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ABSTRACT Humans can recognize or infer unseen classes of objects using descriptions explaining the
characteristics (semantic information) of the classes. However, conventional deep learning models trained in
a supervised manner cannot classify classes that were unseen during training. Hence, many studies have
been conducted into generalized zero-shot learning (GZSL), which aims to produce system which can
recognize both seen and unseen classes, by transferring learned knowledge from seen to unseen classes.
Since seen and unseen classes share a common semantic space, extracting appropriate semantic information
from images is essential for GZSL. In addition to semantic-related information (attributes), images also
contain semantic-unrelated information (contents), which can degrade the classification performance of
the model. Therefore, we propose a content-attribute disentanglement architecture which separates the
content and attribute information of images. The proposed method is comprised of three major components:
1) a feature generation module for synthesizing unseen visual features; 2) a content-attribute disentanglement
module for discriminating content and attribute codes from images; and 3) an attribute comparator module
for measuring the compatibility between the attribute codes and the class prototypes which act as the ground
truth. With extensive experiments, we show that our method achieves state-of-the-art and competitive results
on four benchmark datasets in GZSL. Our method also outperforms the existing zero-shot learning methods
in all of the datasets. Moreover, our method has the best accuracy as well in a zero-shot retrieval task. Our
code is available at https://github.com/anyoojin1996/CA-GZSL.

INDEX TERMS Computer vision, deep learning, disentangled representation, generalized zero-shot
learning.

I. INTRODUCTION

To classify images, humans can capture the characteris-
tics—the semantic information—about objects, and use it to
recognize a class of objects. Thanks to advances in deep
learning technology, machines can mimic this ability, given
large amounts of data, using supervised learning. Humans can
recognize the class to which an object belongs using descrip-
tions of the object from encyclopedias, even when they have
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never seen the class before. However, conventional super-
vised learning-based models cannot classify classes which
are not seen during training. Therefore, if additional classes
are added after training, the models must be re-trained from
scratch.

To tackle this problem, several studies in a field known as
zero-shot learning (ZSL), have been dedicated to enabling
models to classify unseen classes [1]-[4]. The goal of con-
ventional ZSL is to classify unseen classes using knowledge
learned from seen classes. For generalized ZSL (GZSL),
models are required to have the capacity to classify both seen
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Class Prototype
Element (a) (b)
Bill shape::Cone 793 51

Wing color::Gray 302 75
Upperparts color::Blue | 86.2 2.5
Breast pattern::Solid | 86.1 95.1
Back color::White 16 754
Tail shape::Notched | 46.2 13.5
Head pattern::Plain 59.7 88.1

adfjojoid ssej9-uoN

FIGURE 1. Example of class prototypes: two sets of ground truth class
attributes share a common semantic space but are distinct with
intensities. (a) Indigo bunting. (b) Western gull. The purple and the red
lines indicate attributes associated with the class prototype of the birds,
and the green lines indicate non-class attributes unrelated to the class

prototype.

and unseen classes after training only with seen classes. Exist-
ing GZSL research [5]-[8] has branched into embedding-
based and generative-based methods. Embedding-based
methods aim to classify the unseen classes by mapping
visual features into semantic vectors. Generative-based
methods generate unseen visual features using the unseen
semantic vectors and randomly initialized noise vectors.
As recent generative-based methods, CE-GZSL [9] uses con-
trastive embedding to leverage instance-wise supervision.
AGZSL [10] fuses adaptive and generative mechanisms,
and supplements image-adaptive attention for GZSL. In this
work, we focus on the generative-based method.

In the ZSL task, it is important to transfer knowledge
learned from seen classes to unseen classes. Thereby, side
information such as the descriptions mentioned -earlier,
is required to bridge the gap between seen and unseen classes.
Researchers have utilized class prototypes [11]-[13], word
embeddings [2], [14], and text descriptions [15], [16] as
the side information. Recent work [6], [9], [17] has mainly
focused on the class prototypes as side information. Class
prototypes contain meaningful semantic knowledge describ-
ing the corresponding class. As shown in Fig. 1, the class
prototypes represent the characteristics of classes. A set of
elements of class prototypes is pre-defined, so seen and
unseen classes share the same semantic space, with differ-
ent intensities per class. A class prototype acts as a set
of ground truth class attributes describing the character-
istics of the class. Hence, it is crucial to correctly map
visual features obtained from deep convolutional neural net-
works like ResNet-101 [18] into class prototypes. To align
visual features into corresponding class prototypes, neu-
ral network models have to extract visual features simi-
lar to class prototypes, which correspond to class labels.
However, as shown in Fig. 1, visual features also con-
tain information which is not involved in class prototypes
that can therefore degrade the performance of zero-shot
classification.
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To mitigate this problem, models need to disentangle
the non-class and class attributes of images. We therefore
define 1) features irrelevant to class prototypes as semantic-
unrelated features, 2) features involved in class prototypes
as semantic-related features, and 3) features extracted from
ResNet-101 as visual features. As the prior state-of-the-art,
SDGZSL disentangles the semantic-unrelated and semantic-
related features using a single encoder. Then, it aligns
the semantic-related features and class prototypes. How-
ever, we argue that semantic-unrelated and semantic-related
features need to be extracted using independent encoders,
because the feature spaces of the two groups are not identical.
SDGZSL also uses a concatenation operator when recon-
structing an original visual feature from two disentangled
features. We also claim that aligning two features would
produce better results than simple concatenation, as discussed
in [19]. This contention is motivated by the style trans-
fer research, which focuses on disentangling content and
style representations. Many style transfer methods [20]-[22]
have produced impressive improvements in performance, and
have shown that the content-style disentanglement works.
We can interpret styles as class attributes in the ZSL task.
Therefore, we can disentangle semantic-unrelated informa-
tion (contents) and semantic-related information (attributes)
from visual features.

