
Tuning Algorithmic and Architectural Hyperparameters in Graph-Based
Semi-Supervised Learning with Provable Guarantees

Ally Yalei Du1 Eric Huang1 Dravyansh Sharma2

1Carnegie Mellon University
2Toyota Technological Institute at Chicago

Abstract

Graph-based semi-supervised learning is a pow-
erful paradigm in machine learning for modeling
and exploiting the underlying graph structure that
captures the relationship between labeled and un-
labeled data. A large number of classical as well
as modern deep learning based algorithms have
been proposed for this problem, often having tun-
able hyperparameters. We initiate a formal study of
tuning algorithm hyperparameters from parameter-
ized algorithm families for this problem. We obtain
novel O(log n) pseudo-dimension upper bounds
for hyperparameter selection in three classical la-
bel propagation-based algorithm families, where
n is the number of nodes, implying bounds on the
amount of data needed for learning provably good
parameters. We further provide matching Ω(log n)
pseudo-dimension lower bounds, thus asymptoti-
cally characterizing the learning-theoretic complex-
ity of the parameter tuning problem. We extend
our study to selecting architectural hyperparame-
ters in modern graph neural networks. We bound
the Rademacher complexity for tuning the self-
loop weighting in recently proposed Simplified
Graph Convolution (SGC) networks. We further
propose a tunable architecture that interpolates
graph convolutional neural networks (GCN) and
graph attention networks (GAT) in every layer, and
provide Rademacher complexity bounds for tuning
the interpolation coefficient.

1 INTRODUCTION

Semi-supervised learning is a powerful paradigm in ma-
chine learning which reduces the dependence on expensive
and hard-to-obtain labeled data, by using a combination of
labeled and unlabeled data. This has become increasingly

relevant in the era of large language models, where an ex-
tremely large amount of labeled training data is needed.
A large number of techniques have been proposed in the
literature to exploit the structure of unlabeled data, includ-
ing popularly used graph-based semi-supervised learning
algorithms [Blum and Chawla, 2001, Zhu et al., 2003, Zhou
et al., 2003, Delalleau et al., 2005, Chapelle et al., 2009].
More recently, there has been an increasing interest in devel-
oping effective neural network architectures for graph-based
learning [Kipf and Welling, 2017, Veličković, Petar et al.,
2018, Iscen et al., 2019]. However, different algorithms,
architectures, and values of hyperparameters perform well
on different datasets [Dwivedi et al., 2023], and there is no
principled way of selecting the best approach for the data
at hand. In this work, we initiate the study of theoretically
principled techniques for learning hyperparameters from
infinitely large semi-supervised learning algorithm families.

In graph-based semi-supervised learning, the graph nodes
consist of labeled and unlabeled data points, and the graph
edges denote feature similarity between the nodes. There
are several classical ways of defining a graph-based regular-
ization objective that depend on the available and predicted
labels as well as the graph structure. Optimizing this objective
yields the predicted labels and the accuracy of the predic-
tions depends on the chosen objective. The performance of
the same objective may vary across datasets. By studying
parameterized families of objectives, we can learn to design
the objective that works best on a given domain-specific
data. Similarly, modern deep learning based techniques often
have several candidate architectures and choices for hyper-
parameters, often manually optimized for each application
domain. Recent work has considered the problem of learning
the graph hyperparameter used in semi-supervised learning
[Balcan and Sharma, 2021, Fatemi et al., 2021] but leaves
the problem of selecting the hyperparameter wide open. In
this paper, we take important initial steps to build the theo-
retical foundations of algorithm hyperparameter selection in
graph-based semi-supervised learning.

Note that we focus specifically on algorithm hyperparame-

ters, such as self-loop weights, leaving optimization hyper-
parameters like learning rates outside the scope of this study.

1.1 CONTRIBUTIONS

• We study hyperparameter tuning in three canonical label
propagation-based semi-supervised learning algorithms:
the local and global consistency [Zhou et al., 2003], the
smoothing-based [Delalleau et al., 2005], and a novel nor-
malized adjacency matrix-based algorithm. We prove new
O (log n) pseudo-dimension upper bounds for all three
families, where n is the number of graph nodes. Our proofs
rely on a unified template based on determinant evaluation
and root-counting, which may be of independent interest.

• We provide matching Ω (log n) pseudo-dimension lower
bounds for all three aforementioned families. Our proof
involves novel constructions of a class of partially labeled
graphs that exhibit fundamental limitations in tuning the
label propagation algorithms. We note that our lower bound
proofs are particularly subtle and technically challenging,
and involve the design of a carefully constructed set of
problem instances and hyperparameter thresholds that
shatter these instances.

• Next, we consider the modern graph neural networks
(GNNs). We prove a new Rademacher complexity bound
for tuning the weight of self-loops for a popular architec-
ture proposed in Wu et al. [2019], the Simplified Graph
Networks (SGC).

• We propose an architecture (GCAN) where a hyperparam-
eter η is introduced to interpolate two canonical GNN
architectures: graph convolutional neural networks (GCNs)
and graph attention neural networks (GATs). We bound the
Rademacher complexity of tuning η. Because the parame-
ter dimension is different, the Rademacher complexity of
SGC and GCAN has different dependencies on the feature
dimension d:

√
d for SGC while d for GCAN.

• We conducted experiments to demonstrate the effective-
ness of our hyperparameter selection framework.

1.2 RELATED WORK

Graph Based Semi-supervised Learning Semi-
supervised learning is a popular machine learning paradigm
with significant theoretical interest [Zhou et al., 2003,
Delalleau et al., 2005, Balcan and Blum, 2010, Garg et al.,
2020]. Classical algorithms focus on label-propagation
based techniques, such as Zhou et al. [2003], Zhu et al.
[2003], and many more. In recent years, graph neural
networks (GNNs) have become increasingly popular in
a wide range of application domains [Kipf and Welling,
2017, Veličković, Petar et al., 2018, Iscen et al., 2019]. A
large number of different architectures have been proposed,
including graph convolution networks, graph attention

networks, message passing, and so on [Dwivedi et al.,
2023]. Both label propagation-based algorithms and neural
network-based algorithms are practically useful [Balcan
et al., 2005, Kipf and Welling, 2017]. For example,
although GNN-based algorithms are more predominant in
applications, Huang et al. [2020] show that modifications
to label propagation-based algorithms can outperform
GNN. For node classification in GNN, many work study
generalization guarantees for tuning network weights in
GNNs [Oono and Suzuki, 2021, Esser et al., 2021, Tang
and Liu, 2023]. In contrast, we study the tuning of the
hyperparameters related to the GNN architecture.

Hyperparameter Selection Hyper-parameters, such as
the weight for self-loop, play important roles in the per-
formance of both classical methods and GNNs. In general,
hyperparameter tuning is performed on a validation dataset,
and follows the same procedure: determine which hyperpa-
rameters to tune and then search within their domain for the
combination of parameter values with best performance [Yu
and Zhu, 2020]. Many methods are proposed to efficiently
search within the parameter space, such as grid search,
random search [Bergstra and Bengio, 2012], and Bayesian
optimization (Mockus [1974]; Mockus et al. [1978]; Jones
et al. [1998]). A few existing works investigate the theoretical
aspects of these methods, such as through generalization
guarantees and complexities of the algorithms.

A recently introduced paradigm called data-driven algo-
rithm design is useful for obtaining formal guarantees for
hyperparameter tuning [Balcan, 2020, Sharma, 2024b]. In
particular, Balcan et al. [2022, 2023] study the regularization
hyperparameter in the ElasticNet in statistical settings and
Balcan and Sharma [2024] study learning decision tree algo-
rithms. For unsupervised learning, Balcan et al. [2018, 2024]
study a parameterized family of clustering algorithms and
study the sample and computational complexity of learning
the parameters. For semi-supervised learning, a recent line
of work (Balcan and Sharma [2021]; Sharma and Jones
[2023]) considers the problem of learning the best graph
hyperparameter from a set of problem instances drawn from
a data distribution. Another recent work [Balcan et al., 2025]
investigates the kernel hyperparameters in GNN architec-
tures, and derives the generalization guarantees through
pseudo-dimension. However, no existing work theoretically
studies the tuning of the labeling algorithm hyperparameter
in semi-supervised learning, or investigates data-dependent
bounds on hyperparameter selection in deep semi-supervised
learning algorithms through Rademacher Complexity. We
note that in this work we focus on the statistical learning
setting (i.e. the problem instances are drawn from a fixed,
unknown distribution), but it would be an interesting direc-
tion to study online tuning of the hyperparameters using
tools from prior work [Balcan et al., 2019, Sharma, 2024a,
Sharma and Suggala, 2025].

2 PRELIMINARIES

Notations. Throughout this paper, f(n) = O(g(n)) de-
notes that there exists a constant c > 0 such that |f(n)| ≤
c|g(n)|. f(n) = Ω(g(n)) denotes that there exists a constant
c > 0 such that |f(n)| ≥ c|g(n)|. The indicator function is
indicated by I, taking values in {0, 1}. In addition, we define
the shorthand [c] = {1, 2, . . . , c}. For a matrixW , we denote
its Frobenius norm by ∥W∥F and spectral norm by ∥W∥.
We also denote the Euclidean norm of a vector v by ∥v∥.

Graph-based Semi-supervised Learning. We are givenn
data points, where some are labeled, denoted byL ⊆ [n], and
the rest are unlabeled. We may also have features associated
with each data point, denoted by zi ∈ Rd for i ∈ [n]. We can
construct a graph G by placing (possibly weighed) edges
w(u, v) between pairs of data points u, v. The created graph
G is denoted byG = (V,E), whereV represents the vertices
and E represents the edges. Based on G, we can calculate
W ∈ Rn×n as the adjacency matrix, i.e., Wij = w(i, j).
We let D ∈ Rn×n be the corresponding degree matrix, so
D = diag(d1, . . . , dn) where di =

∑
j∈[n] w(i, j).

For a problem instance of n data points, we define input X
as X = (n, {zi}ni=1, L,G), or X = (n,L,G) if no features
are available. We denote the label matrix by Y ∈ {0, 1}n×c

where c is the number of classes. Throughout the paper, we
assume c = On(1), i.e. c is treated as a constant with respect
to n, which matches most practical scenarios. Here, Yij = 1
if data point i ∈ L has label j ∈ [c] and Yij = 0 otherwise.
The goal is to predict the labels of the unlabeled data points.

An algorithm F in this setting may be considered as a
function that takes in (X,Y) and outputs a predictor f that
predicts a label in [c] for each data. We denote f(zi) as our
prediction on the i-th data. To evaluate the performance of a
predictor f , we use 0-1 loss (i.e. the predictive inaccuracy)
defined as 1

n

∑n
i=1 ℓ0−1 (f(zi), yi) = 1

n

∑n
i=1 I[f(zi) ̸=

yi]. In this work, we are interested in the generalizability of
an algorithm F on 0-1 loss.

Hyperparameter Selection. We consider several parame-
terized families of classification algorithms. Given a family
of algorithms Fρ parameterized by some parameter ρ, and
a set of m problem instances {(X(k), Y (k))}mk=1 i.i.d. gen-
erated from the data distribution D of the input space X
and the label space Y , our goal is to select a parameter ρ̂
whose corresponding prediction function fρ̂ of algorithm
Fρ̂ minimizes the prediction error. That is, denote fρ̂(z

(k)
i)

as the predicted label of data point z(k)i in the k-th problem
instance, we want

ρ̂ = argminρ
1

mn

m∑
k=1

n∑
i=1

ℓ0−1(fρ(z
(k)
i), y

(k)
i).

