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Abstract
Tractably modelling distributions over manifolds
has long been an important goal in the natural
sciences. Recent work has focused on developing
general machine learning models to learn such dis-
tributions. However, for many applications these
distributions must respect manifold symmetries—
a trait which most previous models disregard. In
this paper, we lay the theoretical foundations for
learning symmetry-invariant distributions on ar-
bitrary manifolds via equivariant manifold flows.
We demonstrate the utility of our approach by
using it to learn gauge invariant densities over
SU(n) in the context of quantum field theory.

1. Introduction
Density learning over manifolds has a broad array of applica-
tions ranging from quantum field theory in physics (Wirns-
berger et al., 2020) to motion estimation in robotics (Feiten
et al., 2013) to protein-structure prediction in computational
biology (Hamelryck et al., 2006). Recent work (Lou et al.,
2020; Mathieu & Nickel, 2020; Falorsi & Forré, 2020) has
extended the powerful framework of continuous normaliz-
ing flows (Chen et al., 2018; Grathwohl et al., 2019) to the
setting of Riemannian manifolds, lifting the utility of these
models for learning complex probability distributions to a
more general setting.

Although these manifold normalizing flows were a consid-
erable step forward, they are insufficient for many problems
in the natural sciences. For example, coupled particle sys-
tems in physical chemistry (Köhler et al., 2020) and SU(n)
lattice gauge theories in theoretical physics (Boyda et al.,
2020) require symmetries that are nontrivial to enforce. Typ-
ically, these symmetries are enforced in an ad hoc way using
properties specific to the manifold (Boyda et al., 2020). In
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contrast, our paper presents a fully general way to learn
flows that induce symmetry-invariant distributions.

2. Related Work
Normalizing Flows on Manifolds Normalizing flows on
manifolds have received a considerable amount of attention,
both in terms of manifold-specific and general constructions.
Rezende et al. (2020) introduced constructions specific to
tori and spheres, while Bose et al. (2020) introduced con-
structions for hyperbolic space. Following this work, Lou
et al. (2020); Mathieu & Nickel (2020) introduced a general
construction by extending Neural ODEs (Chen et al., 2018)
to the setting of Riemannian manifolds.

Equivariant Machine Learning Recent work has incor-
porated equivariance into machine learning models for the
purpose of modelling symmetries (Cohen & Welling, 2016;
Kondor & Trivedi, 2018; Rezende et al., 2019). In particu-
lar, Köhler et al. (2020) introduced equivariant normalizing
flows for Euclidean space and Boyda et al. (2020) intro-
duced equivariant flows for SU(n) via a manifold-specific
construction. In contrast, the equivariant manifold flows
in our paper are fully general and applicable to arbitrary
Riemannian manifolds.

3. Background
In this section, we provide a terse overview of the necessary
concepts for understanding our paper. For a more detailed
introduction to Riemannian geometry, we refer the reader
to texts such as Lee (2013); Kobyzev et al. (2020).

3.1. Riemannian Geometry

A Riemannian manifold (M, h) is an n-dimensional man-
ifold with a smooth collection of inner products (hx)x∈M
for every tangent space TxM. The Riemannian metric h
induces a distance dh on the manifold.

A diffeomorphism f : M → M is called an isometry
if h(Dxf(u), Dxf(v)) = h(u, v) for all tangent vectors
u, v ∈ TxM where Dxf is the differential of f . Note that
isometries preserve the manifold distance function. The
collection of all isometries forms a group G, which we call
the isometry group of the manifoldM.
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Riemannian metrics also allow for a natural analogue of
gradients on Rn. For a function f :M→ R, we define the
Riemannian gradient ∇xf to be the vector on TxM such
that h(∇xf, v) = Dxf(v) for v ∈ TxM.

3.2. Normalizing Flows on Manifolds

Let (M, h) be a Riemannian manifold. A normalizing flow
onM is a diffeomorphism fθ : M → M (parametrized
by θ) that transforms a prior density ρ to model density ρfθ .
The model distribution can be computed via the change of
variables equation:

ρfθ (x) = ρ
(
f−1
θ (x)

) ∣∣∣∣∣det
∂f−1

θ (x)

dx

∣∣∣∣∣ .
3.3. Equivariance and Invariance

Let G be an isometry subgroup ofM. We notate the action
of an element g ∈ G onM by the map Rg :M→M.

Equivariant and Invariant Functions We say that a
function f : M → N is equivariant if, for symmetries
gx : M → M and gy : N → N , f ◦ gx = gy ◦ f . We
say a function f : M → N is invariant if f ◦ gx = f .
When X and Y are manifolds, the symmetries gx and gy
are isometries.

Equivariant Vector Fields LetX :M×[0,∞)→ TM,
X(m, t) ∈ TmM be a time-dependent vector field on man-
ifoldM, with base point x0 ∈ M. X is a G-equivariant
vector field if ∀(m, t) ∈ M × [0,∞), X(Rgm, t) =
(DmRg)X(m, t).

