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Abstract

Recent advances in diffusion models have demonstrated their strong capabilities in
generating high-fidelity samples from complex distributions through an iterative
refinement process. Despite the empirical success of diffusion models in motion
planning and control, the model-free nature of these methods does not leverage
readily available model information and limits their generalization to new scenarios
beyond the training data (e.g., new robots with different dynamics). In this work,
we introduce Model-Based Diffusion (MBD), an optimization approach using the
diffusion process to solve trajectory optimization (TO) problems without data.
The key idea is to explicitly compute the score function by leveraging the model
information in TO problems, which is why we refer to our approach as model-
based diffusion. Moreover, although MBD does not require external data, it
can be naturally integrated with data of diverse qualities to steer the diffusion
process. We also reveal that MBD has interesting connections to sampling-based
optimization. Empirical evaluations show that MBD outperforms state-of-the-art
reinforcement learning and sampling-based TO methods in challenging contact-rich
tasks. Additionally, MBD’s ability to integrate with data enhances its versatility and
practical applicability, even with imperfect and infeasible data (e.g., partial-state
demonstrations for high-dimensional humanoids), beyond the scope of standard

diffusion models. Videos and codes: https://lecar-lab.github.io/mbd/

1 Introduction

Trajectory optimization (TO)
aims to optimize the state
and control sequence to min-
imize a cost function while
subject to specified dynamics
and constraints. Given non-
linear, non-smooth dynam-
ics and non-convex objec-
tives and constraints, tradi-
tional optimization methods
like gradient-based methods
and interior point methods are
less effective in solving TO
problems. In response, diffu-
sion models have emerged as
a powerful tool for trajectory
generation in complex dy-
namical systems due to their
expressiveness and scalabil-
ity L1146, 27, 126} 133} 15].
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Model-based diffusion in humanoid running tasks
Figure 1: MBD refines the trajectory by leveraging the dynamics
model directly without relying on demonstration data.

Although diffusion models excel when learning from large-scale, high-dimensional, and high-quality
demonstrations, their dependency on such data limits their practicality. For example, after training a
manipulation task with a specific robotic arm, the model may struggle to generalize to new tasks with
a different arm as the underlying dynamics change. This limitation arises from the model-free nature
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of existing diffusion-based methods, which do not leverage readily available model information to
enhance adaptability. Moreover, existing diffusion-based approaches often require high-quality (in
terms of optimality and feasibility) demonstration data, which limits their applications in various
scenarios with imperfect data, such as dynamically infeasible trajectories (e.g., generated by high-level
planners using simplified models) and partial demonstrations (e.g., lower-body-only demonstrations
for a high-dimensional humanoid).

Fortunately, unlike diffusion model’s applications in vision or language where data is from unknown
distributions (e.g., internet-scale image data), in trajectory optimization, we often know the distri-
bution of desired trajectories, which is described by the optimization objectives, constraints, and
the underlying dynamics model, although such a distribution is intractable to directly sample from.
Diffusion models offer a tantalizing new perspective, by iteratively refining samples from isotropic
Gaussians to meaningful desired distributions in manageable steps, rather than directly learning
the complex desired distribution. Inspired by this, we propose Model-Based Diffusion (MBD) that
utilizes model information to approximate the gradient of the log probability density function (a.k.a.
score function) and uses it to iteratively refine sampled trajectories to solve TO problems, as depicted
in Fig.|l| This model-centric strategy allows for the generation of dynamically feasible trajectories
in a data-free manner, and gradually moves them towards more optimal solutions. Furthermore, by
using demonstrations as observations of the target distribution, MBD can be smoothly combined with
data of different qualities to steer the diffusion process and enhance its effectiveness. Particularly,
we merge the demonstration data into the sampling process by evaluating their likelihoods with the
model and use them to improve the estimation of the score function. Our contributions are threefold:

* We introduce the Model-Based Diffusion (MBD) framework for trajectory optimization, utilizing
the dynamics model to estimate the score function. This enables an effective trajectory planner
given non-smooth dynamics and non-convex objectives, such as contact-rich manipulation tasks or
high-dimensional humanoids.

* Our analysis and empirical evaluations demonstrate that MBD matches, and often exceeds, the
performance of existing reinforcement learning and sampling-based TO methods. In particular,
MBD outperforms PPO by 59% in various tasks within tens of seconds of diffusing.

* We demonstrate MBD’s flexibility in utilizing diverse imperfect data to steer the diffusion process
and further enhance the performance. Specifically, the resulting whole-body humanoid trajectory
from MBD is more natural by utilizing the lower-body-state-only human motion data. Similarly,
MBD can effectively address long-horizon sparse-reward Umaze navigation tasks by leveraging
infeasible demonstrations generated by an RRT planner with simplified dynamics.

2 Related Work

Diffusion Models. Diffusion models have been widely adopted as generative models for high-
dimensional data, such as image [43]], audio [12], and text [7] through iterative refinement pro-
cesses [42] 123]. The backward process can be viewed as gradient prediction [44]] or score match-
ing [45]], which learns the score function to move samples towards the data distribution. We deliver
new methods to perform the backward diffusion process using the available model information.

Sampling-based Optimization. Optimization involving black-box functions is widely applied across
various fields, including hyperparameter tuning and experimental design [41} 22]]. Evolutionary
algorithms like CMA-ES are often used to tackle black-box optimization problems, dynamically
modifying the covariance matrix to produce new samples [19]. Such problems can also be efficiently
addressed within the Bayesian optimization framework [42} [15], which offers greater efficiency.
Nonetheless, traditional BO algorithms are generally restricted to low-dimensional problems.

Trajectory Optimization. Traditionally, trajectory optimization (TO) is solved using gradient-
based optimization, which faces challenges such as non-convex problem structures, nonlinear or
discontinuous dynamics, and high-dimensional state and control action spaces. As two equivalent
formulations, direct methods [20] and shooting-based methods [24] are commonly used to solve TO
problems, where gradient-based optimizers such as Augmented Lagrangian [25]], Interior Point [29],
and Sequential Quadratic Programming [3} 40] are employed. To leverage the parallelism of modern
hardware and improve global convergence properties, sampling-based methods like Cross-Entropy
Motion Planning (CEM) [30] and Model Predictive Path Integral (MPPI) [49,153]] have been proposed
to solve TO by sampling from target distributions. To solve stochastic optimal control problems,
trajectory optimization has also been framed as an inference problem in a probabilistic graphical
model, where system dynamics defines the graph structure [28}|32]]. This perspective extends methods



such as iLQG by integrating approximate inference techniques to improve trajectory optimization
[47]. The connection between diffusion and optimal control has been explored in [9], which motivates
us to use diffusion models as solvers for trajectory optimization.