Each parameter value ρ defines an algorithm Fρ, mapping a
problem instance (X,Y) to a prediction function fρ, which

induces a loss 1
n

∑n
i=1 ℓ0−1(fρ(zi), yi). We define Hρ as

the function mapping (X,Y) to this loss and Hρ = Hρ′ρ′

as the family of loss functions parameterized by ρ.

Note that our problem setting differs from prior theoretical
works on graph-based semi-supervised learning. The clas-
sical setting considers a single algorithm and learning the
model parameter from a single problem instance. We are
considering families of algorithms, each parameterized by a
single hyperparameter, and aiming to learn the best hyperpa-
rameter across multiple problem instances. Our setting com-
bines transductive and inductive aspects: each instance has a
fixed graph of sizen (transductive), but the graphs themselves
are drawn from an unknown meta-distribution (inductive).

Complexity Measures and Generalization Bounds. We
study the generalization ability of several representative pa-
rameterized families of algorithms. That is, we aim to address
the question of how many problem instances are required to
learn a hyperparameter ρ such that a learning algorithm can
perform near-optimally for instances drawn from a fixed prob-
lem distribution. Clearly, the more complex the algorithm
family, the more number of problem instances are needed.

Specifically, for each algorithm fρ̂ trained given m problem
instances, we study the difference in the empirical 0-1 loss
and the actual 0-1 on the distribution:

1

mn

m∑
k=1

n∑
i=1

ℓ0−1(fρ(z
(k)
i), y

(k)
i)

−E(X,Y)∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]
.

To quantify this, we consider two complexity measures for
characterizing the learnability of algorithm families: the
pseudo-dimension and the Rademacher complexity.

Definition 1 (Pseudo-dimension). Let H be a set of real-
valued functions from input space X . We say that C =
(X(1), ..., X(m)) ∈ Xm is pseudo-shattered by H if there
exists a vector r = (r1, ..., rm) ∈ Rm (called “witness”)
such that for all b = (b1, ..., bm) ∈ {±1}m there exists
Hb ∈ H such that sign(Hb(X

(k)) − rk) = bk. Pseudo-
dimension of H, denoted Pdim(H), is the cardinality of the
largest set pseudo-shattered by H.

The following theorem bounds generalization error using
pseudo-dimension.

Theorem 2.1. [Anthony and Bartlett, 2009] Suppose H
is a class of real-valued functions with range in [0, 1] and
finite Pdim(H). Then for any ϵ > 0 and δ ∈ (0, 1), for
any distribution D and for any set S = {X(1), . . . , X(m)}
of m = O

(
1
ϵ2

(
Pdim(H) + log 1

δ

))
samples from D, with

probability at least 1− δ, we have∣∣∣∣∣ 1m
m∑

k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣ ≤ ϵ, for all H ∈ H.

Therefore, if we can show Pdim(Hρ) is bounded, then
using the standard empirical risk minimization argument,
Theorem 2.1 implies using m = O (Pdim(H)/ϵ2) problem
instances, the expected error on test instances is upper
bounded by ϵ. In Section 3, we will obtain optimal pseudo-
dimension bounds for three canonical label-propagation
algorithm families.

Another classical complexity measure is the Rademacher
complexity:

Definition 2 (Rademacher Complexity). Given a space X
and a distribution D, let S = {X(1), . . . , X(m)} be a set of
examples drawn i.i.d. from D. Let H be the class of functions
H : X → R. The (empirical) Rademacher complexity of
H is

R̂m(H) = Eσ

[
sup

(
1

m

m∑
k=1

σkH(X(k))

)]
,

where each σk is i.i.d. sampled from {−1, 1}.

The following theorem bounds generalization error using
Rademacher Complexity.

Theorem 2.2. [Mohri et al., 2012] Suppose H is a class
of real-valued functions with range in [0, 1]. Then for any
δ ∈ (0, 1), any distribution D, and any set S = {X(k)}mk=1

ofm samples fromD, with probability at least 1−δ, we have∣∣∣∣∣ 1m
m∑

k=1

H(X(k))− EX∼D[H(X)]

∣∣∣∣∣
= O

(
R̂m(H) +

√
1

m
log

1

δ

)
, for all H ∈ H.

To bound the Rademacher complexity in our setting, we
restrict to binary classification c = 2 and change the label
space to Y ∈ {−1, 1}n. For a predictor f , we also overload
notation and let f(zi) ∈ [0, 1] be the output probability of
node zi being classified as 1. Instead of directly using the 0-1
loss, we upper bound it using margin loss, which is defined as

ℓγ(f(zi), yi) = I[ai > 0] + (1 + ai/γ)I [ai ∈ [−γ, 0]]

where ai = −τ(f(zi), yi) = (1− 2f(zi))yi. Then, ai > 0
if and only if zi is classified incorrectly.

Now we define Hγ
ρ (X) = 1

n

∑n
i=1 ℓγ (fρ(zi), yi) to be the

margin loss of the entire graph when using a parameterized
algorithm Fρ. Based on this definition, we have an induced

loss function family Hγ
ρ . Then, given m instances, for any

γ > 0, we can obtain an upper bound for all Hγ
ρ ∈ Hγ

ρ :

E(X,Y)∼D

[
1

n

n∑
i=1

ℓ0−1 (fρ̂(zi), yi)

]

≤ E(X,Y)∼D

[
1

n

n∑
i=1

ℓγ (fρ̂(zi), yi)

]
(by definition of ℓγ)

=
1

m

m∑
i=1

Hγ
ρ (X

(k)) +O

(
R̂m(Hγ

ρ) +

√
log (1/δ)

m

)
.

(by Theorem 2.2)

Therefore, suppose we find a ρ̂ whose empirical margin loss
1/m

∑m
i=1 H

γ
ρ̂ (X

(k)) is small, and if we can show R̂m(Hγ
ρ)

is small, thenFρ̂ is a strong algorithm for the new problem in-
stances. In Section 4, we bound the Rademacher complexity
of graph neural network-based algorithm families.

Note that these guarantees we obtained can also be applied
to some standard hyperparameter tuning methods like grid
search with cross-validation. For example, in k-fold cross-
validation, if we define the distribution of problem instances
as a uniform distribution on these small subsets of vali-
dation data, then our results imply the necessary number
of iterations k needed to effectively tune hyperparameters
using cross-validation. That is, the number of folds of cross-
validation needed to learn a hyperparameter that performs
nearly as well as the hyperparameter if cross-validation were
run to convergence.

3 LABEL PROPAGATION-BASED
FAMILIES AND GENERALIZATION
GUARANTEES

In this section, we consider three parametric families of
label propagation-based algorithms, the classical type of
algorithms for semi-supervised learning. Label propagation
algorithms output a soft-label score F ∗ ∈ Rn×c, where the
(i, j)-th entry of F ∗ represents the score of class j for the
i-th sample. The prediction for the i-th sample is the class
with the highest score, i.e. argmaxj∈[c]F

∗
ij .

Below we describe each family that we considered and
their corresponding pseudo-dimension bounds. Notably, the
bounds for all three families of algorithms are Θ(log n),
which implies the existence of efficient algorithms with
robust generalization guarantees in this setting.

3.1 ALGORITHM FAMILIES

We consider three parametric families described below.

Local and Global Consistency Algorithm Family (Fα)
The first family considered is the local and global consistent

algorithms [Zhou et al., 2003], parameterized by α ∈ (0, 1).
The optimal scoring matrix F ∗ is defined as

F ∗
α = (1−α)(I −αS)−1Y, where S = D−1/2WD−1/2.

Here, S is the symmetrically normalized adjacency matrix.
This score matrix F ∗

α corresponds to minimizing the follow-
ing objective function Q(F) = 1

2 (
∑n

i,j=1 Wij∥ 1√
di
Fi −

1√
dj

Fj∥2+ 1−α
α

∑n
i=1 ∥Fi−Yi∥2). The first term of Q(F)

measures the local consistency, i.e., the prediction between
nearby points should be similar. The second term measures
the global consistency, i.e., consistency to its original label.
Therefore, the parameter α ∈ (0, 1) induces a trade-off be-
tween the local and the global consistency. We denote this
family as Fα, and the 0-1 losses as Hα.

Smoothing-Based Algorithm Family (Fλ) This second
class of algorithm is parameterized by λ ∈ (0,+∞) [Delal-
leau et al., 2005]. Let ∆ ∈ {0, 1}n×n be a diagonal matrix
where elements are 1 only if the index is in the labeled set.
The scoring matrix F ∗

λ is

F ∗
λ = (S + λIn∆i∈L)

−1λY, whereS = D −W.

The idea of Fλ is similar to Fα. λ is a smoothing parameter
that balances the relative importance of the known labels
and the structure of the unlabeled points.

Normalized Adjacency Matrix Based Family (Fδ) Here
we consider an algorithm family [Avrachenkov et al., 2012].
This class of algorithm is parameterized by δ ∈ [0, 1]. The
scoring matrix F ∗

δ is

F ∗
δ = (I − c · S)−1Y, where S = D−δWDδ−1.

Here, S is the (not symmetrically) normalized adjacency
matrix and c ∈ R is a constant.

This family of algorithms is motivated by Fα and the family
of spectral operators defined in Donnat and Jeong [2023].
We may notice that the score matrix F ∗

δ defined here is very
similar to F ∗

α in the local and global consistency family Fα

when α is set to a constant c, whose default value considered
in Zhou et al. [2003] is 0.99. Here, instead of focusing
on the trade-off between local and global consistency,
we study the spatial convolutions S. With δ = 1, we
have the row-normalized adjacency matrix S = D−1W .
With δ = 0, we have the column-normalized adjacency
matrix S = WD−1. Finally, with δ = 1/2, we have the
symmetrically normalized adjacency matrix that we used
in Fα and many other default implementations [Donnat and
Jeong, 2023, Wu et al., 2019]. We denote the set of 0-1 loss
functions corresponding to Fδ as Hδ .

3.2 PSEUDO-DIMENSION GUARANTEES

We study the generalization behavior of the three families
through pseudo-dimension. The following theorems indicate

that all three families have pseudo-dimension O(log n),
where n is the number of data in each problem instance.
This result suggests that, all three families of algorithms
require m = O (logn/ϵ2) problem instances to learn a ϵ-
optimal algorithmic parameter. We also complement our
upper bounds with matching pseudo-dimension lower bound
Ω(log n), which indicates that we cannot always learn a
near-optimal parameter if the number of problem instances
is further reduced.

Theorem 3.1. The pseudo-dimension of the Local and
Global Consistency Algorithmic Family,Fα, is Pdim(Hα) =
Θ(log n), where n is the total number of labeled and unla-
beled data points.

Similar to Local and Global Consistency, we give a tight
Θ(log n) bound on the pseudo-dimension of the Smoothing-
based family of Delalleau et al. [2005].

Theorem 3.2. The pseudo-dimension of the Smoothing-
Based Algorithmic Family, Fλ, is Pdim(Hλ) = Θ(log n),
where n is the total number of labeled and unlabeled data
points.

Finally, and perhaps more surprisingly, we give the same
Θ(log n) bound on the pseudo-dimension of the normalized
adjacency-matrix based family.

Theorem 3.3. The pseudo-dimension of the Normal-
ized Adjacency Matrix-Based Algorithmic Family, Fδ, is
Pdim(Hδ) = Θ(log n), where n is the total number of
labeled and unlabeled data points.

The proofs of the above three theorems follow a similar
template. Here, we give an overview of the proof idea. The
full proof is in Appendix A.

Upper Bound First, we investigate the function structure
of each index in F ∗. For the function classes Fα and Fλ,
the following lemma is useful.

Lemma 3.4. Let A,B ∈ Rn×n, and C(x) = (A+ xB)−1

for some x ∈ R. Each entry of C(x) is a rational polynomial
Pij(x)/Q(x) for i, j ∈ [n] with each Pij of degree at most
n− 1 and Q of degree at most n.

