
LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM Inference

Qichen Fu 1 Minsik Cho 1 Thomas Merth 1 Sachin Mehta 1 Mohammad Rastegari* 2 Mahyar Najibi 1

Abstract
The inference of transformer-based large lan-
guage models consists of two sequential stages:
1) a prefilling stage to compute the KV cache of
prompts and generate the first token, and 2) a de-
coding stage to generate subsequent tokens. For
long prompts, the KV cache must be computed
for all tokens during the prefilling stage, which
can significantly increase the time needed to gen-
erate the first token. Consequently, the prefilling
stage may become a bottleneck in the generation
process. An open question remains whether all
prompt tokens are essential for generating the
first token. To answer this, we introduce a novel
method, LazyLLM, that selectively computes the
KV for tokens important for the next token pre-
diction in both the prefilling and decoding stages.
Contrary to static pruning approaches that prune
the prompt at once, LazyLLM allows language
models to dynamically select different subsets of
tokens from the context in different generation
steps, even though they might be pruned in pre-
vious steps. Extensive experiments on standard
datasets across various tasks demonstrate that
LazyLLM is a generic method that can be seam-
lessly integrated with existing language models
to significantly accelerate the generation without
fine-tuning. For instance, in the multi-document
question-answering task, LazyLLM accelerates
the prefilling stage of the LLama 2 7B model by
2.34× while maintaining accuracy.

1. Introduction
Standard prompt-based LLM inference has two sequential
stages: prefilling and decoding, as shown in Figure 3. Dur-
ing the prefilling stage, the model computes and saves the
KV cache of each token from the prompt, and predicts the
first token. We refer to the time taken during prefilling
stage as “time-to-first-token” (TTFT). Following the pre-
filling stage is the decoding stage, where the model reuses

1Apple 2Meta (*Work done while at Apple).

cached KVs to decode the next token iteratively until the
stop criteria are met.

During the prefilling stage, all tokens from the prompt are
used by all transformer layers. For long prompts, TTFT
could be slow because state-of-the-art transformer-based
LLMs are both deep and wide (Pope et al., 2023; Kim et al.,
2023; Aminabadi et al., 2022), and the cost of computing
attention increases quadratically with the number of tokens
in the prompts. For instance, Llama 2 (Touvron et al., 2023),
with 7 billion parameters, stacks 32 transformer layers with
a model dimension of 4096. In this scenario, TTFT requires
21× the walltime of each subsequent decoding step, and
accounts for approximately 23% of the total generation time
on the LongBench benchmark1 (Bai et al., 2023). Therefore,
optimizing TTFT is a critical path toward efficient LLM
inference (NVIDIA, 2024).

While optimizing LLM inference is an active area of re-
search, many methods (Leviathan et al., 2023; Cai et al.,
2024; Zhang et al., 2024; Bhendawade et al., 2024; Li et al.,
2024) have focused on improving inference speed during
the decoding stage. Yet, there is little attention given to im-
proving TTFT . We note that some compression-based works
implicitly improve the TTFT by reducing the size of LLMs
(Frantar et al., 2022; Sun et al., 2023; Ma et al., 2023). How-
ever, an orthogonal line of research(Li et al., 2023; Jiang
et al., 2023; Dao et al., 2022) investigates how TTFT can be
improved given a static transformer architecture. Within this
line of research, a natural question arises: Are all prompt
tokens essential for generating the first token?

LLM profiling on the LongBench benchmark (Bai et al.,
2023) in Figure 4 reveals that the attention scores of input
tokens w.r.t. to the first generated token are very sparse, in-
dicating that many tokens in the input prompt are redundant
and can be removed without affecting the next token pre-
diction. To this end, we propose LazyLLM, a novel, simple,
yet effective technique tailored for speeding up prefilling.
As depicted in Figure 1, in each generation step, LazyLLM
selectively computes the KV for tokens important for the
next token prediction and “lazily” defers the computation of
remaining tokens to later steps when they become relevant.
We propose using the attention score of the prior transformer

1The average LongBench prompt length is 3376 tokens and the
average generation length is 68 tokens.

