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Abstract

Comparing whether two large language models (LMs) make similar predictions — such as
perplexity — across massive input spaces is crucial for real-world applications. Traditional
analyses average benchmark scores over fixed datasets, masking per-input differences. We
propose Model-diff, a framework that estimates the distribution of prediction differences
between two LMs across a large, meaningful input space — defined as the set of token
sequences assigned low negative log-likelihood (NLL). Model-diff leverages sampling-based
histogram statistics to efficiently quantify output differences without exhaustive enumeration.
Experiments reveal, for the first time, quantitative divergences between LMs in their low-NLL
regions, providing a scalable tool for model comparison and diagnostic analysis.

1 Introduction

Estimating if two (large) language models (LMs) make similar predictions (e.g., the perplexity values) for
every text sequence on a massive dataset is crucial in many real-world scenarios. Existing analyses often rely
on average benchmark scores over fixed test datasets. However, such summaries obscure per-input differences
between models. To address this, we propose Model-diff , a framework that characterizes the distribution of
prediction differences between models over large, meaningful input spaces. We propose to study the output
difference for the same input between two models in a massive dataset of a discrete input space that is
finite yet computationally intractable to fully enumerate. While the combination of all token sequences is a
straightforward space, it is not ideal as most of them are sequences with random tokens, hence not beneficial
for analysis. We define a meaningful input space as the set of token sequences that a language model assigns
low negative log-likelihood (NLL), representing data it considers aligned with its training distribution E}

To tackle this new evaluation of a large input space, we propose a sampling-based analysis framework, Model-
diff , that can efficiently estimate, at each level of prediction difference, the composition (e.g. math sequences,
code snippets) and the number (count) of inputs (e.g., 10 math equations for D = —5 and 20 code snippets
for D = 10). Since the input space is not enumerable, Model-diff samples the models whose predictions
are within a range of low NLL. We next use the sampled inputs to build the output distribution. Output
distribution (Liu et al.,|2023b) is a distribution of the count of the inputs given each output value. Model-diff
leverages it to quantify the agreed/disagreed predictions between the two models without enumerating the
input space. Moreover, to ensure a fair comparison, each model proposes its own input space containing
inputs of low NLLs and compare predictions of the other model.

We provide an overview of Model-diff in Fig[l] Consider two hypothetical models that optimize the NLL loss.
They are fine-tuned to domain tasks as code-LM (model M) and math-LM (model Mp). The composition
of inputs that code-LM predicts with a low NLL could be the code snippets such as variable assignment
“i=i+1”, whereas math-LM thinks this text is a wrong math equation and thus assigns a high NLL. If
two models produce similar NLL values for each input, the distribution of their prediction differences (e.g.,
D = NLL4 — NLLg) will tend to concentrate around zero, indicating that the models behave similarly.
Conversely, if the histogram shows high counts for large positive or negative values of D, it suggests that
the models differ significantly in their predictions for certain inputs. By examining this distribution, we can

INLL is log-probability or log-perplexity which is the loss function used to train next token prediction for LMs.
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Figure 1: Overview of Model-diff. We record the output difference z4 — zp and estimate a histogram for
human analysis for the inputs from M 4.

obtain statistical insights: specifically, the number of inputs corresponding to each difference value D—to
quantify and visualize the extent of prediction divergence between models. Thus, Model-diff complements
benchmark-based evaluations by providing an interpretable, quantitative view of model divergence. Our
contributions are:

e We propose a new comparative analysis setting between two models by examining their prediction
differences on the unenumerable input space, in contrary to leveraging crafted datasets.

e To address the infeasible compute time of enumeration, we propose Model-diff. It can understand the
composition and the relative number of the agreed/disagreed predictions between two models in the
meaningful input spaces.

e We confirm the correctness of Model-diff through a toy example. More experiments show Model-diff
can find prediction differences for GPT2 and Llama with various sequence lengths. Moreover, applying
Model-diff to detect model plagiarism reveals distinctive patterns in a model whose weights are added
noise, which serves as a valuable signal for further confirming plagiarism.

2 The Model-diff Framework

Model-diff produces the distribution for the difference in predictions by the two models for each input on a
massive dataset of high-confidence. Grouping input sequences by the magnitude of their prediction differences
(e.g., 0 to 1, 1 to 2, etc.) allows us to investigate which inputs are associated with minor versus major
discrepancies between the two models. Model-diff is unique for estimating the relative number of inputs at
each magnitude of their prediction differences (e.g. 400M inputs are predicted differently in NLL by 1 to 2).
We first introduce the concept of the output distribution, then describe how it is used for prediction-difference
analysis in the ideal case where the input space can be enumerated. Next section we will discuss how to
derive the quantities needed for this analysis when enumeration is replaced by sampling.

Background. Given the entire discrete input space Q = {0, ..., K}V and a training set Q7 C Q, a model
f(x) learns to map inputs x € Qp to output z € R. As the current language models (LMs) are trained to
predict the next token, we pick the loss function, negative log-likelihood (NLL), as the output. Later we
also define output distribution for the parameter of prediction difference D. Each input x is a sequence of
N tokens. K + 1 is the vocabulary size. Each of the IV tokens takes one of the K 4+ 1 words. The output
distribution in an input space Q* is the distribution of the count for each z. ©* can be €2 or some other
space ) specified by a generative model M. As every input in Q* holds equal importance for analysis, the
inputs within Q* should follow the principle of equal a priori probabilities — each input within Q* follows a
uniform distribution. The output distribution p(z) is:

