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Abstract

We consider inferring the causal effect of a treatment (intervention) on an outcome
of interest in situations where there is potentially an unobserved confounder influ-
encing both the treatment and the outcome. This is achievable by assuming access
to two separate sets of control (proxy) measurements associated with treatment
and outcomes, which are used to estimate treatment effects through a function
termed the causal bridge (CB). We present a new theoretical perspective, associated
assumptions for when estimating treatment effects with the CB is feasible, and
a bound on the average error of the treatment effect when the CB assumptions
are violated. From this new perspective, we then demonstrate how coupling the
CB with an autoencoder architecture allows for the sharing of statistical strength
between observed quantities (proxies, treatment, and outcomes), thus improving
the quality of the CB estimates. Experiments on synthetic and real-world data
demonstrate the effectiveness of the proposed approach relative to state-of-the-art
methodology for causal inference with proxy measurements.

1 Introduction

Estimating the causal effect of a treatment on an outcome is crucial in various domains, but the
presence of unobserved confounders can hinder accurate inference [36}44f]. Traditional methods often
rely on strong assumptions, such as the absence of unobserved confounders [43}140]. Other approaches
have assumed available instrumental variables with specific properties 2,51, [19]]. However, these
assumptions may not always hold in practice, leading to biased estimates of causal effects.

A promising approach to address this challenge is the use of proxy variables (17,130, 28], also known
as negative control variables. These are variables that are affected by the unobserved confounder, but
do not necessarily directly influence the treatment or outcome. Consequently, leveraging information
from these proxies, we can gain insight into the underlying causal mechanisms and potentially
mitigate the bias caused by unobserved confounders.

Recent work has introduced the concept of a causal bridge function, which uses two sets of proxy
variables, one related to the treatment and the other to the outcome, to estimate causal effects
[30,131L152]]. This approach has shown promising results, but there is still room for improvement in
terms of both theoretical understanding and practical implementation.

This paper builds on the causal bridge framework and makes several key advances. We provide a
refined theoretical analysis, clarifying the assumptions and conditions under which the causal bridge
function yields accurate causal effect estimates. Furthermore, we introduce a novel learning approach
that leverages the power of generative models to enhance the estimation of the causal bridge. Our
approach enables the sharing of statistical strength between observed variables, leading to more
robust and accurate causal inference. Finally, we extend the causal bridge framework to handle
survival outcomes, a common type of data in biomedical applications.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



In summary:

1. We develop a novel framework for causal inference with proxy variables, building upon the causal
bridge function. Specifically:

(a) We re-examine the assumptions underlying the causal bridge function, providing a new bound
on the average error of the treatment effect when the assumption that the causal bridge is
independent of the treatment proxy is violated (Section[4).

(b) We introduce a new formulation for learning the causal bridge that utilizes generative models
to sample from the conditional distribution of the outcome proxy given the treatment proxy
and treatment (Section [6). This approach allows for more efficient and flexible estimation
compared to previous methods that rely on estimating conditional expectations.

(c) We propose an autoencoder architecture that enables the sharing of statistical strength between
observed variables (Section [6), leading to improved estimation of the causal bridge and more
accurate causal effect estimates.

(d) We extend the causal bridge framework to handle survival outcomes (Section [6]), broadening
its applicability to important real-world problems.

2. We validate our framework through experiments on synthetic and real-world datasets (Section([7)),
including comparison with a randomized control trial (RCT). Our results illustrate the implications
of our assumptions and demonstrate the effectiveness of our approach compared to state-of-the-art
methods for causal inference with proxy variables.

2 Related Work z

Traditional approaches for dealing with unobserved
confounders often involve sensitivity analysis [[16}
15]], which assesses the robustness of causal effect
estimates to different assumptions about the unob-
served confounder [41} [39} 22| [16} 23]. Another Figure 1: Graphical model for the causal-inference
common approach is the use of instrumental vari- problem. U is the unobserved confounder, X is the
ables (IVs), variables that influence the treatment treatment, Y is the outcome of interest, and Z and
but are independent of the unobserved confounder W are the treatment and outcome controls, respec-
[T, 12, 19} [51]. However, finding valid IVs can be tively. The dashed lines represent dependencies that
challenging in practice. may or may not be present.

More recently, there has been growing interest in using proxy variables to address unobserved
confounding. Early work focused on categorical data and unobserved confounders [25], showing
that causal effects can be estimated under certain conditions. The concept of causal bridge function
[30L 311 152, 241 8] extends this idea to more general settings, using two sets of proxies to estimate
causal effects. These studies have provided valuable theoretical insights and practical tools for causal
inference with proxy variables.

Deep learning has also been increasingly applied to causal inference, enabling the development of
more flexible models. For example, deep-generative models have been used to improve IV analysis
[19] and to address unobserved confounding in various settings [28l 55, 4]. Our work builds on
these advances, leveraging generative models to enhance the estimation of the causal bridge function.
We note that one advantage of proxy variable methods in the unobserved confounding setting is
that it requires weaker assumptions than an IV approach. Specifically, IV methods assume that the
instrumental variable and the unobserved confounder are independent and the latter influences the
treatment but not the outcome.

Our work draws inspiration from and contributes to several active research areas within causal
inference, particularly those focused on handling unobserved confounders and leveraging proxy
variables. Although our research builds upon these foundations, it makes several novel contributions,
as elucidated in the previous section.

3 Background on the Causal Bridge

Let X and Y represent a treatment (intervention) and outcome, respectively. In the examples we
consider, Y will be continuous and X could be real or categorical (with binary being an important
special case). It is assumed that X and Y are both dependent on an unobserved confounder U, as
illustrated in Figure |1l As discussed in [25 135} 130} |31} 52], to perform inference in the presence



of the unobserved U, control (proxy) measurements are assumed to be available, which are also
dependent on U. Specifically, Z is a treatment control variable, and W is an outcome control variable.
As shown in Figure [1} the outcome may depend on W and the treatment may depend on Z. We
assume for simplicity that there are no additional covariates, but such could be included if available,
as discussed in [31}52]. We denote the domains of (Y, X, Z, W) as (J, X, Z, W), respectively.

For the graphical model in Figure[I] we make the following assumptions, which are consistent with
those in 30, 131} 152]:

Assumption 1 (A1) (Latent Ignorability):
Y(z) LX|U, VeelX

Assumption 2 (A2) (Negative Control Outcome):
W L X|U and W LU

Assumption 3 (A3) (Negative Control Treatment):
Z 1LY|(U,X) and Z 1L W|U
These assumptions underscore that (A1) the dependence of X on Y is manifest only through U; (A2)

the control outcome W does not directly influence treatment X ; and (A3) the treatment control Z
does not directly influence the outcome Y (or the control outcome W).

We now introduce a bridge function b(W, x) 31152, [14].
Theorem 1 [[14] If there is a solution to the Fredholm integral equation
E(Y|x,z) =EbW,z)|z,2), VaeXandz € Z, (1
then
E(Y|z,U) = Ep(W,z)|U], and E[Y|do(X = z)] = E[b(W,z)].
The form of Theorem 1 was presented and proven in [[14], and requires multiple additional assumptions
to ensure that there is a solution to @) [30152]], and importantly, completeness, described below.

Assumption 4 (A4) (Completeness) For any square-integrable function g(-) and for any «,
E[g(U)|Z, x] = 0 almost surely if and only if g(U) = 0 almost surely. And for any square-integrable
Sunction h and for any x, E[h(Z)|W, x] = 0 almost surely if and only if h(Z) = 0 almost surely.

Theorem 2 [14] Under A1-A4, and other technical conditions, there exists a solution to (I)).

The proof and further details concerning Theorem 2 are presented in [14]. The above assumptions
(and other technical requirements) are relatively abstract; therefore, in Sectiond] below we explore
the properties that must hold for the existence of a solution to (I). The insights from this analysis
will motivate our modeling approach in Section [6]

4 Implied Properties of the Bridge Function

Conditions needed for the bridge function One may express (I)) as

E(Y|z, z) = /dW bo(W, x, 2)p(Wlz, z), bo(W,x,2) = /dU E[Y |z, W,Ulp(U|W, z, z). (2)
Note that the generalized bridge function by (W, x, 2) is a function of z, violating the assumed form
of b(W, z) in (I, which is independent of z.

Proposition 1 For the equality in (1) to hold, either bo(W,x,2) is independent of z, i.e.,
bo(W, z,z) = b(W, z), or b(W, z) = bg(W, z,2) + f(W,x,2) and E[f (W, z, z) |z, 2] = 0V (z, 2).
Although bo(W, x, 2) is not independent of z, the sum bo(W, x, z) + f(W, x, 2) is.

One possible way that by (W, x, z) could be independent of z, and therefore equal to b(W, x), is if
p(UW, z,z) = p(U|W,z). However, we posit that p(U|W, z, z) = p(U|W,x) does not hold in
general. Another possible way for bo(W, z, ) to be equal to b(W, z) is if

/ dU E(Y |2, W, U)p(U|W, 2, 2) = / dU E(Y |2, W, U)p(U|W, ).,



which implies that the z-dependence in by (W, x, 2) is removed after performing the expectation wrt
p(U|W, z, z). While this is possible, we also do not make this assumption. We therefore posit that in
general, one cannot assume that by (W, z, z) is independent of z, and therefore we conjecture that the
second condition in Proposition 1 must hold, i.e., b(W, z) # bo(W, z, 2).

Proposition 2 If (1)) holds, then for all (x, z), the bridge function b(W, x) satisfies

EWNp(W\x,z) [b(m .’E)] = ]EWNp(WLt,z) [bO(VVv z, Z)]» 3
where bo(W,z,z) = [ dU E[Y,x, W,Up(U|W, z, z). Thus, b(W, x) yields the correct conditional
expectation of E[Y |z, z] when integrated over p(W |x, ).

The hierarchy implied from the above analysis may be summarized concisely as follows.

p(UW,z,2) #p(UW,z) (4) E[bg(W, z, 2)|z, z] = E[bB(W, z)|x, 2] (6)
bo(W,x, z) # b(W,x) Q) E(Y|z,z) = Ebo(W, z, )|z, z]. (7)

Note that (7) is by definition and is not an assumption. Moreover, condition () is required for
to hold. This interpretation of the bridge function b(W, x) as matching by (W, x, z) in expectation
rather than a pointwise (distributional) match is consistent with relaxed identification frameworks
discussed in the literature of nonparametric instrumental variables [33[11], where moment conditions
or expectations replace the exact operator equalities.

