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ABSTRACT

We introduce nested diffusion models, an efficient and powerful hierarchical gen-
erative framework that substantially enhances the generation quality of diffusion
models, particularly for images of complex scenes. Our approach employs a series
of diffusion models to progressively generate latent variables at different semantic
levels. Each model in this series is conditioned on the output of the preceding
higher-level model, culminating in image generation. Hierarchical latent variables
guide the generation process along predefined semantic pathways, allowing our
approach to capture intricate structural details while significantly improving image
quality. To construct these latent variables, we leverage a pre-trained visual encoder,
which learns strong semantic visual representations, and apply a series of compres-
sion techniques, including spatial pooling, channel reduction, and noise injection,
in order to control the information capacity at each level of the hierarchy. Across
multiple benchmarks, including class-conditioned generation on ImageNet-1k and
text-conditioned generation on the COCO dataset, our system demonstrates notable
improvements in image quality, as reflected by FID scores. These improvements
incur only slight additional computational cost, as more abstract levels of our
hierarchy operate on lower-dimensional representations. Our method also enhances
unconditional generation, narrowing the performance gap between conditional
generation and unconditional generation that leverages neither text nor class labels.

Figure 1: Our proposed nested diffusion models generate images by employing a series of diffusion
models to estimate hierarchical semantic representations. We illustrate this process using a 3-level
hierarchical system, where images in each row are generated based on the representations of images
outlined with red borders from the previous levels, along with image labels. As the hierarchy
progresses, the similarity between generated images evolves from abstract semantic similarities to
lower-level visual feature similarities.

1 INTRODUCTION

Generative modeling is an unsupervised technique that learns to approximate the distribution of data
and can generate novel samples draws from a simple prior distribution. Significant advances have
been made in generative models, including GANs (Goodfellow et al., 2014), VAEs (Kingma, 2013;
Sønderby et al., 2016; Vahdat & Kautz, 2020; Pervez & Gavves, 2020; Luhman & Luhman, 2022),
diffusion models (Gu et al., 2022; 2023; Zhang et al., 2023; Song et al., 2020), and normalizing flows
(Papamakarios et al., 2021; Abdal et al., 2021; Wang et al., 2022), which have been proven to be
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Figure 2: The diagram presents our proposed nested diffusion model, which constructs a hierarchical
generative model by sequentially utilizing a series of diffusion models to produce target latent
representations, ultimately the generation of final images. In the diagram, direction of arrows with
solid gray lines corresponds to generative / backward process, while dotted lines correspond to
how we generate training signals for different levels of the hierarchy. These hierarchical targets are
obtained from visual features that are extracted using a pre-trained, frozen visual encoder. The features
are then post-processed by compressing the representations via spatial pooling, reducing feature
channels through singular value decomposition (SVD), and further compressing the information by
parameterizing the latent features as a Gaussian distribution.

capable of modeling complex real-world images, videos, and language data (Bao et al., 2023; Nichol
et al., 2021; Liu et al., 2024). These models can serve as general-purpose tools for various downstream
applications (Regier et al., 2015; Smith et al., 2022; Lanusse et al., 2021; Zhao & Murphy, 2007;
Osokin et al., 2017; Lopez et al., 2020).

Recent research highlights another promising aspect: the performance of these models can be
enhanced by scaling up the number of model parameters, inspiring subsequent works [] that focus on
building ever-larger models. However, we argue that simply increasing model parameters is not an
effective solution due to the substantial gap between the data distribution and the prior distribution, as
well as the complex, multimodal, and hierarchical nature of real-world data structures, which requires
proper structural model design.

Classical approaches to tackle this problem are hierarchical generative modeling within the variational
Autoencoders (VAEs) framework (Vahdat & Kautz, 2020; Pervez & Gavves, 2020; Takida et al.,
2023), which progressively refines the prior distribution through multiple nested generation steps,
enhancing the model’s ability to capture complex target distributions. The key to designing such
models lies in constructing progressive hierarchical levels of abstraction to guide the generation
process effectively. While diffusion and autoregressive models (Yu et al., 2022) operate within this
hierarchical framework, their latent variables are typically simple linear transformations of the input
data, limiting their ability to generate sufficient abstraction and preserve semantic structures at output.