Diffusion for Planning. Diffusion-based planners have been used to perform human motion gener-
ation [[L1} 146] and multi-agent motion prediction [27]]. Diffusion models are capable of generating
complete trajectories by folding both dynamics and optimization processes into a single framework,
thus mitigating compounding errors and allowing flexible conditioning [26} 133} 15]]. In addition, they
have been adeptly applied to policy generation, enhancing the capability to capture multimodal
demonstration data in high-dimensional spaces for long-horizon tasks [38}|13]]. These works assume
no access to the underlying dynamics, limiting the generalization to new environments. To enforce
dynamics constraints, SafeDiffuser [51]] integrates control barrier functions into the learned diffusion
process, while Diffusion-CCSP [52]] composes the learned geometric and physical conditions to
guarantee constraint compliance. Our approach uses diffusion models directly as solvers, rather than
simply distilling solutions from demonstrations.

3 Problem Statement and Background

Notations: We use lower (upper) scripts to specify the time (diffusion) step, e.g., x¢, u¢, y; represent
the state, control and state-control pair at time ¢, and Y (*) represents the diffusion state at step i.

This paper focuses on a class of trajectory optimization (TO) problems whose objective is to find the
sequences {z;} and {u;} that minimize the cost function J(z1.7; u1.7) subject to the dynamics and
constraints. The optimization problem[ﬂcan be formulated as follows:

T-1
,min J(@uriunr) = lr(er) + t;) l(we,ue) (la)
S.l.  Xg = Tinit (1b)
Tt+1 :ft(xt7ut), VﬁZO,L...,T—L (1C)
gt(a:t,ut)go, Vt:O,l,...,T—l. (ld)

where x; € R™ and u; € R™* are the state and control at time ¢, f; : R"* x R™* — R"* represents the
dynamics, g; : R" x R"* — R are the constraint functions and [, : R™* x R™* — R are the stage
costs. We use Y = [z1.7; u1.7] to denote all decision variables. Traditionally, TO is solved using
nonlinear programming, which faces challenges such as non-convex problem structures, nonlinear or
discontinuous dynamics, and high-dimensional state and control action spaces. Recently, there has
been a growing interest in bypassing these challenges by directly generating samples from the optimal
trajectory distribution using diffusion models trained on optimal demonstration data [[11}133}138,152].

To use diffusion for TO, is first transformed into a sampling problem. The target distribution
po(Y(®) is proportional to dynamical feasibility pg(Y) o< [T, 1(2¢ = fo-1(24-1,u4-1)), optimal-
ity pj(Y') o< exp (—@) and the constraints p,(Y) o< [T2; 1(g¢ (24, u) <0), ie.,

po(Y) o< pa(Y)ps(Y)py(Y) 2

Obtaining the solution Y* from the TO problem in Eq. (1) is equivalent to sampling from Eq.
given a low temperature A — 0. In fact, in Appendix |A.1] we prove that the distribution of J(Y")
with Y ~ pg(+) converges in probability to the optimal value J* as A — 0, under mild assumptions.
However, it is generally difficult to directly sample from the high-dimensional and sparse target
distribution po(+). To address this issue, the diffusion process iteratively refines the samples following
a backward process, which reverses a predefined forward process as shown in Fig.[T] The forward
process corrupts the original distribution pg(-) to an isotropic Gaussian px(-) by incrementally
adding small noise to it and scaling it down by ,/c; to maintain an invariant noise covariance
(see Fig.[2(b) for an example). Mathematically, this means we iteratively obtain Y (*) ~ p; () with

ili-1 (1Y D)~ N(/a;Y 0D /T=a;T). Because the noise at each time step is independent, the
conditional distribution of Y)Y (i=1) also leads to that of ¥ () [y (9):

pio(lY )~ N(Va@ YD VT-a&I), a =[] 3)
k=1

'We assume deterministic dynamics for simplicity to sample the dynamically feasible trajectory. The
extension to stochastic dynamics is straightforward.



The backward process p;_;(Y "DV (V) is the reverse of the forward process p;;_; (Y |y (-1)),
which removes the noise from the corrupted distribution py (-) to obtain the target distribution pg(+).
The target distribution pg(-) in the diffusion process is given by:

pict (YD) = fpi71\i(Y(i_1)|Y(i))pz‘(Y(i))dY(i)7 4
1 ) ) .
po(Y®) = [PN(Y(N)) II pi—1|i(Y(%1)|Y(l))dY(l'N) ©)
=N

Standard diffusion models [26} 133} 152]], which we refer to as Model-Free Diffusion (MFD), solve the
backward process by learning score function merely from data. In contrast, we propose leveraging
the dynamics model to estimate the score to improve the generalizability of the model and allow a
natural integration with diverse quality data.

4 Model-Based Diffusion

In this section, we formally introduce our MBD algorithm that leverages model information to
perform backward process. To streamline the discussion, in Section .1} we first present MBD
with Monte Carlo score ascent to solve simplified and generic unconstrained optimization problems.
In Section[4.2] we extend MBD to the constrained optimization setting to solve the TO problem given
complex dynamics and constraints. Lastly, in Section [4.3] we augment the MBD algorithm with
demonstrations to improve sample quality and steer the diffusion process.

4.1 Model-based Diffusion as Multi-stage Optimization

(a) Objective Function J(Y) (b) Forward Density , (c) Backward Process
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Figure 2: Reverse SDE vs. Monte Carlo score ascent (MCSA) on a synthetic highly non-convex ob-
jective function. (a) Synthesized objective function with multiple local minima. (b) The intermediate
stage density p;(+), where peaked po(+) is iteratively corrupted to a Gaussian py (+). (c) Reverse SDE
vs. MCSA: Background colors represent the density of p;(-) at different stages. MCSA converges
faster due to larger step size and lower sampling noise while still capturing the multimodality.

We consider the reverse process for an unconstrained optimization problem miny J(Y"), where the
J(Y?)
X

target distribution is po(¥(?)) oc exp (- ). In our MBD framework, “model” implies that

we can evaluate J (Y(O)) for arbitrary Y (*), enabling us to compute the target distribution up to the
normalizing constant.