This lemma reduces each index in the matrix of formC(x) =
(A+ xB)−1 into a polynomial of parameter x with degree
at most n. By definition, we can apply this lemma to F ∗

α

and F ∗
λ and conclude that each index of these matrices is a

degree-n polynomial of variable α and λ, respectively.

For the algorithm family Fδ , the following lemma is helpful:

Lemma 3.5. Let S = D−xWDx−1 ∈ Rn×n, and C(x) =
(I − c · S)−1 for some constant c ∈ (0, 1) and variable
x ∈ [0, 1]. For any i, j ∈ [n], the i, j-the entry of C(x) is
an exponential C(x)ij = aij exp(bijx) for some constants
aij , bij .

By definition of F ∗
δ , this lemma indicates that each

index of F ∗
δ is a weighted sum of n exponentials of the

hyperparameter δ.

For F ∗ being a prediction matrix of any of the above three
algorithmic family, recall that the prediction on each node
i ∈ [n] is ŷi = argmaxj∈[c]([F

∗]ij), so the prediction on a
node can change only when sign([F ∗]ij−[F ∗]ik) changes for
some classes j, k ∈ [c]. For the familiesFα andFλ, [F ∗]ij−
[F ∗]ik is a rational polynomial (Pij(α) − Pik(α))/Q(α),
where (Pij(α)−Pik(α)) and Q(α) are degree of at most n
(we can simply replace α with λ for Fλ). Therefore, its sign
can only change at most O(n) times. For the family Fδ , we
refer to the following lemma and conclude that the sign of
F ∗
ij − F ∗

ik can only change at most O(n) times as well.

Lemma 3.6. Let a1, . . . , an ∈ R be not all zero,
b1, . . . , bn ∈ R, and f(x) =

∑n
i=1 aie

bix. The number
of roots of f is at most n− 1.

Therefore, for all three families, the prediction on a single
node can change at most

(
c
2

)
O(n) ∈ O(nc2) times as the

hyperparameter varies. For m problem instances, each of
n nodes, this implies we have at most O(mn2c2) distinct
values of the loss function. The pseudo-dimension m then
satisfies 2m ≤ O(mn2c2), which implies Pdim(Hα) =
Pdim(Hλ) = Pdim(Hδ) = O(log n).

Lower Bound Our proof relies on a collection of parameter
thresholds and well-designed labeling instances that are
shattered by the thresholds. Here we present the proof idea
of pseudo-dimension lower bound of the family Fα. The
analysis for Fλ and Fδ depends on a similar construction.

We first describe a hard instance of 4 nodes, using binary
labels a and b. We have two points labeled a (namely a1, a2),
and one point labeled b (namely b1) connected with both
a1 and a2 with edge weight 1. We also have an unlabeled
point u connected to b1 with edge weight x ≥ 0. That is, the
affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

With this construction, the prediction on node u changes
and only change when α = (x+2)1/2

2 . For any β ∈ [0, 1] and
let x = 4β2 − 2 ≥ 0, then ŷ4 = 0 when α < β and ŷ4 = 1
when α ≥ β.

Now we can create a large graph of n nodes, consisting of
n/4 connected components as described above. We assume
4 divides n for simplicity. Given a sequence of α’s such
that 0 < α0 < 1/

√
2 ≤ α1 < α2 < ... < αn/4 < 1, we

can create the i-th connected component with x = 4α2
i − 2.

Now the predicted label of the unlabeled node in the i-th
connected component is 0 when α < αi and 1 when α ≥ αi.

By alternatively labeling these unlabeled nodes, the 0-1 loss
of this problem instance fluctuates as α increases.

Finally, by precisely choosing the subsequences so that
the oscillations align with the bit flips in the binary digit
sequence, we can construct m instances that satisfy the 2m

shattering constraints.

Figure 1: An illustration of the construction of the problem
instance in the lower bound proof.

Remark 1. We reiterate the implications of the above
three theorems. All three families have pseudo-dimension
Θ(log n). This indicates that all three families of algorithms
require m = O (logn/ϵ2) problem instances to learn an
ϵ-optimal hyperparameter.

4 GNN FAMILIES AND
GENERALIZATION GUARANTEES

In this section, we study hyperparameter selection for
Graph Neural Networks (GNNs) [Kipf and Welling, 2017,
Veličković, Petar et al., 2018, Iscen et al., 2019], which
excel in tasks involving graph-structured data like social
networks, recommendation systems, and citation networks.
To understand generalization in hyperparameter selection
for GNNs, we analyze Rademacher complexity.

To the best of our knowledge, we are the first to provide
generalization guarantees for hyperparameter selection. Prior
work [Garg et al., 2020] focused on Rademacher complexity
for graph classification with fixed hyperparameters, whereas
we address node classification across multiple instances,
optimizing hyperparameters.

In Section 4.1, we examine the Rademacher complexity
bound of a basic Simplified Graph Convolutional Net-
work [Wu et al., 2019] family, as a foundation for the more
complex family.

In Section 4.2, we introduce a novel architecture, which
we call GCAN, that uses a hyperparameter η ∈ [0, 1] to
interpolate two popular GNNs: the graph convolutional
neural networks (GCN) and graph attention neural networks
(GAT). GCAN selects the optimal model for specific datasets:
η = 0 corresponds to GCN, η = 1 to GAT, and intermediate
values explore hybrid architectures that may outperform
both. We also establish a Rademacher complexity bound for
the GCAN family.

Our proofs for SGC and GCAN share a common strategy:
modeling the 0-1 loss of each problem instance as an ag-
gregation of single-node losses, reducing the problem to
bounding the Rademacher complexity of computation trees
for individual nodes. Specifically, we upper bound the 0-1
loss with a margin loss, then relate the complexity of problem
instances to the computation trees of nodes. Using a cov-
ering argument, we bound the complexity of these trees by
analyzing margin loss changes due to parameter variations.

For each node zi, we define its computation tree of depthL to
represent the structured L-hop neighborhood of v, where the
children of any node u are the neighbors of u, Nu. Denote
the computation tree of zi as ti, and the learned parameter as
θ, then lγ(zi) = lγ(ti, θ). We can now rewrite lγ(Z) as an
expectation over functions applied to computation trees. Let
t1, ..., tt be the set of all possible computation trees of depth
L, and wi(Z) the number of times ti occurs in Z. Then, we
have

lγ(Z) =

t∑
i=1

wi(Z)∑t
j=1 wj(Z)

lγ(ti, θ) = Et∼w′(Z)lγ(t, θ).

The following proposition indicates that it suffices to bound
the Rademacher Complexity of single-node computation
trees.

Proposition 4.1 (Proposition 6 from Garg et al. [2020].).
Let S = {Z1, ..., Zm} be a set of i.i.d. graphs, and let
T = {t1, ..., tm} be such that tj ∼ w′(Zj), j ∈ [m]. Denote
by R̂S and R̂T the empirical Rademacher complexity of
Hγ

ρs for graphs S and trees T . Then, R̂S = Et1,...,tmR̂T .

4.1 SIMPLIFIED GRAPH CONVOLUTIONAL
NETWORK FAMILY

Simplified Graph Convolution Network (SGC) is introduced
by Wu et al. [2019]. By removing nonlinearities and col-
lapsing weight matrices between consecutive layers, SGC
reduces the complexity of GCN while maintaining high
accuracy in many applications.

Consider input data X = (n,Z, L,G), where the feature is
written as a matrix Z ∈ Rn×d. For any value of the hyper-
parameter β ∈ [0, 1], let W̃ = W + βI be the augmented
adjacency matrix, D̃ = D + βI be the corresponding de-
gree matrix, and S = D̃−1/2W̃ D̃−1/2 be the normalized
adjacency matrix. Let θ ∈ Rd be the learned parameter. The
SGC classifier of depth L is

Ŷ = softmax(SLZθ).

We focus on learning the algorithm hyperparameter β ∈
[0, 1] and define the SGC algorithm family as Fβ . We denote
the class of margin losses induced by Fβ as Hγ

β . To study the
generalization ability to tune β, we bound the Rademacher
complexity of Hγ

β . The proof is detailed in Appendix C.1.

Theorem 4.2. Assuming D,W, and Z are bounded (the
assumptions in Bartlett et al. [2017], Garg et al. [2020]),
i.e. di ∈ [Cdl, Cdh] ⊂ R+, wij ∈ [0, Cw], and ∥Z∥ ≤ Cz ,
we have that the Rademacher complexity of Hγ

β is bounded:

R̂m(Hγ
β) = O

√

dL log Cdh

Cdl
+ d log mCzCθ

γ√
m

 .

This theorem indicates that the number of problem instances
needed to learn a near-optimal hyperparameter only scale
polynomially with the input feature dimension d and the
number of layers L of the neural networks, and only scales
logarithmically with the norm bounds C’s and the margin γ.

4.2 GCAN INTERPOLATION AND RADEMACHER
COMPLEXITY BOUNDS

In practice, GCN and GAT outperform each other in differ-
ent problem instances [Dwivedi et al., 2023]. To effectively
choose the better algorithm, we introduce a family of al-
gorithms that interpolates GCN and GAT, parameterized
by η ∈ [0, 1]. This family includes both GCN and GAT,
so by choosing the best algorithm within this family, we
can automatically select the better algorithm of the two,
specifically for each input data. Moreover, GCAN could
potentially outperform both GAT and GCN by taking η as
values other than 0 and 1. We believe such an interpolation
technique could potentially be used to select between other
algorithms that share similar architecture.

Recall that in both GAT and GCN, the update equation has
the form of activation and a summation over the feature of
all neighboring vertices in the graph (a brief description
of GAT and GCN is given in Appendix B). Thus, we can
interpolate between the two update rules by introducing a
hyperparameter η ∈ [0, 1], where η = 0 corresponds to
GCN and η = 1 corresponds to GAT. Formally, given input
X = (n, {zi}ni=1, L,G), we initialize h0

i = zi and update
at a level ℓ by

hℓ
i = σ

∑
j∈Ni

(
η · eℓij + (1− η) · 1√

didj

)
U ℓhℓ

j

 ,

where

eℓij =
exp(êℓij)∑

j′∈Ni
exp(êℓij′)

, êℓij = σ(V ℓ[U ℓhℓ
i , U

ℓhℓ
j]).

Here eℓij is the attention score of node j for node i. V ℓ and
U ℓ are learnable parameters. σ(·) is a 1-Lipschitz activation
function (e.g. ReLU, sigmoid, etc.). [U ℓhℓ

i , U
ℓhℓ

j] is the
concatenation of U ℓhℓ

i and U ℓhℓ
j . We denote this algorithm

family by Fη and the induced margin loss class by Hγ
η .

While our primary focus is not the comparative performance
of GCAN against GAT or GCN, our curiosity led us to
conduct additional experiments, presented in Appendix D.
The results consistently show that GCAN matches or exceeds
the performance of both GAT and GCN.

Theorem 4.3. Assume the parameter U ℓ is shared over
all layers, i.e. U ℓ = U for all ℓ ∈ [L] (the assump-
tion used in Garg et al. [2020]), and the parameters
are bounded: ∥U∥F ≤ CU , ∥V ℓ∥2 ≤ CV , ∥zi∥ ≤ Cz ,
and di ∈ [Cdl, Cdh]. Denoting the branching factor by
r = maxi∈[n] |

∑
j∈[n] I[wij ̸= 0]|, we have that the

Rademacher complexity of Hγ
η is bounded:

R̂m(Hγ
η) = O

d
√

L log rCU

Cdl+CU
+ log mdCz

γ√
m

 .