Equivariant Flows A flow f on a manifold M is G-
equivariant if it commutes with actions from G, i.e. we have
Rg ◦ f = f ◦Rg .

Invariance of Density For a group G, a density ρ on a
manifoldM is G-invariant if, for all g ∈ G and x ∈ M ,
ρ(Rgx) = ρ(x), where Rg is the action of g on x.

4. Invariant Densities from Equivariant Flows
In this section, we describe a tractable way to learn a density
over a manifold that obeys a symmetry given by an isometry
subgroup G. Directly parameterizing a density that obeys
this symmetry is nontrivial. Hence we prove the following
implications that yield a tractable solution to this problem
(note that we generalize previous work (Köhler et al., 2020;
Papamakarios et al., 2019) that has only addressed the case
of Euclidean space):

1. G-invariant potential ⇒ G-equivariant vector
field (Theorem 1). We show that given a G-invariant
potential function f :M→ R, the vector field ∇f is
G-equivariant.

2. G-equivariant vector field ⇒ G-equivariant flow
(Theorem 2). We show that a G-equivariant vector
field onM uniquely induces a G-equivariant flow.

3. G-equivariant flow ⇒ G-invariant density (Theo-
rem 3). We show that given a G-invariant prior ρ
and a G-equivariant flow fθ, the flow density ρfθ is
G-invariant.

Hence, we can obtain a G-invariant density from a G-
invariant potential. We claim that constructing a G-invariant
potential function on a manifold is far simpler than directly
parameterizing aG-invariant density or aG-equivariant flow
(an example construction will be given). We defer the proofs
of all theorems to Appendix A.

4.1. Equivariant Gradient of Potential Function

We start by showing how to construct G-equivariant vector
fields from G-invariant potential functions. To design an
equivariant vector field X , it is sufficient to set the vector
field dynamics of X as the gradient of some G-invariant
potential function Φ :M→ R:

Theorem 1. Let (M, h) be a Riemannian manifold and G
be its group of isometries (or an isometry subgroup). If
Φ : M → R is a smooth G-invariant function, then the
following diagram commutes for any g ∈ G:

M M

TM TM

Rg

∇Φ ∇Φ

DRg

or∇RguΦ = DuRg(∇uΦ). Hence∇Φ is a G-equivariant
vector field. This condition is also tight in the sense that it
only occurs if G is the group of isometries.

4.2. Constructing Equivariant Manifold Flows from
Equivariant Vector Fields

To construct equivariant manifold flows, we use tools from
manifold ordinary differential equations (ODEs) and con-
tinuous normalizing flows (CNFs). In particular, note the
definition below:

Manifold Continuous Normalizing Flows A manifold
continuous normalizing flow with base point z is a func-
tion γ : [0,∞)→M that satisfies the manifold ODE

dγ(t)

dt
= X(γ(t), t) , γ(0) = z.

We define FX,T :M→M, z 7→ FX,T (z) to map any base
point z ∈M to the value of the CNF starting at z, evaluated
at time T . This function is known as the (vector field) flow
of X . Observe that there exists a natural correspondence
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between equivariant flows and equivariant vector fields, by
the following theorem:

Theorem 2. Let (M, h) be a Riemannian manifold, and
G be its isometry group (or one of its subgroups). Let X
be any time-dependent vector field onM, and FX,T be the
flow of X . Then X is a G-equivariant vector field if and
only if FX,T is a G-equivariant flow.

4.3. Invariant Manifold Densities from Equivariant
Flows

We now show that G-equivariant flows induce G-invariant
densities. Note that we require the groupG to be an isometry
subgroup in order to control the density of ρf , and the
following theorem does not hold for general diffeomorphism
groups.

Theorem 3. Let (M, h) be a Riemannian manifold, and
G be its isometry group (or one of its subgroups). If ρ
is a G-invariant density onM, and f is a G-equivariant
diffeomorphism, then ρf (x) is also G-invariant.

4.4. Universality of Flows Generated by Invariant
Potentials

We prove that flows induced by invariant potentials suffice
to learn any smooth invariant distribution over a closed man-
ifold, as measured by Kullback-Leibler (KL) divergence.

Theorem 4. Let (M, h) be a closed Riemannian manifold.
Let ρ, π be smooth G-invariant distributions over said man-
ifold, and let DKL(ρ||π) be the KL divergence between
distributions ρ and π. If we choose a function g :M→ R
such that for x ∈M,

g(x) = log

(
π(x)

ρ(x)

)
.

Then we have:

∂

∂t
DKL(ρ||π) = −

∫
M
ρ exp(g)‖∇g‖2 dx ≤ 0.