1



Accumulated # of Token Computed

LazyLLM is a training free token pruning technique to improve LLM inference with negligible Iteration #1 (Prefiling) 13

LLM LazyLLM is a training free token pruning technique to improve LLM inference with negligible performanceIteration #2 14

LazyLLM is a training free token pruning technique to improve LLM inference with negligible performance lossIteration #3 15

LazyLLM improve inference with negligible Iteration #1 (Prefiling) 4

LazyLLM LazyLLM improve LLM inference with negligible performanceIteration #2 6

LazyLLM improve LLM inference with negligible performance lossIteration #3 7

red: token in computation yellow: retrieved from KV cache green: saved in KV cache but not used : not yet computedblack: generated token

Figure 1. Comparison between standard LLM and LazyLLM. Instead of computing the KV cache of all input tokens at the prefilling stage,
LazyLLM only selectively computes the tokens that are important to the next token prediction, deferring the computation of remaining
tokens to later steps. LazyLLM significantly optimizes TTFT by reducing the amount of computation during prefilling. Moreover, as some
tokens in the prompt are never selected by LazyLLM during the whole generation process (even though theoretically the model could use
all tokens in the prompt), LazyLLM also reduces the total amount of computation and accelerates the overall generation.

layer to measure the importance of tokens and progressively
prune tokens along the depth of the transformer. In con-
trast to prompt compression works (Li et al., 2023; Jiang
et al., 2023; Xu et al., 2023), which permanently reduce the
prompt for all the following generation steps, our method
allows the model to revive previously pruned tokens, which
we found crucial to retain accuracy. Extending progressive
token pruning to all generation steps is non-trivial. Specifi-
cally, if a token is pruned at generation step t, and is revived
at generation step t′ > t, some hidden states would need to
be recomputed during step t′. To avoid such repetitive com-
putation, we employ an additional caching mechanism, Aux
Cache, to cache the hidden states of pruned tokens. This en-
ables a computationally efficient pathway to revive pruned
tokens, and ensures that the worst runtime of LazyLLM is
never slower than the baseline.

In summary, the advantages of LazyLLM are: LazyLLM
is: (1) Universal: LazyLLM can be integrated with any ex-
isting transformer-based LLM to improve inference speed,
(2) Training-free: LazyLLM doesn’t require any finetuning
and can be directly integrated without any parameter mod-
ification, (3) Effective: Empirical results on 16 standard
datasets across 6 different language tasks shows LazyLLM
can improve the inference speed of the LLM during both
prefilling and decoding stages.

2. Method
2.1. LazyLLM Inference

The overview of the proposed LazyLLM framework is il-
lustrated in Figure 2. LazyLLM starts with the full con-
text and progressively prunes tokens to gradually reduce
the number of computations towards the end of the model.

Note, LazyLLM allows the model to select different sub-
sets of tokens from the context in different generation steps,
even though some of them may be pruned in previous steps.
Compared to static pruning which prunes all the tokens at
once, dynamic pruning optimizes the next token prediction
in each generation step, which is crucial to retaining the
performance.

Progressive Token Pruning. Prior to this work, token
pruning has been successfully applied to optimize LLM
inference (Zhang et al., 2024; Li et al., 2024; Adnan et al.,
2024; Nawrot et al., 2024). However, these approaches
require accumulating the full attention maps of predicting
the first few tokens to profile the importance of prompt
tokens before starting pruning. Consequently, they are not
applicable to reduce TTFT as they still require computing
all the KV cache at the prefilling stage.

In contrast, LazyLLM only “lazily” computes the tokens
that are important to predict the next token by starting from
the first iteration of the inference (the prefilling step). A
key challenge to pruning tokens in the first iteration is deter-
mining their importance. Inspired by the early exiting work
(Elhoushi et al., 2024) which shows the token hidden states
gradually evolve through the transformer layers, we apply
layer-wise token pruning in each generation step. Specifi-
cally, we use the attention map of the layer Al ∈ RH×N×N

to determine the importance of input token ti w.r.t. the next
token to be predicted as

sli =
1

H

H∑
h=1

Al
h,i,N (1)

where H denotes number of attention heads, N is the se-
quence length, and Ah,i,j is the attention probability of the

2



30% Layers

Transformer

10% Layers

30% Layers

Next Token

N
 Iterations

30% Layers

Prune 30% tokens

Prune 30% tokens

Prune 30% tokens

Attention Matrix 
from Last Layer Keep TopK Percentile

Layer l+1
KV Cache

(T1 T8)

Layer l+1
KV Cache

(T1 T8 T3 T5 T9)

Transformer Layer

T1 T5T2 T7T3 T8T4 T9T6

T1 T3 T9T8T5

Following Layers

Update

(a) LazyLLM Inference (b) Layer-wise Token Prune

Layer l
Aux Cache

(T2 T3)