The proof of Theorem 4.3 is similar to that of Theorem 4.2.
See Appendix C.2 for details.

Remark 2. The main difference between the Rademacher
Complexity of Simplified Graph Convolution Network (The-
orem 4.2) and GCAN (Theorem 4.3) is the dependency on
feature dimension d:

√
d for SGC and d for GCAN. This

difference arises from the dimensionality of the parameters.
The parameter θ in SGC has dimension d, but the parame-
ter U and V in GCAN have dimension d × d and 1 × 2d,
respectively. As GCAN is a richer model, it requires more
samples to learn, but this is not a drawback; its complexity
allows it to outperform SGC in many scenarios.

Remark 3. There are no direct dependencies on n in Theo-
rem 4.2 and Theorem 4.3, but the dependency is implicitly
captured by the more fine-grained value Cdl, Cdh, and CZ .
Here, Cdl and Cdh are the lower and upper bounds of the
degree (number of neighbors) of the nodes, which generally
increase with n. CZ is the Frobenius norm of the feature
matrix Z ∈ Rn×d. Since the size of Z scales with n, the
value of CZ is generally larger for larger n.

5 EXPERIMENTS

In this section, we empirically verify the effectiveness of our
hyperparameter selection method.

We focus on our GCAN architecture, aiming to demonstrate
our approach’s effectiveness for selecting algorithm hyper-
parameters in our setup. To illustrate this, we compare the
performance of GCAN with tuned hyperparameters against
GAT and GCN.

For each dataset, we sample 20 random sub-graphs of 100
nodes to learn the optimal hyperparameter η via backpropa-
gation. A large disconnected graph is formed by combining
these sub-graphs, allowing parameter values to vary across
graphs while sharing a unified learnable η. The optimized

hyperparameter is then tested on another 20 test sub-graphs
from the same dataset.

We also compare our backpropagation-based approach with
Bayesian Optimization (see e.g. Frazier [2018]). Using
the same 20 training sub-graphs, we perform Bayesian
Optimization to select the hyperparameter η, ensuring both
methods use an equal number of forward passes. The selected
η is then evaluated on a separate set of 20 test sub-graphs
from the same dataset.

The results on the test set are shown in Figure 2. Note that
GCN outperforms GAT on some datasets (e.g. CORA, CoAu-
thorCS) and GCN performs better on others (e.g. CIFAR10,
see also Dwivedi et al. [2023]). With GCAN, we can achieve
the best performance on most datasets. Indeed, as seen in
Figure 2, GCAN consistently achieves higher or comparable
accuracy compared to both GAT and GCN across all datasets.
Notably, GCAN demonstrates significant improvements in
CIFAR10 and CoAuthorCS, highlighting its effectiveness
in these scenarios. Also, comparing backpropagation with
Bayesian Optimization, backpropagation achieves better per-
formance on more datasets (e.g. CIFAR10, CoAuthorCS,
Actor), but Bayesian Optimization is more effective in certain
datasets (e.g. CORA, AmazonPhotos).

In Appendix D, we also conduct experiments to empirically
verify the results in Section 3. We show that by selecting
the number of problem instances m = O(log n/ϵ2), the
empirical generalization error is within O(ϵ), matching
our theoretical results. We also have further details on the
empirical setup and the variation of the accuracy of GCAN
with the hyperparameter η in the Appendix.

6 CONCLUSION

We study the problem of hyperparameter tuning in graph-
based semi-supervised learning for both classical label-
propagation based techniques as well as modern deep learn-
ing algorithms. For the former, we obtain tight learning
guarantees by bounding the pseudo-dimension of the rele-
vant loss function classes. For the latter, we study a novel
interpolation of convolutional and attention based graph
neural network architectures and provide data-dependent
bounds on the complexity of tuning the hyperparameter
the interpolates the two architectures. We obtain a sharper
generalization error bound for tuning the hyperparameter
in the simplified graph convolutional networks proposed in
prior work. Our experiments indicate that we can achieve
consistently good empirical performance across datasets by
tuning the interpolation parameter.

An interesting direction for further investigation involves im-
proving computational efficiency. Sharma and Jones [2023]
introduced techniques for approximating loss functions to
reduce the cost of tuning graph kernel hyperparameters. It
would be worthwhile to explore whether their methods can

Figure 2: Validation Accuracy (computed on the unlabeled nodes across 20 testing graphs) vs. iterations. GCAN competes
with the better accuracy between GAT and GCN across datasets.

be adapted to our setting to alleviate computational burdens.

Another natural extension is the tuning of multiple hyper-
parameters. Although this increases analytical complexity,
we anticipate that our techniques remain applicable. For
GNN-based algorithms, Rademacher Complexity may still
provide a suitable capacity measure. Our approach would
aim to bound the variation in predicted values as hyperpa-
rameters change and then apply a covering argument. For
label propagation methods, we would instead analyze how
the scoring matrix evolves with respect to hyperparameter
shifts. These directions offer a compelling foundation for
extending our techniques to more complex tuning scenarios.

References

Martin Anthony and Peter Bartlett. Neural Network Learning:
Theoretical Foundations. Cambridge University Press,
USA, 1st edition, 2009.

Konstantin Avrachenkov, Alexey Mishenin, Paulo Goncalves,
and Marina Sokol. Generalized optimization frame-
work for graph-based semi-supervised learning. Pro-
ceedings of the SIAM International Conference on Data
Mining (SDM), pages 966–974, 2012. doi: 10.1137/1.
9781611972825.83.

Maria-Florina Balcan. Data-Driven Algorithm Design (book
chapter). In Beyond Worst Case Analysis of Algorithms,
Tim Roughgarden (Ed). Cambridge University Press,
2020.

Maria-Florina Balcan and Avrim Blum. A discriminative
model for semi-supervised learning. Journal of the ACM
(JACM), 57:1 – 46, 2010.

Maria-Florina Balcan and Dravyansh Sharma. Data driven
semi-supervised learning. Advances in Neural Information
Processing Systems, 34, 2021.

Maria-Florina Balcan and Dravyansh Sharma. Learning
accurate and interpretable decision trees. Uncertainty in
Artificial Intelligence (UAI), 2024.

Maria-Florina Balcan, Avrim Blum, Patrick Pakyan Choi,
John D. Lafferty, Brian Pantano, Mugizi Robert Rweban-
gira, and Xiaojin Zhu. Person identification in webcam
images: An application of semi-supervised learning. 2005.

Maria-Florina Balcan, Travis Dick, and Colin White. Data-
driven clustering via parameterized Lloyd’s families. Neu-
ral Information Processing Systems (NeurIPS), 2018.

Maria-Florina Balcan, Travis Dick, and Dravyansh Sharma.
Learning piecewise lipschitz functions in changing en-
vironments. In International Conference on Artificial
Intelligence and Statistics, 2019.

Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma,
and Ameet Talwalkar. Provably tuning the ElasticNet
across instances. Neural Information Processing Systems
(NeurIPS), 2022.

Maria-Florina Balcan, Anh Nguyen, and Dravyansh Sharma.
New bounds for hyperparameter tuning of regression prob-

lems across instances. In Neural Information Processing
Systems, 2023.

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh
Sharma. Algorithm configuration for structured pfaffian
settings. Transactions of Machine Learning Research
(TMLR), 2024.

Maria-Florina Balcan, Anh Tuan Nguyen, and Dravyansh
Sharma. Sample complexity of data-driven tuning of
model hyperparameters in neural networks with structured
parameter-dependent dual function, 2025.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky.
Spectrally-normalized margin bounds for neural networks.
Advances in Neural Information Processing Systems, 30,
2017.

James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. Journal of Machine Learn-
ing Research, 13(10):281–305, 2012.

Avrim Blum and Shuchi Chawla. Learning from labeled
and unlabeled data using graph mincuts. In International
Conference on Machine Learning, 2001.

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien.
Semi-supervised learning. IEEE Transactions on Neural
Networks, 20(3):542–542, 2009.

Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux.
Efficient non-parametric function induction in semi-
supervised learning. In International Workshop on Arti-
ficial Intelligence and Statistics, pages 96–103. PMLR,
2005.

Claire Donnat and So Won Jeong. Studying the effect
of GNN spatial convolutions on the embedding space’s
geometry. In Robin J. Evans and Ilya Shpitser, editors,
Uncertainty in Artificial Intelligence (UAI), volume 216
of Proceedings of Machine Learning Research, pages
539–548. PMLR, 31 Jul–04 Aug 2023.

Vĳay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu,
Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. Journal of Machine
Learning Research, 24(43):1–48, 2023.

Pascal Mattia Esser, Leena Chennuru Vankadara, and De-
barghya Ghoshdastidar. Learning theory can (sometimes)
explain generalisation in graph neural networks, 2021.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi.
Slaps: Self-supervision improves structure learning for
graph neural networks. Advances in Neural Information
Processing Systems, 34:22667–22681, 2021.

Peter I. Frazier. A tutorial on Bayesian optimization, 2018.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Gen-
eralization and representational limits of graph neural
networks. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 3419–3430. PMLR, 13–18 Jul
2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and
Austin R. Benson. Combining label propagation and
simple models out-performs graph neural networks, 2020.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej
Chum. Label propagation for deep semi-supervised learn-
ing. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5070–
5079, 2019.

Donald R. Jones, Matthias Schonlau, and William J. Welch.
Efficient global optimization of expensive black-box func-
tions. Journal of Global Optimization, 13(4):455–492,
1998. doi: 10.1023/A:1008306431147.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. International
Conference on Learning Representations (ICLR), 2017.

J. Mockus, Vytautas Tiesis, and Antanas Zilinskas. The
application of Bayesian methods for seeking the extremum,
volume 2, pages 117–129. North Holand, 09 1978. ISBN
0-444-85171-2.

Jonas Mockus. On Bayesian methods for seeking the ex-
tremum. In Proceedings of the IFIP Technical Conference,
page 400–404, Berlin, Heidelberg, 1974. Springer-Verlag.
ISBN 3540071652.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar.
Foundations of Machine Learning. MIT Press, 2012.

Kenta Oono and Taĳi Suzuki. Optimization and generaliza-
tion analysis of transduction through gradient boosting
and application to multi-scale graph neural networks,
2021.

Dravyansh Sharma. No internal regret with non-convex loss
functions. In AAAI Conference on Artificial Intelligence,
2024a.

Dravyansh Sharma. Data-driven algorithm design and
principled hyperparameter tuning in machine learning.
PhD thesis, Carnegie Mellon University, 2024b.

Dravyansh Sharma and Maxwell Jones. Efficiently learning
the graph for semi-supervised learning. Uncertainty in
Artificial Intelligence (UAI), 2023.

Dravyansh Sharma and Arun Sai Suggala. Offline-to-online
hyperparameter transfer for stochastic bandits. AAAI
Conference on Artificial Intelligence, 2025.

Huayi Tang and Yong Liu. Towards understanding the
generalization of graph neural networks, 2023.

Veličković, Petar, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. International Conference on Learning
Representations (ICLR), 2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Weinberger. Simplifying graph con-
volutional networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
6861–6871. PMLR, 09–15 Jun 2019.

Tong Yu and Hong Zhu. Hyper-parameter optimization: A
review of algorithms and applications, 2020.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason We-
ston, and Bernhard Schölkopf. Learning with local and
global consistency. Advances in Neural Information Pro-
cessing Systems, 16, 2003.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty.
Semi-supervised learning using gaussian fields and har-
monic functions. In International conference on Machine
learning (ICML), pages 912–919, 2003.

Supplementary Material

Ally Yalei Du1 Eric Huang1 Dravyansh Sharma2

1Carnegie Mellon University
2Toyota Technological Institute at Chicago

A PROOFS IN SECTION 3

We provide additional proof details from Section 3 below.