In particular, note that if the target distribution is π and the
current distribution is ρ, if we set g to be log(π(x)/ρ(x))
and g is the potential from which the flow is obtained, then
the KL divergence between π and ρ is monotonically de-
creasing by Theorem 4.

5. Learning Invariant Densities with
Equivariant Flows

In this section, we discuss how the theory in Section 4 is
applied.

5.1. Equivariant Manifold Flow Model

We assume that a G-invariant potential function f :M→
R is given. The equivariant flow model works by using auto-
matic differentiation (Paszke et al., 2017) on f to obtain∇f ,
using this for the vector field, and integrating in a step-wise
fashion over the manifold. Specifically, forward integration
and change-in-density (divergence) computations utilize the
Riemannian CNF (Mathieu & Nickel, 2020) framework.
This flow model is used with a specific training procedure
(see Section 5.3) to obtain a G-invariant model density that
approximates some target.

5.2. Constructing Conjugation-invariant Potential
Functions on SU(n)

For many applications in physics (specifically gauge theory
and lattice quantum field theory), one works with the Lie
group SU(n) — the group of unitary matrices with deter-
minant 1 (for details on the manifold structure of SU(n),
see Appendix B). In particular, when modelling probability
distributions on SU(n) for lattice QFT, the desired distribu-
tion must be invariant under conjugation by SU(n) (Boyda
et al., 2020). Conjugation is an isometry on SU(n) (see
Appendix A.5), so we can model probability distributions
invariant under this action with our developed theory.

Invariant Potential Parameterization We want to produce
a G-invariant potential function Φ : SU(n)→ R. Note that
matrix conjugation preserves eigenvalues. Thus, for a func-
tion Φ : SU(n)→ R to be invariant to matrix conjugation,
it has to act on the eigenvalues of x ∈ SU(n) as a multi-set.

We can parameterize such potential functions Φ by the
DeepSet network from Zaheer et al. (2017). DeepSet is
a permutation invariant neural network that acts on the
eigenvalues, so the mapping of x ∈ SU(n) is Φ(x) =
Φ̂({λ1(x), . . . , λn(x)}) for some set function Φ̂.

As a result of this design, the only variance in the learned
distribution will be amongst non-similar matrices, while all
similar matrices will be assigned the same density value.

Prior Distributions For the prior distribution of the flow,
we need a distribution that is invariant to conjugation by
SU(n). We use the Haar measure, whose volume element is
given for x ∈ SU(n) as Haar(x) =

∏
i<j |λi(x)−λj(x)|2

(Boyda et al., 2020). We can sample from and compute log
probabilities for this distribution efficiently with standard
matrix computations (Mezzadri, 2007).

5.3. Training Equivariant Manifold Flows

Learning to sample given an exact density is important
in settings such as the one in Boyda et al. (2020), where
we are given conjugation-invariant densities on SU(n) for
which we know the exact density function yet sampling well
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Ours Boyda et al.

(a) SU(2) learned densities from (Left) our model and
(Right) the Boyda et al. (2020) model. The target densities
are in orange, while model densities are in blue. The x-
axis is θ for an eigenvalue eiθ of a matrix in SU(2) (the
second eigenvalue is determined as e−iθ). Our model has
better behavior in low-density regions, and more smoothly
captures the targets in high-density regions.

Target Ours Boyda et al.

(b) SU(3) learned densities from (Middle) our model and (Right)
the Boyda et al. (2020) model for different target densities (Left).
The x-axis and y-axis are the angles θ1 and θ2 for eigenvalues
eiθ1 and eiθ2 of a matrix in SU(3) (the third eigenvalue is deter-
mined as e−iθ1−iθ2 ), and the probabilities correspond to colors
on a logarithmic scale. Our model better captures the geometry
of the target densities.

Figure 1. Comparison of learned densities on (a) SU(2) and (b) SU(3). All densities are normalized to have maximum value 1.

is nontrivial. We train our models by sampling from the
Haar distribution on SU(n), computing the KL divergence
between the model probabilities and target probabilities at
these samples, and backpropagating from this KL loss.

6. Experiments
In this section, we learn densities on SU(n) that are in-
variant to conjugation by SU(n), which is important for
constructing flow-based samplers for SU(n) lattice gauge
theories in theoretical physics (Boyda et al., 2020). Our
model outperforms the construction given in Boyda et al.
(2020). An experiment on an additional manifold with a new
symmetry is given in Appendix D. Moreover, we demon-
strate in Appendix D that leveraging symmetries inherent to
the manifold improves performance over general manifold
flows (Lou et al., 2020).

For the sake of staying true to the application area, we follow
the framework of Boyda et al. (2020) in learning densities
on SU(n) that are invariant to conjugation by SU(n). In
particular, our goal is to learn a flow to model a target
distribution so that we may efficiently sample from it. As
mentioned above in Section 5.3, this setting follows the

paradigm in which we are given exact density functions and
learn how to sample. Our model is as described in Section 5;
further training details are given in Appendix C.1.