Layer l
Aux Cache

(T2 T3 T4 T7)

T1 T5T3 T8 T9

add to 
Aux Cache

add to 
Aux Cache

T1 T3 T9T8T5

T1 T3 T9T8T5

Layer l

Retrieve

Retrieve hidden states 
of tokens that missing KV

Previous Layers

Update

Token in KV Cache
(No Computing Needed)

Token in Hidden States
(Needs Computing)

Token in Aux Cache
(Needs Computing)

Layer l+1

Append

Full Input Sequence with N tokens

Transformer Layer

Figure 2. Overview of the LazyLLM framework. LazyLLM starts with the full context and progressively prunes tokens to gradually reduce
the number of computations towards the end of the model.

token tj attending to token ti at hth head.

After computing the confidence scores of tokens, it is chal-
lenging to determine the threshold value to prune the token.
Concretely, the threshold can change as the distribution of
the attention scores varies between different layers and dif-
ferent tasks. We address this challenge by using the top-k
percentile selection strategy to prune tokens. Specifically,
token ti is pruned at layer l + 1 if its confidence score sli is
smaller than klth percentile among the input tokens. Once
the token is pruned, it is excluded from the computation of
all successive layers. In other words, the tokens used in the
later layers will be a subset of previous layers.

Aux Cache. In the prefilling stage, there is no KV cache
and every token is represented by hidden states. Thus, pro-
gressive token pruning can be implemented by removing
pruned tokens’ hidden states. However, extending the pro-
gressive token pruning to the following decoding steps is
non-trivial. This is because each decoding step leverages the
KV cache computed in the prefilling to compute attention.

As the LazyLLM performs progressive token pruning at the
prefilling stage, the KV of tokens pruned at layer l (e.g. T4
in Figure 2) will not exist in the KV cache of layer l+1. As
a reminder, the LazyLLM framework allows each generation
step to pick a different subset set of tokens from the full
input token sequences in every step, regardless of whether
they are pruned in previous generation steps or not. For
example, during the following decoding steps, those pruned
tokens (e.g. T4) that do not exist in the KV cache of layer
l+1 may be re-selected to compute attention. In such cases,
the model can not retrieve the KV cache of these tokens.
An intuitive solution is to pass those tokens again from the
beginning of the transformer. However, that would cause
repetitive computation for the same token, and eventually
slow down the whole generation.

To tackle this challenge, we introduce Aux Cache in addition
to the original KV cache, which stores the hidden states of
those pruned tokens (e.g. T4 and T7 in Figure 2) if their
KV is not present in the following layer’s KV cache, which
could be potentially retrieved for the following iterations.

3



Tasks Method
Llama 2 XGen

Score TTFT Speedup (×) Score TTFT Speedup (×)