In this paper, we propose a novel content-attribute
disentanglement architecture for generalized zero-shot learn-
ing (CA-GZSL). Our model encodes content-attribute codes
from an original visual feature. The model learns con-
tent codes by calculating a reconstruction loss and attribute
codes by measuring compatibility scores with class pro-
totypes. When reconstruction, to fuse the content-attribute
codes effectively, we use adaptive instance normalization
(AdaIN) [19] which aligns the statistics of two different
codes, leading to strong generalizability.

In summary, our main contributions are three-fold:

« We propose a novel content-attribute disentangle-
ment architecture for generalized zero-shot learning
(CA-GZSL). It comprises a visual feature generation
module, a content-attribute disentanglement module,
and an attribute comparator module.

o To the best of our knowledge, this is the first attempt
to introduce adaptive instance normalization into the
generative-based GZSL method to improve content-
attribute disentanglement.

o The proposed method achieves state-of-the-art and com-
petitive results on four datasets in GZSL, CZSL, and
zero-shot retrieval tasks. Our approach is the first to
obtain over 80% result on CUB in GZSL and over 50%
result on aPY in CZSL.

Il. RELATED WORK

A. GENERALIZED ZERO-SHOT LEARNING

The aim of zero-shot learning (ZSL) is to transfer knowledge
from seen to unseen classes. The ZSL research can be divided
into inductive and transductive approaches. In inductive ZSL
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training [23]-[25], unseen class prototypes are used along
with seen data. In transductive ZSL training [26]-[28],
unlabeled visual features of unseen classes can be used in
addition to unseen class prototypes and seen data. With
respect to testing, ZSL is divided into conventional zero-shot
learning (CZSL) and generalized zero-shot learning (GZSL).
While CZSL predicts classes in unseen data, GZSL catego-
rizes classes in both seen and unseen data. In general, GZSL
is considered to be harder to achieve than CZSL, since models
would be biased toward the seen data which is the only type
used in training. Our method belongs to the inductive GZSL
category.

GZSL can be achieved in two ways: embedding-based [2],
[14], [29]-[32] or generative-based methods [8], [33]-[36].
The embedding-based method has focused on learning
visual features and class prototypes by aligning them in
a joint embedding space. As an embedding-based method,
DAZLE [5] uses an attention mechanism to highlight impor-
tant local features. DCEN [6] learns task-independent knowl-
edge via contrastive learning, to transfer representations.

The generative-based methods have synthesized unseen
visual features using generative adversarial networks
(GANSs) [37] or variational autoencoders (VAEs) [38], which
transforms the ZSL problem into a supervised classification
problem. CADA-VAE [7] leverages two VAEs to align the
latent distributions of different modalities. TF-VAEGAN [35]
uses a feedback module to reflect feedback from the decoder
to the generator. CE-GZSL [9] is a hybrid framework which
integrates generation and embedding-based methods using
contrastive learning. Our approach belongs to generative-
based GZSL.

B. CONTENT-STYLE DISENTANGLEMENT

Content-style disentanglement separates content and style
representations from an image or two different images.
This concept has been widely used in style transfer [19],
image-to-image translation [39], and style classification [20]
tasks. Numerous studies have shown enhanced qualita-
tive results using content and style encoder-decoder archi-
tectures. They have used style information to stylize the
content of an image. The content and attribute representa-
tions are then combined to reconstruct the original image,
to demonstrate that they are complementary, and thus
well-separated. As one of the operations combining content
and style representations, adaptive instance normalization
(AdalN) [19] has been used, and has produced significant
improvement. AdalN is an instance normalization, which
aligns feature statistics between two different feature dis-
tributions. It has also demonstrated a strong generalization
ability.

MUNIT [39] provides an unsupervised image-to-image
translation using content codes that are domain-invariant,
and style codes that contain domain-specific properties.
ALADIN [20] learns fine-grained style similarities among
digital artworks by leveraging content-style disentangle-
ment. ALADIN shows the remarkable impact of style
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representations constructed using a set of style codes.
In GZSL, some approaches use a disentangling frame-
work. DLFZRL [40] incorporates a hierarchical disentan-
glement structure for the discrimination of latent features.
SDGZSL [41] uses a total correlation penalty for the dis-
entanglement of semantic-related and semantic-unrelated
features.