plz) =Y 6z~ f(x)),

xeN*

where §(-) is 1 if the argument z — f(x) = 0, or §(-) is 0 otherwise. In practice, a histogram is used to collect
the statistics (the y-axis is the count and the x-axis is the output values z). The sampled inputs with similar
output values in a small range [z — Az, z + Az) are called representative inputs at z and are mapped
to the same z bin. Az is a small positive constant. Output distribution is very closely related to the true
positive, precision and recall (PR) of an input space. For a fixed dataset, PR is easily acquired since we can
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Figure 2: Overview of Model-diff with hypothetical models, code-LM (model A) and math-LM (model
B). (a) code-LM assigns “i=i+1” a small output value (z=NLL) but math-LM assigns a large NLL. (b)
Given a predefined output range Z = [2_, z1 ], model A (B) maps to some inputs Bwith labels {6,2,5,3,1}
({6,2,5,3,7,4} for model B) which we call set X4 (Xp). The Output distributions p4(z) and pp(z) are the
count of inputs at each output 2. (¢) Each input x is predicted differently by both models z4 x and zp x;
we draw a diagram with both z4 x and zp x (e.g. za,x < zBx for “i=i+1"). The number of inputs in R3 is
used to normalize statistics for sampling (Sec. . (d) Subtracting zp x from z4 x for inputs from X4, we
generate a distribution of the number of inputs pa_, g(D) (red histogram). Repeat for Xp to get pp_ (D)
(light blue histogram). The “i=i+1” is mapped to a very negative D value.

annotate all the inputs in the dataset. This is not possible in a large input space. Output distribution is the
key to computing the true positives in a large input space without annotating all the inputs in the input
space.

2.1 Introductory example of Model-diff

Assume we have infinite computing power to enumerate the inputs in a large input space to get the ground
truth statistics. Because the inputs with very low NLL are sequences with repetitive tokens that are not
understandable by humans (Holtzman et all [2019)) whereas inputs with (slightly) higher NLL are human
understandable, we avoid the input space that favors the inputs with very low and high NLLs. Instead, we
build a dataset by flexibly defining a range of low (NLL) output values Z = [z_, z] and treating the inputs
whose output values in Z as equally important for evaluation

In the set of sequences of all combinations of tokens, model A maps five inputs to outputs within Z, while
model B maps six inputs within the same range. The corresponding input sets are denoted as X4 and Xp,
respectively (Fig[2] (b)). Some inputs from X4 may be predicted with higher (or lower) z by Mp than M4
predicts.

Comparative analysis with ps_,5(D). Define A — B as the representative inputs X4 from model
M4 being evaluated by model Mg, and B — A is vice versa. In Fig. d), Model-diff uses the output
distributions pa_g(D) and pp_,4(D) for comparative analysis, where z4 x = Ma(x), 2z x = Mp(x), and
D is the predictive difference D = d(zax, 2B,x) for the same input x. d(-) is a measurement of difference.
pa—p(D) is the distribution of the total count for (all) inputs corresponding to model M 4’s meaningful
output values Z at each value D. Intuitively, the larger |D| means the two models’ predictions are more
different for input x and the larger p4_, (D) means a larger number of inputs whose output differences are
by D. pp—a(D) works similarly. Our setting and experiments focus on LMs and thus we use the difference
in NLL between two models as D: D = NLL4 x — NLLp x. The outputs and d(-) can be flexibly defined in
different applications. D’s output distributions for X4 and Xp are:

pasp(D) = Z 0(D—(2ax — 2B x)), (1)
xeX 4

pB—a(D)= Y (D~ (2ax — 2B.x)); (2)
xeXp

2Inputs from a dataset of evaluation are treated equally.
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where 6(-) is 1 if the input D — (zax — z2x) = 0, or (-) is 0 otherwise. The two equations usually lead to
distributions with peaks on positive and negative values respectively.

By examining the composition of the representative inputs at each D (prediction difference in NLL between
models) value, we can further gain insights into what kind of inputs that the two models predict differently
by D. Some demonstrative conclusions could be:

o If pa,g(D=3)="5pa,p(D =4): For the inputs on which model A is confident, the number of coding
sequences for which model A’s NLL exceeds model B’s by 3 units is five times greater than the number of
math sequences for which model A’s NLL exceeds model B’s by 4 units.

¢ Usually we know the training distributions through supervised fine-tuning or RLHF for model A and B. A
follow-up conclusion could be “Model A predicts with even higher confidence on math sequences than
Model B, but model A is trained from coding training set.” A subsequent investigation could be made on
why this happensﬂ

e In high-confidence sequences with repetitive tokens (Holtzman et al., |2019), we can take the advantage
of the Model-diff ’s numbers in ps_,5(D): “Does additional training on high-quality data decrease the
prevalence of sequences with repetitive tokens relative to a model without such training? If it does, by how
much?” Compared to previous works that address these questions using probing test datasets, Model-diff
provides a more accurate assessment because its input space consists of all inputs that the models are
confident belong to their training distribution.

o Finally, if pa—,p(D = 0) and pa—, (D =~ 0) have high concentrations but otherwise for other non-zero D
values, these two models are highly aligned.

Coarse-grained analysis. We can also simplify the analysis. We will provide the coarse-grained analysis
with examplary conclusions. Define a varying lower bound threshold A for D values. We can get the following
comparative analysis as illustrated in Fig. d) with more detailed descriptions on Tab.

e Prediction disagreement (PD) PDap = > 5_\<opa—pB(D) is the amount of model A’s representative
inputs X4 that model B assigns with higher NLL: 2p x > 24 x.

+ Prediction agreement (PA) PAj,p = Y po,>opa-B(D) is the amount of model A’s representative
inputs X4 that model B assigns with lower NLL: 2p x < 24 x.

e PAp a4 =3 p.r<oPB-a(D) is the amount of model B’s representative inputs Xp that model A assigns
with lower NLL: z4 x < 2B x.

e PDp_,a= Z’D>)\>O pB— (D) is the amount of model B’s representative inputs Xp that model A assigns
with higher NLL: 24 x > 2B x.

Therefore, the ratio of their count is:
PDs,p:PAy,p:PAp 4 :PDp_ 4, (3)

which is important in understanding the count of agreed/disagreed predictions. For example, Fig d) shows
the ratio is 3:2:3:3 when A = 0.

