictly more resource intensive than MLM pre-training,
owing to the use of the auxiliary model T . However, this is not necessarily the case, as the output space of
an MLSM pre-trained model spans a considerably smaller domain compared to that of an MLM pre-trained
model. Indeed, the output space of MLM models range over V , with V being the entire vocabulary of the
model, whereas MLSM models output a distribution over the k LSPs, with k ≪ |V |.

This means that for MLSM, the final unembedding layer – transforming the output of the final transformer
block into model logits – can be of the shape d × k (as opposed to d × |V |), where d is the dimensions of
the hidden state. The amount of FLOPS saved for producing model outputs outweigh the computational
overhead of determining the target distribution of LSPs from the auxiliary model T .

Berend (2023) mentions that “we introduce k new special symbols into the output vocabulary of the model”.
That is, the number of parameters in the unembedding layer was d×(|V |+k), instead of d×k. Additionally,
in the official implementation of MLSM, an unnecessary full forward pass over T – including the calculation
of the model logits – was conducted, even though MLSM requires only the hidden states of the auxiliary
from its layer l. This means that for an auxiliary model T , which uses hidden states of dimension dT and
consists of L layers in total, the forward pass in T for layers {l + 1, . . . , L}, as well as the computation related
to the unembedding operation (involving multiplication with a dT × |V | matrix) can be spared, providing
substantial improvement in the computational efficiency of MLSM pre-training.

4 Experiments

Throughout our experiments, we pre-trained multiple models that we evaluate over a diverse set of down-
stream tasks. We next describe the details of pre-training and evaluation involving both fine-tuning and
zero-shot results.

4.1 Pre-training experiments

Unless stated otherwise, we relied on the 20230920 dump of the English Wikipedia as our pre-training corpus
that we cleaned with the WikiBERT pre-processing pipeline (Pyysalo et al., 2021). During pre-training, we
used the AdamW optimizer (Loshchilov & Hutter, 2019) with linear learning rate scheduling with a peak
value of 1e−4, having a warm-up phase that constituted 2% of the total 100,000 update steps. Throughout
pre-training, we employed an effective batch size of 1024 (using gradient accumulation of 8 with a batch size
of 128) and a maximal sequence length of 128 subtokens.

We additionally ensured for better comparability between the different pre-training trials that the individual
batches had identical contents and were processed in identical order. All together we conducted pre-training
over approximately 102 million (100,000*1024) input sequences, spanning over nearly 13 billion tokens, i.e.,
4 epochs over our 3.3 billion tokens pre-training corpus.

4

Under review as submission to TMLR

Unless stated otherwise, we created all our models from scratch using DeBERTa-base (He et al., 2021)
backbone architecture. That is, our models consisted of 12 transformer blocks and employed a hidden
vector of 768 dimensions. This configuration of DeBERTa comes with approximately 100 million model
parameters, i.e., 8.3 million per encoder layer. Our MLSM models thus had substantially higher capacity
compared to the models originally pre-trained with MLSM, i.e., Berend (2023) created 8 layer encoders with
512 dimensional hidden representations that resulted in approximately 25 million parameters related to the
transformer blocks. Our experimental results hence allow us to assess if the benefits of MLSM pre-training
also apply for models with substantially increased capacity.

Pre-training one model for our experiments took approximately 3 GPU days on a single NVIDIA A6000.
This is in stark contrast to the computation involved in the creation of the official DeBERTa model that
was trained for nearly 2,000 V100 GPU days (the 1 million update steps that they conducted took about 20
days, using 96 V100 GPUs (He et al., 2021)).

4.1.1 MLSM related hyperparameters

When performing MLSM, we relied on bert-base as the auxiliary model T . Our auxiliary model – excluding
its unembedding layer not required for producing the LSPs – consists of approximately 96 million parameters,
but thanks to the improvements discussed in Section 3.1, we did not have to perform a full forward pass over
the entire network for obtaining the LSP profile of the masked tokens.

The exact amount of computation required for determining the LSPs is dependent on hyperparameter l,
i.e., the layer of T for extracting the hidden vectors from. (Berend, 2023) only considered using the hidden
representations from the very last layer of T (i.e., l = 12), whereas in Section 4.2.1, we provide a series of
controlled experiments on the role of altering the value of l.

We also investigate the effects on the choice of k, i.e., the number of LSPs to consider during MLSM pre-
training. The values we checked were 1, 2, 4, 8 and 16 times the dimensionality of the hidden vectors
employed in T , meaning that we had k ∈ {768, 1536, 3072, 6144, 12288}. We report our results obtained
with different choices of k in Section 4.2.2. Unless stated otherwise, we employ k = 3072. For obtaining
D(l) according to (1), we relied on 2 million hidden vectors obtained from T produced on texts randomly
sampled from our pre-training corpus.

4.1.2 Baseline models

We consider two baselines, the first being vanilla MLM pre-training, for which all overlapping hyperparame-
ters were kept identical to those of MLSM pre-trained models. As MLSM uses a teacher–student paradigm,
it is natural to compare to a knowledge distillation (KD) setting (Hinton et al., 2015; Aguilar et al., 2020).

During KD, we also rely on bert-base-cased as the auxiliary pre-trained teacher model T . We use T to
provide its predicted distribution for the substitutes of the masked tokens, that we train our student models
to replicate. It is important to note that the kind of improvements regarding the use of the auxiliary model
T (as discussed in Section 3.1) cannot be applied during KD pre-training, as KD provides the training signal
for the student model by relying on the final output of T . As such, KD pre-training requires strictly more
compute compared to both MLM and MLSM.

4.2 Fine-tuning experiments

We primarily measure the quality of the models that we pre-train by quantifying their fine-tuning perfor-
mance over a wide range of benchmark tasks. During this kind of assessment, we rely on the Corpus of
Linguistic Acceptability (COLA; Warstadt et al., 2019), the CoNLL 2003 dataset for NER (Tjong Kim Sang
& De Meulder, 2003), the MNLI natural language inference dataset Williams et al. (2018), the Microsoft
Research Paraphrase Corpus (MRPC; Dolan & Brockett, 2005), the QNLI benchmark Rajpurkar et al.
(2016); Wang et al. (2019b) datasets, Quora Question Pairs (QQP; Iyer et al., 2017), Recognizing Texutal
Entailment (RTE; Dagan et al., 2006; Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
Stanford Sentiment Treebank (SST2; Socher et al., 2013), Semantic Textual Similarity (STSB; Cer et al.,
2017) and the Word-in-Context (WiC; Pilehvar & Camacho-Collados, 2019) datasets.