Unlike the existing works, we define the style of an image
as a set of attributes. Thereby, we focus on the impact of
the content-attribute disentanglement architecture using an
encoder-decoder network equipped with AdaIN to improve
the attribute representation.

lll. APPROACH

A. PROBLEM DEFINITION

For zero-shot learning (ZSL), we use a seen dataset S and an
unseen dataset U. dy.; is the dimensionality of a visual feature
extracted using ResNet-101, and d,; is the dimensionality of
a set of class prototypes. The seen dataset S is defined as S =
X5, Y5, ay,|xs € X%, ys € V°, a,, € A*}, wherex, € Rdres ig
a d,.s-dimensional visual feature extracted from ResNet-101,
ys € R! is a label in the seen classes, and ay, € Rt ig a
dgr-dimensional class prototype of the class y;. The unseen
dataset { is defined as U = {xy, yu, ay,|x, € X", y, €
Y4, ay, € A"}, where x, € R%es i3 a d,s-dimensional visual
feature extracted from ResNet-101, y, € R! is a label of the
unseen classes, and ay, € Réar is a d,,-dimensional class
prototype of the class y,. The two classes—seen classes and
unseen classes—are disjoint, J* N V" = @.

B. MODEL OVERVIEW

Our method is divided into two stages: the first stage is
introduced in Fig. 2, and corresponds to Subsections 1) to 4),
and the second stage is for final classification, corresponding
to Subsection 5).

In Fig. 2, the proposed architecture comprises three mod-
ules: (a) a visual feature generation module consisting of
a variational encoder Q and a variational decoder P; (b) a
content-attribute disentanglement module consisting of a
content encoder E, an attribute encoder H, an adaptive
instance normalization (AdaIN), and a decoder D; (c) an
attribute comparator module consisting of a comparator 7.
First, the visual feature generation module synthesizes unseen
visual features from unseen class prototypes using a vari-
ational autoencoder (VAE). To let the VAE know how to
correctly synthesize visual features, we first train it with
seen visual features. Then, the content-attribute disentan-
glement module encodes the content and attribute codes
using encoders. We combine the content and attribute codes
using AdaIN [19] and reconstruct the original visual fea-
tures from the combined codes using the decoder. Finally,
the attribute comparator module measures the compatibility
scores between the attribute codes and the class prototypes,
and makes the attribute codes resemble the corresponding
class prototypes.
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{ Variational Encoder @

{ Variational Decoder P

Attribute code

FIGURE 2. lllustration of content-attribute disentanglement architecture.

1) VISUAL FEATURE GENERATION MODULE

There are many generative-based GZSL approaches which
use a VAE to synthesize unseen visual features [7], [8],
[33], [35], as unseen visual features are not allowed to
be used in training. We use a conditional variational
autoencoder (CVAE) to generate synthesized visual features
% € R conditioned on seen or unseen class prototypes.
The CVAE first generates synthesized seen visual features
%y € R using the seen dataset S for use in training. The
objective function of the CVAE is formulated as:

Levae = Eq(zlxx,as)[lozgp(xﬂzs ag)] — D 1q(zlxs, ag) || p(zlas)]
(D

where the first term is the reconstruction loss and the sec-
ond term is the Kullback-Leibler (KL) divergence between
q(zlxs, as) and p(zlag). x; € R%s and a; € R are the
seen visual features and the seen class prototypes. The CVAE
encoder Q models ¢g(z|x;, as) to produce the latent variables z
using seen visual features x; and seen class prototypes a;. The
CVAE decoder P models p(z|ay) and p(xs|z, as) to synthesize
visual features from the latent variables z and the seen class
prototypes as. We use seen visual features x; and synthesized
seen visual features X; as an input to the networks in the
content-attribute disentanglement module.

As previously mentioned, it is noteworthy that a; and a,,
share a common semantic space. Thus, after training the
CVAE, the CVAE decoder can synthesize unseen visual
features X, € R%e using unseen class prototypes a, €
R Both seen visual features and synthesized unseen visual
features are used in training a zero-shot classifier. We use
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seen visual features extracted by ResNet-101, which was
pre-trained on ImageNet [42] or fine-tuned with seen class
images.

2) CONTENT-ATTRIBUTE DISENTANGLEMENT MODULE

We define semantic-unrelated information as contents and
semantic-related information as attributes that represent the
styles of classes. The content-attribute disentanglement mod-
ule comprises four main parts: a content encoder, an attribute
encoder, an AdalN, and a decoder. The content-attribute dis-
entanglement module divides visual features into the contents
and the attributes. The content encoder E : Rées — R and
the attribute encoder H : R%s — R map a visual feature
x into a content code e, and an attribute code e,, respectively.
Then, the content code and attribute code can be denoted as:

ec = E(x) @
eqa = H(x) 3

where e., e, € R% are d,,-dimensional representations.

We use AdalN which aligns two different feature statistics
to reconstruct an original visual feature. AdalN takes as input
a content code e, and an attribute code e,, and aligns the
channel-wise mean and standard deviation of e, to match
those of e,. AdalN is defined as follows:

ec — plee)
o(ec)

where o (e.) and p(e.) are the standard deviation and mean,

respectively, of a content code, respectively. o (e;) and u(e,)

are the standard deviation and mean, respectively, of an
attribute code. We first normalize the content code e, with

AdalN (e., e,) = o(ey) < ) + ueq) @
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FIGURE 3. lllustration of attribute comparator module.

the mean and standard deviation of the content code u(e.)
and o (e.), scale the normalized content code with standard
deviation of the attribute code o (e, ), and shift it with the mean
of the attribute code w(e,).