Bound on the Estimation Error for the Causal Bridge We present the following new information-
theoretic result, which leverages the analysis in the previous section by relating the error in the fit to
(T) with the relative information between (U, W, Z). The proof is provided in Appendix

Theorem 3 (Average Error 1 for the Causal Bridge) Assume that the function E[Y |z, W, U] is
C'-Lipschitz in U, and that U is almost surely supported on a bounded set with ||U|| < R. There
exists a bridge function b(W, x) for which

Ezepzia) |[EY |2, Z] — By ep(we,z) bW, 2)]|] < CR -\ 21(U; Z|W, x). ®

n

One such bridge function is
b(VV, J?) = EUN])(U|W,:E) [E[le, W U]] y
but others may exist that achieve tighter bounds.

Examining the statement of Theorem 3, one may be tempted to suggest proxies Z that are independent
of U, but the completeness assumption (A4) concerning E[g(U)|Z, x| disallows it. Instead, Theorem
3 states that W should be a low-noise representation of U, in the sense discussed in [25] concerning
proxies (W, Z) as “noisy” measurements of U.

Corollary 1 (W as a noisy nonlinear mapping of U) Assume that W = W(U) +¢, where ¥ : RV —
RW is an invertible, continuously differentiable (C*) function, and ¢ is independent of (U, Z, X),
with zero mean and covariance matrix o2 1. With additional (typical) regularity conditions provided
in Appendix[B.2] there exists a constant Cy > 0 such that, for sufficiently small o,

I(U; Z|W,x) < Cyo?. )

The complete statement of Corollary 1 and its proof are provided in Appendix [B.2] While the
assumption of an invertible ¥(U') may seem strong, this same assumption was made previously for a
similar setup in [25]], where discrete observations and proxies were considered (see Eq. (4) in [25]]).

Theorem 3 establishes that the quality of the bridge approximation critically depends on the condi-
tional mutual information I(U; Z|W, x) and Corollary 1 provides conditions under which this mutual
information becomes small, namely when W is a low-noise nonlinear observation of U through an
invertible and smooth transformation. This insight motivates practical modeling choices, namely, to
construct effective bridge functions, one should design or select proxies W that capture the latent
confounder U with minimal distortion and noise. In practice, this suggests that proxy variables with
low measurement error and stable relationships to unobserved confounders are particularly valuable.
Moreover, by ensuring that W is an informative (albeit noisy) transformation of U, Corollary 1
justifies the feasibility of approximately solving the Fredholm integral equation in (I, enabling
effective learning of causal bridge functions even in the presence of complex, nonlinear, confounding.



In order to illustrate the results of Theorem 3 and Corollary 1, we consider a structural equation
model (SEM) for the generative process in Figure[T](see Appendix [C]for details). The SEM shown in
Appendix Figure[d]is consistent with the model for Corollary 1, but we now assume ¥ (U) is a linear
function. We make this simplification along with letting U and the noise terms for W, Z, X and Y’
be Gaussian with variances o7, ow, 0z, ox and oy, respectively, to be able to obtain closed-form
expressions for the quantities of interest (see Appendix [C).

Correlation between Mean r(n) and I(U; Z|W, X) for varying ow

Figure |2 shows the results for the relative approx- M T o
imation error 7(n) = Ez.pzj2)[1n/|E[Y ]z, Z][] ]
vs. I(U;Z|W,z) both averaged over X, for oo

oy = 10, oz,00 = {0.1,0.25,0.5,0.75,1},

and ox = 0.1, from which we see that 7 increases -

with I(U; Z|W, x) and oy, consistent with Theo- ool 4

0.0 02 04 12 14

06 08 1.0
Mutual Information (U; Z|W, X)

rem 3. We provide more details and results varying
ox in Appendix [D] Interestingly, when ox = oz Flgpre 2: Relative error (r(n)) vs. mutual infor-
and the SEM coefficients are 1, both n = 0 and mation (I(U; Z|W, z)) both averaged over X. Each
I(U; Z|W, z) = 0, which is a special case formal- line represents a value of oz for increasing values

: : : : f ={0.1,0.25,0.5,0.75, 1}, = 0.1, which
ized in Lemma 1 in Appendix[Q} gretjcvgnsis;{ent with (U; 7Z\V[/,’gc)} . e

5 Generative Model for the Bridge Function

Concerning the assumed form of b(W, z) in Theorem 3, while p(U|W, x, z) was replaced with
p(UW, ), E(Y|z, W,U) was retained from bo(W, z, z). The latter was conducive for analysis.
However, it is possible that a better bridge b(1V, z) may be learned without retaining E(Y |z, W, U),
yielding a smaller expected difference between E(Y |z, z) and E[b(W, z)|x, z]. We therefore can
replace 2] with the following general form which we use in our model:

b(W, ) = / dU g(a, W, U)p(U|W, ), (10)

which allows b(W, z) to not be restricted to g(x, W,U) = E[Y |z, W, U], while still being able to
produce the desired E[Y |, z]. Both g(z, W, U) and p(U|W, ) are jointly learned when solving (T})).
Note that this setup effectively suggests a generative latent-variable model with encoder p(U|W, x)
and a decoder for (X, Z), which we discuss in detail in Section[f] In practice we do not claim the
modeled p(U|W, x) represents truth, as final predictions are based on b(W, x).

We seek to model the form of the bridge as in (I0). From that perspective, a generative model can
be constructed to draw the samples of U needed for implementing (I). In this context, and using
(T0)), we consider u; ~ p(Ulw;, x) with w; ~ p(W|z, z). One may consider learning a function
h(W, z,€), such that u; = h(wj,z,¢;), where w; ~ p(W|x, z) and (for example) €; ~ N(0, I),
where [ is the identity matrix and hence € is drawn from isotropic Gaussian noise of the chosen
dimension. Such a generative model h(W, z, €) has been widely considered, e.g., in generative
adversarial networks (GANs) and its generalizations [18},134} 13,112} |32]]. In practice, using Proposition
2, we may model

E(Y|£L’, Z) = ]EW|9c,z [Ep(s) [gY(xv W» h(I/Vv z, 6))] ] ) (11)

b(W,x)

which is motivated by modeling b(W, x) in such a way that the expectation-matching property of (T)
holds, but explicitly defining b(W, ) as a functional expectation over p(U|W, x) as in (I1), modeled
here by samples drawn through h(W, z, €), with a general integrand gy (z, W, U). The benefit of this
model is most prominent when it is coupled with an autoencoder for (X, Z), in which h(W, z, €) is
shared, thus enhancing statistical strength. This strategy is discussed next.

6 Learning Setup

Assume that we have access to a set of data D1 = {(=;, 2;,w;) }i=1 1 from which a generative
model can be learned to draw samples from p(W |z, z). The details of this model depend on the
data characteristics, and more details are presented when discussing the experiments in Section 7]



Note that we need not model p(W |z, z), rather in general, we seek to model the capacity to generate
samples from this conditional distribution, e.g., using a conditional GAN [32].

We also assume access to data Dy = {(z, i, i) }i=1,~, which may or may not be explicitly
connected to D;. We use Dy within the Fredholm integral in (T)) with which we will solve for b(W, ),
with conditional expectations wrt p(W |z, z) performed by drawing samples from the generative
model developed with D;. We note that D; is not necessary; however, it is specified to weaken the
requirement of having a common dataset for which all observed variables (W, Z, X, Y") are available.
This distinction is especially useful in situations where the dataset for which the outcome is available
D> is not the same or is (much) smaller than D, .

Bridge for the Outcome Let gy, (x, W, h(W, x, €)) represent a model for E(Y |z, W,U), where
we model samples of the unobserved confounder as U = hy,, (W, z, €), 8y and 0y are the model
parameters with subscripts Y and U highlighting that the model is connected to expected outcomes
and the unobserved confounder, respectively. To solve (I), we seek to minimize the following loss.

2
Loy = SN (i — Epwier o0 Ep(o) [90y (5, W, hay, (W, 21, €))]) (12)

If only the outcome Y" is modeled, then in practice we replace ;) [go, (2, W, ho,, (W, 7, €))] with
b(W, z), e.g., a neural network with inputs (W, x), which is understood to have parameters 6y .

The objective implied by Ly, involves two steps: (z) develop a generative model to draw samples from
p(W|x, z) using D1, and (i%) use this model within the minimization of Ly,. for 0y to approximate
the expectation wrt W. However, note that these two steps are followed in sequence, which should
be distinguished from the iterative and alternating two-step approach developed in [52].

Within the context of our discussion after (10), through w; ~ p(W|z, z) and €; ~ p(e), we seek to
simulate samples from p(U|z, z) as u; = hg, (w;, x, €;). The unobserved U is assumed to affect
both the treatment X and Z as illustrated in Figure[I] When the number of samples N is relatively
small, there may be an opportunity to improve statistical strength by also modeling {(z;, 2;) }i=1,~>
both of which are also functions of U (not only Y).

Autoencoder for the Treatment and its Control Analogous to the aforementioned model for Y, we
can model E(X|U, z) = go (U, z) and E(Z|U) = gy, (U). In the context of an autoencoder, we as-
sume that u; = hg, (w;, z;, €;) with w; ~ p(W|x;, z;) constitutes a means of encoding observations
(2, #;) into a latent feature space represented by conditional samples u;|(z;, 2;). Connected to the
approximation considered in Proposition 2, we assume that the expectations of gg, (U, z) and gg, (U)
wrt p(U|W, x, z) may be replaced by expectations wrt p(U|W, z) with W ~ p(W|z, z). This implies
the same conditions on p(U|W, z, z), e.g., that the expectation of p(U|W, z, z) depends only on
(W, z), and that go (U, z) and gy, (U) have the same class of dependence on U as gy, (x, W, U),
e.g., they could be linear in U. However, although these functions may be linear in U, U itself may
be nonlinearly related to W (see Corollary 1). From this angle, we consider the additional losses:

2
Loy = o0 (2 = Epwias. o) Ep(e) [90x (hoy (W, i, €), 2:)])
N 2
Lo, =1 (2 = Eywias, 20 Ep(e) 196, (hoy, (W, zi,€))])7,

where we emphasize that the function hg, (W, z, €) parameterized by 0 is shared between the
models of (Y, X, Z), ideally improving the quality of the learned hg, (W, x,€). Note that when
producing causal estimates, we only need the learned gy, (z, W, h(W, z, €)), Le.,

E(Y|dO(X = x)) = Ep(W)]Ep(e) [ggy [.Z’, VV, th (VV, x, 6))] (14)

However, by jointly seeking to minimize Ly, + Lg, + Lg,, it is hoped that the quality of the model
for hg,, (W, z, €) will be improved, therefore also improving the causal-effect estimates relative to
the outcomes. In practice, weighting can be used in the sum of losses, to reflect their relative scale
which depends on (X, Z,Y), as discussed in Section Moreover, in terms of implementation, we
still first build a generative model for p(W|x, z) using D; and then optimize the parameters of the
shared encoder 0y, bridge 8y and autoencoding components {6x, 07} using D.

