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Abstract

The data landscape is rich with structured data, often of high value to organi-
zations, that drive important applications in data analysis and machine learning.
Recent progress in representation learning and generative models for such data has
led to the development of natural language interfaces to structured data, including
those leveraging text-to-SQL. Contextualizing interactions, including conversa-
tional and agentic elements, in structured data through retrieval-augmented gen-
eration can provide substantial benefits in the form of freshness, accuracy, and
comprehensiveness of answers. The key question, however, is: how do we re-
trieve the right table(s) for the analytical query or task at hand? To investigate this
question, we introduce TARGET: a benchmark for evaluating TAble Retrieval for
GEnerative Tasks. We use TARGET to analyze the retrieval performance of dif-
ferent retrievers in isolation, as well as their impact on downstream generators for
question answering, fact verification, and text-to-SQL. We find that out-of-the-box
embedding-based retrievers far outperform a BM25 baseline which appears less
effective than it is for retrieval over unstructured text. We also surface the sensitiv-
ity of retrievers across various metadata (e.g., missing table titles), and illustrate a
stark variation of retrieval performance across datasets and tasks. TARGET is de-
veloped for easy reuse and extension to advance research on retrieval methods and
pipelines for relational data through fine-grained, comprehensive, and consistent
evaluation. TARGET is available at https://target-benchmark.github.io.

1 Introduction
Large Language Models (LLMs) have become an indispensable tool in the knowledge worker’s
arsenal, providing a treasure trove of information at one’s fingertips. Retrieval-Augmented Gener-
ation (RAG) [14] further extends the capabilities of these LLMs by grounding generic dialog using
information from external data stores. Despite progress in long-context LLMs, RAG still provides
benefits in cost and inference time [16, 25]. Moreover, it allows us to augment generic, off-the-shelf
LLMs with proprietary data they haven’t been trained on. Progress on RAG has largely been enabled
by benchmarks that help exhaustively evaluate the effectiveness of various methods [24, 19].
While RAG has been extensively explored for free-form text, this is unfortunately not the case for
structured data, stored either in relational databases or otherwise. Prior work has shown that struc-
tured data is a different story, requiring dedicated research [5]. Moreover, retrieval of structured data
for RAG is important to explore further: contextualizing LLMs using frequently updated statistical
data sources, such as Data Commons [9], or using proprietary relational databases, can yield rich
dividends [21], all underscoring need for better models, approaches and evaluation for retrieval over
structured data. Another important motivation for research on table retrieval is rooted in research
on LLM-powered interfaces and agentic systems for processing and querying structured data. Most
research in this direction, e.g., for question answering [20] or text-to-SQL [7], assumes that a table
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or relational database is provided, while identifying the relevant table is, in fact, a non-trivial task for
a user (or agent). While there has been initial work exploring open-domain question answering on
public table corpora such as Wikipedia [3, 10], this does not represent the full spectrum of data char-
acteristics and tasks for structured data retrieval. The development of a broad and comprehensive
benchmark covering divsere tasks and datasets of varying difficulty is therefore key in advancing
retrieval systems for structured data.
We present TARGET: the first benchmark evaluating Table Retrieval for Generative Tasks. With
TARGET we provide a consistent and comprehensive framework for evaluating models and pipelines
for table retrieval in isolation, as well as end-to-end for downstream tasks. We use TARGET to
analyze existing table retrievers [3], out-of-the-box LLM-based retrieval baselines [2], and industry
approaches [1]. We find that BM25 is far less effective for retrieval over tabular data as it is found to
be for rich free-form text [19]. In our initial exploration with TARGET, we find that out-of-the-box
table embeddings with an OpenAI model [2] outperform baselines but still show high variation in
performance across analytical tasks and datasets. Finally, we highlight the sensitivity of retrievers
to the provided metadata inputs (e.g., web page titles) and table data availability (e.g., embedding
full tables, headers only, or generated table summaries). Our findings identify a performance gap in
retrieval accuracy and robustness across data and tasks, emphasizing the need for more research in
this area for which TARGET can be an instrumental stepping stone.