5

Under review as submission to TMLR

2 4 6 8 9 10 11 12
Layer l of used for determining LSPs

0.7925

0.7950

0.7975

0.8000

0.8025

0.8050

0.8075

0.8100

Av
er

ag
e

fin
e-

tu
ni

ng
 re

su
lts

(a) Average fine-tuning performance

2 4 6 8 9 10 11 12

2
4

6
8

9
10

11
12

*
* *
*
* * *
* * * * * *
* * * *
* * * *

0.0

0.1

0.2

0.3

0.4

0.5

(b) Wilcoxon p-values

2 4 6 8 9 10 11 12

2
4

6
8

9
10

11
12

0 18 9 16 5 4 10 6
51 0 18 22 14 9 15 13
60 49 0 30 19 11 15 18
53 46 40 0 21 16 22 23
65 53 49 47 0 21 27 29
66 61 58 54 48 0 37 49
60 55 54 48 42 28 0 45
63 56 50 47 39 19 22 0

(c) Number of wins

Figure 3: The effects of using hidden states from different layers of the auxiliary model. (a) Aggregated
fine-tuning performance averaged over 70 evaluations for each different choices of layer index. (b) p-values of
the Wilcoxon signed rank test. A ∗ at the intersection of a row, column pair labeled with (li, lj) means that
the MLSM model relying on layer li of T performed significantly better (p < 0.01) than the MLSM model
using layer lj . (c) A value at position (li, lj) refers to the number of paired fine-tuning trials such that the
MLSM model pre-trained over the LSPs based on layer li of T scored higher.

As many of the datasets are part of the GLUE (Wang et al., 2019b) and SuperGLUE benchmarks (Wang et al.,
2019a), where the labels of the test set are not available, we performed our evaluation on the development
sets. We opted for frequently used hyperparameters for fine-tuning the datasets. That is, we used a learning
rate of 2e−5 with linear learning rate scheduling and a batch size of 32, performing 3 epochs. As the
evaluation metric, we always report the fine-tuning performance after the last epoch.

We repeated every fine-tuning experiment 5 times and report the average performance of these trials with
a differently initialized classification head in order to account for the potential variability in the fine-tuning
performances of the individual experiments. We also perform the Wilcoxon signed rank test between pairs
of differently pre-trained models, based on those pairs of fine-tuning experiments for which the classification
heads of the models were initialized with the same weights. Performing the fine-tuning experiments for a
model checkpoint took approximately 1 day on an NVIDIA A6000 GPU.

4.2.1 Experiments on the choice of l

Prior work on MLSM did not carefully evaluate the effects of using hidden vectors originating from other
than the final layer of T . This, however, potentially limited MLSM to reach its full potential, in light of
prior evidence suggesting that the hidden representations of the last transformer block might not convey the
most useful semantic information (Zhao et al., 2020). As discussed in Section 3.1, using earlier layers of T
has the additional benefit of reducing the costs of pre-training, by making LSP calculation cheaper.

We were hence curious whether the utility of the LSPs can be improved by relying on hidden states from
earlier layers of T . As such, we went beyond the originally proposed strategy of using the final layer of T
for obtaining LSPs, and trained a series of MLSM models while varying nothing else, but the layer of the
transformer block of the auxiliary model T that we use for determining the LSPs.

We pre-trained a separate MLSM model while relying on the hidden states produced by any of the even
indexed transformer blocks of T . Starting with block 9, we also investigated the use of odd indexed blocks,
as we originally expected the blocks near to the end of the network to produce more useful hidden states for
determining the LSPs. In this section, we use the notation MLSMl for referring to the MLSM model that
was pre-trained based on LSPs obtained from layer l of T .

Our evaluation suite consisted of 14 evaluations, each of which were repeated 5 times, resulting in 70 ex-
periments per model checkpoints. We report the overall averaged results over these 70 fine-tuning scores
conducted for each of our pre-trained MLSM models in Figure 3. A detailed breakdown on the individual
task performances averaged over the 5 experiments per evaluation criterion can be found in Table 1.

6

Under review as submission to TMLR

Table 1: The detailed effects on the per-task averaged fine-tuning performance of MLSM models as a function
of the layer of T used for determining the LSPs.

Layer l of the auxiliary model T used by MLSMl

task (metric) 2 4 6 8 9 10 11 12
CoNLL2003 (F1) 0.946 0.947 0.948 0.950 0.951 0.949 0.949 0.950
COLA (MCC) 0.339 0.371 0.418 0.372 0.387 0.405 0.428 0.410
MNLIm (accuracy) 0.805 0.809 0.815 0.818 0.821 0.824 0.823 0.823
MNLImm (accuracy) 0.814 0.819 0.821 0.827 0.828 0.831 0.833 0.829
MRPC (accuracy) 0.843 0.864 0.861 0.837 0.859 0.860 0.859 0.851
MRPC (F1) 0.892 0.906 0.904 0.886 0.902 0.902 0.903 0.896
QNLI (accuracy) 0.881 0.883 0.888 0.898 0.891 0.902 0.898 0.895
QQP (accuracy) 0.897 0.899 0.901 0.903 0.901 0.903 0.903 0.902
QQP (F1) 0.861 0.864 0.865 0.867 0.865 0.868 0.868 0.867
RTE (accuracy) 0.608 0.585 0.588 0.584 0.601 0.601 0.593 0.593
SST2 (accuracy) 0.892 0.899 0.905 0.899 0.909 0.914 0.910 0.906
STSB (pearson) 0.845 0.844 0.851 0.857 0.858 0.859 0.857 0.856
STSB (spearmanr) 0.842 0.840 0.848 0.855 0.856 0.857 0.855 0.853
WiC (accuracy) 0.641 0.662 0.646 0.643 0.642 0.659 0.633 0.656
Avg. 0.793 0.799 0.804 0.800 0.805 0.810 0.808 0.806

As illustrated by Figure 3a – apart from a small relapse for using layer 8 hidden representations of T – there
is a monotonic increase in the average fine-tuning performance of MLSMl models for l ≤ 10, after which
point there is a decline in the average fine-tuning results. Our results corroborate our hypothesis that using
the last hidden states from T for determining the LSPs is sub-optimal.

We also calculated the Wilcoxon signed rank test between the 70 pairs of fine-tuning results per pre-trained
model pairs, the outcome of which is summarized in Figure 3b. We put a * to those model pairs MLSMi and
MLSMj indicated by row and column labels i and j, such that the paired fine-tuning results of MLSMi were
significantly better (p < 0.01) according to the Wilcoxon signed rank test compared to those of MLSMj . The
values in Figure 3c refer to the number of paired fine-tuning experiments for which MLSMi scored better
than MLSMj .

Table 1 and Figure 3 clearly indicate that choosing MLSM10 over MLSM12 should be preferred. MLSM10
is not only cheaper to pre-train, but it also performs significantly better than MLSM12. Even though there
is no statistically significant difference between MLSM10 and MLSM11, pre-training the former is cheaper
as it relies on an earlier layer of T . For any other choice of investigated values for l, MLSM10 performs
significantly better than MLSMl.

From a practical consideration, when using an L-layered auxiliary model T , it is recommendable to pre-train
MLSMl for a value of l that is not equal but close to L. Such a choice not only reduces the pre-training costs
compared to MLSML (as the cost of determining LSPs is directly proportional to the number of layers kept
from T), but it is also likely to provide LSPs that provide more useful pre-training signal. For the above
reasons, we conducted our remaining experiments with MLSM10.

Recipe for choosing l Our previous analysis showed that relying on a layer other than the last one of the
auxiliary model should be preferred both for saving computation and for improving the model transferability
to downstream tasks via fine-tuning. At this current stage, it still remains a question if there is an efficient
way to anticipate the effects of using a particular layer l of the auxiliary model without the need to actually
perform multiple MLSM pre-trainings with different choices of l.