(13)

Connection to the Causal Effects VAE (CEVAE) The composite model, employing the cumulative
loss function Ly, + Lo, + Ly, , shares characteristics and motivation with the CEVAE developed
in [28]]. We note that recent work by [38} 152]] has highlighted limitations of the CEVAE. Some of
the challenges with existing CEVAE research are related to the difficulty of modeling posteriors like

p(Ulz, 2).



The proposed framework differs from the CEVAE in several key ways. Within the context of (T0),
W is assumed to be a strong proxy for U, and therefore the model to draw samples from p(W |z, z),
based on observed {(x;, z;, w;) }i=1,m provides strong information about p(U|z, z) that was not
available to the CEVAE. Moreover, within our autoencoder, we only model the latent confounder
with (z;, z;) and not the outcomes y; as in the CEVAE. The expected conditional outcome E(Y |z, z)
is modeled via the causal bridge function, for which we have theoretical support (Theorem 3).

Finally, note that within the CEVAE one must set a prior p(U) with which the Kullback-Leibler (KL)
divergence is computed relative to p(U|x;, 2;). In practice, it can be difficult to set such a prior; thus
we avoid this complication by simply designing an autoencoder, instead of a variational autoencoder.
Rather than employing a KL term for a regularization of the posterior, we use Ly, and our model to
draw samples from p(W|z;, z;), both of which provide regularization on the inferred posterior.

The extension of our approach to a CEVAE-type setup is relatively straightforward, using our
definition of p(U|x, z) within the CEVAE. Importantly, in such a setting, the CEVAE models (X, Z),
and Y is handled via the Fredholm equation for the bridge. The main difference between a CEVAE
version of our approach is the inclusion of a prior p(U') and the inclusion of a KL term between p(U)
and p(U |z, z). Nevertheless, we did implement such a modified CEVAE formulation, in addition
to the simpler autoencoder setup discussed above. We found that the KL term added significant
difficulty and undermined the reliability of CEVAE-based predictions. We do not show results for
an CEVAE-like version of our model (with KL term) in Section[7} because they were numerically
unstable and sensitive to the way p(U) was set (like shown in [52]]). In contrast, we found that our
approach trained well and yielded reliable results. However, in Section [7jwe do discuss and compare
to results from the original CEVAE model [28]].

Bridge for Survival (Time to Event) Outcomes So far we have considered continuous outcomes
Y with standard squared error loss Ly, . We now consider survival outcomes, which are of special
interest in a wide range of scenarios where causal inference is used in practice, constituting a novel
application of the causal-bridge framework. Specifically, we consider outcomes of the form (Y, E),
where Y is the observed time Y = min(7, C), T is the time at which the event of interest occurs, C'
is the follow-up time, and F is the observed-event indicator. If for a given sample, y = ¢ < citis
said that the event of interest is observed and e = 1, otherwise, y = ¢ < t, e = 0 and the event is
right-censored. Here we assume that censoring is not informative, i.e., T I C|X. Extensions to other
forms of censoring are possible within our framework, but left as future work. Unlike for continuous
outcomes, we are not interested in modeling the (expected) value of Y through E[Y |do(X = x)].
Instead, we are interested in E[A\|do(X = x)], i.e., the risk function defined as the contribution of
observed covariates on a baseline hazard function, i.e., A(Y|W,z) = Ao(t) exp(b(W, x)), where
Ao(t) is the baseline hazard and exp(b(W, z)) is the risk function, conveniently written in terms of a
bridge function. The casual estimate of interest for binary treatments, X = {0, 1} is the hazards ratio
(HR) defined as

CAYIWX =1)  exp(b(W, X = 1))

HR= VWX =0) ~ expb(W. X =0))

15)

Optimizing (I)) wrt the hazards function is achieved by maximizing the partial likelihood of the model
similar to the Cox proportional hazard model [13] using

Loy = Y m—log( > eXp(pi))7 Pi = Epwizi, 20 Ep(e) (905 (@5, W, hoy (W, 24, ).
ie;=1 3>y

(16)

where we do not need to account for the baseline hazards A (¢) because it does not depend on the
treatment X or the outcome control W. Note that the autoencoder version of this model is consistent
with the above definition, except that the loss for X is changed to cross entropy.

Recently, [54]] proposed an approach that also modeled the hazard function using the bridge function.
However, they do not make the proportional hazard assumption like we do. Rather, they impose a
rigid form for the bridge function (Eq. (31) in [54]). That work considered experiments on real data
(SUPPORT), as we do. However, in [54] the ground truth for the estimate of the causal effect is not
available, while in our experiments in Section [7]we compare to an RCT.



7 Experiments

All models were developed using PyTorch, and each experiment can be executed in a few minutes on
a Tesla V100 PClIe 16 GB GPU. The source code used here can be found at https://github.com/
ruolinmeng/CausalBridgeAutoEncoder!

7.1 Synthetic data

We first demonstrate the performance of the proposed method on two synthetic datasets introduced in
[52], and we perform the same experiments as considered there.

Data The first experiment considers the Demand data introduced by [19]]. Details of the data
generation process are found in Appendix [E.I] The second experiment considers the dSprite data
introduced by [29]. Details of the data generation process can be found in Appendix For both
datasets, we consider two sample size settings, 1000 and 5000, for a single dataset {(x, z,w,y)},
consistent with the setup in [52].

Metrics We estimate the average causal effect using the bridge function with (I4) and compare it to
the ground-truth causal effect in terms of the mean squared error (MSE). Note that this is only possible
with synthetic data since the datasets used to train the model only have access to specific (factual)
combinations of {(z, z,y)}, i.e., we do not also have values of {(z,y)} for which the treatment z
takes values different (counterfactual) than those observed. The test points are evenly distributed over
the treatment variable X when calculating the out-of-sample MSE. Additional details are provided in
Appendix [E] This setup replicates the experiments introduced by [52].

Models considered We compare our method to the deep feature proxy variable (DFPV) method of
[52], which is considered the prior state of the art. In the results below, we consider the following
model configurations: ¢) The original DFPV method [52]. ¢¢) The same underlying DFPV model (and
hyperparameters), but replace iterative learning [52]] by first estimating p(W |z, z), from which we
sample when learning the bridge function. This setup allows examination of the benefits of learning
to sample from p(W |z, z), with no change to the form of b(W, x) from DFPV. iii) The causal bridge
(CB) model learned with and using the p(W |z, z) sampling model. iv) The combined bridge and
autoencoder (CB + AE) model with @ and @]), i.e., Lo, + Lo, + Loy,. Moreover, we also consider
CEVAE [28]], neural maximum moment restriction (NMMR) with U- or V-statistic optimization so
NMMR-U and NMMR-V, respectively [24], and Kernel Alternative Proxy (KAP) [8]. Concerning
the new methods discussed in Section[6](the last two methods above), our model architectures are
relatively simple and not considerably more complex than those used by DFPV [52]. This is done
to demonstrate that the performance of our model variants is not attributed to overly complicated
architectures. The details of the neural networks and hyperparameter tuning for all models are
provided in Appendix [[] Concerning the last two models discussed above: CB learned based on
modeling Y alone and CB + AE is based on the combined loss for modeling (Y, X, Z), the exact
same models and hyperparameters are used for gg,, (x, W, hg,, (W, x, €)) (this allows consideration
of the impact of the autoencoder, without anything else changed). We also note that model selection
for all approaches is based only on the loss for Y in (T2).

In all places where we sample from p(W|z, z), 100 samples are drawn. For the model hg,, (W, z, €),
for each draw of W, 5 unique € are drawn from p(¢). These values were selected based on empirical
validation to ensure stable learning and accurate estimation.

Results Figure|3|shows that for experiments with synthetic data, Demand and dSprites, using our
generator for p(W |z, z) significantly improves performance relative to DFPV [52], which is likely
due to the advantages of sampling (we draw 100 samples from p(W |z, z) in these experiments).
Consequently, we have the flexibility to generate many samples of W for each combination of
{(X = z,Z = 2)}, enabling better learning and estimation of causal effects. Moreover, utilizing
he,, (W, x, €) in the generalized bridge model gy, (z, W, hg,, (W, x, €)), and thus moving beyond the
DFPV representation of the bridge, further improves performance. The gains of this approach using
(12) are most noticeable on the Demand dataset. Incorporating the autoencoder for (X, Z) using both
(12) and aids with the learning of the shared hg,, (W, z, €), particularly when the sample size is
small, which is of particular interest in real-world scenarios. Finally, when comparing the proposed
CB and CB + AE with NMMR-U, NMMR-V and KAP, we see that our approaches are significantly
better, especially on the dSprites dataset. Results for KAP on Demand and CEVAE on both datasets
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Figure 3: Out-of-sample MSE results for (Left) Demand and (Middle) dSprite data. (Right) Hazard-ratio (HR)
results with 95%ClIs for Framingham data. The different methods are listed along the x axis, including results
from the RCT, to which CB + AE agrees best. The red and green dashed lines correspond to the null HR= 1 and
the reference (mean RCT estimate), respectively.

are not shown because they are out of range, however, they are presented in Appendix Table [I]along
with all results in Figure [3| for completeness.

In Appendices[l|and[J]] we present two ablation studies. In the former, we explore the dimensionality
of U and noise € for the shared autoencoder hg,, (W, z, €), by showing in Figure that our model
is insensitive to them. In Appendix J] we explore the generalization in (I0), but instead of using
ho, (W, x,€) to sample from p(U|W, z), we do it directly via MCMC (we can do this when we
assume the unrealistic case of knowing the underlying model — we do this as a test of the utility of the
model hg,, (W, z, €)). We show in Figure[13]that learning g(x, W, U) with samples from p(U|W, z)
produces slightly more accurate causal estimates compared to using hg,, (W, z, €), which is a good
indication that the latter is a good approximation for p(U|W, x) for the specific purpose of estimating
causal effects.

7.2 Real-World data

Data Framingham is an observational longitudinal study designed to learn about the incidence and
prevalence of cardiovascular disease (CVD) and its risk factors [S)]. The data used here are the
Offspring cohort, which consists of 3435 subjects split into 2404, 516, and 515 training, validation,
and test samples, respectively. For this experiment, we are interested in estimating the average causal
effect of taking statins (a cholesterol-lowing medication), i.e., the treatment X = {0, 1}, on the
timing Y of future CVD events. These data are in the public domain, and therefore these experiments
can be replicated.