The reconstructed visual features obtained from the con-
tent and attribute codes should resemble the original visual
features. Therefore, we measure the reconstruction loss to
learn the content codes from the original and reconstructed
visual features. The decoder D : Rdar +dar s Rdres recon-
structs the original visual feature from the aligned codes
AdalN (e., e;). The reconstructed visual feature X and the
reconstruction loss function can be formulated as:

% = D(AdalN (e, e3)) 3)
Lee= Y lx—%|7 (6)
xeXs

where x is an original visual feature. X is a reconstructed
visual feature from AdalN followed by the decoder D.
We measure the mean squared error (MSE) between the
visual seen feature x and the reconstructed visual features x
as the reconstruction loss.

3) ATTRIBUTE COMPARATOR MODULE

Inspired by [43], we adopt an attribute comparator module to
let models learn the compatibilities between attribute codes
and class prototypes. As shown in Fig. 3, we concatenate an
attribute code e, and a class prototype a, as an input to the
comparator 7. The comparator T measures the compatibility
score between ¢, and a, while learning to maximize the score.
The compatibility loss function can be formulated as:

NS
Leomp = ), || Tea, ai) — (i) |17 )
i=1

where y € )* indicates a ground-truth label and ¢(y) indi-
cates a one-hot label of y. We calculate the MSE between
the compatibility score T (e,, a;) and the one-hot label ¢(y) to
measure the compatibility loss.

4) TOTAL LOSS
Consequently, the total loss can be formulated as:

Liotai = M Levae + A2Lrec + A3Lcomp ()

where A1, Ay, and A3 are the factors contributing to each loss,
controlling each impact. We use the Optuna package [44] to
search for the hyperparameters A1, A2, and A3.

58324

TABLE 1. Dataset statistics of CUB, AWA2, FLO and aPY. Seen and Unseen
is the number of seen and unseen classes, respectively. * indicates that
FLO has 1024-d embeddings extracted from a network instead of manual
attributes.

Dataset | Seen | Unseen | Attribute | Total
CUB 100 + 50 (150) 50 312 11,788
AWA?2 27 + 13 (40) 10 85 37,322
FLO 62 + 20 (82) 20 *1,024 8,189
aPY 15+5(20) 12 64 15,339

5) GENERALIZED ZERO-SHOT CLASSIFICATION

Asunseen visual features are not used in training, we generate
unseen visual features for generalized zero-shot classifica-
tion. The decoder of CVAE generates unseen visual features
with an unseen class prototype a, and a Gaussian noise z. The
attribute encoder H encodes attribute codes from the synthe-
sized unseen visual features. Then, we concatenate the seen
attribute codes and the synthesized unseen attribute codes.
Using these codes, we train a classifier. For the classifier,
we use only one linear layer, to make the system consistent
with existing work. Because we have a complex architecture
with which to effectively extract attributes in the first stage,
the classifier in the second stage has a simple architecture.
This classifier can be formulated as:

9 = arg max softmax(l(e,)) 9
j}e)}su)}u

where / is a linear layer followed by a softmax. e, € R% is
an attribute code extracted from the attribute encoder H.

IV. EXPERIMENTS

A. DATASETS

We use four popular benchmark datasets, Caltech-UCSD
Birds-200-2011 (CUB) [49], Animals with Attributes 2
(AWA?2) [50], Oxford Flowers (FLO) [51] and a Pascala
Yahoo (aPY) [12] to measure the CZSL and GZSL perfor-
mance. For evaluating the GZSL performance, we split each
dataset into training-seen, test-seen and test-unseen classes as
following proposed split which is suggested in [50].

CUB dataset is a fine-grained bird dataset that contains
11,788 CUB images, including 7,057 training-seen images,
1,764 test-seen images, and 2,967 test-unseen images. The
total number of classes is 200, divided into 150 seen classes
and 50 unseen classes. CUB has 312 attributes.

AWA? dataset is a coarse-grained animal dataset. The total
number of AWA?2 images is 37,322, and this is composed
of 23,527 training-seen images, 5,882 test-seen images, and
7,913 test-unseen images. The total number of classes is 50,
divided into 40 seen classes and 10 unseen classes. AWA2 has
85 attributes.

FLO dataset is a fine-grained flower dataset. The total
number of FLO images is 8,189, and this is composed
of 1,640 training-seen images, 5,394 test-seen images, and
1,155 test-unseen images. The total number of classes is
102, divided into 82 seen classes and 20 unseen classes.
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TABLE 2. Results of the GZSL methods. There are three blocks in the table. The first block concerns embedding-based methods, the second block
concerns generative-based methods, and the last block concerns our method. U is accy,u and S is accy;s for simplicity. The best H results are highlighted
in bold, since H is the major metric in GZSL. * indicates fine-tuned dataset, which was fine-tuned using seen class images.