A.1 PROOF OF LEMMA 3.4

Proof. Using the adjugate matrix, we have

C(x) =
1

det(A+ xB)
adj(A+ xB).

The determinant of A+ xB can be written as

det(A+ xB) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

[A+ xB]iσi

)
,

where Sn represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ. Thus det(A+ xB) is a
polynomial of x with a degree at most n. The adjugate of A+ xB is

adj(A+ xB) = C⊤,

where C is the cofactor matrix of A+xB. By definition, each entry of C is Cij = (−1)i+jkij where kij is the determinant of
the (n−1)× (n−1) matrix that results from deleting i-th row and j-th column of A+xB. This implies that each entry of C
(and thus adj(A+xB)) is a polynomial of degree at most n−1. Letting Q(x) = det(A+xB) and Pij(x) = [adj(A+xB)]ij
concludes our proof.

A.2 PROOF OF LEMMA 3.5

Proof. The ij-th element of I − c · S is

[I − c · S]ij =

{
−c · d−δ

i Wijd
δ−1
j = −(d−1

i dj)
δ(c ·Wijd

−1
j) , if i ̸= j

1 = (d−1
i di)

δ , otherwise.

Using adjugate matrix, we have

(I − c · S)−1 =
1

det(I − c · S)
adj(I − c · S).

Note that the determinant of any k × k matrix A can be written as

det(A) =
∑
σ∈Sk

(
sgn(σ)

k∏
i=1

[A]iσi

)
,

where Sk represents the symmetric group and sgn(σ) ∈ {±1} is the signature of permutation σ.

Now consider adj(I − c · S). Let Mij be the (n− 1)× (n− 1) matrix resulting from deleting i-th row and j-th column
from [I − c · S]. Then,

[adj(I − c · S)]ij = (−1)i+j det(Mji) =
∑

σ∈Sn−1

(
sgn(σ)

n−1∏
k=1

[Mji]kσk

)
=

∑
σ∈Sn−1

(aσ exp(δ ln bσ)) ,

for some constants aσ, bσ that satisfies

bσ = (
∏

k∈[n]\{j}

d−1
k)(

∏
k∈[n]\{i}

dk) = d−1
i dj .

We can then rewrite [adj(I − c · S)]ij as

[adj(I − c · S)]ij =
∑

σ∈Sn−1

(aσ exp(δ ln(d
−1
i dj))) = aij exp(δ ln(d

−1
i dj)),

where aij =
∑

σ∈Sn−1
aσ .

A.3 PROOF OF LEMMA 3.6

Proof. We prove by induction on n. If n = 1, then f(x) = aebx and a ̸= 0, so f(x) has 0 = n− 1 root. Now assume that
the statement holds for some n = m and consider when n = m+ 1. That is, we have

f(x) =

m+1∑
i=1

aie
bix.

Assume for the sake of contradiction that f has n = m+ 1 roots. Define

g(x) =
f(x)

ebm+1x
=

m∑
i=1

aie
(bi−bm+1)x + am+1,

then g also has m+ 1 roots. Since g is continuous,

g′(x) =
m∑
i=1

(bi − bm+1)aie
(bi−bm+1)x

must have m roots. However, using our induction hypothesis, it should have at most m− 1 roots. This means our assumption
is incorrect, i.e. f must have at most m = n− 1 roots.

We conclude that f must have at most n− 1 roots.

A.4 PROOF OF THEOREM 3.1

Upper Bound. Proof is given in Section 3.

Lower Bound. We first construct the small connected component of 4 nodes:

Lemma A.1. Given x ∈ [1/
√
2, 1), there exists a labeling instance (G,L) with 4 nodes, such that the predicted label of the

unlabeled points changes only at α = x as α varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point labeled b (namely b1)
connected with both a1 and a2 with edge weight 1. We also have an unlabeled point u connected to b1 with edge weight
x ≥ 0. That is, the affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (1− α)(I − αS)−1Y.

We now calculate:

D−1/2 =

(x+ 2)−1/2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 x−1/2

 ,

S = D−1/2WD−1/2 =

0 (x+ 2)−1/2 (x+ 2)−1/2 x1/2(x+ 2)−1/2

(x+ 2)−1/2 0 0 0
(x+ 2)−1/2 0 0 0

x1/2(x+ 2)−1/2 0 0 0

 ,

(I − αS)−1 =
1

det(I − αS)
adj(I − αS)

=
1

1− α2

1 α

(x+2)1/2
α

(x+2)1/2
αx1/2

(x+2)1/2

α
(x+2)1/2

1− α2(x+1)x
(x+2)

α2

x+2
α2x1/2

(x+2)

α
(x+2)1/2

α2

x+2 1− α2(x+1)x
(x+2)

α2x1/2

(x+2)

αx1/2

(x+2)1/2
α2x1/2

(x+2)
α2x1/2

(x+2) 1− 2α2

x+2

 .

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) =sign
(
αx1/2(2α− (x+ 2)1/2)

(1 + α)(x+ 2)

)
=sign

(
x1/2(2α− (x+ 2)1/2)

)
. (since α ∈ (0, 1) and x ≥ 0)

Solving the equation x1/2(2α− (x+ 2)1/2) = 0, we know that the prediction changes and only change when α = (x+2)1/2

2 .
Let x = 4x2 − 2 ≥ 0, then ŷ4 = 0 when α < x and ŷ4 = 1 when α ≥ x, which completes our proof.

Lemma A.2. Given integer n > 1 and a sequence of α’s such that 0 < α0 < 1/
√
2 ≤ α1 < α2 < ... < αn < 1, there

exists a real-valued witness w > 0 and a problem instance of partially labeled 4n points, such that for 0 ≤ i ≤ n/2− 1,
l < w for α ∈ (α2i, α2i+1), and l > w for α ∈ (α2i+1, α2i+2).

Proof. We create n connected components using the previous lemma, with xi = αi. Let the unlabeled point in the ith
component be ui, then as α increases from αi−1 to αi, the predicted label of ui changes from a to b. If the sequence ui is
alternately labeled with u1 labeled a, then the loss increases and decreases alternately as all the labels turn to b when α
increases to αn. Specifically, as α increases to α1, the point u1 has predicted label changes from a to b. Since its true label is
a and the predicted labels of other ui’s remain unchanged, our loss slightly increases to lmax. Then, as α increases to α2, the
point u2 gets correctly labeled as b and all other nodes unchanged, which slightly decreases our loss back to lmin. The loss
thus fluctuates between lmin and lmax. We therefore set the witness w as something in between.

w =
lmin + lmax

2
.

We now finish the lower bound proof for Theorem 3.1.

Proof. Arbitrarily choose n′ = n/4 (assumed to be a power of 2 for convenient representation) real numbers 1/
√
2 ≤

α[000..1] < α[000...10] < ... < α[111...11] < 1. The indices are increasing binary numbers of length m = log n′. We create m
labeling instances that can be shattered by these α values. For the i-th instance (X(i), Y (i)), we apply the previous lemma
with a subset of the αb sequence that corresponds to the i-th bit flip in b, where b ∈ {0, 1}m. For example, (X(1), Y (1)) is
constructed using r[100..0], and (X(2), Y (2)) is constructed using r[010..0], r[100.0] and r[110..0]. The lemma gives us both the
instances and the sequence of witnesses wi.

This construction ensures sign(lαb
− wi) = bi for all b ∈ {0, 1}m. Thus the pseudo-dimension is at least log n′ =

log n− log 4 = Ω(log n)

A.5 PROOF OF THEOREM 3.2

Upper Bound. The closed-form solution F ∗ is given by

F ∗ = (S + λIn∆i∈L)
−1λY.

By Lemma 3.4, each coefficient [F ∗]ij is a rational polynomial in λ of the form Pij(λ)/Q(λ) where Pij and Q are
polynomials of degree n and n respectively. Note that the prediction for each node i ∈ [n] is ŷi = argmaxj∈cfij and
thus the prediction on any node in the graph can only change when sign(fij − fik) changes for some j, k ∈ [c]. Note that
fij − fik is also a rational polynomial (Pij(λ)−Pik(λ))/Q(λ) where both the numerator and denominator are polynomials
in λ of degree n, meaning the sign can change at most O(n) times. As we vary λ, we have that the prediction on a single node
can change at most

(
c
2

)
O(n) ∈ O(nc2). Across the m problem instances and the n total nodes, we have at most O(n2c2m)

distinct values of our loss function. The pseudo-dimension m thus satisfies 2m ≤ O(n2c2m), or m = O(log n)

Lower Bound. We construct the small connected component of 4 nodes as follows:

Lemma A.3. Given λ′ ∈ (1,∞), there exists a labeling instance (X,Y) with 4 nodes, such that the predicted label of the
unlabeled points changes only at λ = λ′ as λ varies in (0,∞).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point labeled b (namely b1).
We also have an unlabeled point u connected to b1 with edge weight x ≥ 0 and connected with both a1 and a2 with edge
weight 1. That is, the weight matrix and initial labels are

W =

0 0 1 0
0 0 1 0
1 1 0 x
0 0 x 0

 , Y =

−1
−1
0
1

 .

The closed form solution is
F ∗ = (S + λIn∆i∈L)

−1λY

where S = diag(W 1⃗n)−W . We now calculate:

S =

1 0 −1 0
0 1 −1 0
−1 −1 x+ 2 −x
0 0 −x x

S + λIn∆i∈L =

1 + λ 0 −1 0
0 1 + λ −1 0
−1 −1 x+ 2 −x
0 0 −x x+ λ

Recall that the prediction on the unlabeled point is ŷ3 = sign([F∗]32 − [F ∗]31), so we calculate

ŷ3 = sign(F∗]32 − [F ∗]31) =sign
(
−2λ

(
λ+ x

λ2x+ 2λ2 + 3λx

)
+ λ

(
λx+ x

λ2x+ 2λ2 + 3λx

))
=sign (−2λ(λ+ x) + λ(λx+ x)) (since λ > 0 and x ≥ 0)
=sign (−2(λ+ x) + (λx+ x)) (since λ > 0)
=sign (−2λ− x+ λx)

Solving the equation −2λ − x + λx = 0, we know that the prediction changes and only change when λ = x
x−2 . Let

x = 2λ
λ−1 ≥ 0, then ŷ3 = −1 when λ < λ′ and ŷ3 = 1 when λ ≥ λ′, which completes our proof.

The remaining proof is exactly the same as Lemma A.2 and Theorem 3.1, by simply replacing notation α with λ.

A.6 PROOF OF THEOREM 3.3

Upper Bound. Using Lemma 3.5, we know that each entry of F ∗ is

F ∗
ij(δ) =

1

det(I − c · S)

n∑
k=1

[adj(I − c · S)]ikYkj =
1

det(I − c · S)

n∑
k=1

(aikYkj) exp(δ ln(d
−1
i dk)).

Recall that the prediction on a node is made by ŷi = argmax(F ∗
i), so the prediction changes only when

F ∗
ic1 − F ∗

ic2 =
1

det(I − c · S)

(
n∑

k=1

(aikYkc1) exp(δ ln(d
−1
i dk))−

n∑
k=1

(aikYkc2) exp(δ ln(d
−1
i dk))

)

=
1

det(I − c · S)

(
n∑

k=1

(aik(Ykc1 − Ykc2)) exp(δ ln(d
−1
i dk))

)
= 0.

By Lemma 3.6, F ∗
ic1

− F ∗
ic2

has at most n− 1 roots, so the prediction on node i can change at most n− 1 times. As δ vary,
the prediction can change at most

(
c
2

)
O(n) ∈ O(nc2) times. For n nodes and m problem instances, this implies that we have

at most O(mn2c2) distinct values of loss. The pseudo-dimension m then satisfies 2m ≤ O(mn2c2), or m = O(log nc).