Figure 1a displays learned densities for our model and the
model of Boyda et al. (2020) for three densities on SU(2)
described in Appendix C.2.1. While both models match the
target distributions well in high-density regions, our model
exhibits a considerable improvement in lower-density re-
gions, where the tails of our learned distribution decay faster.
By contrast, the model of Boyda et al. (2020) seems to be
unable to reduce mass near ±π, a possible consequence of
their construction. Even in high-density regions, our model
appears to vary smoothly, with fewer unnecessary bumps
and curves compared to the densities of the model in Boyda
et al. (2020).

Figure 1b displays learned densities for our model and the
model of Boyda et al. (2020) for three densities on SU(3)
described in Appendix C.2.2. In this case, our models fit the
target densities more accurately and better respect the geom-
etry of the target distribution. Indeed, while the models of
Boyda et al. (2020) are often sharp and have pointed corners,
our models learn densities that vary smoothly and curve in
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ways that are representative of the target distributions.

7. Conclusion
In this work, we introduce equivariant manifold flows in a
fully general context and provide the necessary theory to
ensure a principled construction. We also demonstrate the
efficacy of our approach in the context of learning a conju-
gation invariant density over SU(n), which is an important
task for sampling SU(n) lattice gauge theories in quantum
field theory.
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Appendix

A. Proof of Theorems
In this section, we restate and prove the theorems in Section 4. These give the theoretical foundations that we use to build
our models. Prior work (Wasserman, 1969; Field, 1980) addresses some of the results we formalize below.

A.1. Proof of Theorem 1

Theorem 1. Let (M, h) be a Riemannian manifold and G be its group of isometries (or an isometry subgroup). If
Φ :M→ R is a smooth G-invariant function, then the following diagram commutes for any g ∈ G:

M M

TM TM

Rg

∇Φ ∇Φ

DRg

or ∇RguΦ = DuRg(∇uΦ). This is condition is also tight in the sense that it only occurs if G is the group of isometries.

Proof. We first recall the Riemannian gradient chain rule:

∇u(Φ ◦Rg) = (DuRg)
>(∇RguΦ)

where (DuRg)
> : TRguM→ TuM is the “adjoint” given by

h
(
DuRg(v), w

)
= h

(
v, (DuRg)

>(w)
)
.

Since Rg is an isometry, we also have

h(x, y) = h
(
DuRg(x), DuRg(y)

)
.

Combining the above two equations gives

h(x, y) = h(DuRg(x), DuRg(y)) = h
(
x, (DuRg)

> (DuRg(y)
))
,

which implies for all y,

h
(
x, y − (DuRg)

>(DuRg(y))
)

= 0.

Since h is a Riemannian metric (even pseudo-metric works due to non-degeneracy), we must have that (DuRg)
>◦(DuRg) =

I .

To complete the proof, we recall that Φ = Φ ◦Rg , and this combined with chain rule gives

∇uΦ = ∇u(Φ ◦Rg) = (DuRg)
>(∇RguΦ).

Now applying DuRg on both sides gives

∇RguΦ = DuRg∇uΦ

which is exactly what we want to show.

We see that this is an “only if” condition because we must necessarily get that the adjoint is the inverse, which implies that
Rg is an isometry.
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A.2. Proof of Theorem 2

Theorem 2. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its subgroups). Let X be any
time-dependent vector field onM, and FX,T be the flow of X . Then X is an G-equivariant vector field if and only if FX,T
is a G-equivariant flow for any T ∈ [0,+∞).

Proof. G-equivariant X ⇒G-equivariant FX,T . We invoke the following lemma from Lee (2013, Corollary 9.14):

Lemma 1. Let F :M→N be a diffeomorphism. If X is a smooth vector field overM and θ is the flow of X, then the flow
of F∗X (F∗ is another notation for the differential of F ) is ηt = F ◦ θt ◦ F−1, with domain Nt = F (Mt) for each t ∈ R.

Examine Rg and its action on X . Since X is G-equivariant, we have for any (x, t) ∈M× [0,+∞),

((Rg)∗X)(x, t) = (DR−1
g (x)Rg)X(R−1

g (x), t) = X(Rg ◦R−1
g (x), t) = X(x, t)

so it follows that (Rg)∗X = X . Applying the lemma above, we get:

F(Rg)∗X,T = Rg ◦ FX,T ◦R−1
g

and, by simplifying, we get that FX,T ◦Rg = Rg ◦ FX,T , as desired.

G-equivariant X ⇐G-equivariant FX,T . This direction follows from the chain rule. If FX,T is G-equivariant, then at
all times we have:

(DmRg)
(
X(FX,t(m), t

)
= (DmRg)

(
d

dt
FX,T (m)

)
(definition)

=
d

dt
(Rg ◦ FX,T )(m) (chain rule)

=
d

dt
FX,T (Rgm) (equivariance)

= X(Rg(FX,t(m)), t) (definition)

This concludes the proof of the backward direction.