Constructing proxies for Framingham The 32 covariates available for this dataset are not split in
terms of treatment and outcome controls, Z and W, respectively. Consequently, we adopt the proxy
bucketing strategy of [47]], which divides covariates into Z and W according to their association with
treatments and outcomes using effect sizes estimated from linear models on the training data. Details
are provided in Appendix [E.3]

Models considered We compare the proposed framework with three strong baselines: variants of
balancing weighting schemes for the Cox proportional hazards (CoxPH) model for survival analysis
[42]. Balancing weights are obtained from a linear logistic regression model built to estimate
propensity scores s = P(X = 1|W = w,Z = z). Then, these weights are used to fit a CoxPH
model where the input is only the treatment and the objective uses the balancing weights. We consider
three weighting schemes: (CoxPH-Uniform) where all weights are 1; (CoxPH-IPW) using inverse
probability weighting, w = z/s + (1 — x)/(1 — s) [10]; (CoxPH-OW) using overlapping weighting,
w=x(l —s)+ (1 —z)s [27]. We also consider the two proposed variants of the causal bridge, i.e.,
CB and CB + AE. Additional details about the CoxPH model and overlapping weights are provided in
Appendix |G| The sampler p(W |z, z), the bridge and autoencoder architectures, and model selection
details are provided in Appendix

Randomized control trial We also report the HR estimated from a separate randomized control trial
(RCT) conducted specifically to assess the effects of statins on CVD outcomes [56]. These RCT
results provide a powerful reference against which causal estimates can be compared.

Metrics We estimate the causal effect of the treatment using the hazard ratio (HR). For the CoxPH
model, the HR is obtained simply as exp(/3) where S is the coefficient for the treatment obtained



from fitting the weighted model. For the proposed bridge model we use the strategy described in
Section@ HR values are interpreted as positive (HR< 1), negative (HR> 1) or neutral (HR~ 1) in
relation to the effect of the treatment on the outcome. Confidence intervals (95% CIs) for the HR are
obtained using asymptotic estimates for CoxPH model [[13] and empirical quantile estimates (from
multiple model runs and samples of W) for the proposed model. Additional details are provided in
Appendix [G] For completeness, in Figure [I5]in Appendix [K|we also report the concordance index
(C-Index) on the test set, which is a widely used metric to assess the predictive power of survival
models. Note that we cannot obtain a C-Index for CoxPH variants because these are built only using
treatment (X)) and outcome (Y), thus unable to produce predictions.

Results Figure [3shows HR estimates with 95%Cls indicating that the CB approaches outperform the
CoxPH variants. We note that CoxPH-Uniform and CoxPH-IPW both result in HR> 1 indicating
that the treatment increases the risk of CVD events, which occurs because subjects at high risk of
CVD are the ones treated with statins (see Figure[I4]in Appendix [K]), thus effectively confounding its
effect on the outcome when using observational data. The other three estimates (CoxPH-OW, CB and
CB + AE) result in HR< 1, however, notably, CB + AR results in tighter estimates with a 95% CI
away from HR= 1. Importantly, the causal-bridge results are consistent with expectations from the
RCT. For completeness, Figure [I5]in Appendix [K|show results for CB and CB + AE as boxplots.

8 Conclusions

We have introduced a framework for causal inference with control variables by re-examining core
assumptions connected to the causal bridge. This yielded a new bound on the error of the causal
bridge, providing insights into the estimation of causal effects with unobserved confounders. Our
approach employed a conditional generative model for W, and motivated a new framing of the
model by the inclusion of an autoencoder. We also extended the causal-bridge framework to survival
analysis, broadening its applicability to a wider range of real-world problems. Empirical validation on
both synthetic and real-world datasets confirms the superior performance of our proposed approach
compared to state-of-the-art methods. As an interesting direction for future work, we recognize
that it is possible to derive a similar result presented here for the causal (outcome) bridge but for
the treatment confounding bridge using ideas from [14], although noting that such a treatment
bridge is most useful for binary treatments (interventions), while most of our experiments considered
continuous (real-valued) treatments. Moreover, we can also extend the proposed methodology to
scenarios where post-treatment variables are available like in [49]].

Limitations This work has several limitations, 7) analogous to other causal inference frameworks,
verifying the assumptions is difficult; 7¢) defining or splitting covariates into proxies, W and Z, may
be challenging in practical scenarios; 7¢7) we acknowledge that the proportional hazard assumption
used for the time-to-event model can be seen as a limitation; however, one can alternatively consider
a specific formulation for it like in [54]], however, such an approach has also issues related to model
misspecification that are difficult to address in practice; and 7v) we understand that having additional
real-world datasets will make the experimental results stronger; however, it is difficult to find real-
world datasets for which the ground-truth causal effects are known, such as it is for the case shown in
our experiments using the Framingham dataset.
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Summary of Appendix Content

This appendix provides an extensive set of details associated with the material in the paper. To aid the
reader in navigating and using this Appendix, we summarize what is provided and in what section
(with a hyperlink to it).

* Section[A} Broader Impact Statement.

* Section B} Proofs (Theorem 3 and Corollary 1, and a Concentration Inequality).
. Section@ Relative Error under a Structural Equations Model (SEM).
* Section D} SEM Experiments for Gaussian Unobserved Confounder.
* Section [E} Experimental Details.

* Section [F} Network Structures and Hyper-parameters.

* Section |G} CoxPH Loss with Weighting.

* Section [H} Additional results for Demand and dSprite.

* Section[I} Ablation Study.

* Section [J| Bridge Generalization from Proposition 2.

* Section K} Additional Survival Analysis Results.

A Broader Impact Statement

This research involves the estimation of causal treatment effects, using proxy variables for the
real-world survival dataset. Even though the proposed approach is not a replacement for direct
measurements of drug effects, more accurate causal inference from real-world data can improve
clinical decision making by supplementing it. Although this work has the potential to enhance drug
impact assessment, careful application is essential to avoid unexpected outcomes. From a theoretical
perspective, this study seeks to advance the generalization of causal inference using proxy data,
which is increasingly vital for machine learning models, particularly in high-stakes decision-making
domains such as healthcare, finance, and policy. Thus, it includes the societal consequences, ranging
from ethical to environmental considerations linked to the field of machine learning.

B Proofs (Theorem 3, Corollary 1, and Concentration Inequality)

B.1 Proof of Theorem 3

We first consider the case Z = z, and then we will average over z. Fix  and z. For each W, define
(W) :=Eympww.a) [f (U)] = Euapwiw,z, ) [f(U)];

where f(U) = E[Y |z, W,U]. Since f is C-Lipschitz and U is supported on a set of radius R, it
follows from Pinsker’s inequality and the standard variational form of KL divergence (see [50, 137]])
that:

This inequality is related to a result in the proof of Lemma 1 in [50], using here that a C'-Lipschitz
function f(U), with U supported on a ball of radius R, is C R-subGaussian [48].

Now take the expectation over W ~ p(W |z, 2):

|EW mp(W|,2) [B(W, ) — bo (W, @, 2)]| < Evop(w o) [6(W)].
Apply Jensen’s inequality to the concave square root function, and the series of inequalities continues:

Ewpw e [0(W)] < CR - Ewpwie,2) [\/2DKL(p(U|W, z,2) [ p(UW, w))}
< OR - \[2Bayywio.s) Dxe (oUW, . 2) | p(U|W, )]
From above, we have a result for fixed z. We now take expectation over Z ~ p(Z|x) on both sides:
Ep(zlz) [[Epwia.z) bW, 2) = bo(W, 2, Z)]]]
< CR-Epzpe) |\/2 Bpwie,2) [Dx (oUW, 3, 2) || p(U|W, )]
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Now apply Jensen’s inequality (the square root is concave) to move the outer expectation inside the
square root, the subsequent inequality follows:

<CR- \/2 Epw, zje) [DxL(p(UIW, 2, Z) || p(U|W, z))].
The right-hand side becomes:

OR\[2 Eyw z10) Dk (oUW, 2, 2) | p(UIW, 2))] = CR - \/2I(U; Z1W, 7).

which is the statement of Theorem 3, recalling that E(Y |z, 2) = Ew pw|z,z)[bo(x, W, U)].

Providing more detail, the final step states:
E,w.z|) [Dr L (p(UIW,z, 2)||p(UIW, z))] = I(U; Z|W, z)

To show that, consider that the conditional mutual information I(U; Z|W, x) is defined as:

///p(U,z,wa:)log{ (uiiu;;'u(}’ﬁz x)} dudzdw  (17)

/// (u, z, w|x) log[ (1{|1|U z g)c)} dudz dw (18)
This can be rewritten as:

I(U; Z|W,z) = //p(w, 2|z) Up(uw, z,2)log {W} du} dw dz

The inner integral is precisely the KL divergence D 1 (p(U|W, Z, z)||p(U|W, x)), so

[(U: Z|W, )

(U Z|W, ) = / / p(W, Z|2) Dy (p(UIW, Z,)|[p(U|W,2)) dW dZ  (19)
= By w210 [Dic £ (p(UW, Z, ) |[p(UW, ))] (20)

B.2 Complete Statement and Proof of Corollary 1
Corollary 1: Suppose that the random variables (U, Z, X, W) satisfy the following conditions:

(i) W =W (U) + ¢, where ¥ : RV — RW s an invertible, continuously differentiable (C)
function,

(ii) € is independent of (U, Z, X), with zero mean and covariance matrix 021,
(iii) The latent confounder U has finite differential entropy h(U) < oo,
(iv) The conditional distribution p(Z|U, x) is Lipschitz in U ; specifically, there exists Lz 7, > 0
such that
|logp(Z|u1,x) —log p(Zluz, )| < Lzu|ur —ual,  Vui, us.

(v) Z LW | (U,a)
(Vi) Qumin :=min,z) p(U | W, ) - p(Z | W,z) > 0.
Then, there exists a constant Cy > 0 depending on the Lipschitz constants of ¥ and p(Z|U) such

that, for sufficiently small o,
I(U; Z|W,x) < Cyo?.

In particular,
lim I(U; Z|W,z) =0.
02—0

Proof:

Since W = ¥(U) + € and ¥ is invertible and C, we can locally linearize ¥ around any U. For
small noise €, we have the Taylor expansion:

W=UU)+e = U=V YW-—e.
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Expanding ¥ ! (W — €) around W gives:
UHW =€) = U1 (W) = VI (W)e + o([lel),

where VU1 (W) is the Jacobian of ¥~! at W.