Method CUB AWA2 FLO aPY
GZSL GZSL GZSL GZSL

U] S | H U | | H U] S | H U | S | H
RN [43] 38.1 | 61.1 | 47.0 | 30.0 | 93.4 | 453 - - - - - -
TCN [45] 52.6 | 52.0 | 523 | 61.2 | 65.8 | 634 - - - - - -
DAZLE [5] 56.7 | 59.6 | 58.1 | 60.3 | 75.7 | 67.1 - - - - - -
APN [46] 653 | 693 | 672 | 565 | 78.0 | 65.5 - - - - - -
DCEN [6] 63.8 | 784 | 704 | 624 | 81.7 | 70.8 - - - 37.5 | 61.6 | 46.7
GEM-ZSL [17] 648 | 77.1 | 704 | 64.8 | 77.5 | 70.6 - - - - - -
f-VAEGAN-D2 [33] 484 | 60.1 | 53.6 | 57.6 | 70.6 | 63.5 | 56.8 | 749 | 64.6 - - -
f-VAEGAN-D2* [33] 632 | 756 | 689 | 57.1 | 76.1 | 652 | 63.3 | 924 | 75.1 - - -
CADA-VAE [7] 51.6 | 535 | 524 | 558 | 750 | 639 | 516 | 756 | 613 | 31.7 | 55.1 | 40.3
DLFZRL [40] - - 51.9 - - 60.9 - - - - - 38.5
OCD-CVAE [8] 448 | 59.9 | 513 | 595 | 73.4 | 65.7 - - - - - -
IZF [47] 52.7 | 68.0 | 594 | 60.6 | 77.5 | 68.0 - - - 423 | 60.5 | 49.8
TF-VAEGAN [35] 52.8 | 64.7 | 58.1 | 59.8 | 75.1 | 66.6 | 625 | 84.1 | 71.7 - - -
TF-VAEGAN* [35] 63.8 | 793 | 70.7 | 555 | 83.6 | 66.7 | 69.5 | 92.5 | 79.4 - - -
E-PGN [48] 52.0 | 61.1 | 56.2 | 52.6 | 835 | 64.6 | 71.5 | 822 | 765 - - -
CE-GZSL [9] 639 | 66.8 | 653 | 63.1 | 78.6 | 70.0 | 69.0 | 78.7 | 73.5 - - -
AGZSL [10] 414 | 49.7 | 452 | 65.1 | 789 | 71.3 - - - 35.1 | 65.5 | 45.7
AGZSL* [10] 69.2 | 764 | 72.6 | 69.0 | 86.5 | 76.8 - - - 362 | 58.6 | 448
SDGZSL [41] 599 | 664 | 63.0 | 64.6 | 73.6 | 68.8 | 833 | 90.2 | 8.6 | 38.0 | 57.4 | 45.7
SDGZSL* [41] 730 | 775 | 751 | 69.6 | 782 | 73.7 | 86.1 | 89.1 | 87.8 | 39.1 | 60.7 | 47.5
CA-GZSL (Ours) 659 | 63.7 | 648 | 653 | 740 | 694 | 839 | 90.8 | 87.2 | 383 | 524 | 443
CA-GZSL* (Ours) 74.6 | 80.0 | 77.2 | 68.8 | 824 | 750 | 854 | 945 | 89.7 | 425 | 62.0 | 50.5

FLO has 1024-dimensional attribute embeddings extracted
from a character-based CNN-RNN using fine-grained visual
descriptions [15].

aPY dataset is a coarse-grained dataset. The total number
of aPY images is 15,339, and this is composed of 5,932
training-seen images, 1,483 test-seen images, and 7,924 test-
unseen images. The total number of classes is 32, divided into
20 seen classes and 12 unseen classes. aPY has 64 attributes.

‘We also use fine-tuned datasets from [33], where ResNet-
101 is fine-tuned by the seen class images of each dataset.

B. IMPLEMENTATION DETAILS

We use three fully-connected layers with 2048 hidden units
for the VAE encoder Q and VAE decoder P. Leaky ReL.U is
used as an activation function. We use the same hyperparam-
eters of the visual feature generation module as SDGZSL for
fair comparisons. We use the 64 mini-batch sizes in all the
datasets. For the content and attribute encoders E, H and the
decoder D, we use two fully-connected layers with d;;; hidden
units. We optimize all the networks with the Adam optimizer
for each module. Two fully-connected layers for the com-
parator module 7' are used with 2048 hidden units. We use a
single fully-connected layer for the classifier for both CZSL
and GZSL. To search hyperparameters, we use the Optuna
package [44]. We made the source code available for the
detailed hyperparameters. All the models are implemented
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with the PyTorch framework v1.7.0 [52]. We use a single
RTX 2080 Ti 11GB GPU for each training.

C. EVALUATION METRICS

We assess the performance of conventional zero-shot learn-
ing (CZSL) and generalized zero-shot learning (GZSL) with
average per-class top-1 accuracy (7'1) and harmonic mean
(H) between seen and unseen 71 accuracies as presented
in [50]. T'1 is defined as follows to evaluate ZSL.:

1 % Number of correct predictions in ¢

. (10)
pr Total number of samples in ¢

where || )| means the number of classes in ). The equation
of H is defined as follows to evaluate GZSL:
_ 2 xaccys x accyu

H= (11)

accys —+ accyu

where accys and accy« mean the average per-class top-1
accuracies for seen and unseen classes, respectively.