MBD uses Monte Carlo score ascent instead of the commonly adopted reverse SDE approach in
MED. Specifically, when denoising from ¢ to ¢ — 1, MBD performs one step of gradient ascent on

log p; (Y( )) and then scales the sample by the factor \ﬁ as defined in the forward process:

y(-1) _ (Y(l) +(1-a;)Vy logpi (VY ))) ©

(6%

Critically, with the model-informed po (Y (?)), we can estimate the score function Vy- ¢y log p; (Y ()
by connecting p; (Y () to po(Y(9) via Bayes’ rule:



Vy @) _[pi\O(Y(i) ‘ Y(O))Po(y(o))dy(o) _ f Vy(i)Pﬂo(Y(i) | Y(O))po(y(o))dy(o)
T OTY @)Y @) dY® = [ pyo(Y O [Y@)po (Y @) Y ©®
(72)

Yy logpi(Y?) =

[ YA (YO | Y O )p (v @) ay ©
) l : 7b
T i (Y D TY ©)po(Y©) dy ©) (7b)

y(® Vai [ Y(O)puo(Y(i) | Y(O))pO(Y(O)) dy @ -
T—a 1-a [ pp(Y®[YO)p(Y®)dy© ¢

Between Eq. and Eq. (7b), we use the forward Gaussian density in Eq. : Pip(Y D [ Y(©) o
(y(i) \/Ty(o)) (y( i) ry(o))

exp( ). TIts log-likelihood gradient is Vy )pl‘O(Y(’) | Y(O)) =
(Y( RSNt Y(O))p |0(Y( DY), Given Y as the integration variable in Eq.
de(Y( )| Y0 is evaluated as a function of Y'(*) parameterized by Y (). Based on that, we deﬁne

the function ¢; (Y () as:

© _ YD\ (y0) _y®
i 1 Y = Y o Y(’L)
$i(YO) o< pio (YD | YO o exp(-= ( 1)_a( v )) o N ( -1) (8
2 z NGTR al

This finding enables the Monte-Carlo estimation for computing the score function. We collect a batch
of samples from ¢;(-) which we denote as Y@ and approximate the score as:

YO @ [YOp(y©)po(r®)ay©

Vyo logp (YD) = - 9a
vo logpi(Y) l-a; 1-a; [ ¢i(YO)po(Y®)ady© o
YO VG Syogo YOrD) YO Va6 0
N — — — © = - — + — Y (YY) (9b)
1-aq 1—Oéi Ty ey po(Y(?)) l-a; 1-a4
Monte Carlo Approximation
Aspect Model-Based Diffusion (MBD) Model-Free Diffusion (MFD)
Target Distribution Known (Eq. @)) but hard to sample Unknown, but have data
Objective Sample Y (9 from high-likelihood region of po(-) ~ Sample Y(©) ~ pq(-)
Score Approximation — Estimated using the model (Eq. (9a)). Can be aug- Learned from data
mented with demonstrations (Egs. (I_l;f[) and )
Backward Process Perform Monte Carlo score ascent (Eq. to  Runreverse SDE to preserve sam-

move samples towards most-likely states ple diversity

Table 1: Comparison of Model-Based Diffusion (MBD) and Model-Free Diffusion (MFD)

Comparison between MFD and MBD. Table [I] highlights the key differences between MBD
and MFD, which originate from two assumptions made in MBD: (a) a known target distribution
po(Y(®)) given the model; (b) the objective of sampling Y (?) from the high-likelihood region of
pO(Y(O)) to minimize the cost function. For (a), MBD leverages pg to estimate the score follow-
ing Eq. @ whereas MFD learns that from the data. For (b), MBD runs Monte Carlo score ascent
in Eq. (6) to quickly move the samples to the high-density region as depicted in Fig. 2[c), while

MED runs reverse SDE Y (1) = \/%Tz (Y(i) + %Vym logpi(Y(i))) + /1 - a;z;, where z; is
Gaussian noise, to maintain the sample diversity.
Viogpi (YD) & (25 (YO — argmaxp; (-)) [}
Therefore, choosmg the step size (1 —@;) in Eq. (6) is considered optimal, as for L-smooth functions,
O(%) is the step size that achieves the fastest convergence [55].

Given low temperature ), it can be shown that
i.e., the function log p; (Y ) is (1_1ai)—smooth.

How diffusion helps? The diffusion process plays an important role in helping Monte Carlo score
ascent overcome the local minimum issue in highly non-convex optimization problems, as shown
in Fig.[2(a). Compared with optimizing a highly non-convex objective, Monte Carlo score ascent

2See more elaborations in Appendix



is applied to the intermediate distribution p;(-) = [ po(Y (¥ )pi|0(-)dY(0), which is made concave
by convoluting po(-) with a Gaussian distribution p;|o(-), as shown in Fig. b). Starting from the
strongly concave Gaussian distribution py ~ N(0, I) with scale ay — 0, the density is easy to
sample. The covariance of the sampling density ¥4, = (&L — 1)I is large when ¢ = N, implying
that we are searching a wide space for global minima. In the less-noised stage, the intermediate
distribution p;(+) is more peaked and closer to the target distribution po(-), and &; — 1 produces a
smaller sampling covariance >, to perform a local search. By iteratively running gradient ascent on
the smoothed distribution, MBD can effectively optimize a highly non-convex objective function as
presented in Fig. 2] The MBD algorithm is formally depicted in Algorithm ]

Algorithm 1 Model-based Diffusion for Generic Optimization
1: Input: Y™V «~ A(0,1)
2: fori= N to1do

3: Sample Y “N(JY%’(&; -DD)

_ ) b 5y YO po(v(®
4: CalculateEq.Y(O)()}“)): MORTORSCAIL )

T (0) ey (i) PO (Y ()

5: Estimate the score Eq. 1%' Vy @) logpi (Y ) ~ —% + 1_—@}7(0)(32(”)

6:  Monte Carlo score ascent Eq. @: y b \/% (YP + (1-a@)Vya logpi(Y(i)))
7: end for

Connection with Sampling-based Optimization. When diffusion step is set to N = 1, MBD
effectively reduces to the Cross-Entropy Method (CEM) [10] for optimization. To see this, we
can plug the estimated score Eq. (Ob) into the Monte Carlo score ascent Eq. (6) and set N =

1 v _ a5y - 7O (pD)y = Zx@on Y Ow®) YO = o (YO
) T ) = V) = Ty (0) ey w(¥Y () where ( ) = po( ) o<

exp(—J(Yf(O))) and YV ~ N (%:), O%O —1)I). This precisely mirrors the update mechanism in
CEM, which aims to optimize the objective function fepm(Y(?) = J(Y(?)) and determine the
sampling covariance Xcgy = (O%O — 1)1, thus linking the sampling strategy of CEM with the «
schedule in MBD. The advances that distinguish MBD from CEM-like methods are (1) the careful
scheduling of « and (2) the intermediate refinements on p;, both following the forward diffusion
process. This allows MBD to optimize for smoothed functions in the early stage and gradually refine
the solution for the original objective. On the contrary, CEM’s solution could either be biased given
a large Xcpm which overly smoothes the distribution as in pag, p10o of Fig. 2[b), or stuck in local
minima with a small 3¢y as in p; of Fig. @Kb) where the distribution is highly non-concave.