A.3. Proof of Theorem 3

Theorem 3. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its subgroups). If ρ is a
G-invariant density onM, and f is a G-equivariant diffeomorphism, then ρf (x) is also G-invariant.

Proof. We wish to show ρf (x) is also G-invariant, i.e. ρf (Rgx) = ρf (x) for all g ∈ G, x ∈M.

We first recall the definition of ρf :

ρf (x) = ρ
(
f−1(x)

) ∣∣∣∣∣det
∂f−1(x)

dx

∣∣∣∣∣ = ρ
(
f−1(x)

) ∣∣det Jf−1(x)
∣∣ .

Since f ∈ C1(M,M) is G-equivariant, we have f ◦ Rg = Rg ◦ f for any g ∈ G. Also, since ρ is G-invariant, we have
ρ ◦Rg = ρ. Combining these properties, we see that:
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ρf (Rgx) = ρf (Rgx)
|det JRg (x)|
|det JRg (x)|

=
ρRg−1◦f (x)

|det JRg (x)|
(expanding definition of ρf )

=
ρf◦Rg−1 (x)

|det JRg (x)|
= ρ

(
(Rg ◦ f−1)(x)

) |det JRg◦f−1(x)|
|det JRg (x)|

(G-equivariance of f)

= (ρ ◦Rg ◦ f−1)(x)
|det JRg (f−1(x))Jf−1(x)|

|det JRg (x)|
(expanding Jacobian)

= (ρ ◦ f−1)(x)
|det JRg (f−1(x))||det Jf−1(x)|

|det JRg (x)|
(G-invariance of ρ)

= ρ(f−1(x))|det Jf−1(x)| ·
|det JRg (f−1(x))|
|det JRg (x)|

(rearrangement)

= ρf (x) ·
|det JRg (f−1(x))|
|det JRg (x)|

(expanding definition of ρf )

Now note that G is contained in the isometry group, and thus Rg is an isometry. This means |det JRg (x)| = 1 for any
x ∈M, so the right-hand side above is simply ρf (x), which proves the theorem.

A.4. Proof of Theorem 4

Theorem 4. Let (M, h) be a closed Riemannian manifold. Let ρ be a distribution over said manifold, and let DKL(ρ||π)
be the Kullback–Leibler divergence between distributions ρ and π. If we choose a g :M→ R such that:

g(x) = log

(
π(x)

ρ(x)

)
for x ∈M, we have:

∂

∂t
DKL(ρ||π) = −

∫
ρ exp(g)||∇g||2 dx

Proof. We start by noting the following by the Fokker-Planck equation:

∂ρ

∂t
= ∇ · (ρ∇g).

This gives:

∂

∂t
DKL(ρ||π) =

∫
π

ρ

∂ρ

∂t
dx

=

∫
π

ρ
∇ · (ρ∇g) dx

=

∫ (
∇ ·
(
π

ρ
(ρ∇g)

)
− (ρ∇g) · ∇ · π

ρ

)
dx

=

∫ (
∇ · (π∇g)− (ρ∇g) · ∇π

ρ

)
dx

= −
∫

(ρ∇g) · ∇π
ρ
dx,

where the final equality follows from the divergence theorem, since the integral of the divergence over a closed manifold is
0. Now if we choose g such that:

g(x) = log

(
π(x)

ρ(x)

)
.
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Then we have:

∂

∂t
DKL(ρ||π) = −

∫
(ρ∇g) · ∇ exp(g) dx

= −
∫
ρ exp(g)||∇g||2 dx,

as desired.

A.5. Conjugation by SU(n) as an Isometry

We now prove a lemma that shows that the group action of conjugation by SU(n) is an isometry subgroup. This implies
that Theorems 1 through 3 above can be specialized to the setting of SU(n).

Lemma 2. Let G be the group action of conjugation by SU(n), and let each Rg represent the corresponding action of
conjugation by g ∈ SU(n). Then G is an isometry subgroup.

Proof. We first show that the matrix conjugation action of SU(n) is unitary. For R,X ∈ SU(n), note that the action of
conjugation is given by vec(RXR−1) = (R−T ⊗R)vec(X). We have that R−T ⊗R is unitary because:

(R−T ⊗R)∗(R−T ⊗R)

= (R−1 ⊗R∗)(R−T ⊗R) (conjugate transposes distribute over ⊗)

= (R−1R−T )⊗ (R∗R) (mixed-product property of ⊗)

= (RTR−T )⊗ (I) = (I)⊗ (I) = In2×n2 (simplification)

Now choose an orthonormal frame X1, . . . , Xm of TM. Note that TM locally consists of SU(n) shifts of the algebra,
which itself consists of traceless skew-Hermitian matrices (Gallier & Quaintance, 2020). We showG is an isometry subgroup
by noting that when it acts on the frame, the resulting frame is orthonormal. Let g ∈ G, and consider the result of action of
g on the frame, namely RgX1, . . . , RgXm. Then we have:

(RgXi)
∗(RgXj) = X∗i R

∗
gRgXj = X∗i Xj .