D. COMPARISON WITH STATE-OF-THE-ARTS
Previous generative-based methods have used visual features
extracted from ResNet-101 pre-trained on ImageNet or fine-

tuned on the seen class images of each dataset. We measure
the CZSL and GZSL performance of our CA-GZSL method.

58325



IEEE Access

Y. An et al.: Content-Attribute Disentanglement for Generalized Zero-Shot Learning

TABLE 3. Results of the CZSL methods. The upper part shows
embedding-based methods, the second block shows generative-based
methods. The last block shows our method. The best results are
highlighted in bold. * indicates the fine-tuned dataset, which was
fine-tuned using seen class images.

Method | CUB | AWA2 | FLO | aPY
RN [43] 55.6 64.2 - -
TCN [45] 59.5 71.2 - -
DAZLE [5] 65.9 - - -
APN [46] 72.0 68.4 - -
GEM-ZSL [17] 71.8 67.3 - -
f-VAEGAN-D?2 [33] 61.0 71.1 67.7 -
f-VAEGAN-D2* [33] | 72.9 70.3 70.4 -
CADA-VAE [7] 60.4 64.0 65.2 -
DLFZRL [40] 61.8 70.3 - 46.7
OCD-CVAE [8] 60.3 71.3 - -
IZF [47] 67.1 74.5 - 44.9
TF-VAEGAN [35] 64.9 72.2 70.8 -
TF-VAEGAN* [35] 74.3 73.4 74.7 -
E-PGN [48] 72.4 73.4 85.7 -
CE-GZSL [9] 71.5 70.4 70.6 -
AGZSL [10] 57.2 73.8 - 41.0
AGZSL* [10] 71.2 76.4 - 43.7
SDGZSL [41] 75.5 72.1 854 | 454
SDGZSL* [41] 78.5 74.3 86.9 | 47.0
CA-GZSL (Ours) 71.5 74.8 88.7 | 44.7
CA-GZSL* (Ours) 81.3 79.0 88.1 | 479

We select the recent state-of-the-art embedding-based and
generative-based methods, as listed in Table 2 and 3.

1) BASELINES

We compare CA-GZSL with the recent CZSL and GZSL
methods, composed of embedding-based methods such as
RN [43], TCN [45], DAZLE [5], APN [46], DCEN [6]
and GEM-ZSL [17], and generative-based methods such
as f-VAEGAN-D2 [33], CADA-VAE [7], DLFZRL [40],
OCD-CVAE [8], IZF [47], TF-VAEGAN [35], E-PGN [48],
CE-GZSL [9], AGZSL [10] and SDGZSL [41].

2) RESULTS OF GENERALIZED ZERO-SHOT LEARNING

In Table 2, we show the results of the evaluation of the
GZSL performance and compare our CA-GZSL with recent
GZSL methods. Our method surpasses the baselines by about
2% on CUB, FLO, and aPY, and obtains the second-best H
result on AWA2. Notably, on the aPY dataset, our method
is the first to achieve performance over 50 on H compared
with the existing methods. Our intuition for GZSL is in
accord with that of SDGZSL, the previous best model among
the generative-based methods. Both aim at disentangling
semantic-related and semantic-unrelated information from
visual features. To do so, SDGZSL applies a total corre-
lation penalty to ensure independence between semantic-
related and semantic-unrelated features by dividing a feature
generated from a single encoder. SDGZSL combines the two
features to reconstruct the original images by concatenating
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the two features. However, we assume that it is difficult for
a single encoder to separate two independent features. For
better disentanglement, we introduce two different encoders
to encode content and attribute codes from visual features.
We use AdaIN when combining content and attribute codes,
to improve the generalization ability, and then we reconstruct
the original images using the combined codes. Compared
with the performance of SDGZSL, as shown in Table 2, for
all the fine-tuned datasets, our method outperforms SDGZSL
in H results. This result indicates that our approach is more
effective in learning discriminative attribute features by effec-
tively disentangling the contents and attributes from the
visual features.

3) RESULTS OF CONVENTIONAL ZERO-SHOT LEARNING

We report the CZSL performance in Table 3. Our method
achieves state-of-the-art results on all of the datasets. Notably,
on CUB, we are the first work to obtain a performance
over 80%. Table 3 shows that we outperform SDGZSL in
all fine-tuned datasets. In particular, on AWA2, our model
outperforms SDGZSL by about 4.7%. The results listed in
Table 2 and 3 indicate that our method is more generalizable
than the alternatives in ZSL tasks.

E. ZERO-SHOT RETRIEVAL RESULTS

1) ZERO-SHOT RETRIEVAL PROTOCOL

We follow the zero-shot retrieval protocol proposed in
SDGZSL [41]. First, ResNet-101 extracts the visual features
from all unseen images. Then, the attribute encoder encodes
the unseen visual features into attribute codes. The attribute
codes act as reference features. Third, the VAE synthesizes
N unseen visual features per class. The attribute encoder
encodes the unseen visual features into synthesized unseen
attribute codes. The total number of synthesized unseen
attribute codes is N x || V*|, where ||V*| is the number of
unseen classes. Fourth, we average N synthesized unseen
attribute codes to produce a representative feature of each
class. The || V*|| representative features act as query features.
Lastly, we measure the cosine similarity between a query
feature and the reference features, and rank the reference
features by similarity in descending order.