Single-Document QA

Baseline 25.79 1.00 25.19 1.00

Random Token Drop 20.05 1.20 18.32 1.58

Static Token Pruning 21.89 1.18 19.30 1.61

Prompt Compression 22.88 0.12 15.31 0.20

LazyLLM (Ours) 25.59 1.36 25.00 1.96

Multi-Document QA

Baseline 22.43 1.00 20.71 1.00

Random Token Drop 16.77 1.19 14.86 1.37

Static Token Pruning 19.93 2.16 17.23 2.11

Prompt Compression 8.42 0.13 11.56 0.19

LazyLLM (Ours) 22.31 2.34 20.68 2.65

Summarization

Baseline 24.65 1.00 24.85 1.00

Random Token Drop 24.39 1.39 24.47 1.70

Static Token Pruning 24.59 1.33 24.46 1.65

Prompt Compression 25.16 0.12 24.57 0.17

LazyLLM (Ours) 24.75 1.46 24.74 1.91

Few-shot Learning

Baseline 62.90 1.00 56.40 1.00

Random Token Drop 53.93 1.19 46.35 1.62

Static Token Pruning 56.54 2.16 51.93 3.17

Prompt Compression 24.18 0.10 23.72 0.15

LazyLLM (Ours) 62.81 2.19 56.12 3.42

Synthetic

Baseline 4.97 1.00 5.40 1.00

Random Token Drop 3.57 1.18 2.53 1.13

Static Token Pruning 2.81 2.15 3.00 4.14

Prompt Compression 3.20 0.12 1.42 0.17

LazyLLM (Ours) 4.98 2.89 5.66 4.77

Code Completion

Baseline 55.18 1.00 36.49 1.00

Random Token Drop 44.92 1.23 32.34 1.57

Static Token Pruning 37.51 1.84 32.27 2.97

Prompt Compression 17.45 0.49 11.38 0.69

LazyLLM (Ours) 53.30 1.94 36.47 3.47

Table 1. Comparisons of TTFT speedup vs. accuracy on various tasks. Without requiring any training/finetuning, LazyLLM consistently
achieves better TTFT speedup with negligible accuracy drop. Note that the prompt compression approach fails at improving TTFT because
the overhead of running LLMs to compress the prompt is very computationally expensive.

As shown in Figure 2, in each decoding step, each trans-
former layer (e.g. layer l+1) first retrieves the KV cache of
past tokens if they exist (e.g. T1 and T8). For those tokens
that do not exist in the KV cache (e.g. T3), we could retrieve
their hidden states from the Aux Cache of its previous layer
directly instead of passing through previous layers again.
The introduction of Aux Cache ensures that each token is
computed at most once in every transformer layer, and en-
sures the worst runtime of LazyLLM is not slower than the
baseline.

3. Experiments
We examine our method using two large language models:
Llama 2 (Touvron et al., 2023) 7B and XGen (Nijkamp
et al., 2023) 7B. We compare our method with baselines
using the same publicly released pretrained checkpoints,
without employing any additional training. We perform ex-
periments using LongBench (Bai et al., 2023), a multi-task
benchmark for long content understanding. The LongBench
comprises 16 datasets and covers 6 tasks including single-

doc QA, multi-doc QA, summarization, few-shot learning,
synthetic tasks, and code completion. We refer readers to
the Appendix E for more experimental details and results.

3.1. Results

Table 1 presents the TTFT speedup vs. accuracy compar-
isons between LazyLLM, standard LLM, and other baselines.
In the table, the “baseline” refers to the standard LLM infer-
ence. The “random token drop” baseline is based on (Yao
et al., 2022) that randomly prunes the prompt tokens before
feeding them to the LLMs. We report the average metrics
across 5 runs for the “random token drop” baseline. Our
“static token pruning” baseline prunes input tokens at once
based on their attention score of the first few transformer
layers during the prefilling stage. We also compare with the
prompt compression method (Li et al., 2023) which pruning
redundancy in the input context using LLMs. The results in
Table 1 show the proposed LazyLLM consistently achieves
better TTFT speedup with negligible accuracy drop across
multiple tasks.

4



References
Adnan, M., Arunkumar, A., Jain, G., Nair, P. J., Solovey-

chik, I., and Kamath, P. Keyformer: Kv cache reduction
through key tokens selection for efficient generative in-
ference. arXiv preprint arXiv:2403.09054, 2024.

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C.,
Li, D., Zheng, E., Ruwase, O., Smith, S., Zhang, M.,
Rasley, J., et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15.
IEEE, 2022.

Anagnostidis, S., Pavllo, D., Biggio, L., Noci, L., Lucchi, A.,
and Hofmann, T. Dynamic context pruning for efficient
and interpretable autoregressive transformers. Advances
in Neural Information Processing Systems, 36, 2024.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bhendawade, N., Belousova, I., Fu, Q., Mason, H., Raste-
gari, M., and Najibi, M. Speculative streaming: Fast
llm inference without auxiliary models. arXiv preprint
arXiv:2402.11131, 2024.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv preprint arXiv:2309.12307,
2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Elhoushi, M., Shrivastava, A., Liskovich, D., Hosmer, B.,
Wasti, B., Lai, L., Mahmoud, A., Acun, B., Agarwal,
S., Roman, A., et al. Layer skip: Enabling early exit
inference and self-speculative decoding. arXiv preprint
arXiv:2404.16710, 2024.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

He, X., Keivanloo, I., Xu, Y., He, X., Zeng, B., Rajagopalan,
S., and Chilimbi, T. Magic pyramid: Accelerating infer-
ence with early exiting and token pruning. arXiv preprint
arXiv:2111.00230, 2021.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. Llmlin-
gua: Compressing prompts for accelerated inference of
large language models. arXiv preprint arXiv:2310.05736,
2023.

Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W.,
Hassoun, J., and Keutzer, K. Learned token pruning for
transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 784–794, 2022.