3 Our Efficient, Unbiased Sampling

In reality, enumeration is impossible because of computation inefficiency. We need to estimate the key
distributions p4_,5(D) and pp_ (D) by sampling. We first introduce the background of text generation by
sampling, and the method(s) to sample the output distribution. We next discuss how to acquire comparable
pa—B(D) and pp_, 4(D) through output distribution and normalization.

31t is not surprising that models may assign low NLLs to atypical sequences, despite being trained on well-formed data. For
instance, repetitive token sequences—rare in the training corpus—often receive low NLLs. This discrepancy underscores the
gap between human intent and the model’s learned representation. Ultimately, it is the model—mnot human expectation—that
determines which inputs it perceives as belonging to its training distribution. Training only enforces correct behavior on a
limited subset of the data space. Generalization beyond this domain remains an empirical question, to be evaluated through
evidence rather than assumption.
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Measure Definition Dataset Model more Inputs Interpretation
confident A=0)
Prediction Disagreement (PD) Xa Model A B{1, 2,5} Number of inputs (found by model
PD _ Z (D) A) for which model A is more confi-
A—=B = PA—B dent than model B that the inputs
D<ALO are similar to its training distribu-
tion.

Prediction Agreement (PA) Xa Model B M{3, 6} Number of inputs (though sampled

by model A) for which model B is

PAa-p = Z ra—~5(D) more confident than model A that

D>A>0 the inputs are similar to its training
distribution.

Prediction Agreement (PA) Xp Model B B{4, 2,5}  Number of inputs (though sampled

_ by model B) for which model A

PApa = Z pB—4(D) is less confident than model B that

D<AL0 the inputs are similar to its training
distribution.

Prediction Disagreement (PD) XB Model A M{3, 6,7} Number of inputs (sampled from

PDps = Z pBsa(D) model B) for which model A is

more confident than model B that

D>x20 the inputs are similar to its training
distribution.

Table 1: Formal definitions and interpretations of prediction disagreement (PD) and prediction agreement
(PA) between models A and B.

3.1 Background and terminology

Besides generating the next token in an autoregressive manner, Text Generation by Sampling is common
in text generation in language models (Kumar et all 2022; Qin et al, 2022)), by Markov Chain Monte-Carlo
(MCMC). It starts with a sequence of random tokens and by tweaking the tokens randomly to lower the
NLLs, a sequence of understandable text is generated. MCMC sampling is employed because enumeration of
the input space in general is not possible. As pointed out (Du et al., [2023)), text generation by sampling
in principle should employ samplers of discrete input space (Goshvadi et al., [2024; |Grathwohl et al.| |2021;
Zhang et al., 2022). These samplers sample the target distribution

p(x) o exp(g(x)/T), (4)

where g(-) is called negative “energy” and T is a predefined temperature. When T is 1, g(-) is the log-
probability, a popular objective to optimize in many machine learning problems (LeCun et al., 2006). p(x) in
Equ. [4]is a common target distribution for sampling in machine learning which biases the inputs with high

9(x).
Model-diff adopts the exact same sampling setting of discrete inputs and this is the major bottleneck of Model-

diff. The time complexity of Model-diff is therefore similar to text generation by sampling. Post-processing of
Model-diff after text generation by sampling only takes a few hours.

To sample the output distribution, Parallel Tempering and Histogram Reweighting (PTHR) (Hukushima
& Nemoto, [1996} Swendsen & Wangj, [1986)) is commonly used. It starts with the results of text generation by
sampling for target distribution of Equ. [l Because MCMC samplers preferentially sample inputs x with
higher g(x), histogram reweighting is applied using exp(-) to correct for this sampling bias.”

Therefore, sampling output distribution can generate the same statistics as if we were sampling uniformly
the input space without biasing the inputs with large g(x). Moreover, PTHR is a downstream task of text
generation by sampling and it is compatible with MCMC samplers. Therefore it can take advantage of the
development of MCMC samplers that follow the same target distribution of Equ. [
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3.2 Sampling with p4(z) or pp(z)

For very large input space, exact values of ps_, g(D) and pp_, 4(D) cannot be estimated because X4 and Xp
(Sec. Introductory example and goal) are not available as enumeration of the input space is infeasible.
Thus, we need to estimate them by sampling. We denote the sampled quantity used for practical analysis
with “Tilde” (e.g. p) in contrast to the quantity from ground truth enumeration without “Tilde” (e.g. p).

As mentioned in Sec. we focus on the case where every input whose outputs within Z as equally important;
therefore the outputs that contain more inputs should be sampled more often. Text generation by sampling
is not directly applicable because it favors low NLL. We instead leverage the output distributions p4(z) and
pB(z) that describe the various numbers of inputs mapped to each output value by a model. For example, as
shown in Fig. [2f (b), one output value of model B has 4 inputs, and should be selected 2 times more frequently
than the other output value with only 2 inputs. Output distribution pa(z) (pp(z)) ensures the sampled
representative inputs follow the frequency of appearance for the different output values in Z of model A (or
B), as if we were uniformly extracting inputs from X4 (or Xp).

In practice, we apply the well-established algorithms of text generation by sampling and PTHR. After text
generation by sampling, we compute ga(z) and pp(z) that approximate pa(z) and pp(z) through PTHR.
We next sample an output value z with probability weights 54 (z) or pg(z) so that the output z with more
inputs will be sampled more often. Afterward, we uniformly choose an input x whose output M4(x) = z
or Mp(x) = z (more details in Appendix . Many of these sampled x are fed to both models. We can
compute their D and record the count in a histogram of output distributions which are the output of this
process — un-normalized pa—,5(D) and pp_ 4(D).