Thus, conditioned on W, the distribution of U is centered around \Il_l(W), with fluctuations
proportional to e. To be more specific, as 0. — 0, we consider following approximation

p(U | W,z) =5 8,0 (ury (U) 21)

where % refers to weak convergence, p* (W) := W1 (W) and d,+(wy 1s Dirac function centered at
w*(W). Moreover, the conditional covariance of p(U | W, x) can be approximated as

Var(U[W, z) ~ VU (W) Var(e) (VI (W) = 0(c2), (22)

because Var(e) = 021, and VU1 (W) is bounded by the invertibility and smoothness of W.

With above approximation, we have

(2| W) = / (2 | U, 2)p(U | W,2)dU (Using Z LW | (U, )
~ /p(Z | U, 2)d,-(w)(U)dU (Using 1))
= p(Z | W (W), ). (23)

Then, by Lipschitz assumption on logp(Z | U), we can derive
Ip(Z | W,z) = p(Z | p* (W), z)| = |/[P(Z | Uyz) = p(Z | (W), 2)] - p(U | W,2)dU|
(Using Z L W | (U, z))
< [ 1021 U.) (2 | (W).2)| 90 | Wym)aU
< Lzwa [ 0= W)U | Woa)aU
=Lzvue Buywa(|U —p*(W)]]. 24
Notice that

Eyjw,o[|lU = W) = Evyjwa [V IU — w*(W)P]

< \/]EU|W@HU — pwx(W)|?] (Using Jensen’s inequality)
= /Var(U|W,z) ~ O(c.).  (Using @2)) (25)
Hence, we have
p(Z | W, z) =p(Z | " (W), 2)| < Lz - Ooe). (26)

Now, observe that the p(U,Z|W,z)dUdZ is close to the factorized distribution
p(U|W, z)p(Z|W, x)dUdZ, because

o(U, Z | W,2)dUdZ = p(U | W,2)p(Z | U, z)dUdZ (Using Z L W | (U, z))
~ 8,y (U)p(Z | U, 2)dUdZ (Using (1))
— Sy (U2 | (W), 2)dUdZ
~p(U | W,z)p(Z | W,z)dUdZ. (Using (23)) 27
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We consider P = p(U, Z | W, z),Q = p(U | W, z)-p(Z | W, ). The total variation distance would
be

TV(P,Q)

1
3 [ P02 | W) = p(U | W) p(Z | W) aUdZ

- %/'WZ | U,z) —p(Z | W,2)] - p(U | W, 2)|dUdZ

Q

3 [ D21 Us) = (2 | W) -8,y (U) U a2 (Using @T))

5 [16(Z |0 ().2) = p(Z | W) 8,0 ()] dU a2

1
<5 [ W2 |0 (0).0) = p(Z | W) 3,0 (U U2
1

; / Lova-0(0) - b,y (U)dUZ (Using (7))

IN

= 7LZéU’“ -O(a). (28)

Applying reverse Pinsker’s inequalityﬂ which states
2loge
Dru(PQ) < 5

where Quin 1= miny, z) p(U | W, z) - p(Z | W, z) and we assume Qrin > 0. Combining (28] and
(29), we can derive

TV(P,Q)? (29)

min

L% . loge
Dia (PQ) € =5 5——0(c?). (30)
2C?min
Thus, for the mutual information I(U; Z | W, z) = Ey |, DxL(P||Q), we have
L%, loge L%, loge
I(U; Z | W,z) < Ewm%_gowsn = %,gow?» 31)

Finally, by the definition O(-), we know that there exists there exists Cp > 0 depending on Lz 1/,
such that

I(U; Z|W,z) < Cyo?
for sufficiently small o.. Hence, I(U; Z|W,x) — 0 as 02 — 0, completing the proof.

C Relative Error for Structural Equation Model (SEM)

Consider a causal graph in Figure @ induced by the following structural equations model (SEM) [7]:

Y =ayxX+aywW +aypyU + ey 32)
W = aWUU +Eew (33)
Z:aZUU+EZ (34)
X =axzZ +axpU+ex, (35

where ayx, ayw, ayy, azy are nonzero real coefficients, and ey ~ N(0, 032,)7 Ew ~
N(0,0%,),e2 ~N(0,0%),ex ~ N(0,0%), are all drawn from zero mean Gaussian distributions
with distinct variance.

Consider the SEM in (32)-(33) with the unobserved confounder U also assumed to be Gaussian, i.e.,
U~ N(0, 0(2]). This is done for convenience, because in such a case, W, Z and X being linear in U,
thus (W, Z, X, U) jointly follow a multivariate Gaussian distribution. More specifically, since we
know that E[U] = 0,
E[W] = E[OzWUU + €W] = E[QWUU] = OéWUE[U}
E[Z] = ElazvU + ez] = ElazoU] = azvE[U] =

=0 (36)
0, (37)

'This inequality is stated in Section 7.6 of [37]].
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%154 awu.

ayx

Figure 4: Graphical model of the structural equation model (SEM) in (32)):(33). Grayed out nodes
represent unobserved random variables.

E[X] = E[OZXZZ 4+ axyU + EX] = ]E[aXZZ + aXUU] = Cksz[Z} + aXU]E[U] =0, (38
hence (W, Z, X, U) can be expressed as N (0, Xw zxvu.wzxuv), where Xw zxu wzxu is the corre-
sponding covariance matrix whose entries are stated in the following proposition.

Proposition 3 Assume that the unobserved confounder U, treatment variable X, outcome variable Y,
treatment-related proxy variable Z and outcome-related variable W satisfy the structural equation
model and U ~ N (0, O'QU). The entries of the covariance matrix Yy z xu,w zxu would be

Cov(U,U) = o,
Cov(W, W) = afyyof; + oiy,
Cov(Z,7) = o 08 + 0%,
Cov(X, X) = (axzazy + axv)od + a4 0% + 0%,
Cov(W,U) = awyoy,
Cov(Z,U) = azyod,
Cov(X,U) =
)=
)=
)=

COV(W, Z) = OéWUOéZUUU,

(axzozy + OCXU)U%7

COV(VV, X)= aWU(aXZaZU + aXU)UUv

COV(Z,X = OZZU(OfXZOéZU + aXU)UU —+ OLXZo'%

Proof: In the derivations that follow, we will make use of the linearity of expectation and the formula
for the variance of a linear combination of random variables.

Further, the derivations will repeatedly use the fact that, since, U, ey, €z, and ex are mutually
independent,

E[Uaz} ZE[U}E[Sz] 0

]E[Ué‘x] :E[U]E[ax] 0

ElewU] =E[ew]E[U] =0,

Elewez] = Elew]E[ez] =0

E[EW{:‘)(] :E[Efw}E[Ex] 0

* Cov(U, U). Following the definition, we have Cov (U, U) = Var(U) = o?,.
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» Cov(W,W). Note that W = ayyU + ey. We can derive

Cov(W, W) = Var(W) = Var(awyU + ew)
= afyy Var(U) + Var(ew)

2 2 2
= Qwyoy —+ Ow -

(39) holds because U L ey .
» Cov(Z,Z). Note that Z = azyU + £z. We can derive

Cov(Z,Z) = Var(Z) = Var(azyU +ez)
o Var(U) + Var(ez)

2 2 2
Qyi00 + 7.

(@T) uses the fact that U L .
* Cov(X, X). Note that X = axzZ + axyU + cx. We have

Cov(X, X)

= Var(X) = Var(axzZ + axpU +¢x)

= Var(aXZ[aZUU + Ez] +axyU + 5X)

= Var((axzozu + axu)U + axzez +€x)

= (axzazy + axy)?Var(U) + ok ; Var(ez) + Var(ex)]

2 2 2 2 2
= [aXZaZU +OéXU] oy +Qxz07 +0%.

(]BI) follows from the fact that U, €z and € x are mutually independent.
* Cov(W,U). Note that Cov(W,U) = E[W - U] — E[W] - E[U]. We have
EW - U] = E[(awuU +ew) - Ul = ElawyU? + ew U]

and,

= awuE[U? + ElewU]
= OzWUE[UZ} = aWU(Var(U) + E[UP) = OZWUO'IQJ,

E[W]-E[U] =0-0 = 0.

Thus, we can infer that Cov(W,U) = awyos.
* Cov(Z,U). Note that Cov(Z,U) = E[Z - U] — E[Z] - E[U]. We have
E[Z . U] = ]E[(aZUU + €Z) . U] = H“:[Oéz[]U2 + Ufz]

and,

= azyE[U?] + E[Ueg]
= aZU]E[UQ] = aZU(Var(U) + E[UP) = OZZUO'%;,

E[Z]-E[U]=0-0=0,

we can infer that Cov(Z,U) = azyo}.

* Cov(X,U). Note that Cov(X,U) = E[X - U] — E[X] - E[U]. Since we have

and,

E[X }

E (aXZZ+aXUU+€X) U]

((aXZaZU + CMXU)U +axzez + 5X) U}

[
E[

= (axzazu + axv)E[U?] + axzE[ezU] + E[ex U]

= (axzoazy + axy

(

(

= (axzazy + axy

= (axzazu +axu
(

[U?] + ax zE[ez]E[U] + E[ex JE[U]
E[U?]

JE
)
)(Var(U) E[U]*)
)ot

= (axzozu + axu)oy,

E[X]-E[U]=0-0=0,

we can infer that Cov(X,U) = (axzazu + axy)op.
(@8) uses the factthat U L ez and U L ex.
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» Cov(W, Z). Note that Cov(W, Z) = E[W - Z] — E[W] - E[Z]. Since we can derive,
EW - Z] = E[(lawuU +ew) - (azuU +¢2)]

(awvazuU? + ewazuU + awpUsz + ewez]
lawvazoU?) + ElewazuU] + ElawuUsz] + Elewez]
[awvazuU?] + azuBlew|EB[U] + awyE[UIE[ez] + Elew]E[ez]  (50)
[ ]
]

E
E
=E
) 2

= O‘WUOZZU]E[U2

awvazuU
= aWUaZU(Var(U) + E[U]2) = OZWUOZZUO'?], (&29)]
and

E[W] E[Z] =0-0=0,

we can infer that Cov(W, Z) = awyazyod.
(30) follows from the fact that using U, ey and £z are mutually independent.