2) QUANTITATIVE EVALUATION

Fig. 4 shows a comparison of the zero-shot retrieval per-
formance of CVAE, SDGZSL, and CA-GZSL (ours). The
metric we use to evaluate the zero-shot retrieval perfor-
mance is the mean average precision at k (mAP@k). Our
method, CA-GZSL, outperforms the other approaches in all
of the datasets except for mAP@25 on AWA2. For CUB
and aPY, CA-GZSL has notably better performance of mAP
than the others. Specifically, on CUB, CA-GZSL outperforms
SDGZSL by 14.5%, 23.3%, and 25.2% in mAP@100, 50,
and 25, respectively. On aPY, CA-GZSL surpasses SDGZSL
by 1.9%, 2.6%, and 5.5% in mAP@ 100, 50, and 25, respec-
tively. On FLO, CA-GZSL shows better performance than
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FIGURE 4. Comparison of the performance of zero-shot retrieval on
unseen classes.

SDGZSL by 1.6%, 1.3%, and 1.9% in mAP@100, 50, and
25. On AWA2, CA-GZSL is better than SDGZSL by 3.4%
and 0.6% in mAP@100 and 50, respectively. In contrast,
SDGZSL is slightly higher than CA-GZSL, by 0.7% in
mAP@25. Since our method outperforms SDGZSL in almost
all of the evaluations, we argue that the attribute codes
extracted using our method produce better discriminative
information than SDGZSL, which helps to distinguish unseen
classes, resulting in performance improvement.

3) QUALITATIVE EVALUATION

Fig. 5 illustrates the unseen images retrieved using CA-GZSL
on AWA2. We perform the zero-shot retrieval according to
the protocol described in Subsection E.1 of the experiments
Section. As shown in Fig. 5, our model tends to be confused
between blue whale and dolphin images, although the first
false image in the blue whale column was mislabeled as a
dolphin. Because the correct label is the blue whale, it can be
seen that the model answered correctly. The model is more
likely to be confused between walrus and seal images. At first
glance, both classes look very similar. Also, the model is more
likely to be confused between giraffe and bobcat images. Both
classes have spot patterns, so the model tends to identify the
discriminative patterns. Notably, the classes of the top three
false predictions are consistent. We argue that our model can
consistently identify meaningful attribute information from
various images.

F. MODEL ANALYSIS

1) ABLATION STUDY

In Table 4, we show the results of an ablation study of all four
datasets, which is used to measure the impact of each com-
ponent of our CA-GZSL. We first evaluate the performance
of the visual feature generation module, as a baseline. Then,
we evaluate the performance of the content-disentanglement
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FIGURE 5. Images from zero-shot retrieval on unseen classes. The
highest-ranked image is at the top of each true and false prediction
column.

TABLE 4. Ablation study of our CA-GZSL on four benchmarks. T1 is the
top-1 accuracy and H is the harmonic mean. The best results are
highlighted in bold.

Methods CUB AWA2 FLO aPY

T1 H T1 H T1 H T1 H
Baseline | 59.2 | 51.7 | 71.5 | 67.1 | 68.5 | 66.4 | 40.2 | 40.6
+ Lyec 81.1 | 76.9 | 75.0 | 72.8 | 87.7 | 89.0 | 42.3 | 45.0
+ Leomp | 81.3 | 77.2 | 79.0 | 75.0 | 88.1 | 89.7 | 47.8 | 50.5

module and the attribute comparator module, by gradually
adding the reconstruction loss L, and the comparator loss
Leomp. When Ly, is added to the baseline, the GZSL per-
formance is enhanced by 25.2% (CUB), 5.7% (AWA?2),
22.6% (FLO), and 4.4% (aPY), and the CZSL performance is
enhanced by 21.9% (CUB), 3.5% (AWA2), 19.2% (FLO), and
2.1% (aPY). When Ly is added, there are GZSL perfor-
mance improvements of 0.3% (CUB), 2.2% (AWA2), 0.7%
(FLO), and 5.5% (aPY), and CZSL performance improve-
ments of 0.2% (CUB), 4.0% (AWA?2), 0.4% (FLO), and 5.5%
(aPY). In both ZSL performance (7'1) and GZSL perfor-
mance (H), the final model obtains the best results.

2) IMPACT OF THE NUMBER OF SYNTHESIZED FEATURES

The generative-based GZSL works synthesize unseen visual
features, as only seen visual features are available in train-
ing. Thus, in this experiment, we evaluate the impact of the
number of synthesized visual features. Fig. 6 shows the seen
accuracy (S), unseen accuracies (U ), and harmonic mean (H)
when changing the number of synthesized visual features
from 5 to 4,000. When the lowest number (5) of synthesized
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FIGURE 6. Results of GZSL performance with different numbers of synthesized unseen visual features.

TABLE 5. Results of GZSL performance with different feature fusion operators which combine the content-attribute codes. ‘Concat’ and ‘Sum’ mean the
concatenation and the element-wise summation, respectively.