4.2 Model-based Diffusion for Trajectory Optimization

For TO, we have to accommodate the constraints in Eq. (I)) which change the target distribution to
Po(Y () o< pg(YO)p (YO)p, (V). Given that py(Y(?)) is a Dirac delta function that assigns
non-zero probability only to dynamically feasible trajectories, sampling from gbi(Y(O)) could result
in low densities. To enhance sampling efficiency, we collect a batch of dynamically feasible samples

yff) from the distribution ¢; (Y (°))pg(Y (9)) with model information. Proceeding from Eq. , and
incorporating po(Y(?)) o< pg(Y(O)p; (Y O)p, (Y(?)), we show the score function is:
YO Vi [Y QY )pa(Y D)y (Y )ps (v ) dY )
T T ] oY @)pa(Y D)y (Y @)ps (Y ©)dy®
YO Ja Ty Y Op, (Y O)py (Y )

IR SN/ (100)
=@ =@ Xy Pr(YO)py (V)

y® . /a; 7O

Yy logpi(Y?) = - (10a)

- _ vV 10
1-a; 1-a; (10e)
Zy(o) (i) Y(O)W(Y(O))
_ ey
where V(@ = > : @w(YO®) 7 W(Y(O)) :PJ(Y(O))Pg(Y(O)) (10d)
Y(O)e)}dl

The model plays a crucial role in score esitimation by transforming infeasible samples Y(*)
from Line

in Algorithm [2[into feasible ones y{fﬁ. The conversion is achieved by putting the



control part U = uy.p of YO = [21.7; up.] into the dynamics Eq. recursively to get the dynam-
ically feasible samples Yd(o) (Line , which shares the same idea with the shooting method [24]] in
TO. MBD then evaluates the weight of each sample with p, (Y ()p;(Y(?) in Line One common
limitation of shooting methods is that they could be inefficient for long-horizon tasks due to the

combinatorial explosion of the constrained space py (V") o< [T, 1(g:(2,us) < 0), leading to low
constraint satisfaction rates. To address this issue, we will introduce demonstration-augmented MBD
in Section[4.3]to guide the sampling process from the state space to improve sample quality.

Algorithm 2 Model-based Diffusion for Trajectory Optimization
1: Input: Y™V «~ N (0,1)
2: fori=Nto1ldo o
3: Sample Y NN(\}/ﬁ7(ai1_1 —1)() |
Get dynamically feasible samples: yé” « rollout(Y®)

Calculate Y with Eq. 1! (model only) or Eq. (model + demonstration)

4

5:

6: Estimate the score Eq. 1) Vy i) logpi(Y(i)) ~ —% + Y2y (0)
; ,

8

1-a,
: Monte Carlo score ascent Eq. (@): Yy \/% (Y(i) +(1-@)Vy) logpi(Y(’)))
: end for

4.3 Model-based Diffusion with Demonstration

With the ability to leverage model information, MBD can also be seamlessly integrated with
various types of data, including imperfect or partial-state demonstrations by modeling them as
noisy observations of the desired trajectory p(Yemo | Y(?) ~ N(Y (), 52I). Given subopti-
mal demonstrations, sampling from the posterior p(Y(?) | Ygemo) o< 20(Y)p(Yaemo | Y(O)
could lead to poor solutions as the demonstration likelihood p(Ygemo | Y(O)) could dominate the
model-based distribution po (Y (?)) oc pg(Y(O)p; (Y O)p, (YD) and mislead the sampling pro-
cess. Rather, we assess Y (9 using p(Yemo | Y (), employing a similar technique to interchange
the distribution’s parameter with the random variable, as demonstrated in Eq. (§), to establish
pdemo(Y(O)) &< p(}/demo | Y(O)) o< N(Y(O) | )/demoa U2I)~

To accommodate demonstrations of varying qualities, instead of fixing target to po(Y(O) )P(Yiemo |
Y (), we propose seperating the po (Y (?)) from pgemo (Y (?)) to form a new target distributio

pE)(Y(O)) o< (1 - U)pd(Y(O) )pJ(Y(O))pg(Y(O)) + npdemo(y(o))pJ(}/demo)pg(Ydemo) (1 1)

where 7 is a constant to balance the model and the demonstration. Here, we have introduced two
extra constant terms Py (Ygemo) and pg(Yaemo) to ensure that the demonstration likelihood is properly

scaled to match the model likelihood pg (Y(O) ). With these preparations, we propose to adaptively
determine the significance of the demonstration by choosing 7 as follows:

_ 1 pd(Y(O) )p](Y(O) )pg (Y(O)) < pdemo(Y(O) )p.](Y:iemo)pg (Y:lemu) (12)
0 pd(Y(O) )pJ(Y(O) )pg (Y(O) ) 2 pdemo(Y(O) )pJ(Y:iemo)pg (Ydemo)~

When samples have a high model-likelihood pg, we ignore the demonstration and sample from the

model. Otherwise, we trust the demonstration. With the demonstration-augmented target distribution,

we modify the way to calculate Y () in Eq. li as follows to obtain the score estimate:

A YOy
po  Zroep e ) w(Y<°>):maX{ pa(Y Nps (Y )p, (V) } (13)
Zy ey WY ®) Paemo(Y )7 (Yaemo)Pg (Yaemo)

5 Experimental Results

The experimental section will focus on demonstrating the capabilities of MBD in: (1) its effectiveness
as a zeroth-order solver for high-dimensional, non-convex, and non-smooth trajectory optimization
problems, and (2) its flexibility in utilizing dynamically infeasible data to enhance performance and

3A comparison between the demonstration-augmented MBD and the vanilla MBD is illustrated in Fig. E]
with detailed breakdowns in Appendix [A.3]



regularize solutions. Our benchmark shows that MBD outperforms PPO by 59% in various control
tasks with 10% computational time.