Conditional generative models, which integrate supplementary inputs like text, class labels, audio,
or segmentation maps, demonstrate enhanced generation quality and control compared to their
unconditional counterparts with no external context. The conditional input serves a similar role to
the upper layers in a two-level generative system, offering high-level guidance to the lower-level
generator. However, the scalability of these methods is limited by the availability of such conditional
inputs during training. One example of a two-level system is Latent Diffusion (Rombach et al.,
2022), which transitions the generation process from pixel space to the bottleneck representations of
a VAE (Kingma, 2013), demonstrating improved generation quality through the use of more compact
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representations. Given that visual data naturally encompasses representations at multiple scales, it is
reasonable to extend these models beyond two hierarchical levels to better handle the complexities of
real-world data.

In this work, we propose a hierarchical model that employs a series of diffusion models to sequentially
generate latent representations at different semantic levels, ultimately producing the final output data.
We use pretrained visual encoders, such as CLIP or DINO (Caron et al., 2021), to extract feature
maps that capture semantic visual representations. The dimensions of these representations are
then reduced using techniques like singular value decomposition (SVD) and spatial average pooling
to construct hierarchical representations along both spatial and feature channels. Since we reduce
the feature dimensions at higher hierarchy levels, our hierarchical model introduces only a limited
computational overhead compared to single-level variants. Throughout our experiments, we find that
an effective compression scheme is critical for maintaining strong generative performance. Compared
to recent works that build hierarchical diffusion models with VAE latent spaces that encode restricted
semantic representations, our method demonstrates significant improvements in generation quality
through the use of semantic representation. Furthermore, we quantitatively evaluate our model across
various image generation tasks, demonstrating that our proposed approach significantly advances the
baseline methods, especially in complex scenarios. Additionally, in text-to-image generation tasks,
where text conditions offer rich semantic guidance, our method substantially enhances the overall
generation quality.

2 RELATED WORKS

Hierarchical Generative Model: A hierarchical generative model has been proposed to improve
generation quality by progressively refining the prior through multiple nested generation steps. In
this line of research, hierarchical variational autoencoders (HVAE) (Vahdat & Kautz, 2020; Zhao
et al., 2017; Child, 2020; Takida et al., 2023), which extend the latent space of VAEs (Kingma, 2013)
to include multiple latent variables, demonstrate improved generation quality. However, HVAE is
known to suffer from high variance and collapsed representations, where the top-level variables may
be ignored (Vahdat & Kautz, 2020; Child, 2020). To address this issue, Luhman & Luhman (2022)
introduced a layer-wise scheduler and network regularization to enhance stability, while Hazami et al.
(2022) proposed a simplified architecture.

Recent work has sought to build hierarchical generative systems by freezing the latent variables and
leveraging powerful generative models such as diffusion models and autoregressive models. For
example, Ho et al. (2022); Gu et al. (2023); Liu et al. (2024) trained a set of diffusion models to
handle images at different resolutions, and Tian et al. (2024) trained a hierarchical autoregressive
model to predict the residuals between tokenized representations at adjacent resolutions. However,
none of these approaches involve training semantic hierarchical representations.

Conditional generation: A conditional diffusion model aims to parameterize the prior as a complex
joint distribution conditioned on an input, rather than using a simple Gaussian prior, which signif-
icantly enhances the model’s capacity to capture intricate data patterns. For images with complex
scenes, generation conditioned on image captions Gu et al. (2022); Kang et al. (2023); Reed et al.
(2016) has shown notable improvements in both quality and controllability. Zhang et al. (2023); Rom-
bach et al. (2022) extended this conditioning approach to multi-modality, incorporating inputs such as
segmentation maps, depth maps, and human joint positions. Another direction in this field is learning
the conditional variable itself. Models like DiffAE (Preechakul et al., 2022), SODA (Hudson et al.,
2024), and Abstreiter et al. (2021) train an encoder to produce low-dimensional latent variables to
assist the generation process, and these works also demonstrate that the encoder can learn meaningful
image representations.