Lower Bound We construct the small connected component as follows:

Lemma A.4. Consider when c ≥ 1/2. Given x ∈ [log(2c)/ log(2), 1), there exists a labeling instance (G,L) with 4 nodes,
such that the predicted label of the unlabeled points changes only at δ = x as δ varies in (0, 1).

Proof. We use binary labeling a and b. We have two points labeled a (namely a1, a2), and one point labeled b (namely b1)
connected with both a1 and a2 with edge weight 1. We also have an unlabeled point u connected to b1 with edge weight
x ≥ 0. That is, the affinity matrix and initial labels are

W =

0 1 1 x
1 0 0 0
1 0 0 0
x 0 0 0

 , Y =

1 0
0 1
0 1
0 0

 .

Recall that the score matrix is
F ∗ = (I − c · S)−1Y,

where S = D−δWDδ−1 and D is diagonal with Dii =
∑

i Wij . We now calculate:

S = D−δWDδ−1 =

0 (x+ 2)−δ (x+ 2)−δ xδ(x+ 2)−δ

(x+ 2)−δ 0 0 0
(x+ 2)−δ 0 0 0

xδ(x+ 2)−δ 0 0 0

 ,

det(I − c · S) = det

1 −c(x+ 2)−δ −c(x+ 2)−δ −cxδ(x+ 2)−δ

−c(x+ 2)−δ 1 0 0
−c(x+ 2)−δ 0 1 0

−cxδ(x+ 2)−δ 0 0 1

= 1− c2 ̸= 0,

so (I − c · S) is invertible on our instance.

Recall that the prediction on the unlabeled point is ŷ4 = argmaxF ∗
4 , so we calculate

ŷ4 = sign(F ∗
4,2 − F ∗

4,1) = sign
(
c · x1−δ(2c− (x+ 2)δ)

(1− c2)(x+ 2)

)
= sign

(
2c− (x+ 2)δ

)
. (since c ∈ (0, 1), and x ≥ 0)

Solving the equation 2c− (x+ 2)δ = 0, we know that the prediction changes and only change when δ = ln(2c)
ln(x+2) . Since

x ≤ ln(2c)/ ln(2) ≤ 1, we can let x = (2c)
1/x − 2 ≥ 0, then ŷ4 = 0 when α < x and ŷ4 = 1 when α ≥ x, which

completes our proof.

B INTRODUCTION TO GAT AND GCN

Here, we provide a brief introduction to GAT and GCN.

Graph Convolutional Neural Networks (GCNs) The fundamental idea behind GCNs is to repeatedly apply the convolution
operator on graphs [Kipf and Welling, 2017]. Define h0

i = zi as the input feature of the i-th node and let hℓ
i be the feature of

the ℓ-th layer of the i-th node. We have the following update rule for the features of hℓ
i

hℓ
i = σ

∑
j∈Ni

1√
didj

U ℓ−1hℓ−1
j

where di represents the degree of vertex i, U ℓ represents the learnable weights in our model, Ni represents the neighbors of
vertex i, and σ(·) is the activation function.

Graph Attention Neural Networks (GATs) GAT is a more recent architecture that leverages the self-attention mechanisms
to capture the importance of neighboring nodes to generate the features of the next layer [Veličković, Petar et al., 2018]. One
of the advantages of GAT is its ability to capture long-range dependencies within the graph while giving more weight to
influential nodes. This makes GAT particularly effective for tasks involving irregular graph structures and tasks where global
context is essential.

Different from GCN, GAT uses the update rule for each layer

hℓ
i = σ

∑
j∈Ni

eℓ−1
ij U ℓ−1hℓ−1

j

 ,

where

eℓij =
exp(êℓij)∑

j′∈Ni
exp(êℓij′)

, êℓij = σ
(
V ℓ[U ℓhℓ

i , U
ℓhℓ

j]
)
. (1)

Here eℓij is the attention score of node j for node i and V ℓ and U ℓ are learnable parameters.

C PROOFS IN SECTION 4

We provide additional proof details from Section 4 below.

C.1 PROOF OF THEOREM 4.2

Lemma C.1. The l2 norm of different embedding vectors produced by (β, θ), (β′, θ′) after they process the tree all the way
from the leaf level to the root can be bounded as

∆L,i ≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1

Cdl + 1
+

Cdh

Cdl

)
∆L−1,i

Proof.

∆L,i = ∥TL,i(β, θ)− TL(β
′, θ′)∥

=

∥∥∥∥∥
 β

di + β
TL−1,i(β, θ) +

n∑
j=1

wijTL−1,j(β, θ)√
(di + β)(dj + β)

−

 β′

di + β′TL−1,i(β
′, θ′) +

n∑
j=1

wijTL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

∥∥∥∥∥
≤
∥∥∥∥(β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β
′, θ′)

)∥∥∥∥
+

n∑
j=1

(
∥wij∥

∥∥∥∥∥
(

TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

)∥∥∥∥∥
)

(by triangle inequality)

The first part can be bounded as

∥∥∥∥ β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β
′, θ′)

∥∥∥∥
≤
∥∥∥∥ β

di + β
TL−1,i(β, θ)−

β′

di + β′TL−1,i(β, θ)

∥∥∥∥
+

∥∥∥∥ β′

di + β′TL−1,i(β, θ)−
β′

di + β′TL−1,i(β
′, θ′)

∥∥∥∥ (by triangle inequality)

≤
∥∥∥∥ β

di + β
− β′

di + β′

∥∥∥∥ ∥TL−1,i(β, θ)∥+
∥∥∥∥ β′

di + β′

∥∥∥∥∆L−1,i (by Cauchy-Schwarz inequality)

Since β ∈ [0, 1] and di ∈ [Cdl, Cdh], we have

∥∥∥∥ β′

di + β′

∥∥∥∥ =
β′

di + β′ ≤
1

Cdl + 1
,

and

∥∥∥∥ β

di + β
− β′

di + β′

∥∥∥∥ =

∥∥∥∥ di(β − β′)

(di + β)(di + β′)

∥∥∥∥ ≤ ∥β − β′∥ 1

Cdl
.

For the second term, let’s consider each element in the summation. Using a similar method as above, we get∥∥∥∥∥ TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

∥∥∥∥∥
≤

∥∥∥∥∥ TL−1,j(β, θ)√
(di + β)(dj + β)

− TL−1,j(β, θ)√
(di + β′)(dj + β′)

∥∥∥∥∥
+

∥∥∥∥∥ TL−1,j(β, θ)√
(di + β′)(dj + β′)

− TL−1,j(β
′, θ′)√

(di + β′)(dj + β′)

∥∥∥∥∥ (by triangle inequality)

≤

∥∥∥∥∥ 1√
(di + β)(dj + β)

− 1√
(di + β′)(dj + β′)

∥∥∥∥∥ ∥TL−1,j(β, θ)∥

+

∥∥∥∥∥ 1√
(di + β′)(dj + β′)

∥∥∥∥∥∆L−1,i (Cauchy-Schwarz inequality)

Using the bounds on β and di, we have ∥∥∥∥∥ 1√
(di + β′)(dj + β′)

∥∥∥∥∥ ≤ 1

Cdl
,

and ∥∥∥∥∥ 1√
(di + β)(dj + β)

− 1√
(di + β′)(dj + β′)

∥∥∥∥∥
=

∥∥∥∥∥ (di + β)(dj + β)− (di + β′)(dj + β′)√
(di + β)(dj + β)(di + β′)(dj + β′)[

√
(di + β)(dj + β) +

√
(di + β′)(dj + β′)]

∥∥∥∥∥
≤
∥∥∥∥ (di + dj + β + β′)(β − β′)

Cdl + β)(Cdl + β′)[(Cdl + β) + (Cdl + β′)]

∥∥∥∥
≤ Cdh + 1

C3
dl

∥β − β′∥

Combining these results together, we get

∆L,i ≤
1

Cdl
∥β − β′∥∥TL−1,i(β, θ)∥+

1

Cdl + 1
∆L−1,i

+

n∑
i=1

(
∥wij∥

(
(Cdh + 1)∥TL−1,i(β, θ)∥

C3
dl

∥β − β′∥+ 1

Cdl
∆L−1,i

))
=

1

Cdl
∥β − β′∥∥TL−1,i(β, θ)∥+

1

Cdl + 1
∆L−1,i

+ di

(
(Cdh + 1)∥TL−1,i(β, θ)∥

C3
dl

∥β − β′∥+ 1

Cdl
∆L−1,i

)
≤
(

1

Cdl
+

(Cdh + 1)Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1

Cdl + 1
+

Cdh

Cdl

)
∆L−1,i

≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

Lemma C.2. The term ∥TL−1,i(β, θ)∥ satisfies

∥TL−1,i(β, θ)∥ ≤
(
β + CdhCz

Cdl + β

)L

BxBθ

Proof.

∥TL−1,i(β, θ)∥ =

∥∥∥∥∥∥ β

di + β
TL−2,i(β, θ) +

n∑
j=1

wijTL−2,j(β, θ)√
(di + β)(dj + β)

∥∥∥∥∥∥
≤
∥∥∥∥ β

di + β
TL−2,i(β, θ)

∥∥∥∥+ n∑
j=1

∥∥∥∥∥ wijTL−2,j(β, θ)√
(di + β)(dj + β)

∥∥∥∥∥ (by triangle inequality)

≤ β

di + β
∥TL−2,i(β, θ)∥+

n∑
j=1

∥wij∥

∥∥∥∥∥ TL−2,j(β, θ)√
(di + β)(dj + β)

∥∥∥∥∥ (by Cauchy-Schwarz)

≤ β

di + β
∥TL−2,i(β, θ)∥+ Cdh max

j

∥∥∥∥∥ TL−2,j(β, θ)√
(di + β)(dj + β)

∥∥∥∥∥
≤ β

Cdl + β
∥TL−2,i(β, θ)∥+

Cdh

Cdl + β
max

j
∥TL−2,j(β, θ)∥

≤
(
Cdh + β

Cdl + β

)L−1

∥ziθi∥ (by recursively bounding ∥Tl,i(β, θ)∥)

≤
(
Cdh

Cdl

)L−1

CzCθ

Lemma C.3. The change in margin loss for each node, due to change in parameters, after L layers is

Λi ≤
2

γ

((
C2

dl + C2
dh + Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ∥β − β′∥ · k1 − kL1
1− k1

+ kL1 Cz∥θi − θ′i∥

)
,

where k1 = (1 + Cdh/Cdl).

Proof. From previous lemmas, we know how to recursively bound ∆L,i using ∆L−1,i, but it remains for us to bound the
base case ∆0,i. We have

∆0,i = ∥T0,i(β, θ)− T0,i(β, θ)∥ = ∥ziθi − ziθ
′
i∥ ≤ ∥zi∥∥Θi − θ′i∥ ≤ Cz∥θi − θ′i∥,

where the inequality is by Cauchy-Schwarz. For the simplicity of notation, let T̄L be the bound we derived for ∥TL−1,i(β, θ)∥
from the previous lemma. We have

∆L,i ≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
∥TL−1,i(β, θ)∥∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

≤
(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥+

(
1 + Cdh

Cdl

)
∆L−1,i

=

(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥ ·

L−1∑
l=0

(
1 + Cdh

Cdl

)l

+

(
1 + Cdh

Cdl

)L

·∆0,i

(by recursively bounding the terms)

=

(
C2

dl + C2
dh + Cdh

C3
dl

)
T̄L∥β − β′∥ · k1 − kL1

1− k1
+ kL1 Cz∥θi − θ′i∥

where

k1 =
1 + Cdh

Cdl
.