Beyond control problems, in Appendix[A.2] we also show that MBD significantly improves sampling
efficiency by an average of 23% over leading baselines in high-dimensional (up to 800d) black-box
optimization testbeds [18 14} 148135134} 136]]. We also apply MBD to optimize an MLP network
with 28K parameters in a gradient-free manner, achieving 86% accuracy within 2s for the MNIST
classification task [2], which is comparable to the gradient-based optimizer (SGD with momentum,
93% accuracy).

Task CMA-ES CEM MPPI RL MBD

Hopper 1.12+0.10 0.65+0.12 0.91+0.15 1.40+0.04 1.53+0.03
Half Cheetah 0.44+0.10 0.22+0.15 0.20+0.14 1.59+0.05 2.31+0.19
Ant 1.18+0.52 0.85+£0.17 0.33+0.45 3.26+161 3.80+0.35
Walker2D 0.83+£0.04 1.06+0.04 0.90+0.05 1.09+0.28 2.63+0.23

Humanoid Standup  0.58 £ 0.01  0.47 +£0.01 0.53 +£0.05 0.83 +£0.02 0.99 +£0.07

Humanoid Running 0.60+0.11  0.41 +0.16 0.59+0.14 1.80 + 0.03 2.92+0.26

Push T 0.39+0.07 0.25+0.09 -0.13+0.09 -0.63+0.16 0.67+0.10
Table 2: Reward of different methods on non-continuous tasks.

Task CMA-ES CEM MPPI RL MBD
Hopper 29.3s 26.5s 26.4s 17m45.63s 26.5s
Half Cheetah 29.5s 26.4s 26.7s 4m18.8s 26.8s
Ant 18.4s 16.1s 16.0s 2m46.8s 16.2s
Walker2D 37.5s 34.5s 34.7s 5ml.5s 34.6s
Humanoid Standup 20.8s 17.6s 17.7s 4m29s 17.7s
Humanoid Running 30.8s 29.7s 29.6s 3m34.7s 30.0s
Push T 10m40.0s 10m32.0s 10m32.3s 67m25.6s 10m32.8s

Table 3: Computational time of different methods on non-continuous tasks.

5.1 MBD for Planning in Contact-rich Tasks

To test the effectiveness of MBD as a trajectory optimizer for systems involving non-smooth dynamics,
we run MBD on both locomotion and manipulation tasks detailed in Appendix[A.4.1} The locomotion
tasks includes hopper, half-cheetah, ant, walker2d, humanoid-standup, and humanoid-running. The
selected manipulation task, pushT [13], presents its own challenges due to the complexity introduced
by contact dynamics and the long-horizon nature of the task. These tasks are widely considered
difficult due to their hybrid nature and high dimensionality.

MBD is compared with the state-of-the-art zeroth-order optimization methods, including CMA-
ES [6]], CEM [10], and MPPI [50], as well as reinforcement learning (RL) algorithms (e.g., PPO [39]
and SAC [17]) on these tasks. Please note that we use MBD and zeroth-order baselines to generate
control sequences and replay them in an open-loop manner, whereas RL generates a closed-loop
policy. The RL implementation follows the high-performance parallelized framework from Google
Brax [[16] elaborated in Appendix[A.4.3] For the zeroth-order optimizer, we match the iteration and
sample number with the MBD. All the experiments were conducted on a single NVIDIA RTX 4070
Ti GPU. Quantitative metrics including the average step reward and the computational time tested
over 50 steps repeated for 8 seeds are reported in Tables 2] and [3] MBD substantially outperforms
zeroth-order optimization methods and even outperforms RL in most tasks. Specifically, for the
pushT task, MBD achieves a significantly higher reward than the RL algorithm thanks to its iterative
refinement process, which effectively explores the full control space while keeping fine-grained
control to precisely push the object. Compared with the computationally heavy RL algorithms, MBD
only requires one-tenth of time, which is similar to other zeroth-order optimization methods. The
optimization process of MBD is visualized in Fig. 3] where the iterative refinement process with the
model plays a crucial role in optimizing high-dimensional tasks.
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Figure 3: Optimization process of MBD on the (a) Humanoid Standup, (b) Push T, and (c¢) Humanoid
Running tasks. The trajectory is iteratively refined to achieve the desired objective in the high-
dimensional space with model information.
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Figure 4: MBD optimized trajectory with data augmentation on the (a) Humanoid Jogging and (b)
Car UMaze Navigation tasks. With , the trajectory is regularized and refined to
achieve the desired objective.

5.2 Data-augmented MBD for Trajectory Optimization

We also evaluate the performance of MBD with data augmentation on the Car UMaze Navigation and
Humanoid Jogging tasks to see how partial and dynamically infeasible data can help the exploration
of MBD and regularize the solution by steering the diffusion process.

For Car UMaze Navigation, the map blocked by U-shaped obstacles is challenging to explore given a
nonlinear dynamics model. Therefore, random shooting has a low chance of reaching the goal region.
To sample with loosened dynamical constraints, we augment MBD with data from the RRT [31]]
algorithm through goal-directed exploration with simplified dynamics. Fig. f[(b) shows the difference
between data-augmented MBD and data-free one: the former can refine the infeasible trajectory and
further improve it to reach the goal in less time, while the latter struggles to find a feasible solution.
The reason is that the infeasible trajectory from RRT serves as a good initialization for MBD, which
can be further refined to minimize the cost function with MBD.

For Humanoid Jogging, we aim to regularize the solution for the task with multiple solutions to the
desired one with partial state data. Due to the infinite possibilities for humanoid jogging motion, the
human motion data provide a good reference to regularize MBD to converge to a more human-like
and robust solution instead of an aggressive or unstable one [21}37]. We use data from the CMU
Mocap dataset [1]], from which we extract torso, thigh, and shin positions and use them as a partial
state reference. Fig.{a) demonstrates a more stable motion generated by data-augmented MBD.

6 Conclusion and Future Work

This paper introduces Model-Based Diffusion (MBD), a novel diffusion-based trajectory optimization
framework that employs a dynamics model to approximate the score function. MBD not only out-
performs existing methods in terms of sample efficiency and generalization, but also provides a new
perspective on trajectory optimization by leveraging diffusion models as powerful samplers. Future
directions involve theoretically understanding its convergence, optimizing the standard Gaussian for-



ward process using the model information, adapting it to online tasks with receding horizon strategies,
and exploring advanced sampling and scheduling techniques to further improve performance.
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A Appendix / Supplemental Material

A.1 Convergence of Distribution with Small \

We first give the definition of the volume of the sub-level set for cost J.
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Definition 1. Let F': R% - R be a measurable function. Define the volume of the sub-level set for a
given level t as:

VF(t):[Rd X{yerd:r(v)<ty (Y) dY,

where X denotes the indicator function.