To this end, we next propose and evaluate a cheap to calculate diagnostic with high predictive power towards
the utility of a particular set of LSPs belonging to layer l of the auxiliary model T . This is useful, as it
allows us to select l in a more principled way. As the LSPs are meant to encode latent semantic information,

7

Under review as submission to TMLR

2 4 6 8 9 10 11 12
Layer l of used

0.681

0.696

0.712

0.727

0.743

W
SD

 p
er

fo
rm

an
ce

0.793

0.797

0.801

0.806

0.810

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

(a) Performance as a function of layer l

0.68 0.69 0.70 0.71 0.72 0.73 0.74
WSD performance

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

Fi
ne

-tu
ni

ng
 p

er
fo

rm
an

ce

12
11
10

9

8

6

4

2

(b) Fine-tuning as a function of WSD performance

Figure 4: Comparison of the word sense disambiguation (WSD) and fine-tuning performance of the MLSM
model that uses a given layer l from the auxiliary model T .

we argue that one way to assess their semantic content is via their use in word sense disambiguation (WSD).
We anticipate that if the LSPs for layer l of T perform better in the task of WSD, then we can expect those
LSPs to be more useful when using them in MLSM pre-training.

We measured the utility of LSPs by evaluating them over the commonly used WSD benchmark of (Raganato
et al., 2017). This benchmark includes the SENSEVAL-2 (Edmonds & Cotton, 2001), SENSEVAL-3 (Mi-
halcea et al., 2004), SemEval 2007 (Pradhan et al., 2007), SemEval 2013 (Navigli et al., 2013) and SemEval
2015 (Moro & Navigli, 2015) WSD datasets.

For this benchmark, the task is to determine the most likely WordNet (Fellbaum, 1998) sense for a total of
7253 ambiguous words in their context. For the WSD evaluation, we relied on the SemCor (Miller et al.,
1993) sense-annotated dataset, consisting of 802,443 tokens with more than 28% (226,036) of those being
sense-annotated with WordNet sensekeys.

In order to assess the utility of the LSPs, we first determined them for every sense-annotated token of
SemCor. For some token t with h

(l)
t ∈ Rd denoting its contextual representation according to layer l of

T , we determine α
(l)
t ∈ Rk, i.e., its LSPs according to (2). In contrast to the latent semantic information,

we denote with st ∈ {0, 1}|S| the explicit semantic description of a token according to the WordNet sense
inventory. In st, those indices are set to one for token t, that correspond to such a WordNet sense (out of the
|S| senses) that is relevant for the given token in its context. Based on both the explicit (WordNet-based)
and the latent semantic representation of token t, we can determine s⊺

t α
(l)
t ∈ R|S|×k that we aggregate over

all sense-annotated tokens to obtain Φ(l) =
∑

t s⊺
t α

(l)
t .

A particular entry of this matrix ϕ
(l)
i,j informs us about the strength of interaction between explicit semantic

category i and LSP j. We then transform Φ(l) such that it stores the normalized pointwise mutual informa-
tion (Bouma, 2009) between any pair of explicit and latent semantic categories. Then, for a query token q

with its LSP being given by α
(l)
q ∈ Rk, we determine arg max Φ(l)α

(l)
q ∈ R|S|, which tells us the most likely

WordNet synset that the token with the LSP profile α
(l)
q belongs to.

Figure 4 reveals that the WSD performance achieved by a particular set of LSPs serve as a strong predictor
towards the average downstream fine-tuning performance of MLSM pre-trained models that use the same
set of LSPs as a pre-training signal. The benefit of performing WSD with the LSPs is that it can provide a
cheap diagnostic, which allows us to choose a promising layer of the auxiliary model to use during MLSM.
The predictive power of the WSD diagnostic towards the fine-tunability of the MLSM pre-trained model

8

Under review as submission to TMLR

using the same set of LSPs is supported by the fact that we measured correlation coefficients of 0.946 and
0.908 with corresponding p-values of 0.0003 and 0.0018 for the Spearman and Pearson correlation coefficients
between the WSD and fine-tuning performances.

4.2.2 Experiments on the number of LSPs

A further previously unexplored question relates to the effects of choosing the number of latent semantic
properties to consider during MLSM pre-training, i.e., the number of semantic atoms k, comprising the
dictionary matrix D(l) ∈ Rd×k. The original implementation of MLSM relies on the choice k = 3000,
however, it is not clear how sensitive the pre-training is to the choice of this hyperparameter.

To this end, we conducted 5 instances of MLSM pre-training under identical circumstances while varying
only the value of k over the values {768, 1536, 3072, 6144, 12288}. We report our results for each task in
Table 2 and the average performance over all the evaluations conducted in Figure 5. Looking at the small
differences in the figures of Table 2 and Figure 5a, we can conclude that MLSM is robust to the choice of
the number of LSPs.

76
8
15

36
30

72
61

44
12

28
8

Number of LSPs (k)

0.806

0.807

0.808

0.809

0.810

Av
er

ag
e

fin
e-

tu
ni

ng
 re

su
lts

(a) Average fine-tuning performance

768 1536 3072 6144 12288

76
8

15
36

30
72

61
44

12
28

8

* * *
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Wilcoxon p-values

768 1536 3072 6144 12288

76
8

15
36

30
72

61
44

12
28

8

0 33 25 39 19

34 0 26 36 25

41 42 0 42 28

28 30 26 0 21

50 44 40 45 0

(c) Number of wins

Figure 5: The effects of using different number of LSPs. (a) Aggregated fine-tuning performance averaged
over 70 evaluations for each different choices of k. (b) p-values of the Wilcoxon signed rank test. A ∗ at
the intersection of a row, column pair labeled with (ki, kj) means that the MLSM model relying on ki LSPs
performed significantly better (p < 0.01) than the MLSM using kj LSPs. (c) A value at position (ki, kj)
refers to the number of paired fine-tuning trials such that the MLSM model ki LSPs scored higher.

This observation is further supported by the p-values of the Wilcoxon rank test that we present in 5b for the
paired fine-tuning experiments belonging to a pair of MLSM models, the pre-training of which only differed
in the number of LSPs employed.

Relying on orders more LSPs than previously recommended (k ≫ 3000) not only results in a slight degra-
dation of the fine-tuning performance of the pre-trained models (for k = 6144), but it also increases the
computational need of pre-training, as the size of the model parameters responsible for making pre-training
predictions is proportional to the number of LSPs (i.e., the unembedding parameters are of size h×k). Based
on the above, we conclude that the originally proposed number of latent properties was a reasonable choice,
and we continue our experiments with k = 3072.

4.2.3 Analyzing pre-training efficiency

We next compare the efficiency of our modified MLSM model with those of MLM and KD pre-trained model
variants. Our analysis covers both the investigation of the pre-training costs and the fine-tuning performance
of these models.

Computational need We include the cost of pre-training expressed in FLOPS over one batch of inputs
with the different pre-training objectives and different MLSM variants in Table 3. We also break down the
individual costs (i.e., the encoder and unembedding part) of the pre-trained and the auxiliary model. We
calculated the FLOPS using the calflops Python package (https://pypi.org/project/calflops/).

9

https://pypi.org/project/calflops/

Under review as submission to TMLR

Table 2: The detailed effects of using different number of LSPs (k).