Note for i 6= j, we have X∗i Xj = 0 and for i = j we see X∗i Xi = 1. Hence the resulting frame is orthonormal and G is an
isometry subgroup.

B. Manifold Details for the Special Unitary Group SU(n)

In this section, we give a basic introduction to the special unitary group SU(n) and relevant properties.

Definition. The special unitary group SU(n) consists of all n-by-n unitary matrices U (i.e. U∗U = UU∗ = 1 for U∗ the
conjugate transpose of U ) that have determinant det(U) = 1.

Note that SU(n) is a smooth manifold; in particular, it has Lie structure (Gallier & Quaintance, 2020). Moreover, the
tangent space at the identity (i.e. the Lie algebra) consists of traceless skew-Hermitian matrices (Gallier & Quaintance,
2020). The Riemannian metric is tr(A>B).

B.1. Haar Measure on SU(n)

Haar Measure. Haar measures are generic constructs of measures on topological groups G that are invariant under group
operation. For example, the Lie group G = SU(n) has Haar measure µH : SU(n)→ R, which is defined as the unique
measure such that for any U ∈ SU(n), we have

µH(V U) = µH(UW ) = µH(U)

for all V,W ∈ SU(n) and µH(G) = 1.
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A topological group G together with its unique Haar measure defines a probability space on the group. This gives one
natural way of defining probability distributions on the group, explaining its importance in our construction of probability
distributions on Lie groups, specifically SU(n).

To make the above Haar measure definition more concrete, we note from Bump (2004, Proposition 18.4) that we can
transform an integral over SU(n) with respect to the Haar measure into integrating over the corresponding diagonal matrices
under eigendecomposition: ∫

SU(n)

fdµH =
1

n!

∫
T

f(diag(λ1, . . . , λn))
∏
i<j

|λi − λj |dλ.

Thus, we can think of the Haar measure as inducing the change of variables with volume element

Haar(x) =
∏
i<j

|λi(x)− λj(x)|2.

To sample uniformly from the Haar measure, we just need to ensure that we are sampling each x ∈ SU(n) with probability
proportional to Haar(x).

Sampling from the Haar Prior. We use Algorithm 1 (Mezzadri, 2007) for generating a sample uniformly from the Haar
prior on SU(n):

Algorithm 1 Sampling from the Haar Prior on SU(n)

Sample Z ∈ Cn×n where each entry Zij = Z
(1)
ij + iZ

(2)
ij for independent random variables Z(1)

ij , Z
(2)
ij ∼ N (0, 1/2).

Let Z = QR be the QR Factorization of Z.
Let Λ = diag( R11

|R11| , . . . ,
Rnn
|Rnn| ).

Output Q′ = QΛ as distributed with Haar measure.

B.2. Eigendecomposition on SU(n)

One main step in the invariant potential computation for SU(n) is to derive formulas for the eigendecomposition of
U ∈ SU(n) as well as formulas for differentiation through the eigendecomposition (recall that we must differentiate the
SU(n)-invariant potential f to get SU(n)-equivariant vector field∇f , as described in Section 5.2). This section first derives
general formulas for how to do this for U ∈ SU(n). In practice, such general methods often introduce instability, and thus,
for the oft-used special cases of n = 2, 3, we derive explicit formulas for the eigenvalues based on finding roots of the
characteristic polynomials (given by root formulas for quadratic/cubic equations).

B.2.1. DERIVATIONS FOR THE GENERAL CASE SU(N)

Here we reconstruct the steps of differentiation through eigendecomposition from Boyda et al. (2020, Appendix C) that
allow efficient computation in our use-case. For our matrix-conjugation-invariant SU(n) flow, we need only differentiate
the eigenvalues with respect to the input U ∈ SU(n).

For an input U ∈ SU(n), let its eigendecomposition be U = PDP ∗, where w = diag(D) ∈ Cn contains its eigenvalues,
and P =

[
p1 · · · pn

]
∈ Cn×n with pi ∈ Cn as its eigenvectors. Let L denote our loss function, and write the

downstream gradients in row vector format:

g =
[

∂L
∂Rew

∂L
∂Imw

]
=
[
g(1) g(2)

]
.