Generation with semantic visual representation: State-of-the-art generative models, such as
diffusion models and autoregressive models, can be viewed as denoising autoencoders that inherently
learn meaningful data representations. Research by Yang & Wang (2023); Tang et al. (2023); Zhang
et al. (2024) demonstrates that diffusion models capture semantic visual representations, which
can be directly applied to various downstream tasks (Baranchuk et al., 2021; Karazija et al., 2023).
Additionally, Zhang & Maire (2023) highlights that the discriminator in GANs also learns strong
image representations. Studies like Li et al. (2023a); Jiang et al. (2024) show that incorporating
representation learning objectives into the generative framework can further enhance generation
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quality. Furthermore, Li et al. (2023b); Hu et al. (2023); Wang et al. (2024) leverage semantic
representations learned by the encoder to improve generation quality even more.

3 METHODS

Our method employs a structured approach to capture hierarchical semantic representations for image
generation. Here, we review diffusion models, one essential component of our system.

Diffusion models: A diffusion model, as a generative framework, consists of both a forward
(diffusion) process and a backward processes, each spanning a total of taking place over T steps.
Let x ∈ Rd denote the original data sample. The forward process defines a sequence of latent
variables {x(t)}Tt=1 obtained by sampling from a Markrov process q

(
x(t)|x(t−1)

)
, which is usually

parameterized as Gaussian distribution, allowing us to sample q
(
x(t)|x

)
=

∏t
s=1 q(x

(s)|x(s−1)) =

N (x(t);α(t)x, β(t)I) in single step, where α(t) and β(t) are hyperparameters of a noise scheduler,
ensuring that the signal-to-noise ratio (SNR) decreases as t increases.

In the backward process, the model Dθ is tasked with estimating the transition probabil-
ity p(x(t−1)|x(t)) and generating data through the process

∏T
t=1 pθ(x

(t−1)|x(t))p(x(T )), where
pθ(x

(t−1)|x(t)) represents the transition probability estimated by Dθ. It is trained by maximizing
the Variational Lower Bound (VLB).

LVLB = −
T∑

t=1

DKL

(
q
(
x(t−1)|x(t),x

)∥∥∥pθ (x(t−1)|x(t)
))

. (1)

where q
(
x(t−1)|x(t),x

)
could be derived using Bayes’ rule: q

(
x(t−1)|x(t),x

)
=

q
(
x(t)|x(t−1),x

)
q
(
x(t−1)|x

)
/q

(
x(t)|x

)
. Maximizing RHS of Eqn.1 can be simplified as the

training Dθ to estimate the noise ϵt ∼ N (0, I) (Ho et al., 2020):

Ldiffusion = Eϵ∼N (0,I),t∥Dθ(α
(t)x0 + β(t)ϵt, t)− ϵt∥2. (2)

3.1 NESTED DIFFUSION MODELS

Our proposed nested diffusion models can be seen as a hierarchical generative framework comprising
L levels, each employing a diffusion model Dθl . As illustrated in Figure 2, the model at each level
l is responsible for generating its corresponding latent variables zl. Here zl ∈ Rdl and dl ≤ dl+1,
indicating decreasing amount of information when l increases. At the shallowest level of the hierarchy,
level 0, the latent variables correspond directly to the data samples, that is, z0 = x.

Diffusion with semantic hierarchy: Our design explicitly directs the generation process to follow a
semantic hierarchy, where top-level (larger l) corresponds to increasing levels of semantic abstraction,
while the bottom level (smaller l) correspond to fine-grained detailed information. This is essential
for preserving image semantic structures and producing realistic samples in generative models. In
contrast, the latent variable in standard diffusion models, x(t), is a linear transformation of the input
data x with added Gaussian noise. This means that information abstraction in standard diffusion
models occurs at the raw pixel level, through the addition of noise to images, making it challenging
for the diffusion models to maintain semantic structure in the generated output.