Number of LSPs (k)
task (metric) 768 1536 3072 6144 12288
CoNLL2003 (F1) 0.949 0.950 0.949 0.952 0.953
COLA (MCC) 0.407 0.382 0.405 0.392 0.393
MNLIm (accuracy) 0.824 0.826 0.824 0.822 0.823
MNLImm (accuracy) 0.830 0.831 0.831 0.831 0.831
MRPC (accuracy) 0.858 0.862 0.860 0.867 0.871
MRPC (F1) 0.901 0.904 0.902 0.907 0.909
QNLI (accuracy) 0.903 0.900 0.902 0.897 0.901
QQP (accuracy) 0.902 0.903 0.903 0.901 0.903
QQP (F1) 0.867 0.867 0.868 0.866 0.869
RTE (accuracy) 0.607 0.583 0.601 0.598 0.609
SST2 (accuracy) 0.912 0.911 0.914 0.908 0.915
STSB (Pearson) 0.855 0.857 0.859 0.855 0.859
STSB (Spearmanr) 0.852 0.855 0.857 0.853 0.857
WiC (accuracy) 0.658 0.648 0.659 0.665 0.657
Avg. 0.809 0.806 0.810 0.808 0.811

Table 3: The per batch costs of different pre-training paradigms and implementations. The naïve implemen-
tation of MLSM performs unembedding over |V | + k symbols and a full forward pass over T . In contrast,
we perform unembedding over |k| symbols and employ early exit at layer l from T for MLSMl.

Pre-training MLM KD naïve MLSM MLSM12 MLSM10

trained encoder FLOPS/batch 9.06e+12 9.06e+12 9.06e+12 9.06e+12 9.06e+12
trained unembedding FLOPS/batch 2.25e+12 2.25e+12 2.48e+12 0.29e+12 0.29e+12
auxiliary encoder FLOPS/batch — 2.78e+12 2.78e+12 2.78e+12 2.32+e12
auxiliary unembedding FLOPS/batch — 0.75e+12 0.75e+12 — —
Total FLOPS/batch 1.13e+13 1.49e+13 1.50e+13 1.21e+13 1.16e+13
FLOPS % 100% 131.9% 132.7% 107.1% 102.7%

We can see in Table 3 that KD and the naïve implementation of MLSM pre-training requires the highest
FLOPS, i.e., the extra costs related to the use of the auxiliary model introduces more than +30% training cost
over vanilla MLM pre-training. At the same time, the costs related to our improved MLSM implementation
is on par with the use of MLM. This seemingly surprising phenomenon can partly be credited to the fact
that it suffices to perform only forward computation in the auxiliary model, albeit this is the case in KD
as well. Another source of efficiency when pre-training with MLSM is that we can early exit without the
need to perform the calculation related to the final part of the model (also including a costly unembedding
operation). Additionally, the unembedding in the trained model comes at a much reduced computation
compared to those objectives that output symbols in the vocabulary space as opposed to the space of LSPs,
since the size of the vocabulary has 10 times the number of LSPs .

Pre-training dynamics Over the course of pre-training, we created intermediate checkpoints of the mod-
els at their 10%, 25%, 50% and 100% readiness level, i.e., after performing 10000, 25000, 50000 and 100000
pre-training update steps. Figure 6 includes the average performance of different model variants as a function
of the pre-training steps conducted. Figure 6a reveals the improved sample-efficiency of MLSM pre-training
as the average fine-tuning performance of the MLSM model at its 50% readiness level is strictly higher than
those of the alternatively pre-trained models at their 100% readiness.

10

Under review as submission to TMLR

10000 25000 50000 100000
Updates

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810
Av

er
ag

e
fin

e-
tu

ni
ng

 re
su

lts

pretraining
MLM
KD
MLSM

(a) Overall results

100000500002500010000
Updates

0.925

0.930

0.935

0.940

0.945

0.950

F1
 s

co
re

pretraining
MLM
KD
MLSM

(b) CoNLL

100000500002500010000
Updates

0.25

0.30

0.35

0.40

M
C

C

pretraining
MLM
KD
MLSM

(c) COLA

1000005000010000 25000
Updates

0.78

0.79

0.80

0.81

0.82

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(d) MNLIm

1000005000010000 25000
Updates

0.79

0.80

0.81

0.82

0.83

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(e) MNLImm

100000500002500010000
Updates

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(f) MRPC

100000500002500010000
Updates

0.87

0.88

0.89

0.90

0.91

F1
 s

co
re

pretraining
MLM
KD
MLSM

(g) MRPC

1000005000010000 25000
Updates

0.85

0.86

0.87

0.88

0.89

0.90

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(h) QNLI

1000005000010000 25000
Updates

0.890

0.892

0.894

0.896

0.898

0.900

0.902

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(i) QQP

100000500001000025000
Updates

0.8525

0.8550

0.8575

0.8600

0.8625

0.8650

0.8675

F1
 s

co
re

pretraining
MLM
KD
MLSM

(j) QQP

100000500002500010000
Updates

0.54

0.56

0.58

0.60

0.62

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(k) RTE

100000500002500010000
Updates

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(l) SST2

100000500002500010000
Updates

0.830

0.835

0.840

0.845

0.850

0.855

0.860

Pe
ar

so
n

pretraining
MLM
KD
MLSM

(m) STSB

100000500002500010000
Updates

0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

Sp
ea

rm
an

pretraining
MLM
KD
MLSM

(n) STSB

100000500002500010000
Updates

0.61

0.62

0.63

0.64

0.65

0.66

Ac
cu

ra
cy

pretraining
MLM
KD
MLSM

(o) WiC

Figure 6: The average fine-tuning performance of differently pre-trained models as a function of their pre-
training update steps.

11

Under review as submission to TMLR

Table 4: The detailed effects of using a multi-task learning pre-training with an MLM weight of κ.

MLM weight κ

task (metric) 0.0 0.25 0.5 1.0 2.0
CoNLL2003 (F1) 0.949 0.947 0.948 0.951 0.947
COLA (MCC) 0.405 0.382 0.392 0.399 0.363
MNLIm (accuracy) 0.824 0.822 0.822 0.819 0.818
MNLImm (accuracy) 0.831 0.831 0.827 0.828 0.826
MRPC (accuracy) 0.860 0.849 0.850 0.867 0.860
MRPC (F1) 0.902 0.895 0.896 0.907 0.902
QNLI (accuracy) 0.902 0.895 0.894 0.901 0.895
QQP (accuracy) 0.903 0.901 0.900 0.901 0.900
QQP (F1) 0.868 0.865 0.864 0.866 0.864
RTE (accuracy) 0.601 0.625 0.594 0.613 0.592
SST2 (accuracy) 0.914 0.908 0.912 0.912 0.906
STSB (pearson) 0.859 0.857 0.857 0.855 0.852
STSB (spearmanr) 0.857 0.855 0.854 0.853 0.851
WiC (accuracy) 0.659 0.649 0.644 0.637 0.636
Avg. 0.810 0.806 0.804 0.808 0.801

If comparison was made on the basis of FLOPS then the advantage of MLSM over KD was even more
pronounced, while the comparison would practically be the same between MLSM and MLM (as KD has +30%
extra compute cost over both MLM and MLSM pre-training, whereas MLM and MLSM have comparable
computational need). Figure6 (b)–(o) provides further insights into the per evaluation setting performances
of the differently pre-trained but otherwise identically fine-tuned models.