Operator CUB AWA2 FLO aPY
T1 U S H T1 U S H T1 U S H T1 U S H
Concat 78.8 | 74.0 | 80.2 | 77.0 | 76.4 | 63.0 | 79.9 | 704 | 86.0 | 83.6 | 93.2 | 88.1 | 46,5 | 345 | 65.6 | 452
Sum 80.0 | 73.7 | 80.8 | 77.1 | 77.2 | 62.8 | 81.8 | 71.1 | 86.0 | 82.7 | 924 | 873 | 453 | 355 | 633 | 455
AdaIN 81.3 | 746 | 80.0 | 77.2 | 79.0 | 68.8 | 824 | 75.0 | 88.1 | 854 | 945 | 89.7 | 479 | 425 | 62.0 | 50.5

visual features is used, S is the highest, and U is the lowest
in all datasets. There is a trade-off between S and U. When
S goes up, U goes down, and vice versa. On AWA2, our
model achieves the best H result (75%) in 2,400. On CUB,
we observe the best H performance (77.2%) in 400 and 800.
On FLO, it produces the best H result (89.7%) in both 2,800
and 3,200. On aPY, it shows the best H performance (50.5%)
in 1,200.

3) IMPACT OF FEATURE FUSION OPERATORS

We evaluate the impact of several fusion operators which
combine content and attribute codes. As listed in Table 5,
the ‘Concat’ means the concatenation, and the ‘Sum’ means
the element-wise summation. In this experiment, AdalN out-
performs others on all four datasets. Notably, on AWA?2,
AdalN obtains 4.6% and 3.9% higher GZSL performances
than ‘Concat’ and ‘Sum,” respectively. On aPY, AdalN is
better by 5.3% and 5% than ‘Concat’ and ‘Sum,’ respectively.

4) T-SNE VISUALIZATION

We visualize the attribute codes using the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [53],
as shown in Fig. 7. The attribute encoder in our architec-
ture encodes the attribute codes from unseen visual features.
As illustrated in Fig. 7 (a), most of the clusters are isolated
from each other on AWA2. In contrast, the seal and the
walrus clusters are most closely mingled, and are hard to
distinguish. The blue whale and dolphin clusters are close
to each other. The bat and rat clusters are also close to each
other. As shown in Fig. 5, these pairs of classes share similar
attributes, leading to difficulties in discrimination. As shown
in Fig. 7 (b), we randomly select 20 classes out of a total
of 50 classes for clear visualization on CUB. Our method
produces discriminative attribute codes, even though CUB
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has fine-grained classes that require models to catch more
subtle differences in attributes than coarse-grained classes.
Given this ability, our method outperforms the others by a
significant margin in the zero-shot retrieval task, as shown in
Fig. 4.

5) ATTRIBUTE SIMILARITY ANALYSIS

We conduct attribute similarity analysis using attribute codes
extracted from an attribute encoder and images. We first ana-
lyze attribute similarities between unseen and seen classes.
As shown in Fig. 8, the blue whale that belongs to an unseen
class is similar to the humpback whale that belongs to a
seen class. Likewise, the rat is similar to the mouse and
the hamster, and the walrus is similar to the hippopotamus.
In attribute similarities among unseen classes, there is a high
degree of similarity among classes that are similar in appear-
ance, as shown in Fig. 5. This analysis shows the attribute
encoder can produce consistent and discriminative attribute
codes from seen and unseen images.

V. DISCUSSION

We investigate the effectiveness of content-attribute disen-
tanglement architecture for generalized zero-shot learning
(GZSL). Our method for separating contents and attributes
from images is found to outperform most of the existing
approaches in GZSL and ZSL, following extensive experi-
ments. As mentioned in Subsection E.2 of the experiments
Section, the image of the first false prediction in the blue
whale column was mislabeled as a dolphin, but the blue
whale is the correct answer. We believe that refining the
datasets widely used in GZSL would be valuable as future
work. Although our method achieves state-of-the-art perfor-
mance on most datasets, there is a limitation in classifying
classes that have similar class prototypes, as shown in Fig. 5.
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We argue that it is hard to tackle the problem of subtle
differences in values of class attributes only using the class
prototype information. Therefore, auxiliary information such
as knowledge graphs or additional text descriptions would be
helpful to improve the zero-shot inference abilities of models.

VI. CONCLUSION

In this paper, we propose a novel content-attribute dis-
entanglement architecture for generalized zero-shot learn-
ing, consisting of a visual feature generation module,
a content-attribute disentanglement module, and an attribute
comparator module. In addition, we present the first attempt
to utilize adaptive instance normalization to improve dis-
entanglement and generalization ability. Our method recog-
nizes discriminative class attributes from visual features in
both zero-shot classification and retrieval tasks, as demon-
strated by extensive experiments. We evaluate our approach
on four benchmark datasets widely used in ZSL. Compared
to existing GZSL approaches, our method achieves state-
of-the-art results using the CUB, FLO, and aPY datasets,
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and competitive results on AWA2. We will utilize additional
information, such as knowledge graphs, in our architecture to
discriminate classes with similar attributes in future work.
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