Alternatively, we can directly sample pa_,5(D) and pg— (D), but we find the two-stage sampling is more
flexible — first sampling j(z) for individual model and then p(D) when we need to compare them — because
p(z) can be reused. This two stage formulation also leads to the correct results (Sec. [i.1]). Moreover, if other
input spaces are used, we can obtain un-normalized pa— (D) and pp_, 4(D) easily, such as using the sampled
inputs without p4(2) or pp(z).

3.3 Normalization

The sampled g4, 5(D) and pp_, 4(D) require normalization to be comparable. Traditionally, we can normalize
through the area under curve of the sampled histogram so the distribution is normalized to 1.0. However,
we are only interested in comparing the inputs whose NLLs are low and do not need to sample the inputs
to cover all the output values. We thus normalize via the area where both models predict within Z (R3 in

Fig 2fc)).

To illustrate, given that the ground truth result by enumeration is 3:2:3:3 (Equ. |3) for Fig. d), when A = 0.
However, we suppose enumeration is impossible. If we sample 100 inputs from M4, around 80 of which are
expected to be predicted within Z by both models (B with “2” “5”,“3” “6” are in Z, but “1” is not.). Among
these 100 inputs, 60 of them are PD4_,p and 40 of them are PA 4_,5. We can repeat this process when we
sample 300 inputs by model Mz and 200 of them are from Z by M4. Among these 300 inputs, 150 of them
are PDp_, 4 and 150 of them are PAg_, 4. We can use the two sets of the sampled inputs that are commonly
predicted by the two models within Z as the denominators (80 for M4 and 200 for Mp) to fix Equ. 3} This
allows us to compare the sum of the following output distributions after being divided by denominators:

x Z PA—B (D)
Z pAﬂB(ID) |§§A—>B| (5)

3" ppa(D) o 2L22AD) 0

|§§B—>A|

where the proportions have the same weight (validation of this normalization is in Appendix . Xaln
(|§§AHB|:80 in the above example) is the set of the inputs sampled by model M4 within Z and model Mp
also predicts within Z, and Xg_, 4 (|§§B_>A| = 200) is vice versa. Using Equ. 5| and Equ. @ Equ. [3| becomes
the normalized ratio:
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Z ﬁA—»B(D) Z ﬁA—)B(D)

D<A<0 _ D>A>0
X4 5| . X4 5]
>. pB-»a(D) > pp-a(D)
D<A§£J : D>>\29 (7)
‘XBHA‘ |XB%A‘

The ratio Equ. [7| of the example is 89 : 40 . 150 . 130 “4+}e game as the ground truth ratio. In summary, the

80 * 80 ° 200 ' 200’
sampled statistics with this normalization (Equ. and @ reflect the ground truth and they are comparable.
Finally, a new model C' with the same training target may need to be compared with A and B. We derive
the relation between models B and C' when they are compared with model A. The details are in Appendix [B]

3.4 Analysis with input annotations

Agreement between model prediction difference and human annotations. To understand which
model agrees more with humans’ annotations (Liu et al [2023a)), humans can annotate the representative
input at each prediction difference D. Humans annotate with score from 1 when a representative input agrees
with the training objective (“perfectly good”) to 0 otherwise (“completely bad”). The annotation score r 4 (D)
is the average of all the annotated representative inputs for model A at D’s nearby values (D — AD, D + AD),
where AD is a small positive constant. Using PD4_, 5(D) as an example (it could be one of the four terms in
Equ. @, the true positive at D is the proportion of “good” inputs times the count:r 4 (D)pa— (D). Summing
over D < A <0, we get:

o 2.ra(D)pasp(D)
precision = ;DA—;U% (8)
recall o Z rA(D)pa—p(D) (9)

Z"'A(’D)PAHB(,D) e . .
because recall = £ Sosiiive nputs where the number of positive inputs is a constant in X 4. These two

quantities measure how much humans agree the prediction of higher NLL is reasonable. In the above example
of PD4_,5(D) on A’s representative inputs by B, if both precision and recall are low, model A maps many
“bad” inputs to low NLL and thus model B’s disagreement is reasonable.

Model-diff pipeline. Model-diff includes 4 steps:

(a) Generate inputs by sampling (Sec. , collect frequency histogram, and use PTHR to compute output
distribution p4(z) for model A’s meaningful output values Z.

(b) Sample the collected representative inputs from (a) with weights 54(z) (Sec. [3.2]). Feed each sampled
input from A to model B to compute prediction (output) difference D. The D of the sampled inputs from
A forms a distribution pa_, (D) of prediction difference. It is normalized (Sec. to get a comparable
pa-5(D).

(¢) Repeat the process for pp_, 4(D) of model Mp.

(d) Compare pa_,p(D) and pp— 4(D). Analyze the sampled inputs (with optional input annotation in Sec.
to quantify prediction difference (Sec. Analysis with output distribution).

4 Experiments

We first apply Model-diff to a toy example where the enumeration of all inputs is affordable to confirm
its correctness (Sec. . We apply it to two pretrained GPT2 models (Radford et al. [2019) with various
sequence lengths (25 and 100) and Llama models (Touvron et all, 2023ab) with sequence length 25 (Sec. [£.2)).
After validating Model-diff on toy data, we apply it to real-world models to demonstrate its practical utility

(Sec. [43).