The volume function V(%) plays a crucial role in linking geometric properties with probabilistic
outcomes in optimization and learning algorithms. This function provides a quantitative measure that
helps us to understand how changes in parameters like A influence the distribution and concentration
of probability mass.

The interplay between geometry and probability, represented by V;(t), is crucial for evaluating the
convergence and stability of algorithms. It provides a significant method for utilizing the PDF of the
random variable Y to constrain the CDF, thereby facilitating convergence in distribution.

Proposition 2. Given the target distribution’ Y ~ p(-) with P(Y) o< exp (—@) Y € RY, where
J is a cost function with miny J(Y) = 0 and Y* = argmin J(Y'), and assuming that the volume
Sunction V;(t) is bounded by polynomial inequalities:

Poly,(t) < Vy(t) < Polyu(t),

where Poly,(t) = Yty ckt® and Poly, (t) = Y ity cit® are polynomials with coefficients satis-
Sfying 02 =0 if and only if ci = 0. The exponent term satisfies that oy, € R, and 0 < ag < g < -+ <
apg < oo, It follows that:

lim J(Y') L Jw*)=o.
The cost value J(Y') converges in probability to J(Y ™) as X\ — 0.

The condition on the polynomial bounds of V() is generally not restrictive. For instance, consider
J =n.||Y = Y,||™, where Y* is the optimal point and 7. > 0 is any constant. In this case, V() =
Ctv%, where C'is a constant, meets the constraint in a straightforward way. This condition can be
extended beyond this simple scenario, as even if J has multiple modes, it can still adhere to this
polynomial constraint.

Proof. The convergence in distribution of Y towards Y * as A — 0 is established by analyzing the
behavior of the probability density function, defined up to a multiplicative constant. Consider the
density Yo ~ pA(Y') approximating Y* when X\ approaches zero.

PUY) <) = [ Y)dy, 14
GO s0= [ 6 (142
t
= Y)dYdx, (14b)
fo f{J(Y):w}p( )
f Ceap(-Z dyd (14c)
—_—— 5 C
. 0 ezp( A) {J(Y)=z} *
t
= [Femp(- 5T gy, (144)
0 AT dx
where Eq. 1) is valid since P(Y') o< exp (—@) and J(Y") represents the sufficient statistics of

the distribution. We can obtain Eq. (14d) by computing the derivative of V;(z) based on the volume
definition as shown in Definition[Il

We denote Jyi, = miny J(Y) = 0 and Jiux = maxy J(Y) with Jyax satisfying 0 < Jiyax < +00. We
proceed to analyze Eq. (I4d) by performing integration by parts as shown in Eq. (T5a)).

R XU /R R PO

t Jmax sz\x
=exp (_X) Vi(t)

+ —
A Imin

t
exp|—— | Vy(t)dt. (15b)
. ( )\) !

To establish convergence in probability, we need to demonstrate that for any small € > 0 and 6 > 0,
there exists sufficiently small A\ > 0, such that

€ _t
fJO,eXp( At)dv"(t) >1-6. (16)
Jo ™ exp (_X) dv(t)

P(J(Y) <€) =
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where the equality is due to Eq. 1} Setting §’ = %, it suffices to show that:

foeexp(—i)dVJ(t) S5
S exp (<£)dva(t)

7)

Assuming without loss of generality that Jp,x = co, becuase dV;(t) > 0, exp(—%) > 0, we have:

Jo exp (—*)dVJ § IN exp( %)dVJ(t) .
/. '““Xexp(—x)dVJ(t) L= exp (- f)dVJ(t)

(18)

This ratio as in Eq. can be expanded using the integral bounds and the polynomial approximations
for V;(t),then it suffices to show that

fO6 exp (_§) dVJ(t) >

[Zexp(-L)avy(t) ~
By inserting Eq. into both the numerator and denominator on the LHS of Eq. (I9), we obtain
Jo exp(=£)dV;(t) _eap(=5)V(e) + T Jo exp(=£)Vy(t)dt

19)

[T eap(DaVi(t)  =eap(-=5)V(O) + & [T eap(- Vot (200)
J Jo exp(=)Vu(t)dt

- fe exp(-L)V;(t)dt (20b)

fO €LL‘p( ,\) Zk Ocktakdt 00

_fe exp(-L) Tpl, citondt

To bound the expression in Eq. (20c)), we first derive the following integrals by utilizing a change of
variables x = § , which simplifies the expressions:

f exp (—i) % dt = \k+1 —/X exp(—x)x™* dx, (21a)
0 A 0
ﬂ exp (—;) % dt = AP f exp(—x)x** dx. (21b)

A

For these transformed integrals, we can observe that [~ exp(-z)2z®* dz = T'(oy, + 1), the gamma
function, which is well-defined for all non-negative «.. Given that ¢’ is a function of ¢ , by applying
the intermediate value theorem and definition of the limit of the integral, we can choose € in such a
way that:

/ek exp(—z)z** dx > cxd’ I(ak+1)
Xp(— < )
0 P 1+ Cké' g

where ¢ = ’“ denotes the ratio of coefficients in polynomial lower and upper bounds for Vj(t).

By selectmg emax = maxe€g, €1, -, €)7 to be the maximum of all such ¢, ensuring coverage for all
polynomial terms up to M, we establish that:

Jo™ exp (=%) chtox dt
Jom exp (=5) et dt

>§', forallk=0,1,..., M. (22)

By ensuring that A < —*, we can conclude:

Jo exp (-3) Titocit™dt (23)
[ exp (_X) Zﬁio cutor dt '

Thus, the condition specified in Eq. (I6) is satisfied, validating that the distribution of Y converges in
distribution to Y* as A approaches zero.

O
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By adding another mild assumption regarding the landscape of J near the global optimum, we can
demonstrate the convergence of the random variable Y itself, rather than the convergence of J(Y).

Definition 3. We denote the minimum of the complementary set of neighborhood as:

J5(@) = min J(V) = I(Y),

Proposition 4. Given the context and conditions specified in Definitions[I|and[3|and Proposition 2]
and given that J has only one golbal minimizer Y*, i.e. there exist small 5%, that for § € (0,6%],
J5(0) is strictly increasing, and J5(6*) < oo. It follows that:

limY & v*.
A—=0

The random variable Y converges in probability to Y™ as A — 0.
Proof. In order to prove that limy_,0 Y 2 Y*. We need to prove that for any sufficient small v > 0
and 0 > 0, there exists small A > 0, such that
P(|Y -Y"|<d)>1-~ (24)
From Definition [3|and due to the strict increase of J3(9),
[V -Y*[ <6, VY e{YeR!|J(Y)-J(Y*)<J5(5)}, (25)

where 0 < 6 < 6*. Because if [V — Y™ >4, J(Y) - J(Y™) < J5(d) = minjy_y« 55 J(Y) = J(Y™)
contradicts Definition 3]

Given that limy_o .J(Y') 2 J(Y*). and any sufficient small ¢,y > 0.