* Cov(W, X). We can derive
EW - X] =E[(awyU +ew) - (axzZ + axuU + ex)]

=E[(awuU +ew) - (axz(azvU +ez) + axpU +ex)]
=E[(awuU +ew) - ((axzozu + axu)U + axzez +ex)]

= Elawuv(axzazu + axv)U? + awvaxzUsz + awyUex
+ (axzazu + axv)ewU + axzewez + ewex|

= awv(axzazy + axv)E[U?) + awvaxzE[Uez] + awuE[Uex]
+ (axzazu + axv)ElewU] + axzElewez] + Elewex]

=El(awv(axzazy + axy)U?]

= awv(axzazy + axy)E[U?)]

= awuv(axzazu + axy)(Var(U?) — E[U]?)

awv(axzazy + axy)op. (52)

Besides, since E[IW] - E[X] = 0, we can infer that Cov(W, X) = awv(axzazu + axy)oy.

* Cov(Z, X). Finally, we consider that
E[Z - X]| =E[(azuU +ez) - (axzZ + axpU +ex)]

((azvU +¢ez) - (axz(azuU +ez) + axpU + ex)]
=E[(azvU +ez) - ((axzazu + axu)U + axzez +ex)]

lazu(axzozu + axv)U? + azvaxzUsz + azuUcsx

(axzozu + axv)Uez + axzey + ezex]

zulaxzazy + axu)EU? + azvaxzE[Uez] + azvE[Uex]

E

+

a

+ (axzazu + axv)E[Uez] + axzE[e%] + Elezex]
a

(0%

(0%

[
= azy(axzazy + axu)E[U? + axzE[e%] (53)
= azu(axzozu + axu)(Var(U?) — E[UJ?) + axz(Var(ez) + E[e£]%)
= azu(axzazy + axu)oy + axzoy (54)

Moreover, since E[Z] - E[X] = 0, we can infer that Cov(Z, X) = azu(axzazu + axv)od +
OéXZo’%.
|

Closed-from Expression for Relative Approximation Error With the help of Proposition 3, we
can start to derive the closed-from expression for the relative error 7(n;). Given a pair of Gaussian

random vectors,
(4,B)" ~N (0 YA.A XaAB
’ "\X¥Ba ZXBB))’
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the conditional A | B = b can be expressed as
A|B=b~N(SapY5 50, Laa—XasY5 558.4), (55)

as stated in section 2.3.1 of [6].

With this expression and Proposition 3, we can express p(W|X, Z), p(U|W, Z, X ) and p(U|W, X)
as Gaussian distributions using components of Xy 7 x ¢ as follows.

e p(W | X,Z).Let A=W,B = (X,Z)T and (X = z,Z = z). Then, we have

_ X
B |(X=a,2=2) = SW,Xx25X 7 x 2 (Z) : (56)
O |(X =, 7=2) = Oty — SW,x25x 7 x 22X ZW- (57)

« p(U|W,X,Z). Let A=U, B= (W, X, 2)" and (W = w, X = 2, Z = z). Then,

w

HU|(W=w,X =z, F=2) = EU,WXZEI}}XZ,WXZ (33) , (58)
z

U?J\(W:w,X:@ZZZ) =of — EUvWXZE;VlXZ,WXZEWXZ,U' (59

e p(U|W,X).Let A=U, B= (W, X)? and (W = w, X = x). Similarly, we have

— w
HU|(W=w,X=x) = EU,WXEVVlX,WX (l’) 5 (60)
UIZJ\(W:w,X:x) = UQU - EU,WX217[/1)(’1/1/)(ZI/I/X,U- 61)

Recall that W for the SEM, before the expectation wrt p(Z|X) and p(X) can be expressed

(in a slight abuse of notation) as

N NE[Y 4, 2] — Ewp(Wzs,20) [D(W, 24)]|

[E[Y |2, z]] IE[Y |z, 2]
ovuEwie, s [Eujwies = U] — Eujw,e, [U]]]

ey x@i + Ewie, o [ayw W+ avu Bujwog, 2 [U]]]

i i
With (5€)-(61), we can further express % as

(62)

i _ |aYU[/JU\(W:w*,X:aci,,Z:zj) - NUl(W:w*,X:mi)H (63)
|E[Y |2, 2| lay x @i + @y ww* + By |(Wew* X =e,,Z=2)

where w* = iy |(x=z,,z==,)- Thus, we can expressed r(;) as

7
(1) = Euop(z) X =21 []E[Yg;,zl]d

‘aYU[MU\(W:w*,X:zi,Z:zi) - MU|(W:w*,X:xi)]

= EZin(leizL’i) |: (64)

loy x i + oy ww* + fu|(Wew X=a,,2=2,)

Analytic Solution for r(n) = 0 From (64), we note that if we can show BU|(W=w,X =2, Z=2) =
KU |(W=w,X =) forany (W = w, X = z,Z = z), then r(1;) would be zero. It is clear that when
U L Z|(W, X), then pyw,x,z) = pu|(w,x) holds, and hence r(1;) would be zero. Following this
idea, we can derive a sufficient condition such that r(r;) = 0.

Lemma 1 Assume that the unobserved confounder U, treatment variable X, outcome variable Y,
treatment-related proxy variable Z and outcome-related variable W satisfy the SEM and U ~
N(0,0%). Then, if
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Figure 5: Relative approximation error (r(n)) vs. mutual information (I (U; Z|W, x)) both averaged over X .
Each line represents a value of oz for increasing values of ow = {0.1,0.25,0.5,0.75, 1}, which are consistent
with I(U; Z|W, z).

then we can infer that U 1L Z|(W, X ) and hence r(n) = 0.
Proof: By (53)), we can derive

YXuzwxUuziwx = XUzUz — EUZ,WXZEI}XWXEWX,UZ, (65)
which implies that

Cov(U, Z | W,X) = Cov(U, Z) — Su,wx Si'x.wx Ewx,z (66)

Finally, we plug-in the value of Proposition 3 into (66). Thus, we can derive

Cov(U,Z | W, X)

2 2 2 2
o UW(*(IXU axz 0y +oazu ffx) (67)
2 2 3 3 2 2 2 2 92 9 2 32 2 3 5 5 2 3 9 2 3
Ay yQxz 007 + Qqyy 00X + Oy 0oy + 2axuaxzazy ooy + Ay zQ7; 0p0y + Q7 Oy 0 + oy oy

2
Assume Z¥ = QXUAxZ - Then, ool (—axuaxzoy + azuok) = 0 and hence Cov(U, Z |

zZ
W, X)) = 0, which suggests that U and Z are uncorrelated conditioned on W, X.

Further, since (U, Z)|(W, X) are jointly Gaussian, uncorrelatedness implies independence, as stated
in section 11.5 of [26].

Hence, we can conclude that if 0703, (—axvaxzoy + azuoy) = 0,U L Z|(W, X) and, thus
r(n;) = 0. |

Lemma 1 seems to indicate that once the treatment variable X and treatment-related proxy variable
7 satisfy some relation, then the information of U in Z would be contained in the information of
U in (W, X). In other words, we can have an approximation of E[U|W, X, Z] with E[U|W, X], i.e.,
E[U|W, X, Z] ~ E[U|W, X], which implies that (n) would be close to zero.

D SEM Experiments for Gaussian Unobserved Confounder

To analyze the association between the relative error 7(n) = Ez pz)[n/[E[Y |z, Z]]] vs.
I(U; Z|W,x) both averaged over X, we present Figure [2| showing the results for the mean
of the relative error r(n) vs. I(U; Z|W,x) averaged over X, for oy = 10, ox = 0.1 and
oz,ow = {0.1,0.25,0.5,0.75, 1}, all weights ayx, ayw, ayy, azy are set to 1. Moreover,
to show the effect of changing o x, we set cx = 0.5 and ox = 1.0 in Figure Eka) and Figure Ekb),
respectively. For these experiments, we generate M = 10, 000 samples, D = {(u;, w;, 2; bi=1,Mm>
drawn using U ~ N(0,0%) and (34)-(33), and the corresponding noise variances to compute the
mean of the relative error (1) and mutual information I(U; Z|W, z) averaged over X.

We observe that across ox = {0.1,0.5, 1.0}, increasing oy drives up both the mutual information
I(U; Z|W, x) and the relative error r(7) in tandem. This shows that our mutual information-based
bound reliably captures the growth of the error with increasing oy,. Furthermore, we present the
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heatmap of the mean and standard deviation of WYED_Z]\ in Figure 6| and Figure 7| respectively. It
is worth mentioning that the mean of Wx_ZH is equal to the mean of r(n), and that the standard

deviation of T is actually the upper bound of the standard deviation of the relative error r(7),

EN|z,2
Z,
which is induced by the Jensen’s inequality. We observe that the mean of (7)) and standard deviation
of WIQC_Z]I monotonically increase as oy increases. Notably, when ox = oz, both () = 0 and

I(U; Z|W,z) = 0, which is a special case formalized in Lemma 1 in Appendix [C}

Note that when computing the statistics of the relative error, we use trimmed mean and standard
deviation, i.e., we remove 10% of the outlying relative error values to mitigate the influence of large
outliers occurring when the denominator of (7)) is too small, thus causing precision errors.

E Experimental Details

In both experiments, we generate A/ = 1000 or 5000 data for both stage D1 = {(x, 2, W; }i=1,m
and Dy = {(.Z‘i, Zi, yi}izl)M to share.

E.1 Details of the Generation of the Demand Dataset

The observations are generated using the following model:

e~N(0,1)
Y=P <exp <V1;OP A 5) - 5g(D)) + €,

where Y represents sales, P is the treatment variable (price), and these are influenced by potential
demand D. Here, a A b denotes min(a, b), and the function g is defined as:

@) =2 (Ll (- aia -5

(63)

d
L9
10
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As negative control (proxy) data, cost-shifters C; and C5 are introduced as treatment-inducing
proxies, and the views V' of the reservation page are used as the negative control outcome proxy data.
The data is generated as follows:

D ~ Unif[0, 10]
Cy ~ 2sin(2D7/10) + €
Cy ~ 2cos(2Dm/10) + €
V ~7Tg(D)+ 45+ €3
P =354 (C1+3)g(D) + Cs + €4,
where €1, €2, €3, €4 ~ N (0, 1). These specifications and notation are as given in [52]. Concerning the
notation in this paper, we make the following correspondences: D < U, (C1,C2) <> Z,V < W,
and P <+ X. The outcome is Y, consistent with the notation of the main body of the paper. We select

10 evenly spaced treatment values within the range [10, 30] as the test data, following the same setup
introduced by [52].