Kim, S., Hooper, C., Wattanawong, T., Kang, M., Yan, R.,
Genc, H., Dinh, G., Huang, Q., Keutzer, K., Mahoney,
M. W., et al. Full stack optimization of transformer infer-
ence: a survey. arXiv preprint arXiv:2302.14017, 2023.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Y., Dong, B., Lin, C., and Guerin, F. Compressing
context to enhance inference efficiency of large language
models. arXiv preprint arXiv:2310.06201, 2023.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A.,
Ye, H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm
knows what you are looking for before generation. arXiv
preprint arXiv:2404.14469, 2024.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Merth, T., Fu, Q., Rastegari, M., and Najibi, M. Su-
perposition prompting: Improving and accelerating
retrieval-augmented generation. 2024. URL https:
//api.semanticscholar.org/CorpusID:
269033436.

Nawrot, P., Łańcucki, A., Chochowski, M., Tarjan, D.,
and Ponti, E. M. Dynamic memory compression:
Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

5

https://api.semanticscholar.org/CorpusID:269033436
https://api.semanticscholar.org/CorpusID:269033436
https://api.semanticscholar.org/CorpusID:269033436


Nijkamp, E., Xie, T., Hayashi, H., Pang, B., Xia, C., Xing,
C., Vig, J., Yavuz, S., Laban, P., Krause, B., et al. Xgen-
7b technical report. arXiv preprint arXiv:2309.03450,
2023.

NVIDIA. NVIDIA L40S: Unparalleled AI
and graphics performance for the data cen-
ter. https://resources.nvidia.com/
en-us-l40s/l40s-datasheet-28413, 2024.
[Online; accessed 31-May-2024].

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Heek, J., Xiao, K., Agrawal, S., and Dean, J. Efficiently
scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Xu, Z., Liu, Z., Chen, B., Tang, Y., Wang, J., Zhou, K., Hu,
X., and Shrivastava, A. Compress, then prompt: Improv-
ing accuracy-efficiency trade-off of llm inference with
transferable prompt. arXiv preprint arXiv:2305.11186,
2023.

Yao, Z., Wu, X., Li, C., Holmes, C., Zhang, M., Li, C., and
He, Y. Random-ltd: Random and layerwise token drop-
ping brings efficient training for large-scale transformers.
arXiv preprint arXiv:2211.11586, 2022.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36, 2024.

6

https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413
https://resources.nvidia.com/en-us-l40s/l40s-datasheet-28413


A. Overview
This document provides related work in Appendix B, additional method explanation in Appendix C and implementation
details in Appendix D. We also include additional experimental results and analysis in Appendix E, and final conclusion in
Appendix F

B. Related Work
The increase in the scale of large language models (LLMs) has greatly enhanced their performance but also introduced
challenges with respect to their inference efficiency. The inference of generative LLMs consists of two distinct stages as
depicted in Figure 3. In particular, extensive computation is needed under long context scenarios to calculate the full KV
cache during the prefilling stage, resulting in a long time-to-first-token (TTFT). This delay causes users to wait several
seconds after submitting a prompt before receiving any response from the agent, leading to a poor user experience.

Efficient Long Context Inference. Extensive work (Merth et al., 2024; Chen et al., 2023; Beltagy et al., 2020; Kitaev et al.,
2020) has been proposed to improve inference efficiency for long context applications by reducing the memory footprint
and total computations. Some works have focused on tailoring the architecture of the transformer for long context input. For
instance, (Beltagy et al., 2020) introduces a drop-in replacement for standard self-attention and combines local windowed
attention with task-motivated global attention. In parallel, Reformer (Kitaev et al., 2020) replaces dot-product attention
by one that uses locality-sensitive hashing to reduce its computational complexity. Though the above methods can speed
up long context inference, they require significant model architecture change and re-training. This drawback makes them
impractical to be applied to existing pre-trained LLMs. Closer to our work are efficient techniques that optimize the KV
cache (Zhang et al., 2024; Li et al., 2024; Anagnostidis et al., 2024; Nawrot et al., 2024) by minimizing the KV cache size
and data transfer. However, these works only focus on accelerating decoding steps, which are not applicable to reducing
TTFT .