In Figure 7 we report the performance metrics of the individual experiments that we conducted by fine-tuning
our models at their different readiness levels. In that figure, every marker covers a pair of fine-tuning results
obtained by a pair of differently pre-trained models (for the same amount of updates) when initialized with
the same set of task oriented classification parameters at the beginning of their fine-tuning. The identical
initialization (and the fact that the batches came with identical contents and identical order) makes such
fine-tuning experiments comparable with each other. Pairs of fine-tuning experiments for which the MLSM
pre-trained model performed better are above the dashed line of the subplots.

We can see in Figure 7 that fine-tuning results obtained by the MLSM pre-trained model almost always
reach or surpass those of the alternatively pre-trained models for all tasks and model readiness levels. COLA
is the single notable exception, for which the fine-tuning results of alternatively pre-trained models is almost
always better than that of MLSM models, which is something that we will focus on next.

4.3 Investigating the linguistic capabilities

Figure 6 and Figure 7 reveal that COLA is the single task where fine-tuning MLSM models could not reach
the performance of alternatively pre-trained models. This can be attributed to the fact that the alternative
pre-training objectives aim at predicting actual word forms (as opposed to semantic latents) which provides
them increased transferability to such a task, where the goal is to decide on the linguistic acceptability of
texts.

Indeed, linguistic acceptability is less related to semantics, and more about syntax and actual word forms,
e.g., if a masked word was originally in its singular form, replacing it by its – semantically highly related –
plural form will result in an agrammatic sentence. As an attempt to mitigate this shortcoming of MLSM,
we additionally implemented a multi-task learning (MTL) approach, during which the MLSM and MLM
objectives are jointly taken into account with hyperparameter κ controlling the extent to which the MLM
objective is considered in the final loss term, i.e., LMT L = LMLSM + κLMLM .

12

Under review as submission to TMLR

Baseline fine-tuning results

0.92

0.93

0.94

0.95

0.96

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

CoNLL2003 (F1)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.20

0.25

0.30

0.35

0.40

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

COLA (MCC)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.77

0.78

0.79

0.80

0.81

0.82

0.83

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

MNLI-m (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.78

0.79

0.80

0.81

0.82

0.83

0.84

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

MNLI-mm (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.80

0.82

0.84

0.86

0.88

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

MRPC (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results

0.86

0.87

0.88

0.89

0.90

0.91

0.92

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

MRPC (F1)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

QNLI (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
KD
MLM

Baseline fine-tuning results

0.885

0.890

0.895

0.900

0.905

0.910

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

QQP (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.845

0.850

0.855

0.860

0.865

0.870

0.875

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

QQP (F1)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results

0.54

0.56

0.58

0.60

0.62

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

RTE (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.87

0.88

0.89

0.90

0.91

0.92

0.93

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

SST2 (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
KD
MLM

Baseline fine-tuning results
0.82

0.83

0.84

0.85

0.86

0.87

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

STSB (pearson)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.82

0.83

0.84

0.85

0.86

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

STSB (spearmanr)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

Baseline fine-tuning results
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67

M
LS

M
 fi

ne
-tu

ni
ng

 re
su

lts

WiC (accuracy)

checkpoint
10000
25000
50000
100000
pre-training
MLM
KD

10000 25000 50000 100000
Checkpoint

0

20

40

60

80

100

M
LS

M
 w

in
s

ov
er

 b
as

el
in

e
(%

)

Baseline
KD
MLM

Figure 7: Scatterplot of paired fine-tuning experiments initialized with the same classification head. Colors
indicate the checkpoint of the investigated models. Markers with circle and cross shapes are used to dif-
ferentiate between comparisons against MLM and KD pre-trained models, respectively. Markers above the
dashed diagonal line indicate fine-tuning experiments when the MLSM pre-trained model performed better
than the alternatively pre-trained model variant at a given readiness level. The bar chart indicates the
fraction of experiments such that the fine-tuning performance of the MLSM pre-trained model outperformed
that of the alternatively pre-trained model variant for the different checkpoints.

13

Under review as submission to TMLR

0.00 0.25 0.50 1.00 2.00
Relative MLM weight

0.802

0.804

0.806

0.808

0.810

Av
er

ag
e

fin
e-

tu
ni

ng
 re

su
lts

(a) Average fine-tuning performance

0.0 0.25 0.5 1.0 2.0

0.
0

0.
25

0.
5

1.
0

2.
0

* * *

*

* *

0.00

0.02

0.04

0.06

0.08

0.10

(b) Wilcoxon p-values

0.0 0.25 0.5 1.0 2.0

0.
0

0.
25

0.
5

1.
0

2.
0

0 53 56 47 58

17 0 42 28 46

13 27 0 26 44

23 40 43 0 55

12 23 26 14 0

(c) Number of wins

Figure 8: The effects on the average fine-tuning performance of models jointly pre-trained with a combination
of MLSM and MLM losses, κ controlling for the extent to which the MLM loss is considered.

To this end, we trained and evaluated 4 additional MTL models with κ ∈ {0.25, 0.5, 1.0, 2.0}. MTL not only
introduces an extra hyperparameter (κ) to account for, but we also need to sacrifice most of the efficiency
improvements of MLSM pre-training, as unembedding has to be performed towards |V | + k symbols (the
additional |V | being necessitated by the use of the MLM objective).

Based on our results included in Table 4 and Figure 8, we can conclude that the increased computational
costs for MTL do not pay off. For all the investigated κ > 0 settings, we see worse performances compared
to the κ = 0 case. Additionally, the differences are statistically significant according to the Wilcoxon signed
rank test for all but the κ = 1 case. Even for that single case, the computational resources needed by the
MTL model variant is substantially higher compared to the non-MTL (κ = 0) setting as discussed earlier.
The general trend is that increasing the weight of MLM (hence decreasing the relative importance of MLSM)
term in the loss makes fine-tuning performance to decline. This also implies that MLSM objective provides
better downstream transferability. As such, we recommend against MTL pre-training.

4.3.1 Evaluation on BLiMP

There are arguably situations where the ability of a model to provide meaningful substitutes to a (masked)
token position in an input sequence is beneficial. MLSM models, however, totally lack this capability, as
they are not trained to reconstruct the exact identity of word forms, but they are capable of outputting the
latent semantic properties of the tokens.

To this end, our final experiment investigates the extent to which we can predict the identity of actual
masked tokens from the LSPs that are produced by an MLSM pre-trained model. Such an experiment also
provides a way to assess the quality of the LSPs, i.e., in case we can accurately predict the actual masked
word forms, then the LSPs likely encode useful semantic information.

As stated above, MLSM model cannot be meaningfully used for solving tasks that explicitly require pre-
dictions over the vocabulary of word forms of the model, such as it is the case with BLiMP (Warstadt
et al., 2020), where models are evaluated by measuring the extent to which they assign higher pseudo log-
likelihood (Salazar et al., 2020) score for linguistically appropriate token substitutions. Since the output
space of MLSM is not tied to subword units, a direct evaluation of MLSM models would not be possible out
of the box.