The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fβ,θ(xi), yi))− gγ(−τ(fβ′,θ′(xi), yi))|

≤ 1

γ
|τ(fβ,θ(xi), yi))− τ(fβ′,θ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fβ,θ(xi)− fβ′,θ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ
|σ(TL,i(β, θ))− σ(TL,i(β

′, θ′))| (since yi ∈ {−1, 1})

≤ 2

γ
|TL,i(β, θ)− TL,i(β

′, θ′)| (since sigmoid is 1-Lipschitz)

=
2

γ
∆L,i

≤ 2

γ

((
C2

dl + C2
dh + Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ

(
k1 − kL1
1− k1

)
∥β − β′∥+ kL1 Cz∥θi − θ′i∥

)

Lemma C.4. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of size P, where P depends
on ϵ.

Proof. Let k2 = 2
γ

(
C2

dl+C2
dh+Cdh

C3
dl

)(
Cdh

Cdl

)L−1

CzCθ

(
k1−kL

1

1−k1

)
and k3 = 2

γ k
L
1 Cz for simplicity of notation.

We begin by noting that we can find a covering C
(
β, ϵ

4k2
, | · |

)
of size

N
(
β,

ϵ

4k2
, | · |

)
≤ 8k2

ϵ
+ 1.

Also, we can find a covering C
(
θ, ϵ

4k3
, ∥ · ∥

)
of size

N
(
θ,

ϵ

4k3
, ∥ · ∥

)
≤
(
8k3
ϵ

+ 1

)d

.

Thus, for any specified ϵ, we can ensure that Λi is at most ϵ with a covering number

P ≤ N
(
β,

ϵ

4k2
, | · |

)
N
(
Θ,

ϵ

4k3
, ∥ · ∥

)
≤
(
8max{k2, k3}

ϵ
+ 1

)d+1

.

When ϵ < 8max{k2, k3}, we have

logP ≤ (d+ 1) log

(
16max{k2, k3}

ϵ

)
.

We can now finish our proof for Lemma 4.2.

Proof. Using Lemma A.5 from Bartlett et al. [2017], we obtain that

R̂T (Hγ
(β,θ)) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(β,θ), ϵ, ∥ · ∥)dϵ

)
.

Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(β,θ), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√
(d+ 1) log

(
16max{k2, k3}

ϵ

)
dϵ

≤
√
m

√
(d+ 1) log

(
16max{k2, k3}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(β,θ)) ≤

4

m
+

12
√
(d+ 1) log(16

√
mmax{k2, k3})√

m
.

C.2 PROOF OF THEOREM 4.3

Lemma C.5. For any z, z′,∈ Rd×r and b, b′ ∈ Rr×t such that ∥z∥F ≤ Cz, ∥z′∥F ≤ Cz, ∥b∥F ≤ Cb, ∥b′∥F ≤ Cb, we have

∥zb− z′b′∥F ≤ Cz∥b− b′∥F + Cb∥z − z′∥F .

The result also holds when z, b, z′, b′ are vectors or real numbers. The corresponding norms are ∥ · ∥ and | · |.

Also, by recursively using the inequality above, we may have that for any z1, . . . , zn and z′1, . . . , z
′
n such that ∥zi∥ ≤

Ci, ∥z′i∥ ≤ Ci,

∥z1z2 . . . zn − z′1z
′
2 . . . z

′
n∥ ≤

n∑
i=1

∥zi − z′i∥
∏

j∈[n],j ̸=i

Cj

 .

Here, for simplicity of notation, we used ∥ · ∥ to denote the type of norm that corresponds to the dimension of the zi’s.

Proof.

∥ab− a′b′∥F = ∥ab− a′b′ + ab′ − ab′∥F
≤ ∥ab− ab′∥F + ∥ab′ − a′b′∥F (by triangle inequality)
≤ ∥a∥F ∥b− b′∥F + ∥b′∥F ∥a− a′∥F (by Cauchy-Schwarz inequality)
≤ Cz∥b− b′∥F + Cb∥a− a′∥F

Lemma C.6. The l2 norm of different embedding vectors at level L, hL
i , produced by (α,U, V), (α′, U ′, V ′) after they

process the tree all the way from the leaf level to the root can be bounded as

∆i,L ≤CU

(
max
j∈Ni

∥∥hL−1
j

∥∥) |η − η′|+ rCU

(
max
j∈Ni

∥∥hL−1
j

∥∥)+

(
max
j∈Ni

∥hL−1
j ∥

)
∥U − U ′∥

+ CU

(
max
j∈Ni

∥∥∥hL−1
j − h

′(L−1)
j

∥∥∥)+
2rCU

Cdl

∥∥∥hL−1
i − h

′(L−1)
i

∥∥∥
+

2r

Cdl

∥∥hL−1
i

∥∥ ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

Proof.

∆i,L =
∥∥hL

i (η, U, V)− hL
i (η

′, U ′, V ′)
∥∥

=
∥∥∥σ
∑

j∈Ni

(
η · eL−1

ij + (1− η) · 1√
didj

)
UhL−1

j

− σ

∑
j∈Ni

(
η′ · e′(L−1)

ij + (1− η′) · 1√
didj

)
U ′h

′(L−1)
j

∥∥∥
≤
∥∥∥ ∑

j∈Ni

(
(η · eL−1

ij UhL−1
j)− (η′ · e′(L−1)

ij U ′h
′(L−1)
j)

)

+
∑
j∈Ni

(
(1− η) · 1√

didj
UhL−1

j − (1− η′) · 1√
didj

U ′h
′(L−1)
j

)∥∥∥ (since σ is 1-Lipschitz)

≤
∑
j∈Ni

∥∥∥(η · eL−1
ij UhL−1

j)− (η′ · e′(L−1)
ij U ′h

′(L−1)
j)

∥∥∥
+
∑
j∈Ni

∥∥∥∥∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i

∥∥∥∥∥ (by triangle inequality)

Using Lemma C.5, we can bound each term in the first summation as

∥∥∥(η · eL−1
ij UhL−1

j)− (η′ · e′(L−1)
ij U ′h

′(L−1)
j)

∥∥∥
≤ CU ē

L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j ·

∣∣∣eL−1
ij − e

′(L−1)
ij

∣∣∣
+ ēL−1

ij h̄L−1
j ∥U − U ′∥+ CU ē

L−1
ij

∥∥∥hL−1
j − h

′(L−1)
j

∥∥∥

Here, h̄L−1
j is an upper bound on ∥hL−1

j ∥ and ∥h′(L−1)
j ∥, and ēL−1

ij is an upper bound on |eL−1
ij | and |e′(L−1)

ij |.

Bounding each term in the second summation, we have

∥∥∥∥∥(1− η) · 1√
didj

UhL−1
i − (1− η′) · 1√

didj
U ′h

′(L−1)
i

∥∥∥∥∥
≤

∥∥∥∥∥ 1√
didj

UhL−1
i − 1√

didj
U ′h

′(L−1)
i

∥∥∥∥∥+
∥∥∥∥∥η · 1√

didj
UhL−1

i − η′ · 1√
didj

U ′h
′(L−1)
i

∥∥∥∥∥ (by triangle inequality)

≤ 1

Cdl
∥UhL−1

i − U ′h
′(L−1)
i ∥+ 1

Cdl
∥η · UhL−1

i − η′ · U ′h
′(L−1)
i ∥

≤ 1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥
)

+
1

Cdl

(
CU∥hL−1

i − h
′(L−1)
i ∥+ h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
(using Lemma C.5)

=
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

)
.

Combining the above results, we have

∆L
i ≤

∑
j∈Ni

(
CU ē

L−1
ij h̄L−1

j · |η − η′|+ CU h̄
L−1
j · |eL−1

ij − e
′(L−1)
ij |

+ ēL−1
ij h̄L−1

j ∥U − U ′∥+ CU ē
L−1
ij ∥hL−1

j − h
′(L−1)
j ∥

+
1

Cdl

(
2CU∥hL−1

i − h
′(L−1)
i ∥+ 2h̄L−1

i ∥U − U ′∥+ CU h̄
L−1
i |η − η′|

))
≤CU (max

j∈Ni

h̄L−1
j)|η − η′|+ rCU (max

j∈Ni

h̄L−1
j) + (max

j∈Ni

h̄L−1
j)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥

+
2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′| (since eℓij ≤ 1,

∑
j∈Ni

eℓij = 1, and the branching factor is r)

It remains for us to derive h̄L−1
j for all j.

Lemma C.7. We can upper bound the norm of node feature embedding at level ℓ+ 1 by

∥hℓ
i∥ ≤ rℓCℓ+1

U Cz max

(
1,

1

Cdl

)ℓ

.

Proof.

∥hℓ+1
i ∥ =

∥∥∥∥∥∥σ
∑

j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
j∈Ni

(η · eℓij + (1− η) · 1√
didj

)Uhℓ
j

∥∥∥∥∥∥ (since ∥σ(x)∥ ≤ ∥x∥)

≤
∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥U∥∥hℓ
j∥ (by triangle inequality and Cauchy-Schwarz inequality)

≤ CU

∑
j∈Ni

∣∣∣∣∣η · eℓij + (1− η) · 1√
didj

∣∣∣∣∣ ∥hℓ
j∥

≤ rCU max

(
1,

1

Cdl

)(
max
j∈Ni

∥hℓ−1
j ∥

)
Recursively bounding the terms, we have

∥hℓ
i∥ ≤ rℓCℓ

U max

(
1,

1

Cdl

)ℓ

max
j∈[n]

∥h0
j∥ ≤ rℓCℓ+1

U Cz max

(
1,

1

Cdl

)ℓ

.

Lemma C.8. The change in margin loss due to the change in parameter values after L layers satisfies

Λi ≤
2

k
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥,

where

k1 = rLCL+1
U Cz max

(
1,

1

Cdl

)L−1

k2 = rL−1CL+1
U Cz max

(
1,

1

Cdl

)L−1

+
2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

Proof. Using the previous two lemmas, we know

∥hL
i (η, U, V)− hL

i (η
′, U ′, V ′)∥

≤ CU (max
j∈Ni

h̄L−1
j)|η − η′|+ rCU (max

j∈Ni

h̄L−1
j) + (max

j∈Ni

h̄L−1
j)∥U − U ′∥

+ CU (max
j∈Ni

∥hL−1
j − h

′(L−1)
j ∥) + 2rCU

Cdl
∥hL−1

i − h
′(L−1)
i ∥+ 2r

Cdl
h̄L−1
i ∥U − U ′∥+ 2rCU

Cdl
|η − η′|

≤ k1 + k2|η − η′|+ k3∥U − U ′∥+ k4(max
j∈[n]

∥hL−1
j − h

′(L−1)
j ∥)

= (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4(max
j∈[n]

∥h0
j − h′0

j ∥)

≤ (k1 + k2|η − η′|+ k3∥U − U ′∥) k
L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥

where

k1 = rLCL+1
U Cz max(1,

1

Cdl
)L−1

k2 = rL−1CL+1
U Cz max(1,

1

Cdl
)L−1 +

2rCU

Cdl

k3 =

(
1 +

2r

Cdl

)
rL−1CL

UCz max(1,
1

Cdl
)L−1

k4 = CU +
2rCU

Cdl
.