Token Pruning. Previous studies on the sentence classification task (Kim et al., 2022; Anagnostidis et al., 2024; He et al.,
2021) has shown that not all tokens (i.e. words) in an input sequence are necessary to make a successful prediction. This
provides several possibilities for token pruning, which minimizes computational demands by selectively removing less
important tokens during inference. For example, (Kim et al., 2022) presents Learned Token Pruning which adaptively
removes unimportant tokens as an input sequence passes through transformer layers. In parallel, (He et al., 2021) proposes
to reduce width-wise computation via token pruning for transformer-based models such as BERT (Devlin et al., 2018).
These aforementioned approaches were designed for tasks requiring only a single iteration of processing, such as text
classification. In this work, we extend the idea of token pruning to generative LLMs. Specifically, our method allows the
model to dynamically choose different sets of tokens at each generation step, which is crucial to retaining the performance.
Furthermore, we also introduce Aux Cache to ensure that each token is computed at most once along the whole generation,
and ensure the worst runtime of our method is not slower than the baseline.

C. Method
C.1. Background

As depicted in Figure 3, the generative LLM inference consists of two distinct stages: prefilling and decoding. In the
prefilling stage, the model receives the prompt (a sequence of tokens) T = {ti}Ni=1 of length N, where ti denotes a token and
N denotes the length of the prompt, then computes and saves the KV cache of each token, and produces the first token tn+1.
The transformer architecture commonly used in LLMs is a stack of layers where each layer shares the same architecture
with a multiple-head self-attention mechanism followed by a multi-layer perception (MLP).

The time of prefilling is referred to as time-to-first-token (a.k.a. TTFT). Following the prefilling is the decoding steps, where
the model appends the generated token tn+1 to the input, and subsequently decodes the following token. The decoding step
is repeatedly performed until the stop criteria are met. While the formula of each decoding step is similar to prefilling, the
amount of its computation is significantly lower thanks to the KV cache. Specifically, with saved KV cache from prefilling,
all the previous tokens do not need to pass any linear layers in the model.

LLM profiling on the LongBench benchmark (Bai et al., 2023) in Figure 4 reveals that the attention scores of input tokens
w.r.t. to the first generated token are very sparse, indicating that many tokens in the input prompt are redundant and can be
removed without affecting the next token prediction.

7



LazyLLM is a 
training free token 
pruning technique to 
improve LLM 
inference with

InputKV Cache

<empty>

Prefilling Decoding 
Step #1

LazyLLM is a training 
free token pruning 
technique to improve 
LLM inference with

InputKV Cache

negligible

Decoding 
Step #2

LazyLLM is a training 
free token pruning 
technique to improve 
LLM inference with 
negligible

InputKV Cache

performance

Decoding 
Step #3

LazyLLM is a training 
free token pruning 
technique to improve 
LLM inference with 
negligible 
performance

InputKV Cache

loss

time-to-first-token (TTFT)

Overall Generation Time

Figure 3. Prompt-based LLM inference can be divided into two sequential stages: prefilling and decoding. For long prompts, the first
token generation during prefilling stage could be slow. As an example, for Llama 2 7B model (Touvron et al., 2023), on average, the time
to generate the first token requires 21× the walltime of each subsequent decoding step and accounts for 23% of the total generation time
in the LongBench benchmark.

D. Implementations Details
We implement LazyLLM on Llama 2 (Touvron et al., 2023) and XGen (Nijkamp et al., 2023) and evaluate it on the
LongBench (Bai et al., 2023) using HuggingFace2. We follow the official GitHub repository3 of LongBench for data
preprocessing and prompting in all experiments. The LongBench benchmark consists of multiple datasets in different tasks,
where each task may have different metrics, including ROUGE-L, F1, Accuracy, and Edit Sim. Following the official
evaluation pipeline, we categorize all results over major task categories by computing the macro-average score.

As previously noted, the proposed LazyLLM doesn’t require any training. Thus, LazyLLM uses the exact same existing
checkpoints as the baseline, for all models. For inference, we conduct all experiments on NVIDIA A100 GPUs. We
measure and report the speedup based on the empirical walltime improvement. Specifically, for TTFT Speedup, we measure
the empirical walltime between when the prompt is fed to the model, and when the model generates the first token. For
Generation Speedup, we measure the empirical walltime between when the prompt is fed to the model, and when the model
finished generating all output tokens. We add 5 warmup runs for each experiment before starting the time measurement to
remove the noise such as loading model parameters.