2 Related Work
Table Representation Learning and LLMs for Structured Data Tables have recently become
a modality of interest for representation learning and generative models for tasks such as table un-
derstanding [13, 6], fact verification [11, 27], and question answering [11], and more recently text-
to-SQL [7]. These models either deploy LLMs out-of-the-box for tabular data, or develop tailored
architectures to capture the properties of tables, which pose specific challenges [5]. These models
typically take one or more tables and a query as input to generate an answer; however, the relevant
tables per query can be difficult to identify. The task of open-domain question answering over ta-
bles [3, 10] has spurred research on table retrieval but existing approaches show a performance gap,
as shown in Section 4. Grounding LLMs with RAG in up-to-date domain knowledge as found in
(proprietary) relational databases and data lakes holds promise, but requires stronger retrievers [21].

Benchmarks and Datasets Benchmarks and datasets are the cornerstone to advance research on
retrieval systems, as well as the corresponding LLM-driven tasks over relational data. The MTEB
and CRAG benchmarks [19, 24] have been instrumental in benchmarking text embedding quality
and RAG over rich text documents. We need similar benchmarks for retrieval systems and em-
bedding models for structured data. In prior research, useful datasets were introduced to evaluate
various tasks for relational data, such as TabFact [4], FeTaQA [20], GitTables [12], and Spider [26].
These datasets focus on evaluating methods for a specific downstream task only, i.e., given a ta-
ble or database, answer natural language queries about it, without integrating the critical task of
retrieval. TARGET addresses this gap by focusing on the evaluation of table retrieval performance
while incorporating existing task-specific datasets.

3 The TARGET Benchmark
Benchmark Design The pipeline of TARGET aligns with that of typical RAG pipelines (Figure 1).
TARGET takes as inputs the corpus with tables/databases and queries (e.g. a natural language ques-
tion). Data loading and evaluation are abstracted away such that custom core components of RAG
pipelines, i.e., the Retriever and Generator can easily be evaluated when aligned with the TAR-
GET API (see Appendix A). The retriever, which can be basic or advanced [8], identifies the relevant
table(s)/database(s) for an input query. Given the tables and query, the generator yields a response
which is then evaluated with respect to the ground-truth. All resources for use and extension of
TARGET are at: https://target-benchmark.github.io.

Tasks, Datasets & Metrics Per source dataset, we combine all tables and any available metadata
into a retrieval corpus. For all tasks, e.g., question answering, we evaluate the retriever and generator
outputs using metrics from the original papers or that are widely adopted. We use the test splits of
included datasets for our evaluations. For OTTQA and BIRD, where test splits are unavailable,
validation splits are used. An overview of the tasks, datasets, and metrics in the initial version of
TARGET can be found in Table 1, while detailed dataset specifications are in Appendix B.
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Figure 1: Overview of the TARGET benchmark for evaluating table retrieval and generation for
various datasets and tasks, initially table QA, fact verification and Text-to-SQL.

Table 1: Tasks, Datasets, and Evaluation Metrics in TARGET.
Task Initial Datasets Evaluation Metrics
Question answering OTTQA [3], FeTaQA [20] sacrebleu (SB)
Fact verification TabFact [4] precision (P), recall (R), f1-score (F1)
Text-to-SQL Spider [26], BIRD [15] execution accuracy (EX)
Table retrieval all above datasets recall (R@k), avg. retrieval time (s)

Table Retrieval This task is used to evaluate retrieval performance in isolation and is the first step
for end-to-end downstream evaluation. Retrieval performance is measured with recall@top-k. For
Question Answering and Fact Verification tasks, a successful retrieval occurs when the ground-truth
table is among the top-k retrieved tables. For the text-to-SQL task, a successful retrieval occurs
when the ground-truth database contains any of the retrieved tables. Additionally, we include the
average retrieval time per question.
Question Answering Given the retrieved tables, an answer to the input question is generated and
compared to the ground-truth natural language answer to assess its accuracy and comprehensiveness.
Fact Verification Given the retrieved tables, the generator either accepts or refutes a natural lan-
guage statement, or acknowledge that insufficient information is provided.
Text-to-SQL The retrieved database tables along with the natural language question are provided
to the SQL generator. The queries can be simple, medium, or difficult. The executed results from
the generated SQL are compared to those of the ground-truth SQL.