E.2 Details of the Generation of the dSprite dataset

This dataset consists of images parameterized by five variables (shape, scale, rotation, posX, and
posY). The images are 64 x 64 pixels, resulting in a 4096-dimensional vector. The shape parameter
is fixed to a “heart,” hence using only heart-shaped images (see below). The other parameters take
values within the following ranges: scale € [0.5, 1], rotation € [0, 2], posX € [0, 1], and posY
€ [0,1].

The treatment variable A and the outcome Y are generated as follows:
1. Uniformly sample latent parameters (scale, rotation, posX, posY).

2. Generate the treatment variable A as

A = Fig(scale, rotation, posX, posY) + 14.

3. Generate the outcome variable Y as

e ~N(0,0.5)
(vec(B) T A)% — 3000

1
Y =— Y - 0.
(pos 0.5) 200

12

The function Fig returns the corresponding image for the latent parameters, and 174 and € are noise
variables generated from 74 ~ N(0.0,0.17) and € ~ A(0,0.5). The matrix B € R%4*%4 is defined
as B;; = |32 — j|/32. From this data generation process, we observe that A and Y are confounded
by posY. While the treatment variable A is given as a figure corrupted with Gaussian random noise,
the variable posY is not revealed to the model, and hence there is no observable confounder.

The structural function fyuc is defined as:

(vec(B) T A)? — 3000
500

strucl(A) =

The negative control treatment is given by the tuple (scale, rotation, posX) € R?, and the negative
control outcome is

nw ~ N (0.0,0.11)

W =Fig(0.8,0,0.5,posY) + ny .
We set aside 588 test points to quantify the validation error (out of sample), which is generated from
a grid of points on the latent variable space. The grids consist of 7 evenly spaced values for posX and

posY, 3 evenly spaced values for scale, and 4 evenly spaced values for orientation. The above settings
are as in [53]).

Note that in [52], the dSprite data generation process and results are slightly different to those
presented here. The experiment process was refined in [53]] and is the one used in our experiments.
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Figure 8: Samples drawn from the model and ground-truth distribution of p(W|z, =) where (Z, X) are drawn
from the true distribution, and Z = (C'1,C2). From left to right in a row, samples are shown as (w;, z;),
(ws, C1;) and (w;, C2;). The top row is from the ground truth distribution and the bottom is from the model.

E.3 Proxy Bucketing Strategy

Since the covariates in the Framingham dataset are not segregated into outcome-inducing proxy
W and the treatment-inducing proxy Z, we follow to group the 32 covariates, namely: age6,
ageb1, age62, ascvd_hx6, bmi6, bmi61, bmi62, bpmeds6, cholb, cholb51, chol52, dbp6, dbpb1,
dbp62, diab6, female, gluch, glucs1, gluc52, hdl5, hdl51, hd152, pad_hx6, sbp6, sbp61,
sbp62, smoke6, stk_hx6, mi_hx6, trigly5, triglyb1, trigly52.

As we do not have the covariate groupings beforehand, we use C' to denote all covariates (W, Z)
together. We begin by ranking the proxies based on their strength of association with: ¢) The outcome
from the coefficients obtained using CoxPH regression of (Y, E) given (X, C), and i%) The treatment
from the coefficients obtained using logistic regression of X given C. Then, we select proxies in
decreasing order of strength of association, first choosing the proxy having the strongest correlation
with the outcome as an outcome-inducing proxy, and we do the same for the treatment-inducing proxy.
The algorithm halts upon allocation of all the proxies. We obtain the following proxy allocation (with
16 variables in both W and Z):

W: smoke6, female, ascvd_hx6, diab6, pad_hx6, gluc52, stk_hx6, age62, sbp62, gluchbl,
ageb1, age6, hdl5, gluch, trigly52, triglyb1

Z: mi_hx6, dbp62, bpmeds6, hd152, dbp61, bmi62, hd151, bmi61, bmi6, chol52, dbp6, sbp61,
chol51, cholb, sbp6, trigly5

E.4 Model of p(W|z, ) for Demand data

In Figure [8| we compare samples drawn from the ground-truth distribution of p(W|z, x) to those
of the model py,(W|Z = z, X = x), which is represented by a Gaussian distribution with mean
and variance modeled via simple neural networks. We observe a close agreement between the true
samples and our conditional distribution model.
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Figure 9: Examples of true dSprite proxy data W (images).

Figure 10: Examples of synthesized samples from p(W|Z = z, X = x) for dSprite, manifested manifested
via conditional GAN [32].

E.5 Model of p(W |z, x) for dSprite data

The capacity to sample from p(W|z, x) for the dSprite data is implemented via conditional GAN
[32]. Here, the proxy variable W and the treatment X are 64 x 64 images, and the proxy variable
Z is a three-dimensional vector, representing image scale, rotation and position in the horizontal
direction (posX). The unobserved confounder is the vertical position of the image (posY). Figures[J]
and[I0[show true and synthesized images from the dSprite data, respectively, and Figure [TT]shows the
true treatments X connected to Figure[I0|(as emphasized in the caption to Figure [T} it is important
to note that the synthesized W is able to infer the proper PosY from X, which is inferred from the
image of X).

F Network Structures and Hyperparameters

In both synthetic data experiments, we use k-fold cross-validation (k = 5) to select the learning
rate from the range [1073, 1074, 1075]. The learning rate is the same for all model components, but
one can try to make the learning rate different across different components. We can also use k-fold
cross-validation for synthetic data and the validation split for Framingham data to determine the
weights for each autoencoder loss accordingly. Once the hyperparameters are selected, the model is
trained with a train/validation split of 0.8/0.2. Early stopping is implemented using the validation
loss of the causal bridge Ly, only, even for the autoencoder version of the model. In Framingham
experiments, we use the validation split provided in the dataset to measure the concordance index
(C-Index) and select the batch size from the range [384,512, 768], keeping the learning rate and
weight decay fixed at 10~! and 10, respectively. The test split in Framingham is used only to
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Figure 11: True treatments X associated with the generative model used to draw from p(W|Z = 2, X = z) in
Flgure. Note that the generator is given Z = (scale, rotation, posX), but it must infer the latent U = posY
from X, which shares the U. Note that while the treatments here have different Z than that used for W (W is

here independent of Z), the model is able to correctly extract posY from X. The subfigures here correspond to
those in Figure[T0}

evaluate the C-Index of the trained model. To ensure a fair comparison, we utilize the training and
validation split to learn the baseline CoxPH models with three different weighting schemes.

The details of the architectures used for Demand, dSprite and Framingham are shown in Tables[2} [3]
and 4] respectively.

F.1 Demand Experiments

For the demand experiment, we use the AdamW optimizer with a weight decay of 10~° and a learning
rate of 10~ for all models. The autoencoder loss Loy, is weighted with w, = 1, and Ly, is weighted
with w, = 1.

F.2 dSprite Experiments

For the dSprite experiment, we use the Adam with learning rate of 10~ for all models. The
autoencoder loss Ly, is weighted with w, = 100, and Ly, is weighted with w, = 0.01.

F.3 Framingham Experiments

For the Framingham dataset, the model structures are all linear for the bridges. We have shown

» = (s, @) for ease of explanation in Table E| separately. To model p(W|X, Z), we utilize a
simple MLP-based conditional diffusion probabilistic model (DDPM) [20]. To train the conditional
DDPM, we use the AdamW optimizer with a weight decay of 102, a learning rate of 10~3 and the
number of diffusion timesteps is 1000. For the bridge and autoencoder modules, we use the AdamW
optimizer with a weight decay of 10~2 and a learning rate of 10~1. The autoencoder loss Ly, is
weighted with w, = 0.5, and Ly, is weighted with w, = 0.1.

G CoxPH Loss with Weighting

For learning the Cox proportional hazards (CoxPH) model with various weighting schemes, we
maximize the propensity-weighted partial likelihood [9] 42} 46] to obtain the parameters, :

co =TI ( () (xw)> (69)

X
miem=1 Zn:ynZym Wn * €XP

Here, for n'" example, y,, denotes the observed time y,, = min(t,, c,,), t,, is the time at which the
event of interest occurs and ¢, is the follow-up time. If y,, = t,, < c,, it is said that the event of
interest is observed and e,, = 1, otherwise, y,, = ¢, < t,, e, = 0 and the event is right-censored.
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Figure 12: Ablation results with the CB + AE model when varying the dimensionality of (Left) € on the
Demand dataset and (Right) U and € on the dSprite dataset.

Table 1: Out-of-sample MSE results for Demand and dSprite data. Figures are medians in interquartile ranges
(Q1 and Q3). These results match those in FigureEl, but also include results for CEVAE and KAP.
Demand dSprite

Method Sample Size Median (Q1, Q3) Median (Q1, Q3)
CEVAE 1000 360.05 (205.15, 602.59) 52.92 (51.45, 53.29)
NMMR-V 1000 23.07 (17.27, 28.12) 24.48 (21.32,25.73)
NMMR-U 1000 21.6 (20.41, 25.38) 22.22 (18.37,25.57)
KAP 1000 109.86 (79.01, 176.86) 22.4(21.75, 23.03)
DFPV 1000 43.93 (38.38, 48.34) 22.08 (19.96, 24.38)
DFPV (our generator) 1000 34.15 (29.65, 40.88) 15.25 (13.97, 18.59)
CB (our method) 1000 20.5 (17.52, 24.78) 14.06 (13.21, 14.94)
CB + AE (our method) 1000 16.66 (14.59, 20.32) 13.68 (13.39, 14.49)
CEVAE 5000 262.24 (161.96, 438.63) 53.89 (53.07, 54.18)
NMMR-V 5000 31.03 (24.07, 41.42) 11.62 (8.77, 14.44)
NMMR-U 5000 17.12 (13.19, 24.1) 19.11 (18.11, 20.3)
KAP 5000 153.19 (96.4, 221.03) 26.53 (25.85,27.1)
DFPV 5000 43.35 (32.65, 53.2) 16.33 (15.23, 17.44)
DFPV (our generator) 5000 27.84 (24.73, 30.71) 8.79 (8.2,9.49)
CB (our method) 5000 15.84 (14, 17.28) 7.45 (6.92, 7.96)
CB + AE (our method) 5000 14.77 (12.9, 16.89) 7.27 (7.04, 8)

Thus, the weighting schemes estimate weights for each subject using the entire dataset and use these
weights to fit a CoxPH model. The unknown propensity score s, = P(X = 1|W = w,,Z = z,) is
modeled using a linear logistic regression model: §,, = (W = w,, Z = z,). The weight for each
m™" example is computed as follows:

* CoxPH-OW: overlapping weights,
Wm = Tj * (1 - ém) + (1 - xm) . éma

* CoxPH-IPW: inverse probability weighting,

Ty 1—xm,

Wm =

dm 1 =3,

* CoxPH-Uniform: uniform weights (standard RCT uniform assumption).