PJ(Y)-J(Y)<e)>1-7 (26)
Therefore, 3\ > 0, such that
PJ(Y)-J(Y*) < J5(8)) 2 1-+. 27)
And From Eq. (25), we have that
P(JY-Y*|<8)2P(J(Y)-J(Y ") <Jz(6) 21 -~ (28)

We have that Y converges in probability to Y ,i.e, limy_oY Ly~
O

Proposition 5. Given the context and conditions specified in Propositions 2| and | and the way
we define the forward process as in Eq. (3). The diffused Y; converge in density to a Gaussian

distribution.
lim YO S N (V@Y VI=ail),
where Y ) ~ pi(-) as in Eq. (3).

Proposition[3]is derived by using Slutsky’s theorem on Proposition {] and offers insight into choosing
the stepsize as discussed in Section 4.1}

A.2 Black-box Optimization with MBD

As a zeroth order optimizer, MBD is capable of addressing both trajectory optimization and broader,
high-dimensional unconstrained optimization challenges. Such black-box optimization tasks are
universally acknowledged as difficult [6} [54]]. We first show superior performance of MBD within
this black-box optimization context. In such settings, the Bayesian Optimization technique struggles
due to the computational intensity required to develop surrogate models and identify new potential
solutions [[14]. Alternative black-box optimization strategies [[L8] are not limited by computational
issues but tend to be less efficient because they do not estimate the black-box function as accurately.
MBD’s effectiveness is evaluated using two well-known highly non-convex black-box optimization
benchmarks: Ackley [4] and Rastrigin [8]], each tested across three different dimensionalities. Com-
parisons were made with CMA-ES [18], TuRBO [14], LA-MCTS [48]], HesBO [33], Shiwa [34]], and
BAxUS [36].
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Figure 5: Performance of MBD on high-dimensional black-box optimization benchmarks. MBD
outperforms other Gaussian Process-based Bayesian Optimization methods by a clear margin.

Fig. [5| shows the performance of MBD on the Ackley and Rastrigin benchmarks. MBD demonstrates
superior performance over other algorithms for several reasons. Firstly, the implementation of a
scheduled forward process that determines the total number of samples consequently boosts sample
efficiency. Secondly, the application of Monte Carlo score ascent on various log p; (Y (¥)) facilitates
its escape from local optima of varying scales. It is important to acknowledge that comparing
computational efficiency may not be entirely fair, given that black-box optimization problems
typically involve functions that are costly to evaluate. However, MBD markedly outperforms other
Gaussian Process-based Bayesian Optimization approaches, achieving computational time savings of
more than twentyfold, similar to the improvements observed with different evolutionary optimization
strategies.

Here are the implementation detail for the benchmarks. For the BO benchmarks, the experiments
were conducted on an A100 GPU because of the high computational demands of the Gaussian Process
Regression Model it incorporates.

TuRBO: TuRBO is implemented based on tutorials from Botorch [§].

LA-MCTS: LA-MCTS, we refer to authors’ reference implementations, and use TuRBO as its local
BO solver [48]].

HesBO: For HesBO, we refer to authors’ reference implementations [35]. We transformed default
GP component into Gpytorch version for faster inference speed on GPU. We set the embedding
dimension to 20 for all tasks

CMA-ES: We use pycm;ﬂ to implement CMA-ES, and use default setting except setting population
size eqauls to batch size.

Shiwa: We use Nevergra(f] to implement Shiwa, and use default setting to run experiments.

BAxUS: We refer to the authors’ reference implementations [36].

A.2.1 MBD for DNN Training without Gradient Information

To further demonstrate the effectiveness of MBD in high-dimensional systems, we apply MBD to
optimize an MLP network for MNIST classification [2] without access to the gradient information.
MBD achieve 85.5% accuracy with 256 samples within 2s, which is comparable to the performance
of the SGD optimizer with momentum (92.7% accuracy). We use MLP with 2 hidden layers, each
with 32 neurons, and ReL.U activation function. The input is flattened to 784 dimensions, and the
output is a 10-dimensional vector. We use cross-entropy loss as the objective function. The network
has 27,562 parameters in total, which makes sampling-based optimization challenging. MBD can
effectively optimize the network with a small number of samples, demonstrating its effectiveness in
high-dimensional black-box optimization tasks.

“Ihttps://github.com/CMA-ES/pycmal
“https:// github.com/facebookresearch/nevergradl
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A.3 MBD with Demonstration Explaination

Data-augmented MBD calculate the score function with demostration as follows:

. 1 ) )

yi-h = Nz (YD 4+ (1-a:)Vyo logp(Y™)) (29)
. y(@® & -

Vyo logp (YD) = - VTR0 (30)

1l-a; 1-ay
zy(O)eyy) Y(O)w(Y(O))
Zy(o)ey{(ii) w(Y ()

0)y _ (0) (0) (0)
v (O _ Wmodel (Y) = pa(Y ") ps (Y )pg (YH), } )
w(¥7) max{ 0aemo (Y ©)) = Paemo(Y O (Yaemo)pg (Yaemo) | 2

where Y@ = 31
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Figure 6: MBD with data vs. without data on a nonconvex function with constraints ||Y| - 0.4| > 0.3.

We want MBD converge to the optimal point * with the help of demonstration data @. Although the
demostration point is not optimal, MBD can still converge to the optimal point with the guidance of
the demonstration data. Here data serves as a regularization term to guide the diffusion process to the
negative optimal point while allowing to use model further to refine the solution.

where demonstrate likelihood term wdemo(Y(O)) will draw samples towards data without considering

ZY(O)Ey(i) Y(O)pdemo(Y(O)) .
d = Y4emo- The score function would be

the model. Given w = Wyeme, ¥ (V) =
- ZY(O)Ey((ii) Pdemo (Y (0))

; ) ; . .. . ..
Vy @ log pi(Y(Z)) =X 4 ﬂ_’}/ﬁemo, which means the score function is a linear combination of

1—0[7; l—ai
the current sample and the demonstration data.
If we don’t use Eq. and employ the posterior distribution p(Y(O) [Yiemo) o< po( y(©) )Pdemo ( y(©) ),
it will yields update weights w = WdemoWmodel, Which will draw samples to both model and demonstra-
tion data. If the demonstration data is not optimal, the final solution will be a compromise between
the model and demonstration data. In Fig. |6} the resulted solution will lie between optimal point *
with the help of demonstration data @.