Markovian generation: At each hierarchical level l, we follow the diffusion model framework and
task Dθl to estimate the transition probability p(z

(t−1)
l |z(t)l , zl+1). At layer l, we assume Markovian

generation that Dθl only depends on the latent variable zl+1 estimated from the preceding hierarchy.
To train our nested diffusion model, we update {Dθl}Ll=1 by minimizing the objectives across all L
levels and diffusion steps:

L−2∑
l=0

T∑
t=1

DKL

(
q
(
z
(t−1)
l |z(t)l , zl,x

)∥∥∥pθ (z(t−1)
l |z(t)l , zl+1

))
−

T∑
t=1

DKL

(
q
(
z
(t−1)
l |z(t)l , zL,x

)∥∥∥pθ (z(t−1)
l |z(t)l

))
. (3)
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Input Image
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CLIP Features VAE Features
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Figure 3: Visualization of K-Nearest Neighbors (KNN) constructed using latent features.For
each input image, we display its nearest neighbors (KNNs) using features extracted from various
hierarchical levels, with the respective spatial dimensions (Height × Width) indicated at the bottom.
This is done across two types of visual representations: the CLIP representations and VAE bottlenecks.
Unlike the VAE, CLIP learns semantic visual representations, resulting in more meaningful nearest
neighbor images. While the VAE features does not produce meaningful neighbors. Using semantic
representations to construct features for generation yields meanful

Drawing inspiration from hierarchical VAEs which also includes hierarchical latent variables {zl}Ll=1,
we enhance its sampling capability by integrating the diffusion model and introducing an additional
set of latent variables {ztl}Tt=0 for each level l. This modification allows for multiple sampling steps,
as opposed to the single forward pass used in hierarchical VAEs, leading to a more accurate prior
estimation. This improvement is vital in hierarchical generative systems, where mismatches between
the posterior and prior distributions can compound across levels, potentially degrading the quality of
the generated output.

3.2 HIERARCHICAL LATENT VARIABLES VIA PROGRESSIVE COMPRESSION

In hierarchical VAEs, both posterior and prior distributions are represented by neural networks, and
all latent variables, {zl}L−1

l=1 , are jointly optimized. This often leads to high variance, particularly in
models with more hierarchical levels, as noted in previous studies (Pervez & Gavves, 2020; Vahdat
& Kautz, 2020; Child, 2020). The high variance in {zl}L−1

l=1 makes diffusion training especially
challenging. The diffusion model trains to estimate the entire reverse process z(T )

l → z
(0)
l = zl, using

intermediate variable samples z(t)l . If {zl}L changes drastically, both zl and z
(t)
l vary significantly

during training, complicating the process.

Extraction of features: We initialize {zl}L−1
l=1 using features from a pre-trained encoder and freeze

them during training. Specifically, we use features from pre-trained models like DINO or CLIP
because they learn strong semantic representations and these representations have been shown to
significantly enhance the quality of generative models, including GANs (Casanova et al., 2021) and
diffusion models (Hu et al., 2023; Li et al., 2023b). Alternatively, other recent methods propose to
construct hierarchical diffusion models using VAE bottleneck representations, which offer highly
compressed feature maps. In our experiments, we observed a substantial improvement in generation
quality when using semantically rich features.

Hierarchical compression: A challenge with using DINO or CLIP features described above is that
they often result in highly redundant feature maps. For example, DINO’s VIT-B model produces
a 14x14x768 feature map, which has the same spatial dimensions as the input image (224x224x3).
Such overcomplete representations force the generative model to capture unnecessary correlations,
degrading the quality of generated samples. Moreover, this redundancy can disrupt the hierarchical
system. If zl contain sufficient information to perfectly reconstruct the original data x, then the
lower-level latent variables {zl′}l′<l would be meaningless because they do not provide additional
information for x.

5
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Therefore, designing an effective progressive compression scheme is critical for managing high-
dimensional features and constructing meaningful hierarchical latent variables. Our compression
routine involves three key steps:

1. Spatial dimensionality reduction via average pooling: We begin by reducing the spatial
dimensions of the feature map through average pooling. This strategy has been used in previous
hierarchical models based on original images and VAE bottleneck representations. However, we find
that spatial pooling alone is insufficient, as it does not address redundancy in the feature channels.