Experimental settings. Our sampling target is NLL, the training loss used for next-token predictions.
Though a low NLL generally indicates the model strongly believes the input is close to the training distribution,
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the inputs with very low NLLs are repeating words that are incomprehensible by humans (Appendix |§| and
Holtzman et al. (2019)). Therefore, we set a reasonable range of Z and only consider inputs whose NLL € Z.
We choose the range Z by ensuring the bins have human-understandable inputs. In our usage case, z_ and
z4 are generally determined by whether the sentences are human understandable, as both the too high or too
low NLL will lead to sequences that humans cannot understand. Anyone can craft some desired/undesired
sequences and check their NLL values to decide the range. The user can choose their own ranges if they
believe the ranges are different. Fig. [3| shows the sampling results of D = NLL4 — NLLp with one unit of
standard deviation for three runs (two for Toy) after we have the PTHR results. Tab. [2| shows the detailed
statistics about Fig. [3] for Model-diff analysis. More details are in Appendix [C}

4.1 Toy Example

Toy is a simple experiment with dataset of sequences {x(i)} with length 8. Each token x; for an input x(® is
an integer from 0 to 9 inclusive; vocabulary size is 10. The entire input space is 10® which is enumerable.
The training objective is (3 z;) mod 30 = 0. The GPT2-small-Toy has 4 heads and 6 layers. The GPT2-
large-Toy has 8 heads and 8 layers. The sequences they generate satisfy the objective with 100.0% after
training.

Analysis. Fig. shows the output distribution p(D), where we set D = NLLgyan - NLLjarge. Exp.1
in Tab. [2| shows the statistics of Fig. [3(a)l g(D) on small-Toy’s representative inputs ranges from —0.9 to
0.25, indicating that large-Toy’s predicted NLL on some small-Toy’s representative inputs can be up to 0.9
larger and 0.25 smaller on some other inputs than small-Toy predicts. On the other hand, §(D) on large-Toy
ranges from —0.35 to 0.55, indicating small-Toy’s predicted NLL on some large-Toy’s representative inputs
can be up to 0.55 larger on some inputs but 0.35 smaller on some other inputs than large-Toy predicts.
Comparison of prediction disagreements between small-Toy’s min D (—0.9) and large-Toy’s max D (0.55)
shows large-Toy disagrees more strongly on small-Toy’s representative inputs than small-Toy disagrees on
large-Toy’s representative inputs.

For the number of prediction disagreement/agreement, the normalized ratio of count is 1.0 : 0.75 : 0.55 : 0.75.
Compared to PDg(mai)—i(arge) (1.0), PAg_;1 means 0.75 amount of small-Toy’s representative inputs would be
assigned with lower NLL by large-Toy, and PA;_,s means 75% (0.55) large-Toy’s representative inputs would
be predicted with lower NLL by small-Toy. Lastly, compared to PDg_,;, PDj_5 means 75% (0.75) large-Toy’s
representative inputs would be predicted with higher NLL by small-Toy. The two models have a high overlap
of predictions as the D concentrates around 0.

Correctness of Model-diff. We enumerate all the sequences as the ground truth in Fig The
ground-truth plot is closely aligned with our sampled plot. Lastly, our sampled ratio is very close to the
ground truth enumeration ratio 1.0 : 0.72 : 0.56 : 0.73. The toy example confirms the correctness of Model-diff
where the sampling results can properly represent the enumeration; we can apply it to more complicated
applications with confidence. Moreover, Fig. [7] shows that simple text generation by MCMC sampling does
not lead to the same ground truth output distribution for a range of output values (see Sec. . Toy
enumerates 10® samples, and the enumeration results and our sampling results backed by well-established
algorithms of PTHR and MCMC, are very similar.

4.2 Real-world language models

We apply Model-diff to two pretrained GPT2 models, GPT2-small and GPT2-medium with D = NLLgpan -
NLLpedium- GPT2-small-25 and GPT2-medium-25 sample 25 tokens with GPT2-small and with GPT2-
medium respectively. Similarly, GPT2-small-100 and GPT2-medium-100 sample 100 tokens with the
corresponding models.

Fig. shows the p(D) for both models with sequence length 25. In Exp.2 of Tab. [2] comparison between
small-25’s min D (—3.95) and medium-25’s max D (2.55) shows medium-25 disagrees more strongly on some
small-25’s representative inputs than small-25 disagrees on some medium-25’s representative inputs. However,
the count ratio (Equ. [7) on Tab. 2| (Exp 2) shows the number of inputs for prediction agreements (0.02 vs
0.01) and prediction disagreements (1.0 vs 1.03) are almost the same for both models.



Under review as submission to TMLR

61 small-Toy 157 —— small-25
4 large-Toy 3101 medium-25
S| small-Toy enum S
24 ) 051
arge-Toy enum
0L == ] ] SE— ! 0.01— ] ] ] L ! ]
-125 -1.00 -0.75 -0.50 -0.25 000 025 050 0.75 —4 =3 -2 -1 0 1 2
D = NLLsmal - Toy — NLLIarge —Toy D = NLLsma - 25 — NLLmedium - 25
(a) small-Toy and large-Toy for Z = (1.8,2.3) (b) small-25 and medium-25 for Z = (2.0,4.0)
75 small-100 51 —— Llama-25
3 50 medium-100 3 Llama2-25
Q Q1
25
01 ‘ ! ‘ ! ] | ] ] 01, ] = ] ‘
-2.5 -20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 -2 -1 0 1 2
D = NLLsmali - 100 = NLLmedium - 100 = NLL(/ama - 25 = NLL{jama2 - 25
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Figure 3: Comparing different language models using Model-diff on different input spaces. Except for (a),
all the comparisons are done in the input space that a model believes to be reasonable human inputs by Z.
Peaks near zero indicate strong agreement; broader spread indicates greater divergence.

Exp Repre Inputs from D D PDaop:PAaLp:PAga:PDpsa

model A or B min max (Equ. with A=0)
A: small-To, -0.9 0.25

1 Y 1: 0.75(x0.00) : 0-55(0.01) : 0.75(0.00)
B: large-Toy -0.35 0.55
A: small-25 -3.95 0.15

2 1: 0‘02(3:0.00) : O‘Ol(io.oo) : 1.03(3:0‘02)
B: medium-25 -0.15 2.55
A: small-100 -2.25-0.25

3 1: 0.00(+0.00) : 0.00(x0.00) : 29.84(+3.14)
B: medium-100 0.25 1.25
A: Llama-25 -1.85 0.15

4 1:0.01(x0.00) : 0.01(x0.00) : 1.61(x0.07)
B: Llama2-25 -0.15 2.35

Table 2: D = NLL4 — NLLpg. Equ.|3|and IE are normalized by the first term PD4_, g; thus, the first term
is 1.0. Our experiments will also set A = 0. Besides A = 0, other X values can be computed and analyzed
similarly.