Using the max function in w can aviod this issue. In the early stage while p ](Y(O)) is low due to poor
sample quality, Wgemo Will dominate thanks to the high pj(Yaemo ). This will draw samples towards
the demonstration data as shown in the earlier stage of Fig.[6] As the sample quality improves and
p7(Y ) > b7 (Yiemo)s Winoder Will dominate and the sample will converge to the optimal point.

A.4 Experiment Details

A.4.1 Simulator and Environment

We leverage the GPU-accelerated simulator Google Brax [16] to design the locomotion and manipula-
tion tasks. All task is set to use positional backend in Brax except for the pushT task, which uses the
generalizable backend for better contact dynamics simulation. Here we provide a brief description of
each task implementations:
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1. Ant: The Ant task is a 3D locomotion task where the agent is required to move forward as
fast as possible. The reward is composed of the forward velocity of the agent and control
cost, same as the original Brax implementation. The control dimension is 8.

2. Hopper: The Hopper task is a 2D locomotion task where the agent is required to jumping
forward as fast as possible. We use the same reward function as the original Brax implemen-
tation. We modify the simulation substeps from 10 to 20 for longer planning horizon given
the same control node. The control dimension is 3.

3. Walker2d: The Walker2d task is a 2D locomotion task where the agent is required to walk
forward. The reward is composed of keep the agent upright and moving forward. The
control dimension is 6.

4. Halfcheetah: The Halfcheetah task is a 2D locomotion task where the agent is required
to run forward. The reward is composed of the forward velocity of the agent and control
cost. We follow the same reward function as the original Brax implementation. The control
dimension is 6.

5. Humanoidrun: The Humanoidrun task is a 3D locomotion task where the agent is required
to run forward. The reward is composed of the forward velocity of the agent and standing
upright. Here we also modify the simulation substeps from 10 to 20 for longer planning
horizon. The control dimension is 17.

6. Humanoidstandup: The Humanoidstandup task is a 3D locomotion task where the agent
is required to stand up. The reward is the upright torso position of the agent. The control
dimension is 17.

7. PushT: The PushT task is a 2D manipulation task where you can apply force to a sphere
to push the T-shaped object to the target location. The reward is composed of the distance
between the target and the object and orientation difference between the target and the object.
To make the task more challenging, we randomize the target location 20cm away from the
initial position and make sure the rotational angle is greater than 135 degrees, which makes
it hard to solve the task with single continous contact policy. The control dimension is 2.

8. Car2D: We implement a 2D car task with standard bicycle dynamics model, where state
isx = [x,y,0,v,0], and action is v = [a,d]. The dynamics is defined as & = f(x,u) =
[vcos(8),vsin(0), 7 tan(d),a,d]. The constraints are defined as the U-shape area in the
middle of the map, where the car cannot enter. The reward is composed of the distance
between the target and the car and the control cost. The control dimension is 2.

A.4.2 MBD Hyperparameters

In general, MBD is very little hyperparameters to tune compared with RL. We use the same hyperpa-
rameters for all the tasks, with small tweaks for harder tasks.

Task Name Horizon Sample Number Temperature A
Ant 50 100 0.1
Halfcheetah 50 100 04
Hopper 50 100 0.1
Humanoidstandup 50 100 0.1
Humanoidrun 50 300 0.1
Walker2d 50 100 0.1
PushT 40 200 0.2

Table 4: MBD hyperparameters for various tasks

For diffusion noise schedulling, we use simple linear scheduling Gy = 1 x 1074 and By =1x 1072,
and the diffusion step number is 100 across all tasks. Each step’s «; is calculated as o; = 1 - 3;.

A.4.3 Baseline Algorithms Implementation

For reinforcement learning implementation, we strictly follow the hyperparameters and implementa-
tion details provided by the original Brax repository, which optimize for the best performance. For
our self-implemented PushT task, the hyperparameters is ported from Pusher task in Brax for fair
comparison. The hyperparameters for the RL tasks are shown in Table [5|and Table[6]

For the zeroth order optimization tasks, we the same hyperparameters as the MBD algorithm.
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Environment Algorithm  Timesteps Reward Scaling Episode Length

Ant PPO 100M 10 1000
Hopper SAC 6.55M 30 1000
Walker2d PPO 50M 1 1000
Halfcheetah PPO 50M 1 1000
Pusher PPO 50M 5 1000
PushT PPO 100M 1.0 100

Humanoidrun PPO 100M 0.1 100

Humanoidstandup PPO 100M 0.1 1000

Table 5: General RL configuration for various environments

Environment Minibatches Updates/Batch  Discounting Learning Rate
Ant 32 4 0.97 3x107*
Hopper 32 4 0.997 6x1074
Walker2d 32 8 0.95 3x 107
Halfcheetah 32 8 0.95 3x107
Pusher 16 8 0.95 3x107%
PushT 16 8 0.99 3x 1074
Humanoidrun 32 8 0.97 3x 1074
Humanoidstandup 32 8 0.97 6x 1074

Table 6: RL specifics for various environments

A.4.4 Demonstration Collections

For RRT algorithm in Car2D task, we set the max step size to 0.2, and the max iterations to 1000
given the maximum episode length is 50.

For the demonstration collection in Humanoid Jogging task, we first download the mocap data which
contains each joints’ position in the world frame. Then we use the joint data to calculate the position
of torso, thigh and shin position as partial state reference for our task.

19



	Introduction
	Related Work
	Problem Statement and Background
	Model-Based Diffusion
	Model-based Diffusion as Multi-stage Optimization
	Model-based Diffusion for Trajectory Optimization
	Model-based Diffusion with Demonstration

	Experimental Results
	MBD for Planning in Contact-rich Tasks
	Data-augmented MBD for Trajectory Optimization

	Conclusion and Future Work
	Appendix / Supplemental Material
	Convergence of Distribution with Small 
	Black-box Optimization with MBD
	MBD for DNN Training without Gradient Information

	MBD with Demonstration Explaination
	Experiment Details
	Simulator and Environment
	MBD Hyperparameters
	Baseline Algorithms Implementation
	Demonstration Collections