2. Feature channel reduction via singular value decomposition (SVD): To tackle redundancy in
the feature channels, we apply SVD along the feature dimension and retain only the top components
as hierarchical features. SVD orders the feature channels by importance based on their singular
values, allowing us to conveniently form hierarchical representations by trimming less important
channels. To prevent the model from neglecting the trailing channels, we standardize the features to
have zero mean and unit variance.

3. Information reduction through Gaussian distribution parameterization: To enhance the
level of feature abstraction, we introduce Gaussian noise to zl, represented as ẑl ∼ N (zl, σ

2
l I) for

l = 0, . . . , L− 2, where σl ∈ R is a fixed value based on the hierarchical level. This process limits
the amount of information that can be transmitted, which can be measured by the KL divergence
DKL

(
N

(
zl, σ

2
l

)
,N (0, I)

)
. A large variance σ2

l substantially limits the information capacity. With
this parameterization, the loss function becomes:

Lnested_diffusion =

L−2∑
l=1

Eẑl+1∼N(zl+1,σ2
l+1I),ϵt∼N (0,I),t∥Dθl(α

(t)zl + β(t)ϵt, ẑl+1, t)− ϵt∥2

+ Eϵt∼N (0,1),t∥DθL−1
(α(t)zL−1 + β(t)ϵt, t)− ϵt∥2 (4)

In our experiments, this parameterization played a vital role in maintaining and improving generation
quality as the number of hierarchical levels increased.

4 EXPERIMENTS

We present the setup and results of our experiments, where we evaluate the performance of our nested
diffusion model across various tasks. Our primary focus is to explore the model’s effectiveness in
both conditional and unconditional image generation scenarios using the COCO-2014(Lin et al.,
2014) and ImageNet-100 datasets (Russakovsky et al., 2015), with additional large-scale experiments
on ImageNet-1k.

4.1 EXPERIMENTAL SETUP

Nested Diffusion Models. We utilize U-ViT (Bao et al., 2023), a ViT-based UNet model with an
encoder-decoder architecture, as the foundation of our nested diffusion model. This model employs
skip connections and performs diffusion in the latent space of a pre-trained VAE, reducing the input
size from 256x256x3 to 32x32x4, which enables efficient handling of high-resolution images. We
use the default diffusion scheduler, sampler, and hyperparameters from U-ViT (Bao et al., 2023).

For constructing the nested diffusion model, we instantiate the U-ViT model at each hierarchical
level, maintaining consistent configurations across all levels, except for the input data shape zl and
the conditional feature ẑl+1. The higher hierarchical levels progressively reduce the dimensionality
of zl, resulting in minimal additional computational overhead despite an increase in parameters. We
defer further optimizations in parameter efficiency to future work.

To incorporate conditional features ẑl+1, we use deconvolutional layers to upsample them to match the
resolution of zl. These features are then concatenated as tokens every two attention blocks, followed
by two fully connected layers. During training, we randomly drop the conditional features with a
50% probability to facilitate classifier-free guidance (CFG) Ho & Salimans (2022) for improving
image generation quality. We use model configurations from U-ViT (Bao et al., 2023) and utilize the
ViT-small, ViT-medium, and ViT-large configurations for COCO, ImageNet-100, and ImageNet-1k,
respectively. Unless stated otherwise, all models are trained for 1000 epochs.
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(a) L = 1 (b) L = 2 (c) L = 3 (d) L = 4

Figure 4: Unconditional image generation on the COCO dataset is performed across various hierar-
chical levels. At L = 1, it corresponds to standard diffusion models. As more levels are stacked, the
generated images exhibit more coherent visual structures and improved overall image quality.