The change in margin loss for each node after L layers is then

Λi = |gγ(−τ(fη,U,V (xi), yi))− gγ(−τ(fη′,U ′,V ′(xi), yi))|

≤ 1

γ
|τ(fη,U,V (xi), yi))− τ(fη′,U ′,V ′(xi), yi))| (since gγ is 1/γ-Lipschitz)

=
1

γ
|(2fβ,θ(xi)− 1)yi − (2fβ′,θ′(xi)− 1)yi)|

≤ 2

γ
|yi| |fη,U,V (xi)− fη′,U ′,V ′(xi)| (by Cauchy-Schwarz inequality)

≤ 2

γ

∣∣σ(hL
i (η, U, V)[0])− σ(hL

i (η
′, U ′, V ′)[0])

∣∣ (since yi ∈ {−1, 1})

≤ 2

γ

∣∣hL
i (η, U, V)[0]− hL

i (η
′, U ′, V ′)[0]

∣∣ (since σis 1-Lipschitz)

≤ 2

γ
(k1 + k2|η − η′|+ k3∥U − U ′∥) k

L
4 − k4
k4 − 1

+ k4Cz∥U − U ′∥.

Lemma C.9. The change in margin loss Λi for each node can be bounded by ϵ, using a covering of size P , where P depends
on ϵ, with

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Proof. We let A =
2k2(k

L
4 −k4)

k(k4−1) and B =
2k3(k

L
4 −k4)+γ(k2

4−k4)Cz

γ(k4−1) for simplicity of notation. Note that we have Λi ≤
A|η − η′|+B∥U − U ′∥.

We begin by noting that we can find a covering C(η, ϵ
2A , | · |) of size

N (η,
ϵ

2A
, | · |) ≤ 1 +

4A

ϵ
.

We can also find a covering C(U, ϵ
2B , ∥ · ∥F) with size

N (U,
ϵ

2B
, ∥ · ∥F) ≤

(
1 +

4BCU

√
d

ϵ

)d2

.

For any specified ϵ, we can ensure that Λi is at most ϵ with a covering number of

P ≤N (η,
ϵ

2A
, | · |) · N (U,

ϵ

2B
, ∥ · ∥F)

≤
(
1 +

4A

ϵ

)(
1 +

4BCU

√
d

ϵ

)d2

≤ (1 +
4max{A,BCU

√
d}

ϵ
)d

2+1

Moreover, when ϵ ≤ 4max{A,BCU

√
d}, we have

logP ≤ (d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
.

Now we can finish our proof for Theorem 4.3.

Proof. Using Lemma A.5 from Bartlett et al. [2017], we obtain that

R̂T (Hγ
(η,U,V))) ≤ inf

α>0

(
4α√
m

+
12

m

∫ √
m

α

√
logN (Hγ

(η,U,V)), ϵ, ∥ · ∥)dϵ

)
.

Using the previous lemmas, we have∫ √
m

α

√
logN (Hγ

(η,U,V)), ϵ, ∥ · ∥)dϵ =
∫ √

m

α

√
logPdϵ

≤
∫ √

m

α

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

ϵ

)
dϵ

≤
√
m

√√√√(d2 + 1) log

(
8max{A,BCU

√
d}

α

)

Plugging in α =
√

1
m , we have

R̂T (Hγ
(η,U,V))) ≤

4

m
+

12

√
(d2 + 1) log

(
8
√
mmax{A,BCU

√
d}
)

√
m

.

D EXPERIMENTS

D.1 LABEL PROPAGATION-BASED METHOD: NORMALIZED ADJACENCY MATRIX-BASED
ALGORITHMIC FAMILY

We empirically validate our findings in Section 3. For each of the eight datasets, the number of nodes per problem instance,
n, is fixed at 30. We set the target generalization error to ϵ = 0.1, and calculate the required number of problem instances
as m = O(log n/ϵ2) ≈ 300. To evaluate performance, we randomly sample 300 graphs with 30 nodes each, tune the
hyperparameter values to maximize accuracy on these graphs, and then test the selected hyperparameter on a separate set of
300 randomly sampled graphs. The results of evaluating the Normalized Adjacency Matrix-Based Algorithmic Family is
presented in Table 1, confirming that the observed generalization error is well within the scale of the target value 0.1 (our
bounds are somewhat conservative).

CIFAR10 WikiCS CORA Citeseer PubMed AmazonPhotos Actor
Train Acc. 0.9445 0.7522 0.7927 0.7845 0.9993 0.9983 0.9185
Test Acc. 0.9397 0.7485 0.8010 0.7714 0.9993 0.9989 0.9239
Abs. Diff. 0.0048 0.0037 0.0083 0.0131 0. 0.0006 0.0054

Table 1: The Training Accuracy and Testing Accuracy of learning the hyperparameter δ in Normalized Adjacency Matrix
Based Family (Fδ). The absolute difference between the accuracies (i.e. generalization error) is well within the scale of our
target value 0.1.

D.2 GCAN EXPERIMENTS

In this section, we empirically evaluate our proposed GCAN interpolation methods on nine standard benchmark datasets.
Our goal is to see whether tuning η gives better results than both GCN and GAT. The setup details of our experiment are
described in Appendix D.3.

Dataset 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Rel. GCN Rel. GAT
CIFAR10 0.7888±

0.0010
0.7908±
0.0008

0.7908±
0.0015

0.7907±
0.0012

0.7943±
0.0022

0.7918±
0.0018

0.7975±
0.0017

0.7971±
0.0023

0.7921±
0.0023

0.7986±
0.0028

0.7984 ±
0.0023

4.54% 0%

WikiCS 0.9525±
0.0007

0.9516±
0.0006

0.9532±
0.0011

0.9545±
0.0008

0.9551±
0.0015

0.9545±
0.0012

0.9539±
0.0012

0.9553 ±
0.0012

0.9530±
0.0007

0.9536±
0.0009

0.9539±
0.0009

5.89% 3.04%

Cora 0.6132±
0.0218

0.8703±
0.0251

0.8879±
0.0206

0.8396±
0.0307

0.8022±
0.0385

0.8615±
0.0402

0.9011 ±
0.0421

0.8088±
0.0362

0.8505±
0.0240

0.8549±
0.0389

0.8725±
0.0334

74.43% 22.43%

Citeseer 0.7632 ±
0.0052

0.6944±
0.0454

0.7602±
0.0566

0.7500±
0.0461

0.7339±
0.0520

0.7427±
0.0462

0.7588±
0.0504

0.7193±
0.0567

0.7661±
0.0482

0.7266±
0.0412

0.7471±
0.0444

0% 6.37%

PubMed 0.9350±
0.0009

0.9306±
0.0006

0.9356±
0.0009

0.9281±
0.0007

0.9356 ±
0.0007

0.9319±
0.0009

0.9313±
0.0007

0.9288±
0.0009

0.9313±
0.0006

0.9338±
0.0010

0.9356±
0.0009

0.92% 0%

CoauthorCS 0.9733±
0.0007

0.9733±
0.0008

0.9765 ±
0.0005

0.9744±
0.0005

0.9733±
0.0009

0.9690±
0.0007

0.9712±
0.0009

0.9722±
0.0005

0.9722±
0.0011

0.9722±
0.0007

0.9744±
0.0007

11.99% 08.20%

AmazonPhotos 0.9605±
0.0022

0.9617±
0.0007

0.9629±
0.0015

0.9599±
0.0013

0.9641±
0.0017

0.9574±
0.0018

0.9641±
0.0019

0.9592±
0.0133

0.9653 ±
0.0027

0.9635±
0.0031

0.9562±
0.0019

12.15% 20.77%

Actor 0.5982±
0.0016

0.5919±
0.0022

0.6005 ±
0.0039

0.5959±
0.0039

0.5965±
0.0038

0.5970±
0.0027

0.5976±
0.0037

0.5993±
0.0043

0.5930±
0.0041

0.5970±
0.0037

0.5953±
0.0031

0.57% 1.28%

Cornell 0.7341±
0.0097

0.7364±
0.0165

0.7364±
0.0073

0.7205±
0.0154

0.7523±
0.0109

0.7795±
0.0120

0.7568±
0.0188

0.7500±
0.0140

0.7477±
0.0138

0.7909±
0.0136

0.8000 ±
0.0423

24.78% 0%

Wisconsin 0.8688±
0.0077

0.8922 ±
0.0035

0.8688±
0.0080

0.8906±
0.0049

0.8797±
0.0044

0.8578±
0.0120

0.8875±
0.0037

0.8781±
0.0082

0.8563±
0.0128

0.8750±
0.0121

0.8719±
0.0076

17.84% 15.84%

Table 2: Results on the proposed GCAN interpolation. Each column corresponds to one η value. Each row corresponds to
one dataset. Each entry shows the accuracy and the interval. The accuracy with optimal η value outperforms both pure GCN
and pure GAT. The right two columns show the percentage of prediction error reduction relative to GCN and GAT.

In Table 2, we show the mean accuracy across 30 runs of each η value and the 90% confidence interval associated with each
experiment. It is interesting to note that for various datasets we see varying optimal η values for best performance. More
often than not, the best model is interpolated between GCN and GAT, showing that we can achieve an improvement on both
baselines simply by interpolating between the two. For example, GCN achieves the best accuracy among all interpolations in
Citeseer, but in other datasets such as CIFAR 10 or Wisconsin, we see higher final accuracies when the η parameter is closer
to 1.0 (more like GAT). The interpolation between the two points also does not increase or decrease monotonically for many
of the datasets. The optimal η value for each dataset can be any value between 0.0 and 1.0. This suggests that one should be
able to learn the best η parameter for each specific dataset. By learning the optimal η value, we can outperform both GAT
and GCN.

D.3 EXPERIMENT SETUP FOR GCAN

We apply dropout with a probability of 0.4 for all learnable parameters, apply 1 head of the specialized attention layer
(with new update rule), and then an out attention layer. The activation we choose is eLU activation (following prior work
[Veličković, Petar et al., 2018]), with 8 hidden units, and 3 attention heads.

These GCAN interpolation experiments are all run with only 20% of the dataset being labeled datapoints, and the remaining
80% representing the unlabeled datapoints that we test our classification accuracy on. Table 3 notes the exact setup of each
dataset, and the overall training time of each experiment. We would like to examine our theory with the simplest network
that is still non-linear, so we selected a hidden dimension being 1. Note that our theory on sample complexity bounds still
applies to larger networks, but implementing our techniques on larger networks and larger graphs might require additional
computational improvements.

Dataset Num of train nodes learn rate Epoch Num of exp Train time(sec) Dim of hid. layers Num of Attention Heads

CiFAR10 400 7e-3 1000 30 13.5354 1 3
WikiCS 192 7e-3 1000 30 6.4742 1 3
Cora 170 7e-3 1000 30 7.4527 1 3
Citeseer 400 7e-3 1000 30 6.4957 1 3
Pubmed 400 7e-3 1000 30 13.1791 1 3
CoAuthor CS 400 0.01 1000 30 6.8015 1 3
Amazon Photos 411 0.01 400 30 11.0201 1 3
Actor 438 0.01 1000 30 14.7753 1 3
Cornell 10 0.01 1000 30 6.9423 1 3
Wisconsin 16 0.01 1000 30 6.9271 1 3

Table 3: Details of the datasets and experimental setup.

For datasets that are not inherently graph-structured (e.g., CIFAR-10), we first compute the Euclidean distance between
the feature vectors of each pair of nodes. An edge is then added between two nodes if their distance is below a predefined
threshold.

	Introduction
	Contributions
	Related Work

	Preliminaries
	Label Propagation-based Families and Generalization Guarantees
	Algorithm Families
	Pseudo-dimension Guarantees

	GNN Families and Generalization Guarantees
	Simplified Graph Convolutional Network Family
	GCAN Interpolation and Rademacher Complexity Bounds

	Experiments
	Conclusion
	Proofs in Section 3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Introduction to GAT and GCN
	Proofs in Section 4
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Experiments
	Label Propagation-based Method: Normalized Adjacency Matrix-Based Algorithmic Family
	GCAN Experiments
	Experiment Setup for GCAN