In order to still be able to evaluate MLSM pre-trained models for the BLiMP setting, we extended our model
with a single linear layer on top of the outputs of the MLSM model, which can be viewed as a form of linear
probing (LP). In this experiment, we froze all the model weights of the MLSM pre-trained models and added
a single linear layer having k × |V | parameters for predicting token outputs based on the semantic latents
produced by the MLSM model.

We kept the training of the single linear head deliberately short, i.e., we conducted 10,000 update steps
altogether (whereas the MLSM model itself was trained for 10 times the update steps). The rational behind

14

Under review as submission to TMLR

0.0 0.2 0.4 0.6 0.8 1.0 1.2
FLOPS 1e19

0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675

Av
er

ag
e

BL
iM

P
sc

or
e

MLM
KD
MLSM+MLM
MLSM+LP

Figure 9: Average BLiMP evaluation results of the differently obtained model variants.

this was that if the LSPs learned during MLSM pre-training are useful and transfer to the task of masked
language modeling, then a short training of the classifier head should suffice. Not only the training of the
linear head took much shorter, but also most parts of the network did not require gradient computation, as
we trained only a single linear layer of the network. As such, training the linear probe took no more than 3
GPU hours. Similar to our pre-training experiments, we created checkpoints at 10%, 25%, 50% and 100%
readiness levels, meaning that our first linear probe required less than 20 minutes of extra compute.

Figure 9 contains our results on the BLiMP task for differently obtained models. We also include results
of the jointly pre-trained MLSM+MLM model that corresponds to the kind of multi-task learning setting
introduced in Section 4.3.1. We report results for the MTL model with κ = 1, as this is the MTL model
that puts the largest emphasis on the MLM loss, something that is beneficial for a task like BLiMP.

Figure 9 includes the average BLiMP performance as a function of the amount of compute that was required
for obtaining a given model variant. When reporting results for the MLSM model with the linear probe
(MLSM+LP), we also include the costs of pre-training the MLSM model for which the extra linear head was
added. This is the reason why the first marker for the MLSM+LP curve is not located at 0.0, but at the
amount of computation that corresponds to the pre-training costs of the MLSM model itself. We can see from
Figure 9 that we could extend the masked language modeling capabilities of our MLSM pre-trained model
by using a negligible amount (less than 3 hours) of extra masked language modeling specific post-training.

This extra training did not affect the previously analyzed capabilities of our model, as the backbone weights
were frozen. The BLiMP performance of the MLSM+LP model is on par with the MLM and MLSM+MLM
models and only 2.5 points away from that of KD (but the KD model on the other hand is not able to output
latent semantic properties, something that the MLSM+LP model is still capable of).

4.3.2 Scaled up pre-training experiments

Even though our primarily motivation is to provide such a pre-training paradigm that converges fast to a
state that can perform well when being transferred to a downstream application – which is among the most
desirable properties of encoder-based language models –, we also investigated the effects of MLSM when
being employed over a much longer pre-training phase.

In order to do so, we performed the following modifications. Most importantly, we replaced our 3.4 billion
token Wikipedia-based pre-training corpus with the Falcon RefinedWeb (Penedo et al., 2023) pre-training
corpus included in Dolma v1.7 (Soldaini et al., 2024). We also increased the maximum sequence length and
the amount of update steps by a factor of two (i.e., to 256 and 200,000, respectively) and the effective batch
size by a factor of four (to 4096). These changes mean that instead of pre-training over approximately 13B
tokens (4 epochs over the Wikipedia corpus), the total number of tokens seen during pre-training has been
increased beyond 200B.

15

Under review as submission to TMLR

21B 42B 53B
Pretraining tokens used

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Av
er

ag
e

fin
e-

tu
ni

ng
 re

su
lts

pretraining
MLM
KD
MLSM

Figure 10: Average downstream fine-tuning performance of the differently pre-trained BERT models.

We also changed the model that we pre-trained from DeBERTa to BERT architecture. Using BERT was
partially motivated from practicality as it is approximately 10% cheaper to train than DeBERTa. This was
beneficial as our pre-training time have already prolonged substantially due to the longer training, i.e., from
approximately 3 GPU days to 6 GPU weeks. Another benefit of changing the architecture was that this way
we were able to test the generalization ability of the hyperparameters that worked well when pre-training a
DeBERTa model.

Here, we report our (partial at the time of updating the manuscript) results that we obtained for fine-tuning
the intermediate model checkpoints after 10%, 20% and 25% of pre-training. We evaluated the downstream
transferability of the models over the same test suite as before and report the average performance in
Figure 10. We can see that the same hyperparameters that worked for pre-training DeBERTa with MLSM
also worked for the BERT architecture. Perhaps more importantly, we can also observe that the transfer
capabilities of the MLSM pre-trained model is much favorable over the alternatively pre-trained model
variants, i.e., the MLSM pre-trained model that accessed 21 billion pre-training token matches those of the
alternatively pre-trained models that had access to 53 billion pre-training tokens.

5 Conclusions and future work

Our goal in this paper was to advance the understanding of masked latent semantic modeling in multiple
important aspects. To this end, we set up different research questions and conducted carefully designed
experiments to answer them. Our experiments have revealed multiple previously unexplored characteristics
of MLSM pre-training. One of our important finding is that by choosing the layer of the auxiliary model
that is used for determining the pre-training signal not to be the final one, we can improve the efficiency
of pre-training both in terms of compute requirements and better fine-tunability. We also developed a
cheap to compute diagnostic for predicting the expected utility of using different layers of the auxiliary
model during MLSM pre-training, making the choice of the layer more principled and resulting in improved
expected utility. Additionally, we have also verified via a special form of linear probing that the latent
semantic features MLSM pre-trained models develop are meaningful towards performing actual masked
word prediction task – something that MLSM pre-trained models are not capable at all otherwise.

Even though the focus of this work was to investigate text-only pre-training of encoder-based language
models, we are optimistic that a similar kind of pre-training could be extended to vision models as well. A
detailed analysis of employing the methodology of MLSM pre-training in the vision setting is beyond the
scope of our current paper, however, we did assess the feasibility of such a pre-training from an intuitive
point of view. For illustrating that the visual LSPs are meaningful from a human perspective – and therefore
expected to provide potentially useful pre-training signal for vision models –, we determined the LSP of a
CLIP vision encoder (Radford et al., 2021) over the training dataset of the SemEval 2023 shared task on
Visual Word Sense Disambiguation (Raganato et al., 2023). We display in Figure 11 the top 3 images
that had the highest non-zero activation towards four of the visual LSPs determined. We can see that the

16

Under review as submission to TMLR

(a) Top-ranked images of LSP 764 (b) Top-ranked images of LSP 2963

(c) Top-ranked images of LSP 939 (d) Top-ranked images of LSP 1823

Figure 11: Top activating images of four LSPs that we trained on the SemEval 2023 dataset on Visual
Word Sense Disambiguation (Raganato et al., 2023). LSPs correspond to human interpretable concepts. (a)
astronomy, (b) baseball, (c) underwater life, (d) crops.

visual LSPs nicely correspond to human interpretable themes, which is something that we consider as an
encouraging sign which hints that LSPs can provide useful training signal to vision models as well. Whether
this hypothesis holds is something we wish to investigate in the future.

References
Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Chenlei Guo. Knowledge distillation

from internal representations. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):
7350–7357, Apr. 2020. doi: 10.1609/aaai.v34i05.6229. URL https://ojs.aaai.org/index.php/AAAI/
article/view/6229.