Retrievers We present initial insights with TARGET for the following research and industry re-
triever baselines that reflect popular distinct methods. Text-to-SQL has a slightly different experi-
mental setting inducing small changes to the retriever and generator, as explained in Appendix D.
No context baseline LLMs are capable of memorizing facts from the data that they were trained
on [18]. To understand the influence of memorization on downstream task responses, the LLM-
based generators are evaluated on the downstream task performance solely based on their internal
knowledge without any retrieved tables provided, which we refer to as the “No Context” baseline.
OTTQA [3] The OTTQA retriever constructs lexical representations of tables by generating a TF-
IDF matrix of the corpus, which may use TF-IDF term weights or BM25. It takes as input the table
header, data rows, and, optionally, table metadata such as the (Wikipedia) page title. On retrieval, a
query is converted into a TF-IDF-weighted vector for which the dot product is calculated with the
table representations to find the k-most similar tables.
LlamaIndex [1] The retrievers of the open-source LlamaIndex library are commonly used in prac-
tice. The table retriever implements three steps, ① generate a table name and summary of each
table with an LLM using the headers and first rows of the table, ② embed the table metadata with
text-embedding-ada-002 and store in an index, and ③ retrieve relevant tables based on the cosine
similarity between natural language query and metadata embedding.
OpenAI embeddings [2] The input query and tables are embedded using an out-of-the-box OpenAI
embedding model (text-embedding-3-small). We evaluate the performance for embeddings of
only table headers versus headers along with 100 rows, which are formatted as a markdown string2.
The embeddings are stored in an HNSW index[17], often used as backbone for vector stores. On
retrieval, the input query is embedded with the same model after which the top-k table embeddings
are retrieved based on highest cosine-similarity with the input query embedding.

2Formatting tables as json appeared better for GPT-3.5 [22], but markdown formatting yields better results here.
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Table 2: Results with TARGET for retrieval and downstream tasks. SB stands for sacrebleu, R@k for
recall@k, s for seconds, EX for execution accuracy. Best scores are in bold, second-best underlined.

Question Answering Fact Verification Text-to-SQL
OTTQA FeTaQA TabFact Spider BIRD

Method R@10 s SB R@10 s SB R@10 s P/R/F1 R@1 s EX R@1 s EX

No context - - 0.414 - - 12.495 - - 0.578/0.42/0.44 - - 0 - - 0
OTT-QA BM25 0.955 0.001 0.606 0.082 0.001 1.631 0.338 0.001 0.75/0.26/0.39 0.635 0.001 0.385 0.709 0.001 0.181

w/o table title 0.443 0.001 0.529 0.084 0.001 1.555 0.331 0.001 0.75/0.26/0.38 0.5 0.001 0.376 0.535 0.001 0.164
OTT-QA TF-IDF 0.950 0.001 0.425 0.083 0.001 1.639 0.336 0.001 0.75/0.26/0.38 0.622 0.001 0.474 0.640 0.001 0.227

w/o table title 0.43 0.001 0.593 0.083 0.001 1.527 0.322 0.001 0.75/0.25/0.37 0.492 0.001 0.376 0.491 0.001 0.164
LlamaIndex 0.458 0.354 0.507 0.435 0.396 13.745 0.827 0.297 0.73/0.34/0.47 0.735 0.198 0.559 0.937 0.228 0.311
OpenAI embedding 0.950 0.190 0.599 0.722 0.200 17.64 0.779 0.189 0.76/0.51/0.61 0.768 0.193 0.602 0.926 0.199 0.317

header only 0.950 0.189 0.61 0.718 0.18 17.66 0.781 0.187 0.75/0.48/0.58 0.833 0.175 0.646 0.958 0.191 0.323

Generators We integrate generators based on basic LLM prompts for downstream tasks. The
Instruction prompt takes in: ① task instructions, ② the top-k retrieved table(s) or database
schemas, and ③ the query. All prompt templates can be found in Appendix D.