Hierarchical Latent Variables. The hierarchical latent variables {zl}Ll=1 are constructed using a
pre-trained visual encoder. For ImageNet experiments, we extract visual features, with the shape
14x14x768, from the final layer of MoCo-v3 (ViT-B/16), a leading self-supervised visual representa-
tion learner. For COCO experiments, we use CLIP (ViT-B/16), a multi-modal encoder that aligns
visual and textual representations and also use the final visual features as our representations. We
apply singular value decomposition (SVD) on the training set and retain the leading channels. Spatial
average pooling is used to produce representations at varying resolutions. For COCO experiments,
we generate a 5-level hierarchical latent variable structure with progressively smaller spatial and
channel dimensions: {8× 8× 64, 6× 6× 56, 4× 4× 48, 2× 2× 40}. We utilize fewer levels and
feature resolutions for ImageNet compared to COCO, as it’s a simpler dataset. The shapes of our
latent variables are: 6× 6× 32, 4× 4× 24, 2× 2× 16

4.2 UNCONDITIONAL IMAGE GENERATION

To generate realistic images in an unconditional setting, a generative model must recognize the
semantic structures of the images effectively. This is particularly challenging when images during the
generation process are heavily corrupted, often by Gaussian noise or random masking. Traditional
training objectives, usually based on pixel-wise distance, treat each pixel independently and provide
no direct structural guidance in the output space, requiring the model to learn these structures
internally in its latent space. If the model struggles to capture these semantic structures, the resulting
output is likely to lack coherence. Our proposed approach addresses this challenge by introducing
explicit semantic guidance via an external encoder that learns visual semantic representations, thus
reducing the complexity of the task of the generative model.

We initially assessed the performance of the nested diffusion model on unconditional image generation
tasks using the COCO-2014 and ImageNet-100 datasets. For COCO-2014, we follow the text-to-
image evaluation protocol, calculating the FID between 30K generated images and those from the
validation set. For ImageNet-100, where the validation set contains only 5K images - insufficient
for reliable FID statistics - we use all 50K training images as a reference and compute FID on 50K
generated images. We adopt the default hyperparameters for classifier-free guidance, as outlined
in Bao et al. (2023), for conditional generation, substituting the ground truth text or class labels
with our generated hierarchical latent variables ẑl. We report our results in multiple depths of the
model L and different conditional noise levels σL in Table 1. Improved performance with more
hierarchy levels L. Compared to the baseline model, our nested diffusion model DL produces better
image quality as we deepen the hierarchy by increasing the depth L. Even though the same model
configuration is applied to each level Dθl , the computational increase, measured in GFlops, remains
minimal, particularly with deeper models. It is notable that as we add more hierarchical levels, the
performance of unconditional image generation approaches that of conditional generation.

Impact of σl. As detailed in our methods section, sigmal governs the amount of information
conveyed by the conditional latent variable and enforces the hierarchical structure. We validate this
for L ≤ 4, where nonzero σL significantly improves image quality due to the potential redundancy
in ẑL at lower levels of the hierarchy. The optimal choice of σL for L = 2 brings even a significant
improvement in image quality despite the fact that z2 (8x8x64) and z1 (32x32x4) have the same
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Model Config Fréchet inception distance (FID)↓
Model size of zL

Growth
GFlops

Growth
Params

σL = 0.0 0.5 1.0 1.5

L = 1 32× 32× 4 22.70 44.13M 32.73 - - -
L = 2 8× 8× 64 8.54 58.06M 25.60 16.12 13.24 13.32
L = 3 6× 6× 56 1.42 59.58M 9.69 8.29 8.57 8.78
L = 4 4× 4× 48 0.72 59.51M 7.04 6.86 7.41 7.86
L = 5 2× 2× 40 0.71 59.48M 6.27 6.74 7.27 7.45
L = 1 text conditional generation 6.30 - - -

(a) Unconditional image generation on COCO-2014
Model Config Fréchet inception distance (FID)↓

Model size of zL
Growth
GFlops

Growth
Params

σL = 0.0 0.5 1.0 1.5

L = 1 32× 32× 4 71.60 130.7M 44.40 - - -
L = 2 6× 6× 32 30.02 100.1M 31.69 17.45 15.31 15.40
L = 3 4× 4× 24 1.01 100.1M 13.66 11.77 11.12 11.34
L = 4 2× 2× 16 0.59 100.1M 12.79 11.80 11.21 12.09