Then following similar steps as in Boyda et al. (2020), we can compute the gradient of L with respect to the real and
imaginary parts of U as follows:

∂L

∂ReU
=

n∑
i=1

g
(1)
i Re

(
pip
>
i

)
+

n∑
i=1

g
(2)
i Im

(
pip
>
i

)
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∂L

∂ImU
= −

n∑
i=1

g
(1)
i Im

(
pip
>
i

)
+

n∑
i=1

g
(2)
i Re

(
pip
>
i

)
If we define

Q(1) =
[
g

(1)
1 p1 . . . g

(1)
n pn

]
Q(2) =

[
g

(2)
1 p1 . . . g

(2)
n pn

]
Then we can write the gradients in terms of efficient matrix computations:

∂L

∂ReU
= Re

(
Q(1)P>

)
+ Im

(
Q(2)P>

)
∂L

∂ImU
= −Im

(
Q(1)P>

)
+ Re

(
Q(2)P>

)
.

B.2.2. EXPLICIT FORMULA FOR SU(2)

We now derive an explicit eigenvalue formula for the U ∈ SU(2) case. Let us denote U =

[
a+ bi −c+ di
c+ di a− bi

]
for

a, b, c, d ∈ R such that a2 + b2 + c2 + d2 = 1 as an element of SU(2); then the characteristic polynomial of this matrix is
given by

det(λI − U) = (λ− (a+ bi))(λ− (a− bi)) + (c+ di)(c− di) = (a− λ)2 + b2 + c2 + d2 = λ2 − 2aλ+ 1

and thus its eigenvalues are given by

λ1 = a+ i
√

1− a2 = a+ i
√
b2 + c2 + d2

λ2 = a− i
√

1− a2 = a− i
√
b2 + c2 + d2

Remark. We note that there is a natural isomorphism φ : S3 → SU(2), given by

φ(a, b, c, d) =

[
a+ bi −c+ di
c+ di a− bi

]

We can exploit this isomorphism by learning a flow over S3 with a regular manifold flow like NMODE (Lou et al., 2020)
and mapping it to a flow over SU(2). This is also an acceptable way to obtain stable density learning over SU(2).

B.2.3. EXPLICIT FORMULA FOR SU(3)

We now derive an explicit eigenvalue formula for the U ∈ SU(3) case. For the case of U ∈ SU(3), we can compute the
characteristic polynomial as

det(λI − U) = det


λ− U11 −U12 −U13

−U21 λ− U22 −U23

−U31 −U32 λ− U33




= λ3 + c2λ
2 + c1λ+ c0

where
c2 = −(U11 + U22 + U33)

c1 = U11U22 + U22U33 + U33U11 − U12U21 − U23U32 − U13U31

c0 = −(U12U23U31 + U13U21U32 + U11U22U33 − U12U21U33 − U13U31U22 − U23U32U11)

Now to solve the equation
λ3 + c2λ

2 + c1λ+ c0 = 0
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we first transform it into a depressed cubic

t3 + pt+ q = 0

where we make the transformation

t = x+
c2
3

p =
3c1 − c22

3

q =
2c32 − 9c2c1 + 27c0

27

Now from Cardano’s formula, we have the cubic roots of the depressed cubic given by

λ1,2,3 =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27

where the two cubic roots in the above equation are picked such that they multiply to −p3 .

C. Experimental Details for Learning Equivariant Flows on SU(n)

This section presents some additional details regarding the experiments that learn invariant densities on SU(n) in Section 6.

C.1. Training Details

Our DeepSet network (Zaheer et al., 2017) consists of a feature extractor and regressor. The feature extractor is a 1-layer
tanh network with 32 hidden channels. We concatenate the time component to the sum component of the feature extractor
before feeding the resulting 33 size tensor into a 1-layer tanh regressor network.

To train our flows, we minimize the KL divergence between our model distribution and the target distribution (Papamakarios
et al., 2019), as is done in Boyda et al. (2020). In a training iteration, we draw a batch of samples uniformly from SU(n), map
them through our flow, and compute the gradients with respect to the batch KL divergence between our model probabilities
and the target density probabilities. We use the Adam stochastic optimizer for gradient-based optimization (Kingma & Ba,
2015). The graph shown in Figure 1 was trained for 300 iterations with a batch size of 8192 and weight decay setting of
0.01; the starting learning rate for Adam was 0.01, and a multi-step learning rate schedule that decreased the learning rate
by a factor of 10 every 100 epochs was used. We use PyTorch to implement our models and run experiments (Paszke et al.,
2019). Experiments are run on one CPU and/or GPU at a time, where we use one NVIDIA RTX 2080Ti GPU with 11 GB of
GPU RAM.

C.2. Conjugation-Invariant Target Distributions

Boyda et al. (2020) defined a family of matrix-conjugation-invariant densities on SU(n) as:

ptoy(U) =
1

Z
e
β
nRe tr(

∑
k ckU

k),

which is parameterized by scalars ck and β. The normalizing constant Z is chosen to ensure that ptoy is a valid probability
density with respect to the Haar measure.