Moreover, the experiment on 100 sequence length indicates small-100 and medium-100 have distinctive
characteristics (see Fig. and Table. [2| Exp 3). small-100’s min D (—2.25) is almost two times larger
than medium-100’s max D (1.25) in absolute value, indicating the medium-100 disagrees more strongly on
some small-100’s representative inputs than vice versa. For count, PDp,(edium)—ss(mal) 18 29.84 times larger
than PDg_,,, (1.0). Lastly, the prediction agreement on each other’s representative inputs is extremely low
compared to prediction agreement.

Model-diff on large language models. We apply Model-diff to pre-trained Llama-7B and Llama2-7B for
sequence length 25 as Llama-25 and Llama2-25. We use D = NLLy,jama - NLL1jama2. Comparison between
D’s maximum for Llama2-25 (2.35) and minimum for Llama-25 (—1.85) in Fig. and its statistics (Table
Exp 4) shows that Llama-25 disagrees more strongly on Llama2-25’s representative inputs than vice versa.
Moreover, Table [2| Exp 4 shows the count ratio of PA and PD. Compared to PDy,1ama)—(Llama)2, the very
low PAy_,2 and PAy_,;, (both 0.01) show prediction agreement between the two models is low compared to
PDy—2 (1.0). But PDy_,p, is around 1.6 times larger than the PDy 5.
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Figure 4: small-25 vs. its noise added versions, zero-mean with different standard deviations. Z = (2.0, 4.0).

Discussion. We can further analyze the representative inputs corresponding to different D. For example,
in small-25 and medium-25 comparison, we inspect the inputs corresponding to large |D|. Interestingly,
medium-25 disagrees with small-25 on the database inputs, whereas small-25 disagrees with medium-25 on
inputs about computer media decoder and PCle (see Appendix.

Our results show Model-diff can quantitatively compare two models’ low NLL input spaces in terms of the
number and composition of the inputs. Moreover, the models with more complex architectures generally have
a larger amount of representative inputs mapped to low NLL values. Notably, this does not mean they are
more tolerant of the representative inputs of other models with lower capacity. They generally disagree more
on the representative inputs from the models with simpler architectures; the disagreement can be quantified
by Model-diff.

4.3 Applications

We demonstrate several real-world applications that leverage the composition and count information captured
by Model-diff . We show that Model-diff can be used for model comparison and can potentially serve as a
useful signal for model-plagiarism.

Deciding which model is better. We define our task of which model is better in terms of which model’s
prediction agrees more with human annotation. We achieve this by annotating the inputs. We choose to
annotate the inputs from -1 to -0.6 and from 1 to 0.6 where the dominant number of inputs concentrates
and | D] is not too small when the two models do not show significant prediction differences. We sum from
the -1 to -0.6 for PDgmaii—medium and from 1 to 0.6 for PDuedium—ssmaur- Using Equ. [§ and Equ. [ we
compute 0.54 precision and recall is 0.41 for small-25. For medium-25, we compute 0.61 precision and recall
is 0.63. This shows while the two models disagree with the prediction of the other model’s representative
inputs, medium-25’s disagreement aligns more closely to human annotation, because both its precision and
recall are higher. Without introducing extra biases from datasets, we can use Model-diff to attain a better
understanding of the models’ prediction agreement and disagreement.

Model-plagiarism. Nowadays, open-sourced LMs are easily accessed for commercial and research purposes.
It remains an open question whether the new models are sufficiently distinct from their original counterparts or
if they are merely altered by adding noise to the weights (PrimerYang). We offer a different angle to approach
this problem than watermarking. We test Model-diff by comparing small-25 and GPT2-small-0.001-noise-25
where we add Gaussian noise to each weight with zero-mean and standard deviation = 0.001 (Fig. 4(a)]). It
shows that small-0.001-noise-25 almost always predicts a higher NLL on small-25’s representative inputs,
since small-0.001-noise-25 with noisy weights predicts inputs with higher NLL in general. However, it is
noteworthy that small-25 predicts a lower NLL on almost all small-0.001-noise-25’s representative inputs.
This is in contrast with the output distributions in Fig. [3] where two different models disagree on each other’s
representative inputs. We further compare small-25 and GPT2-small-0.00001-noise-25 a smaller noise
with standard deviation 0.00001 to weights. Fig. 4(b)|shows consistent results, though the area of overlap is
larger because the two models are more similar. This pattern demonstrates that Model-diff can detect subtle
model differences, including those caused by small perturbations such as weight noise. This can serve as an
indicator for potential model plagiarism.

10
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5 Related Works and Discussions

Model understanding and analysis. Recent works (Booth et al., |2021; [Liu et al., |2023al) propose to
understand models (Zeiler & Fergus| |2014; Ribeiro et al., 2016} [Lundberg & Lee, 2017} |Ghorbani et al. 2019)
beyond the datasets by sampling the model itself, which can also avoid being biased even if the dataset is
generated by external models (Luo et al., 2023} Prabhu et al.; |2023; |Shu et al.| [2020; [Leclerc et al., [2022).
Model-diff follows the recent methods of estimating (Liu et al., [2023b)) and using the output distribution
for analysis (Liu et al., [2023al). Its new normalization algorithms facilitate the analysis of model prediction
differences without the need to sample accurately all the output values. [Strobelt et al.| (2021) proposes a
microscopic view of how each token is predicted differently by the two models on the same input. It serves as
a microscopic analysis tool for Model-diff once the representative inputs are sampled. Model-diff, in contrast,
examines the macroscopic properties: the composition and the number of inputs.