(b) Unconditional image generation on ImageNet-100

Table 1: Unconditional image generation results on COCO-2014 and ImageNet-100 for nested
diffusion models DL. We evaluate image quality across various L (model depths) and σL, which
determines the information capacity of the final conditional variables ẑL. For model DL, we select
the optimal σl values for l < L from earlier levels, highlighted in bold in the table. Image quality
improves with increasing model depth, with only a slight increase in computational cost, measured
in GFlops, compared to the previous level. Across all L, it’s important to add noise to conditional
signal, especially for earlier levels of hierarchy, to ensure proper hierarchical dependency.

feature dimension. As we reduce the size of the feature to higher levels, the difference in image
quality between σL = 0 and nonzero αL diminishes, as the ẑL has a smaller dimension of the feature
that carries less information.

4.3 CONDITIONAL IMAGE GENERATION

We also evaluated our model on conditional generation tasks, including conditional text and class
generation. Text, compared to class labels, offers more detailed information, making the generation
process easier. However, there are still gaps in the transfer of information, such as the shape and
texture of the object, between the conditional input and the generated images. Our approach addresses
these gaps through hierarchical generation, leading to improved performance.

For this experiment, we use the same setup as in the unconditional generation tasks, with results
presented in Table. 2. Similar to the unconditional generation results, we observe clear performance
improvements with hierarchical levels L = 2, and the selection of σ2 remains crucial to overall
performance.

However, the additional conditional ground truth input causes the performance gains from increasing
model depth to grow more slowly compared to the unconditional task. This can be attributed to the
overlap in functionality between the conditional input and the higher levels of the deeper nested
diffusion models, both of which capture abstract representations.

Choices of visual representations. We examine the effect of different visual representation sources
on constructing the latent variable, with the results shown in Table. 4. Instead of utilizing the encoder’s
representation, we experimented with using the bottleneck from a VAE. The same procedure and
hyperparameters were applied to construct the hierarchical latent variable {zl}Ll for L = 3. Although
VAE learns a compact bottleneck representation, it does not capture strong semantic information.
Consequently, when the hierarchical latent variable is constructed by downsampling the feature
dimensions, the latent space does not retain coherent semantic structures. As a result, the generation
quality with L = 3 for VAE-based representations is inferior to our approach using MoCo-v3 in both
conditional and unconditional tasks.
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(a) L = 1 (b) L = 2 (c) L = 3 (d) L = 4

Figure 5: Unconditional image generation on the ImageNet-100 dataset is performed across multiple
hierarchical levels. At L = 1, it corresponds to traditional diffusion models. As more levels are
introduced, the generated images exhibit greater visual coherence and improved quality. It’s important
to note that this performance enhancement comes with minimal computational cost, as the feature
dimensions are reduced at higher levels in the hierarchy.

Fréchet inception distance (FID)↓
Model σL = 0.0 0.5 1.0 1.5
L = 1 6.30 - - -
L = 2 9.18 5.43 5.24 5.28
L = 3 5.24 5.26 5.45 5.74

(a) Conditional image generation on COCO-2014

Fréchet inception distance (FID)↓
Model σL = 0.0 0.5 1.0 1.5
L = 1 6.93 - - -
L = 2 7.16 4.88 5.15 5.41
L = 3 5.16 5.99 6.47 6.92

(b) Conditional image generation on ImageNet-100

Table 2: We evaluated conditional image generation using nested diffusion models, denoted as
DL, on the COCO-2014 and ImageNet-100 datasets. The evaluation focused on image quality
across various model depths L and noise levels σL, utilizing the same hierarchical setup as in the
unconditional generation experiments. Our findings indicate that nested diffusion models improve
generation quality. In contrast to the unconditional case, the optimal performance was achieved at
L = 2, likely due to the redundancy between the conditional input and the highest level of deeper
nested models, both offering high-level guidance.