4 Results
Table 2 presents the performances of the evaluated retrievers. Here, we set the retrieval parameter k
to 10 except for text-to-SQL, where k is 1 for database retrieval (Section C). Figure 2 illustrates the
average retrieval recall over various values of k on the FeTaQA dataset. The TF-IDF based method
from the OTTQA retriever is not included as its performance is similar to the BM25 based method.
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Retrieval insights In Figure 2 we observe a gradual increase
in average recall as k increases for all retrievers, as can be ex-
pected. We find that lexical methods based on BM25 and TF-IDF
are less effective than they are for text [19], even with increased
k. The high performance of these methods on the OTTQA dataset
appears to be mainly driven by the high correspondence between
Wikipedia table title and queries, as the performance drops when
the title is left out (Table 2). We observe a similar pattern for
these methods on the text-to-SQL tasks when table names are
not included, which is further confirmed with results on FeTaQA,
where the table titles are not descriptive and including them does
not enhance performance. These findings emphasize the potential

critical role of table metadata. Embeddings of table headers and rows generally yield the best perfor-
mance. LLM-generated table summaries with LlamaIndex results in lower retrieval performance and
efficiency than the direct table embedding pipeline, but generating descriptive table titles in place
of non-descriptive ones (e.g., FeTaQA) can enhance retrieval performance. For both text-to-SQL
datasets, including data rows in the embedding actually lowers retrieval performance.

Generator insights Unsurprisingly, we observe that providing database schemas for text-to-SQL
is critical to generate accurate SQL queries, as the No Context baseline yields an accuracy of 0. The
low performance of all retrievers on the OTTQA dataset is also notable, which we hypothesize is
due to the relatively short answers in OTTQA versus longer generated answers despite prompting for
conciseness. Overall, we find that dense embeddings yield better retrieval performance. Notably,
for the fact verification task, the precision and recall with OpenAI embeddings are significantly
higher than when evaluating the statements without context, i.e., using only the memory of the
LLM, underlining the value of grounding LLMs conversations in factual structured data. When we
exclude all “not enough information” responses, we find that the recall across all retrievers increases
to approximately 0.747, which confirms the impact of incorporating relevant tables into the context.

5 Conclusion
Retrieval is key in LLM-powered query systems over structured data in relational databases and
other data systems, as well as for grounding dialog and interactions with LLMs in up-to-date, factual
data. With both categories of use-cases in mind, we present TARGET: the first benchmark for Table
Retrieval for Generative Tasks. Beyond our initial evaluation that has already provided valuable
insights, we are expanding it in the form of more datasets, tasks, and retrievers, as well as metrics for
downstream task evaluations. Once complete, we will conduct fine-grained error analysis to identify
patterns in cases of incorrect retrieval and the relationship between retrieval and downstream tasks.
In future work, we plan to explore, for example, the relationship between retrieval and downstream
performance and error cases, to inform future research on table retrieval for generative tasks.
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Appendix

A TARGET API
TARGET has been developed with ease in reuse and extensibility in mind. For example, running eval-
uations only requires instantiating a TARGET evaluator for a specified task and dataset, a Retriever
instance (e.g., a built-in retriever), and running the evaluation with a value for k and the desired
dataset split, as shown below for the LlamaIndex Retriever for the Question Answering task. Data
handling and task evaluations are abstracted away such that the core components of RAG pipelines,
i.e., the Retriever and Generator can be easily evaluated. Custom retrievers can be created by
implementing just 2 methods – embed_corpus(corpus) and retrieve(query, top_k), which
can include advanced RAG components like query enhancement, re-ranking [8].

from target_benchmark.evaluators import TARGET
from target_benchmark.retrievers import LlamaIndexRetriever

target = TARGET (("Table Question Answering", "OTTQA"))
retriever = LlamaIndexRetriever ()
results = target.run(retriever , split="test", top_k =10)