Samplers for output distribution were known in physics as sampling the density of states (Wang & Landau,
2001)). The connection between the two has been discovered recently (Liu et al., |2023b)). Parallel tempering
and histogram reweighting algorithms can also sample output distribution (Hukushima & Nemoto), |1996;
Swendsen & Wang), [1986)), which are more compatible with the machine learning samplers (Grathwohl et al.|
2021; |Zhang et al., [2022)) for energy function for discrete input space.

6 Conclusion and Future Works

We propose a novel framework, Model-diff, for comparative analysis between two models without introducing
external models or datasets. Model-diff leverages the output distributions and the corresponding representative
inputs of the two models to understand the composition and quantity of the agreed/disagreed predictions
in each model’s meaningful input space. Model-diff opens a new direction in model-centric evaluation. By
focusing on model-defined input spaces rather than externally curated datasets, it enables more unbiased
comparison of training behaviors and generalization boundaries. In future work, more efficient samplers can
speed up the sampling procedure and better normalization can be developed for comparing more than two
models.

7 Limitation

While Model-diff is a general framework, it may not be optimal for all settings. First, our analysis depends
on the sampler(s). As sampling the output distribution is a relatively new topic in the machine learning
community, more advanced samplers with more computation resources can scale our experiments. Although
our proof-of-concept depends on specific samplers, the analytical framework itself remains applicable as more
efficient sampling methods are developed.

Another is our analysis focuses on NLL. While it is the training loss for many next-token-predictions, it does
not cover other interesting problems in NLP that do not use the loss. Our method in general targets a set
of problems that uses log-probability as output. This problem is covered as energy-based models [LeCun
et al.[ (2006), where the “energy function” (log-probability) is a measurement of the compatibility between
the (input) variables. Therefore, our method can also choose these measurements as output to be sampled.
Moreover, it is also important to scale our method to multi-dimensional output, such as feature embedding
analysis. Concrete examples of applications for problems beyond NLL are left as future work.
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A Math description of the Model-diff

Notations. We denote the sampled quantity used for practical analysis with “Tilde” (e.g. p) and the
quantity from ground truth enumeration without “Tilde” (e.g. p) for conceptual discussion purposes. We
also efine a varying threshold A for D values, and denote A — B as the representative inputs from A are
evaluated by model B, etc. Define  as a set of inputs in the entire input space (all combinations of the
tokens given the sequence length).

Fig. |2[ shows the overview of Model-diff. Fig. a,b) show two models A and B have predictions for the same
input x (e.g. circled in orange) as z4 x = M4(x) and zp x = Mp(x) respectively. A range of meaningful
output values is Z = [z_, z1]. Model A maps some inputs x to z € Z: X4 = {x|z4,x € Z and x € Q}. Model
B maps some inputs x to z € Z: Xp = {x|2px € Z and x € Q}. Fig. c) shows the prediction relations of
the two models’ outputs for all the inputs. We denote X4np = X4 NXp (inputs that are inside the region Rg).
All inputs in this area have their predictions of both models within Z: {x|zax € Z and zp x € Z and x € Q}.

A.1 Analysis with sampling

When the input space X4 or Xp is huge, it is computationally impossible to enumerate all the inputs to
compute pa—,g(D) and pp_4(D). We need to sample the inputs for the above analysis.

In practice, Model-diff begins with the approximated (through sampling) output distributions p4(z) (or
pp(2)) for model A (or B) using PTHR. During this process, we also obtain the sampled representative inputs
X4 C X4 and X C Xp given a meaningful output range Z. The inputs x have the following properties: for
X4 and X4 we have {x|zax € Z}; for Xz and Xp we have {x|zp,x € Z}. We sample an output value z € Z
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by following pa(z) (or pp(z)) for model A (or B), and uniformly sample z’s representative inputs to compute
D. Finally, the sampled approximations of ps_, (D) and pp_, 4(D) are:

pa-B(D) = Z 1(D — (2ax — 2Bx))s (10)
Sa

P5A(D) = 31D = (24— 25x)) (11)
S

Sa is x ~ Uniform{x|x € X and M4 (x) = z} whose z ~ pa(z). Sp is x ~ Uniform{x|x € Xpand Mp(x) =
z} whose z ~ pg(z).

The output of this stage is unnormalized pa—, (D) and pp_ 4 (D).

A.2 Normalization

Unnormalized pa—p(D) and pp_ 4(D) are not directly comparable, because the one sampled with more
iterations will have a larger amount of inputs. Thus, we need to normalize them so that we can compare
them as if we were comparing pa—, g(D) and pp_, 4(D). We find the common total count |Xanpg| helpful as
both models share the exact same inputs in the entire input space 2.

Some of the sampled representative inputs in X4 are predicted by model B within Z: Xalp = {x|x €
X4 and 2px € Z}. Similarly Xpya = {x|x € Xp and Zax € Z}. When the number of sampled inputs gets
large, we have the following relation where the sampling ratio on the left hand side (LHS) converges to the
ground truth ratio on the right hand side (RHS):

> pasB(D) _ ZﬂAﬁB(D)7 (12)

XA 5| 1Xans|
IXp_ 4l Xansl 7

when the summation range is the same for LHS and RHS in the same equation. As |[Xsnp| is the same
denominator for the RHS of both equations, the relations in Equ. [3|of 3~ pa_5(D) and Y pp_ 4(D) becomes:

> pass(D) > pass(D)

D<A<0 _ D>A>0
‘XA%B‘ . |§§A%B‘
>. pB-»a(D) > pp-a(D)
D<A<0 . D>A>0
‘XBHA| . ‘XBHA‘

B Comparing another model besides A and B

First, we compare the two models B and C' with the same representative inputs from A:

>.pa-B(D) _ > pasn(D)

%l Xal 19
Y. pasc(D) Y pasc(D)
Kl Kal (15)

Note that this does need to use A — B for X4 as in Equ. because the same set of sampled inputs X 4.
Because the denominators of the above equations are the same, the comparing the sampling results pa_, 5(D)
and pa—c(D) can lead to the ground truth counting comparison of p4—_, g(D) and pa—.c (D), indicating how
many A’s representative inputs B or C' agree/disagree.