H Additional Results for Demand and dSprite

Table [T| present all the results for Demand and dSprite like in Figure 3] but also including CEVAE
and KAP.
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I Ablation Study

We explore the impact of the dimensionality of the latent U and noise model for the shared encoder
he,, (W, x, €). For the Demand dataset we consider |U| = 1 and |¢| = {1, 3,5}, where |U| indicates
the cardinality (dimensionality) of U. For the dSprite dataset, we consider |U| = {32, 64,128}
and |e| = {500, 1000,2000}. Note that in the main results shown in Figure[3| |[U| = |¢| = 1, and
|U| = 32 and |¢| = 500, for the Demand and dSprites datasets, respectively. All other parameters
of the model are fixed and consistent with those used for the main results, as shown in Appendix [
The optimal range for the dimensions of U and € can be determined by domain knowledge or
cross-validation. For instance, the dimensionalities of W in Demand and dSprite are |W| = 1
and |WW| = 4096, respectively, although the latter is contained on a lower dimensional manifold,
which explain the differences in U above. The difference between |U| and |e| for the dSprite dataset
is necessary because smaller values of |¢| tend to cause the learning to ignore the variation of
ho,, (W, x, €), which can cause overfitting issues.

The ablation results for Demand and dSprite shown in Figure [I2]indicate that the proposed CB +
AE model is fairly insensitive to the dimensionality of the latent U and e. These are a subset of all
ablation studies we have considered, consistent with our experience that the proposed models train
well and are not particularly sensitive to “reasonable” parameter settings.

J Bridge Generalization from Proposition 2

This document describes the implementation and analysis of a Structural Equation Modeling (SEM)
experiment using Bayesian methods. The experiment involves estimating latent variables from
observed data while accounting for confounding factors.

The observed variables are generated from the SEM in (32)-(33) with all structural coefficients
{azu,awu, axz,axu, ayx, ayw,ayy } = 1, treatment and outcome variances {oy,ox} = 1,
and the latent confounder is set to U ~ Uniform(0, 10). We generate n = 100 observations of
(z,z,w), Using these observations we can train a model p(W |z, z), after the model is trained, we
can sample J = 50 W using p(W|z, z) for every {x, z}, Using these generated W we can then use
MCMC to get M = 100 samples of U from p(U|w, x, z) and p(U|w, x) for every {w, x, z}.

The details of experiment steps are the follows:

Sampling W We model p(W | z,z) as a Gaussian with parameters (mean and variance) given
by a neural network with inputs {x, z}. With samples (w;, ;, z;), we train a network to generate
samples from p(W | X, Z) using maximum likelihood estimation with gradient descent. Then for
each (x;, z;) we draw

wi}j Np¢(W |.’L‘i,ZZ‘), j: 1,...,]7 (70)
where J = 50.
Sampling U We compile two NUTS [21]] samplers in PyMC [43]]: one targeting p(U|W, X ) and
one targeting p(U|W, X, Z). For each proxy sample w; ; we generate

2
ug}j)’n ~p(Ulw; j, x;), ugj)n ~p(Ulw; j,xi,2), n=1,...,M. (71)

where M = 100.

Learning the Bridge Function Define a feedforward network gg(u,w,z). We approximate the
bridge using Proposition 2 as

M
1
bo(W, ) =~ i de (U§b>7n7wi,j,$i> . (72)
n=1
Then we learn 6 in by (W, x) by minimizing
. ) n 2
0= argmemz;(E[Y | 2, 2] — E[bg(W, ) | %721]) : (73)
Evaluation Finally, we compute the m on the causal effect per data point as
ni _|EIY |24, 2] — Elbe (W, z) |24, 2] (74)
|E[Y |2, ]| |E[Y |2, 2] ’

29



n

Comparison of VIl

Statistics for Different o, and o,

100 4 == 0,=1.0, 0,=1.0
mw 0,=0.1, 0,=0.1
== 0,=1.0,0,=0.1
] 0,=1.0

@ 10! -
(1]
|9
wn
o
o
1072 5
g
10—3 4
&

Figure 13: The statistics (mean and standard deviation) of IIE[_if?m_z]\ for learning the bridge function
compared to using known E(Y'|U, W, X).

and report the empirical mean and standard deviation of {th}?zl for n = 100. Note that this
mean is an approximation to the mean of (7).

Results E[Y|z;, ;] is calculated using samples from p(U|w, z, z), p(W|x, z) and observed (z, z),
using the true expectation E(Y'|U, W, X)) = x + W + U, where E[bg(W, x)|x;, 2;] is calculated using
samples from p(U|w, ), p(W|x, z) and observed (z, z) using:

* The true expectation E(Y|U, W, X) =2+ W + U.
* The learned function g(U, W, x).

Results for the mean and standard deviation of {W?T—Z” 1, in Figure

K Additional Survival Analysis Results

For the Framingham dataset, we plot the KM curves, which provide the survival probability estimates
without considering the confounding factors. Figure[I4]shows the Kaplan-Meier (KM) survival curves
for the two groups with treatment X = 1 and treatment X = (0. Notably, the KM curves indicate
that the group of patients that received the treatment (X = 1) has decreased survival probabilities
compared to the group that received the treatment (X = 0), even though previous large-scale
longitudinal RCT trials indicated a hazard ratio (HR) of 0.75. This emphasizes the necessity of
modeling the Framingham survival analysis using a framework that precisely captures the causal
relationship.

For the Framingham dataset, we report the concordance index (C-Index) to show the effectiveness of
our proposed approach to correctly rank the survival times. The interpretation of C-Index is similar
to the area under the ROC curve (AUC), but it is a generalization for censored data. CI ranges from
0 to 1, such that a score of 1 implies a perfect ranking, 0.5 implies random predictions and < 0.5
indicates performance worse than random.

Figure [I5] shows the box plots for the hazard ratios and concordance index (CI) on the test split
over 30 runs. Our proposed framework of the causal bridge along with the autoencoder (CB + AE)
outperforms only using the causal bridge (AE) in terms of both the hazard ratio and concordance
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Kaplan-Meier Curves for Treatment=1 and Treatment=0
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Figure 14: Framingham dataset: Kaplan Meier Curves.
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Figure 15: Framingham dataset: (Left) Hazard ratio and (Right) Concordance Index (CI).

index, demonstrating that using AutoEncoder helps not only in learning the causal relationship but

also improves the predictive capability of the model.
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Table 2: Models for the Demand Experiment.

p(W|Z =2, X =x)

Model h(w, z,€)
1 Input(z, x)
’ 1 Input(w, €
2 FC(3,32), ReLU 2 FCIJ)(3(32) )ReLU
3 FC(32,64), ReLU 3 FC(3’2 64’), ReLU
4 FC(64,16), ReLU 4 FC(64,16), ReLU
5 Mean: FC(16,1) 5 FC(1671) ’
6 Std: FC(16, 1), Softplus ’
Model 0y Model ox
1 Input(z, u, w) 1 Input(z)
2 FC(3,32), ReLU 2 FC(1,32), ReLU
3 FC(32,64), ReLU 3 FC(32,64), ReLU
4 FC(64, 16), ReLU 4 FC(64, 16), ReLU
5 FC(16,1) 5 FC(16,1)
Model 0£ Model ez
1 Input(z, u) 1 In
’ put(u)
5 FC(16,1) i
Table 3: Models for the dSprite Experiment.
Model pW|Z=2,X=2)G Model pW|Z=2,X=z)D
1 Input(x, z, noise) 1 Input(w, z, 2)
2 FC(4299, 2048), ReLU 2 FC(8195,4096), ReLU
3 FC(2048,4096) 3 FC(4096, 1), Sigmoid
Model h(W, x, €)
1 Input(w, x, €) Model ¢x
2 FC(8692, 1024), ReLU 1 Input(z)
3 FC(1024,256), ReLU 2 FC(4096, 64), ReLU
4 FC(256, 64), ReLU 3 FC(64, 32)
5 FC(64, 32)
Model 0, Model 0
1 Input(z, u)
1 Input(x, u, w) ’
» U, 2 FC(35, 64), ReLU
2 FC(4160, 1024), ReLU 3 FCEGZL 12%)’ ReL.U
3 FC(1024, 256), ReLU y FC(128, 256). RoLU
4 FC(256,1) 5 FC(256, 4096)
Model 0,
1 Input(u)
2 FC(32,512), ReLU

3 FC(512,3)




Table 4: Models for the Framingham Experiment.

Embedding Layer

Input(z, 2)
FC(17, 64), Linear

Time Step Embedding Layers

FC(64, 64), Linear
SiL.U Activation
FC(64, 64), Linear
Projection Layer
1 FC(16, 64), Linear
DDPM Structure

1 FC(64, 256), ReLLU, Dropout(0.1)
2 FC(256, 512), ReL.U, Dropout(0.1)
3 FC(512, 256), ReLLU, Dropout(0.1)
4 FC(256, 16), Linear

N =

(USTN SI

Model h(W, X €)
1 Input(w, z, €)
2 FC(18, 1)
Model 0y
1 Input(z, u, w)
2 FC(18, 1)
Model ¢, (part of 0,)
1 Input(2)
2 FC(16, 16)
Model ¢, (part of 6,,)
1 Input(é(z), u)
2 FC(17, 1)
Model 0,
1 Input(u)
2 FC(1, 16)
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We verified that the abstract and introduction are consistent with the contribu-
tions made by the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the paper are addressed in the Discussion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions are clearly stated in the main body of the paper, unless
specified, in which case they will be fully articulated along wit complete proof in the
Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Extensive details of the data, models and experimental settings are provided in
the Appendix. Moreover, the source code is provided as supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in the experiment are synthetic (with code provided) or
publicly available. Moreover, the source code is provided as supplementary material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental details including model specification, dataset generation,
processing and partitioning, and training details are provided in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do not provide statistical significance test results, however, all experiments
are presented with error bars over multiple runs or confidence intervals.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of the computational infrastructure used to run all the experiments is
provided in the Experiments section. Runtimes are not provided, however, results for each
experiment can be reproduced with the described hardware in a few hours.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that work was conducted according to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impact of this work is addressed in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

37


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and models described and obtainable with the source code provided
are considered of minimal risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code reused in hour work is properly credited in the paper
(references) and the source code.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: No new assets other than the source code are product of the work presented
here.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work did not use crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The work presented here does not require IRB approval.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The presented work does not involve the use of LLMs in any way, shape or
form.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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