E. Experiments
For the metrics, we primarily evaluate the effectiveness and efficiency of each method in the TTFT speedup vs. accuracy
trade-off. Following the LongBench(Bai et al., 2023), the accuracy (score) denotes the macro-averaged scores across
datasets in each task. The TTFT speedup measures the wall time improvement w.r.t. to the baseline for generating the first
token. In analysis, we also assess the impact of our method on % of Prompt Token Computed and Generation speedup. The
% of Prompt Token Computed measures the accumulated percent of prompt tokens computed at the end of the generation,
which indicates the save of total computation. The Generation speedup measures the walltime change w.r.t. to the baseline
for completing the entire generation process.

E.1. Pareto Frontier of TTFT speedup vs. Accuracy

The hyperparameters of the proposed LazyLLM span three dimensions: 1) the number of pruning layers, 2) the locations of
these pruning layers, and, 3) the number of tokens pruned within these layers. Increasing the number of pruning layers
and pruning more tokens optimize computation by processing fewer tokens, and pruning tokens at earlier layers can save
the computations for the successive layers. Prompting these factors will give more overall computation reduction, and

2https://github.com/huggingface/transformers/
3https://github.com/THUDM/LongBench

8

https://github.com/huggingface/transformers/
https://github.com/THUDM/LongBench


0 600 1200 1800 2400 3000
Token Index

0

5

10

15

20

25

30

L
ay

er
In

de
x

0.01

0.01

0.01

0.02

0 500 1000 1500 2000 2500 3000
Token Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
tte

nt
io

n
Sc

or
e

0 5 10 15 20 25 30
Token Index

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
tte

nt
io

n
Sc

or
e

(a) An Example of Attention Sparsity (b) Distribution Input Tokens’ Attention Scores

Figure 4. We visualize the attention scores of input tokens in the prompt w.r.t. to the next token for each layer of Llama 2 7B(Touvron
et al., 2023). We also plot the distribution of the average attention score across all transformer layers. Result reveals that the attention
scores of input tokens w.r.t. to the next token are very sparse, indicating that many tokens in the input prompt are redundant and can be
safely removed without affecting the next token prediction.

offer better TTFT speedup. As a side effect, excessively pruning tokens may cause information loss and eventually lead to
performance degradation. Similarly, the TTFT speedup and accuracy of baselines can vary with different hyperparameters.

In this section, we compare the Pareto Frontier of TTFT speedup vs. accuracy in Figure 5 with different hyperparameters.
The visualization shows that, without any training, the proposed LazyLLM retains the accuracy better than baselines under the
same TTFT speedup. For example, our method can offer 2.34× TTFT speedup in the multi-document question-answering
task with negligible (≤ 1%) performance loss. Furthermore, by tuning the hyperparameters, the LazyLLM allows for
a customizable balance between performance and efficiency. For instance, in a configuration optimized for efficiency,
LazyLLM can achieve 3.0× TTFT speedup in the multi-document question-answering task while maintaining ≤ 10%
performance loss. This is while the accuracy of all other baselines degrades noticeably w.r.t. the TTFT speed up. Most
notably, as discussed before, due to the computational complexity of the compression itself, the prompt compression
approach fails at improving TTFT .

E.2. Impact on Overall Generation Speed

To evaluate the impact of the proposed method on the overall generation process, we also profile the % of Prompt Token
Computed and Generation speedup in Table 2. We can find the % of Token Computed of LazyLLM is less than 100%,
indicating that not all tokens in the prompt are selected by LazyLLM at the end of the generation, even though theoretically
the model could use all tokens. Computations in the FFN layers increase linearly, while those in the Attention layers
grow quadratically with the % of Token Computed. A lower % of Token Computed indicates LazyLLM reduces the total
computation, consequently offering additional speedup to the overall generation process across diverse tasks.

E.3. Drop Rate in Different Layers

In this section, we analyze the effect of the locations of pruning layers, and the number of tokens pruned. In particular, we
report a series of experiments using a simplified version of LazyLLM that prunes tokens just once within the transformer.
For each trial, we position the pruning layer at various levels of the transformer stack and apply different pruning ratios. We
perform the experiments for both Llama 2 (Touvron et al., 2023) and XGen(Nijkamp et al., 2023), and visualize the results
in Figure 6.