Finally, in order to compare ipBH A(D) and Y po—, A(Di that is not shown (but in the similar form of

Equ. and , we can use [13|to get |[Xanp|, use Equ. [14] to get the relation Xal _ PITZETIC))

and use
IXA| ZﬁAaB(D)’
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Equ. [12[to get Equ. [16| (and similarly to get Equ. |17| by Equ. [L5]):

> PB-a(D) [X4|
Xpoal  [Xal
> pc—a(D) [X4]
Keoal Xl

[Kassnl =) ppa(D), (16)

Kasel =) pesa(D), (17)

. X
where the common coefficient %
A

the ground truth output distribution comparison between different models B and C etc can be transferred to
the sampling results comparison w.r.t. the reference model A.

can be ignored when the RHS of the above equations is divided. Thus,

C Detailed Experimental settings

GPT2-Toy is a simple experiment with dataset of sequences {x(V} with length 8. Each token x; for an
input x(* is an integer from 0 to 9 (vocabulary size is 10). The modulo of the sum of the sequences is required
to be 0: (3" z;) mod 30 = 0. The entire input space for this setting is 10% which is enumerable. There are
around 3.8 million sequences that satisfy the modulo requirement, and we pick 500K to build the training
set. We use two GPT2 models to learn to generate the sequences whose sum satisfies (3 «;) mod 30 = 0.
The GPT2-small-Toy has 4 heads and 6 layers. The GPT2-large-Toy has 8 heads and 8 layers. The number
of embeddings for both models is 64. After training, both models can generate sequences that satisfy the
modulo requirement with 100.0%.

Sampling details. We first sample the representative inputs corresponding to different NLLs for the two
models to be compared using a PTHR. We then sample D through the representative inputs within Z with
100000 steps for GPT2 experiments or 50000 steps for other experiments.

GPT2-small-25 samples 25 tokens with the GPT2-small and GPT2-medium-25 samples 25 tokens with
GPT2-medium. Both models are sampled NLL in [2.0,4.0] with temperature T=[10"2,107%25] for PTHR.
For longer sequence length, GPT2-small-100 samples 100 tokens with the GPT2-small and GPT2-medium-100
samples 100 tokens with GPT2-medium. The output NLL in [4.0,5.0] with temperature T=[1073-5 10713]
for PTHR.

We apply Model-diff to pre-trained Llama—7BE| and Llama2-7B for sequence length 25 as Llama-25 and
Llama2-25. Both models are sampled within NLL in [3.5,4.5] with temperature T=[10"6,10°] for PTHR.

D Repesentative Inputs for low negative log-likelihood (NLL)

Fig. [5] shows some sampled inputs for low NLL. They are mostly repeating words.

4https://huggingface.co/huggyllama/llama-7b
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2.257 the, the, the, the and you, the you and, the you, you, you and, you, you
2.261 At the tireless of the of the of the of the of the the of the the of the the the the of
2.230 the, the, the, the. you, the you and, the you, you, you and, you, you

3.173 Katotas draw hugs Move over love Draw love Draw love Draw happy Draw move Love draw love Love solve
problem Find big hug Draw hug Move move Move move move Keep moving Move place move place draw Move place
make room move close to draw drawing place make room draw place place match drawing place place touch draw
make room spot draw place touch yoke draw find place love find place match draw place love love love draw
place place match draw place touch draw place love draw love draw location love draw location draw
location match

3.116 Katotas draw hugs Move over love Draw love Draw love Draw happy Draw move Love draw love Love solve
problem Find big hug Draw hug Move move Move move move Keep moving Move place move place draw Move place
make room move Place situation draw find place make room draw place place match drawing place place touch
draw make room spot draw place touch yoke draw find place love find place match draw place love love love
draw place place match draw place match draw place love draw love draw place love draw location draw
location match

3.161 Katotas draw hugs Move over love Draw love Draw love Draw happy Draw move Love draw love Love solve
problem Find big hug Draw hug Move move Move move move Keep moving Move place move place draw Move place
make room move close to draw drawing place make room draw place place match drawing place place touch draw
make room spot draw place touch yoke draw find place love find place match draw place love love love draw
place place match draw place touch draw place love draw love draw place love draw location draw location
match

1.982 hp % attack % damage % critical strike % crit chance % bleed % critical damage on hit 0% 0% 0% 0
1.987 EEE R8 R8 R4 R4 D S4 D4 D4 D4 D4 D S4 D4

1.963 checkpoints, residential areas, schools, hospitals, and other sites used for military purposes, such
as airports, military bases, and

Figure 5: Some representative inputs from Llama2-25 (first 3 rows), GPT2-small-100 (middle 3 rows), and
GPT2-medium-25 (last 3 rows). Each row begins with the NLL.

E Inputs of D for GPT2-small-25 and GPT2-medium-25 experiments

Fig. [f] shows some representative inputs different D on GPT2-small-25 or GPT2-medium-25.

F MCMC results

Fig [7] shows simple text generation by MCMC sampling does not lead to the same ground truth distribution
with a uniform measure for a range of output values.
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Figure 6: Some representative inputs of different D values (first column) on the representative of GPT2-small-
25 (indicated by “0” in the second column) or GPT2-medium-25 (indicated by “1” in the second column).
Then the decoded input sentence(s) follows in the third column. Each group of rows separated by an empty
row indicates representative inputs have similar D.
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Figure 7: Simple text generation by MCMC sampling does not lead to the same ground truth distribution
with a uniform measure for a range of output values.
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