Ahmed Alajrami and Nikolaos Aletras. How does the pre-training objective affect what large language
models learn about linguistic properties? In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
(eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 131–147, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-short.16. URL https://aclanthology.org/2022.acl-short.16.

He Bai, Tong Wang, Alessandro Sordoni, and Peng Shi. Better language model with hypernym class predic-
tion. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1352–1362, Dublin,
Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.96. URL
https://aclanthology.org/2022.acl-long.96/.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo Magnini. The fifth pascal
recognizing textual entailment challenge. In In Proc Text Analysis Conference (TAC’09), 2009.

Gábor Berend. Sparsity makes sense: Word sense disambiguation using sparse contextualized word rep-
resentations. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8498–8508, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.683. URL
https://aclanthology.org/2020.emnlp-main.683.

Gábor Berend. Masked latent semantic modeling: an efficient pre-training alternative to masked language
modeling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association
for Computational Linguistics: ACL 2023, pp. 13949–13962, Toronto, Canada, July 2023. Association for
Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.876. URL https://aclanthology.org/
2023.findings-acl.876.

17

https://ojs.aaai.org/index.php/AAAI/article/view/6229
https://ojs.aaai.org/index.php/AAAI/article/view/6229
https://aclanthology.org/2022.acl-short.16
https://aclanthology.org/2022.acl-long.96/
https://aclanthology.org/2020.emnlp-main.683
https://aclanthology.org/2023.findings-acl.876
https://aclanthology.org/2023.findings-acl.876

Under review as submission to TMLR

Nicolas Boizard, Hippolyte Gisserot-Boukhlef, Duarte M. Alves, André Martins, Ayoub Hammal, Caio Corro,
Céline Hudelot, Emmanuel Malherbe, Etienne Malaboeuf, Fanny Jourdan, Gabriel Hautreux, João Alves,
Kevin El-Haddad, Manuel Faysse, Maxime Peyrard, Nuno M. Guerreiro, Patrick Fernandes, Ricardo Rei,
and Pierre Colombo. EuroBERT: Scaling multilingual encoders for european languages, 2025. URL
https://arxiv.org/abs/2503.05500.

G. Bouma. Normalized (pointwise) mutual information in collocation extraction. In From Form to Meaning:
Processing Texts Automatically, Proceedings of the Biennial GSCL Conference 2009, volume Normalized,
pp. 31–40, Tübingen, 2009.

Lola Le Breton, Quentin Fournier, Mariam El Mezouar, and Sarath Chandar. NeoBERT: A next generation
BERT. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.
net/forum?id=TJRyDi7mwH. Reproducibility Certification.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the
11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver, Canada,
August 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001. URL https:
//aclanthology.org/S17-2001.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge.
In Joaquin Quiñonero-Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché Buc (eds.), Machine
Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising
Tectual Entailment, pp. 177–190, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-
33428-6.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL https://
aclanthology.org/I05-5002.

Philip Edmonds and Scott Cotton. SENSEVAL-2: Overview. In The Proceedings of the Second International
Workshop on Evaluating Word Sense Disambiguation Systems, SENSEVAL ’01, pp. 1–5, Stroudsburg,
PA, USA, 2001. Association for Computational Linguistics. URL http://dl.acm.org/citation.cfm?
id=2387364.2387365.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

Jonas Geiping and Tom Goldstein. Cramming: training a language model on a single gpu in one day. In
Proceedings of the 40th International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pp. 1–9, Prague, June 2007. Association for Computational Linguistics. URL
https://aclanthology.org/W07-1401.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.
The second PASCAL recognising textual entailment challenge. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entailment, volume 7, 2006.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-enhanced BERT with
disentangled attention. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=XPZIaotutsD.

18

https://arxiv.org/abs/2503.05500
https://openreview.net/forum?id=TJRyDi7mwH
https://openreview.net/forum?id=TJRyDi7mwH
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://aclanthology.org/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://dl.acm.org/citation.cfm?id=2387364.2387365
http://dl.acm.org/citation.cfm?id=2387364.2387365
https://aclanthology.org/W07-1401
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD

Under review as submission to TMLR

Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu, Qipeng
Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions of features from llama-3.1-8b
with sparse autoencoders. arXiv preprint arXiv:2410.20526, 2024.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse autoencoders
find highly interpretable features in language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=F76bwRSLeK.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. First quora dataset release: Question pairs, 2017. URL
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.

Peter Izsak, Moshe Berchansky, and Omer Levy. How to train BERT with an academic budget. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 10644–10652, Online and Punta
Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.emnlp-main.831. URL https://aclanthology.org/2021.emnlp-main.831/.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. SenseBERT: Driving some sense into BERT. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4656–4667, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.423. URL https://aclanthology.org/2020.acl-main.423.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant Varma,
Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse autoencoders
everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap Jumelet, Hosein Mohebbi,
Aaron Mueller, and Hanjie Chen (eds.), Proceedings of the 7th BlackboxNLP Workshop: Analyzing and
Interpreting Neural Networks for NLP, pp. 278–300, Miami, Florida, US, November 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.blackboxnlp-1.19. URL https://aclanthology.org/
2024.blackboxnlp-1.19/.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse coding.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp. 689–
696, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.1553463. URL
http://doi.acm.org/10.1145/1553374.1553463.

Rada Mihalcea, Timothy Chklovski, and Adam Kilgarriff. The senseval-3 english lexical sample task. In
Proceedings of SENSEVAL-3, the Third International Workshop on the Evaluation of Systems for the
Semantic Analysis of Text, pp. 25–28, Barcelona, Spain, July 2004. Association for Computational Lin-
guistics. URL https://www.aclweb.org/anthology/W04-0807.

George A. Miller, Claudia Leacock, Randee Tengi, and Ross T. Bunker. A semantic concordance. In Human
Language Technology: Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24, 1993,
1993. URL https://aclanthology.org/H93-1061/.

Andrea Moro and Roberto Navigli. SemEval-2015 task 13: Multilingual all-words sense disambiguation and
entity linking. In Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015),
pp. 288–297, Denver, Colorado, June 2015. Association for Computational Linguistics. doi: 10.18653/v1/
S15-2049. URL https://www.aclweb.org/anthology/S15-2049.

Roberto Navigli, David Jurgens, and Daniele Vannella. SemEval-2013 task 12: Multilingual word sense
disambiguation. In Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume

19

http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=F76bwRSLeK
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/2021.emnlp-main.831/
https://aclanthology.org/2020.acl-main.423
https://aclanthology.org/2024.blackboxnlp-1.19/
https://aclanthology.org/2024.blackboxnlp-1.19/
https://openreview.net/forum?id=Bkg6RiCqY7
http://doi.acm.org/10.1145/1553374.1553463
https://www.aclweb.org/anthology/W04-0807
https://aclanthology.org/H93-1061/
https://www.aclweb.org/anthology/S15-2049

Under review as submission to TMLR

2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), pp. 222–
231, Atlanta, Georgia, USA, June 2013. Association for Computational Linguistics. URL https://www.
aclweb.org/anthology/S13-2040.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli, Alessandro
Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb dataset for falcon
LLM: Outperforming curated corpora with web data only. In Thirty-seventh Conference on Neural In-
formation Processing Systems Datasets and Benchmarks Track, 2023. URL https://openreview.net/
forum?id=kM5eGcdCzq.

Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for evaluating
context-sensitive meaning representations. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 1267–1273, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1128. URL https://aclanthology.org/N19-1128.

Jacob Portes, Alexander Trott, Sam Havens, DANIEL KING, Abhinav Venigalla, Moin Nadeem,
Nikhil Sardana, Daya Khudia, and Jonathan Frankle. Mosaicbert: A bidirectional encoder opti-
mized for fast pretraining. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 3106–3130. Cur-
ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
095a6917768712b7ccc61acbeecad1d8-Paper-Conference.pdf.

Sameer S. Pradhan, Edward Loper, Dmitriy Dligach, and Martha Palmer. Semeval-2007 task 17: English
lexical sample, srl and all words. In Proceedings of the 4th International Workshop on Semantic Evalua-
tions, SemEval ’07, pp. 87–92, Stroudsburg, PA, USA, 2007. Association for Computational Linguistics.
URL http://dl.acm.org/citation.cfm?id=1621474.1621490.

Sampo Pyysalo, Jenna Kanerva, Antti Virtanen, and Filip Ginter. WikiBERT models: Deep transfer
learning for many languages. In Proceedings of the 23rd Nordic Conference on Computational Linguistics
(NoDaLiDa), pp. 1–10, Reykjavik, Iceland (Online), May 31–2 June 2021. Linköping University Electronic
Press, Sweden. URL https://aclanthology.org/2021.nodalida-main.1.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 2021.
URL http://proceedings.mlr.press/v139/radford21a.html.

Alessandro Raganato, Jose Camacho-Collados, and Roberto Navigli. Word sense disambiguation: A uni-
fied evaluation framework and empirical comparison. In Mirella Lapata, Phil Blunsom, and Alexander
Koller (eds.), Proceedings of the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers, pp. 99–110, Valencia, Spain, April 2017. Association for
Computational Linguistics. URL https://aclanthology.org/E17-1010/.

Alessandro Raganato, Iacer Calixto, Asahi Ushio, Jose Camacho-Collados, and Mohammad Taher Pilehvar.
SemEval-2023 task 1: Visual word sense disambiguation. In Atul Kr. Ojha, A. Seza Doğruöz, Giovanni
Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, and Elisa Sartori (eds.), Proceedings of the
17th International Workshop on Semantic Evaluation (SemEval-2023), pp. 2227–2234, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.semeval-1.308. URL https:
//aclanthology.org/2023.semeval-1.308/.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 2383–2392, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

20

https://www.aclweb.org/anthology/S13-2040
https://www.aclweb.org/anthology/S13-2040
https://openreview.net/forum?id=kM5eGcdCzq
https://openreview.net/forum?id=kM5eGcdCzq
https://aclanthology.org/N19-1128
https://proceedings.neurips.cc/paper_files/paper/2023/file/095a6917768712b7ccc61acbeecad1d8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/095a6917768712b7ccc61acbeecad1d8-Paper-Conference.pdf
http://dl.acm.org/citation.cfm?id=1621474.1621490
https://aclanthology.org/2021.nodalida-main.1
http://proceedings.mlr.press/v139/radford21a.html
https://aclanthology.org/E17-1010/
https://aclanthology.org/2023.semeval-1.308/
https://aclanthology.org/2023.semeval-1.308/
https://aclanthology.org/D16-1264

Under review as submission to TMLR

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. Masked language model scoring. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2699–2712, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.240. URL https://aclanthology.org/
2020.acl-main.240.

Chen Shani, Jilles Vreeken, and Dafna Shahaf. Towards concept-aware large language models. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 13158–13170, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.877. URL https://aclanthology.org/2023.findings-emnlp.
877.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1170.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben
Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh, Luke Zettlemoyer, Noah Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion
tokens for language model pretraining research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.840. URL https://aclanthology.org/2024.acl-long.840/.

Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph of general
knowledge. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp.
4444–4451. AAAI Press, 2017.

Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao, Yuandong Tian,
Jason Weston, and Xian Li. LLM pretraining with continuous concepts. arXiv preprint arXiv:2502.08524,
2025.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceedings of the Seventh Conference on Natural Lan-
guage Learning at HLT-NAACL 2003, pp. 142–147, 2003. URL https://www.aclweb.org/anthology/
W03-0419.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language understanding sys-
tems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019a. URL https:
//proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. 2019b. In the Proceedings
of ICLR.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Griffin Adams, Jeremy
Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirectional encoder for fast, memory
efficient, and long context finetuning and inference, 2024. URL https://arxiv.org/abs/2412.13663.

21

https://aclanthology.org/2020.acl-main.240
https://aclanthology.org/2020.acl-main.240
https://aclanthology.org/2023.findings-emnlp.877
https://aclanthology.org/2023.findings-emnlp.877
https://aclanthology.org/D13-1170
https://aclanthology.org/2024.acl-long.840/
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://arxiv.org/abs/2412.13663

Under review as submission to TMLR

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments. Trans-
actions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/tacl_a_00290.
URL https://aclanthology.org/Q19-1040.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. Transactions of the As-
sociation for Computational Linguistics, 8:377–392, 2020. doi: 10.1162/tacl_a_00321. URL https:
//aclanthology.org/2020.tacl-1.25.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pp. 1112–1122. Association for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
N18-1101.

Atsuki Yamaguchi, George Chrysostomou, Katerina Margatina, and Nikolaos Aletras. Frustratingly sim-
ple pretraining alternatives to masked language modeling. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 3116–3125, Online and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.249. URL
https://aclanthology.org/2021.emnlp-main.249.

Zeyu Yun, Yubei Chen, Bruno Olshausen, and Yann LeCun. Transformer visualization via dictionary
learning: contextualized embedding as a linear superposition of transformer factors. In Eneko Agirre,
Marianna Apidianaki, and Ivan Vulić (eds.), Proceedings of Deep Learning Inside Out (DeeLIO): The
2nd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pp. 1–10, On-
line, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.deelio-1.1. URL
https://aclanthology.org/2021.deelio-1.1.

Mengjie Zhao, Philipp Dufter, Yadollah Yaghoobzadeh, and Hinrich Schütze. Quantifying the contextual-
ization of word representations with semantic class probing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pp. 1219–1234, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.findings-emnlp.109. URL https://aclanthology.org/2020.
findings-emnlp.109.

22

https://aclanthology.org/Q19-1040
https://aclanthology.org/2020.tacl-1.25
https://aclanthology.org/2020.tacl-1.25
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://aclanthology.org/2021.emnlp-main.249
https://aclanthology.org/2021.deelio-1.1
https://aclanthology.org/2020.findings-emnlp.109
https://aclanthology.org/2020.findings-emnlp.109

	Introduction
	Related work
	Masked Latent Semantic Modeling
	Improving the efficiency of MLSM

	Experiments
	Pre-training experiments
	MLSM related hyperparameters
	Baseline models

	Fine-tuning experiments
	Experiments on the choice of l
	Experiments on the number of LSPs
	Analyzing pre-training efficiency

	Investigating the linguistic capabilities
	Evaluation on BLiMP
	Scaled up pre-training experiments

	Conclusions and future work