6



Table 3: Specifications of current datasets in TARGET.
Task Dataset Split Corpus size Number queries
Question Answering OTTQA train 8.1k tables 41.5k

validation 789 tables 2.2k
FeTaQA train 7.3k tables 7.3K

validation 1K tables 1k
test 2K tables 2k

Fact Verification TabFact train 13.2K tables 92.3K
validation 1.7K tables 12.8k
test 1.7K tables 12.8k

Text-to-SQL BIRD validation 11 DBs (75 tables) 1.5K
Spider train 146 DBs (2K tables) 8.7K

validation 20 DBs (1K tables) 1k
test 40 DBs (1K tables) 2.1k

B Dataset statistics
The available datasets in TARGET can be found in Table 3. All publicly available splits of each
datasets are included except for BIRD’s train split. To ensure consistency across datasets, we stan-
dardized their structures by aligning the column headers and component formats for all datasets.
In addition to table contents and table identifiers, each corpus entry includes a "context" field for
any metadata or relevant information to the table, if available. For instance, in the text-to-SQL
datasets, the context field contains the primary key, foreign key, and other table schema information.
Although BIRD’s validation split contains fewer tables and databases, the large size of each table
poses a significant challenge for retrieval systems. Specifically, the average number of rows per
table in BIRD’s validation corpus is 52.4k, compared to 5.3k rows per table in Spider’s corpus.

C Text-to-SQL specification
The text-to-SQL task has a slightly modified setup for retrievers as it involves database retrieval
as well as in-database schema and table retrieval, which poses a novel challenge. As a baseline,
retrievers first retrieve the tables, and find the database(s) that these tables belong to. TARGET’s
default generator currently take all table headers within the retrieved database, but more advanced
retrievers and custom generators can extend this with in-database schema/table filtering.

D Generator Prompts
Question Answering These prompts were adapted from [28].

System Prompt:

You are a data analyst who reads tables to answer questions.

Instruction Prompt:

Use the provided table(s) to answer the question. Yield a concise
answer to the question.

If the tables cannot be used to answer the question, say that not
enough information is provided.

Tables: {table_contents}
Question: {query}

Fact Verification These prompts were adapted from [28].

System Prompt:

7



You are an expert in evaluating statements on factuality given the
provided tables.

Instruction Prompt:

Given the following evidence which may take the form of sentences or
a data table, determine whether the evidence supports or refutes the
following statement, or does not contain enough information.

Assign the statement one of three labels: True, False, Not Enough
Information. Do not include anything else in your answer.

Tables: {table_contents}
Statement: {query}

Text-to-SQL Prompts These prompts were adapted from CHESS [23].

In order to ensure the generated SQL query can be easily parsed from the generator’s response
(which includes both Chain of Thought Reasoning and the generated SQL), we use LangChain’s
StructuredOutputParser to enforce output in JSON format. The {format_instructions}
parameter in the user prompt describes the expected output format to the generator.

System Prompt:

You are an expert and very smart data analyst.

Instruction Prompt:

Below, you are presented with a database schema and a question.

Your task is to read the schema, understand the question, and generate
a valid SQLite query to answer the question.

Before generating the final SQL query, think step by step on how to
write the query.

Database Schema: {database_schema}
This schema offers an in-depth description of the database’s
architecture, detailing tables, columns, primary keys, foreign keys,
and any pertinent information regarding relationships or constraints.

Question: {query}

Please respond with a paragraph structured as follows: {instructions}

Take a deep breath and think step by step to find the correct SQLite
SQL query. If you follow all the instructions and generate the
correct query, I will give you 1 million dollars.

No Context Instruction For "No Context" evaluations, we provide the following message to the
generator in place of the {table_contents} field in the instruction prompts.

Some or all tables are not available. Please use your best judgment
to complete the task. DO NOT RESPOND with "not enough information" or
similar answers, and don’t acknowledge the lack of information in your
response. Just use your knowledge base and answer to the best of your
ability.
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