Recent work, RCG (Li et al., 2023b) proposes a two-level hierarchical generative system using the
final output from the MoCo-v3 encoder, which is a 256-dimensional vector. Compared to our two-
level system where z2 ∈ R8×8×256, RCG employs more compact feature representations. However,
our approach consistently delivers better generation quality in both conditional and unconditional
settings.

Large scale experiments on ImageNet 1K. To examine the performance of applying method to a
larger scale dataset, we apply our approaches to ImageNet-1k. We adopt the configurations of U-ViT-
L from (Bao et al., 2023) and reproduce the baseline FID as 3.8 despite their official performance
is 3.4. We then takes construct z1 ∈ R6×6×32. Due to the resources constraint, we were only able
to run experiments on a two level system L = 2 for conditional image generation and our methods
improves the FID from 3.8 to 3.2 .

5 CONCLUSION

In this work, we introduced the nested diffusion model, a hierarchical generative framework that
effectively generates images by following a semantic hierarchy. Our approach builds upon a series of
hierarchical latent variables derived from pre-trained visual encoders, followed by feature compression
techniques. These latent variables guide the generative process, enabling the model to capture
detailed structural information while preserving high image quality. By progressively abstracting
and compressing feature representations at multiple levels, we achieve significant improvements
in generation performance with minimal computational overhead. Our results demonstrate that
this structured, hierarchical design outperforms traditional diffusion models in both conditional
and unconditional generation tasks. Rather than solely scaling model parameters, we advocate for
a rethinking of generative model design that emphasizes structural organization. Future research

9
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Model FID Training Dataset
DALL-E-12B (Ramesh et al., 2021) 28.00 DALL-E (250M)
CogView (Ding et al., 2021) 27.10 Internal data (30M)
GLIDE (Nichol et al., 2021) 12.24 DALL-E (250M)
DALL-E 2 (Ramesh et al., 2022) 10.39 DALL-E (250M)
Imagen (Saharia et al., 2022) 7.27 Internal Data/LAION (860M)
Re-Imagen (Chen et al., 2022) 5.25 KNN-ImageText/COCO(50M)
CM3Leon-7B (Yu et al., 2023) 4.88 Internal Data(350M)
Parti-20B (Yu et al., 2022) 3.22 LAION/FIT/JFT/COCO(4.8B)
VQ-Diffusion (Gu et al., 2022) 19.75 COCO(83K)
Friro (Fan et al., 2023) 8.97 COCO(83K)
U-ViT-S (Bao et al., 2023) (Ours L = 1) 5.95 COCO(83K)
Ours(L = 2) 4.74 COCO(83K)

Table 3: Results of text conditional image generation on COCO-2014. The upper half shows larger
models trained with more data and the bottom half shows the models that are only trained on training
split of COCO. When trained only on COCO, our models outperform all the compared methods. It
worth noting that we’re better than most of the larger models, shown on the top half.

FID↓
Visual Representations Cond Uncond
None 6.93 44.40
MoCo-v3 5.16 11.12
VAE 7.24 48.23

(a) We study the impact the difference features
sources for hierarchical generative model. For
VAE, we adopt the same procedure and uses the
same parameters to construct the {zl}Ll

FID↓
Methods Cond Uncond
RCG 8.04 38.40
Ours (L=2) 4.88 15.31

(b) Comparison to RCG (Li et al., 2023b), a re-
cent hierarchical genreative model with L = 2. It
utilizes the 256-dimensional output vector from
MoCo’s final layer to construct latent varible z2

Table 4: Results on the impact of different visual representations on ImageNet-100 demonstrate
that using semantic representations, rather than VAEs which primarily capture low-level features,
significantly enhances generation quality. Additionally, compressing information through Gaussian
noise controlled by σl, as opposed to RCG’s use of a fixed 256-dimensional vector, is essential for
achieving high-quality outputs. All experiments are running with the same network architecture with
only the variation on the conditional features.

will focus on further enhancing the efficiency of these hierarchical models and expanding their
applicability to a wider range of generative tasks across diverse domains.
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