More specifically, the experiments of Boyda et al. (2020) focus on learning to sample from the distribution with the above
density with three components, in the following form:

ptoy(U) =
1

Z
e
β
nRe tr(c1U+c2U

2+c3U
3)

We tested on three instances of the density, also used in Boyda et al. (2020):
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set i c1 c2 c3 β
1 0.98 -0.63 -0.21 9
2 0.17 -0.65 1.22 9
3 1 0 0 9

Table 1. Sets of parameters c1, c2, c3 and β used in the SU(2) and SU(3) experiments

Note that the rows of Figure 1 correspond to coefficient sets 3, 2, 1, given in order from top to bottom.

C.2.1. CASE FOR SU(2)

In the case of n = 2, we can represent the eigenvalues of a matrix U ∈ SU(2) in the form eiθ, e−iθ for some angle θ ∈ [0, π].
We then have tr(U) = eiθ + e−iθ = 2 cos(θ), so above density takes the form:

ptoy(U) =
1

Z
ec1β cos θ · ec2β cos(2θ) · ec3β cos(3θ).

C.2.2. CASE FOR SU(3)

In the case of n = 3, we can represent the eigenvalues of U ∈ SU(3) in the form eiθ1 , eiθ2 , ei(−θ1−θ2). Thus, we have

Re tr(U) =
1

3

(
cos(θ1) + cos(θ2) + cos(−θ1 − θ2)

)
and thus

ptoy(U) =
1

Z
e
c1β
3 (cos(θ1)+cos(θ2)+cos(−θ1−θ2))

· e
c2β
3 (cos(2θ1)+cos(2θ2)+cos(−2θ1−2θ2))

· e
c3β
3 (cos(3θ1)+cos(3θ2)+cos(−3θ1−3θ2))

D. Sphere Isotropy Experiments
In this section, we illustrate the generality of the framework in the paper by presenting an additional invariant potential
construction on a different manifold: the n-sphere Sn. Moreover, to demonstrate the need for enforcing equivariance of flow
models, we directly compare our flow construction with a general purpose flow while learning a density with an inherent
symmetry. The densities we decided to use for this purpose are sphere densities that are invariant to action by the isotropy
group. Our model is able to learn these densities much better than previous manifold ODE models that do not enforce
equivariance of flows (Lou et al., 2020), thus showing the ability of our model to leverage the desired symmetries. In fact,
even on simple isotropy-invariant densities, our model succeeds while the free model without equivariance fails.

Definition. The unit n-sphere Sn can be thought of as an embedded manifold of Rn+1, given by

Sn = {x ∈ Rn+1 : x2
1 + . . .+ x2

n+1 = 1}

The discussions below will focus on the special case of the unit sphere S2 in 3 dimensions.

D.1. Isotropy Invariance on S2

Isotropy Group. The isotropy group for a point v ∈ S2 is defined as the subgroup of the isometry group which fixes v, i.e.
the set of rotations around an axis that passes through v. In practice, we let v = (0, 0, 1), so the isotropy group is the group
of rotations on the xy-plane. An isotropy invariant density would be invariant to such rotations, and hence would look like a
horizontally-striped density on the sphere.

Invariant Potential Parameterization. We design an invariant potential by applying a neural network to the free parameter.
In the case of our specific isotropy group listed above, the free parameter is the z-coordinate. The invariant potential is
simply a 1-input neural network on the z-coordinate of the input. As a result of this design, we see that the only variance in
the learned distribution that uses this potential will be along the z-axis, as desired.
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Prior Distributions. For proper learning with a normalizing flow, we need a prior distribution on the sphere that respects
the isotropy invariance. There are many isotropy invariant potentials on the sphere. Natural choices include the uniform
density (which is invariant to all rotations) and the wrapped distribution with the center at v (Skopek et al., 2019; Nagano
et al., 2019). For our experiments, we use the uniform density.

D.2. Experiments

In this section, we present experiments on learning isotropy-invariant densities on the sphere. The specific density that we
would like to learn is illustrated in Figure 2a, which is invariant under the isotropy group of rotations on the xy-plane.

We try to learn this density using our equivariant flow construction model (result in Figure 2b), and compare it to the
previous manifold ODE model that do not enforce equivariance of flows in Lou et al. (2020) (result in Figure 2c). Both
models are trained for 100 epochs with a learning rate of 0.001 and a batch size of 200.

(a) Ground Truth (b) Isotropy Equivariant Flow (c) Manifold Flow

Figure 2. We compare the equivariant manifold flow and regular manifold flow on an invariant dataset. Note that our model is able to
accurately capture the ground truth data distribution while the regular manifold flow struggles.

Despite our equivariant flow having fewer parameters (as both flows have the same width and the equivariant flow has an
input dimension of 1), our model is able to capture the distribution much better than the base manifold flow. We believe this
is due to the inductive bias of our equivariant model, which explicitly leverages the underlying symmetry.