The results show both models share a similar trend. As expected, when pruning at the same transformer layer, the model’s
performance gradually decreases as fewer tokens are kept. Furthermore, pruning at later transformer layers consistently

9



0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Few-shot Learning

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

120

140

160

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Synthetic Task

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Code Completion

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Single-Doc QA

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Multi-Document QA

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

0.00 0.50 1.00 1.50 2.00 2.50 3.00
TTFT Speedup

0

20

40

60

80

100

R
el

at
iv

e
Sc

or
e

w
.r.

t.
B

as
el

in
e

(%
)

Summarization

LazyLLM
Random Tokne Dropping
Static Pruning
Prompt Compression
Baseline

Figure 5. Pareto Frontier of TTFT speedup vs. Accuracy comparsion for Llama 2 7B (Touvron et al., 2023) in different tasks.

TASKS
% OF PROMPT TOKEN COMPUTED OVERALL GENERATION SPEEDUP

LLAMA 2 XGEN LLAMA 2 XGEN

SINGLE-DOCUMENT QA 87.31 89.16 1.34 1.33

MULTI-DOCUMENT QA 63.94 69.60 1.56 1.70

SUMMARIZATION 99.59 96.11 1.02 1.09

FEW-SHOT LEARNING 69.98 65.30 1.28 1.59

SYNTHETIC 63.73 40.54 1.79 3.16

CODE COMPLETION 68.57 72.61 1.01 1.16

Table 2. The % of Prompt Token Computed and Generation speedup of LazyLLM on various tasks. Reported values are based on the same
setting as Table 1. A lower % of Token Computed indicates LazyLLM reduces the total computation, consequently offering additional
speedup to the overall generation process across diverse tasks.

yields better performance compared to pruning at earlier layers, suggesting that later layers are less sensitive to token
pruning. Based on these observations, we propose progressive token pruning in Section 2.1, which strategically prunes more
tokens in later layers while preserving more in the earlier layers, optimizing the balance between efficiency and performance
retention.

E.4. Progressive KV Growth

In this section, we characterize the internals of the model with the token pruning logic. Specifically, we seek to understand
what fractions of prompt tokens are cumulatively used and, inversely, not used. This “cumulative token usage” can be
equivalently defined as the KV cache size at each given step. Figure 7 presents these cumulative prompt token usage
numbers for each of the stages of the LazyLLM.

Our analysis supports the hypothesis that many tokens are never selected by the model (even though theoretically the model
could use all tokens in the prompt). Since this model retains accuracy on the task(s), we can conclude that the model
effectively drops the tokens which do not affect the output quality.

10



5 10 15 20 25 30
Pruning Layer Index

0

5

10

15

20

25

Sc
or

e

keep 10% tokens
keep 30% tokens
keep 50% tokens
keep 70% tokens
keep 90% tokens
Baseline

5 10 15 20 25 30
Pruning Layer Index

0

5

10

15

20

25

30

Sc
or

e

keep 10% tokens
keep 30% tokens
keep 50% tokens
keep 70% tokens
keep 90% tokens
Baseline

(a) Llama 2 (b) XGen

Figure 6. Effect of the locations of pruning layers, and the number of tokens pruned. The results of both Llama 2 7B (Touvron et al.,
2023) and XGen 7B (Nijkamp et al., 2023) share a similar trend: 1) when pruning at the same transformer layer, the model’s performance
gradually decreases as fewer tokens are kept, and 2) Pruning at later transformer layers consistently has better performance than pruning
at earlier layers, suggesting that later layers are less sensitive to token pruning.

0 5 10 15 20 25 30 35

20

40

60

80

100

Layer 1-9
Layer 10-19
Layer 20-28
Layer 29-32
Baseline

Generation Time Step (absolute)

%
 o

f P
ro

m
pt

 T
ok

en
 C

om
pu

te
d

Figure 7. Statistics on number of tokens processed during generation using our LazyLLM technique with Llama 2 7B (Touvron et al.,
2023). We visualize the statistics of 1000 samples randomly sampled from LongBench. The x-axis represents the (absolute) generation
time step, and the y-axis represents the number of prompt tokens processed at that time step (normalized by the prompt size). We visualize
these statistics for various stages within the network. Note that cumulative token usage is upper-bounded by the baseline (evident with
early layers).

11



F. Conclusion
In this work, we proposed a novel LazyLLM technique for efficient LLM inference, in particular under long context scenarios.
LazyLLM selectively computes the KV for tokens important for the next token prediction and “lazily” defers the computation
of remaining tokens to later steps, when they become relevant. We carefully examine LazyLLM on various tasks, where we
observed the proposed method effectively reduces TTFT with negligible performance loss. It is worth noting that our method
can be seamlessly integrated with existing transformer-based LLMs to improve their inference speed without requiring any
fine-tuning.

12


