
Published as an SCSL Workshop Paper at ICLR 2025

ARE WE DONE WITH OBJECT-CENTRIC LEARNING?
Alexander Rubinstein Ameya Prabhu Matthias Bethge Seong Joon Oh
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ABSTRACT

Object-centric learning (OCL) seeks to learn representations which only encode
an object, isolated from other objects or background cues in a scene. This
approach underpins various aims, including out-of-distribution (OOD) general-
ization, sample-efficient composition, and modeling of structured environments.
Most research has focused on developing unsupervised mechanisms which sep-
arate objects into discrete slots in the representation space, evaluated using un-
supervised object discovery. However, with recent sample-efficient segmentation
models, we can separate objects in the pixel space and encode them indepen-
dently. This achieves remarkable zero-shot performance on OOD object discovery
benchmarks, is scalable to foundation models, and can handle variable number of
slots out-of-the-box. Hence, the goal of OCL methods to obtain object-centric
representations has been largely achieved. Despite this progress, a key ques-
tion remains: How does the ability to separate objects within a scene contribute
to broader OCL objectives, such as OOD generalization? We address this by
investigating the OOD generalization challenge caused by spurious background
cues through the lens of OCL. We propose a novel, training-free probe called
Object-Centric Classification with Applied Masks (OCCAM), demonstrating
that segmentation-based encoding of individual objects significantly outperforms
slot-based OCL methods. However, challenges in real-world applications remain.
We provide the toolbox for the OCL community to use scalable object-centric rep-
resentations, and focus on practical applications and fundamental questions, such
as understanding object perception in human cognition.

1 INTRODUCTION

Object-centric learning (OCL) seeks to develop representations of complex scenes that indepen-
dently encode each foreground object separately from background cues, ensuring that one object’s
representation is not influenced by others or the background. This constitutes a foundational ele-
ment for many objectives: it supports modeling of structured environments (Schölkopf et al., 2021),
enables robust out-of-distribution (OOD) generalization (Dittadi et al., 2022; Arefin et al., 2024),
facilitates compositional perception of complex scenes (Greff et al., 2020), and deepens our under-
standing of object perception in human cognition (Spelke, 1990; Téglás et al., 2011; Wagemans,
2015). However, despite these broad goals, most research in OCL has centered on advancing “slot-
centric” methods that separate objects and encode them into slots, evaluated using unsupervised
object discovery as the primary metric (Locatello et al., 2020; Jiang et al., 2023; Seitzer et al., 2023;
Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022). In this paper, we challenge the con-
tinued emphasis on developing mechanisms to separate objects in representation space as the main
challenge to be addressed in OCL.

We first show that sample-efficient class-agnostic segmentation models, such as High-Quality En-
tity Segmentation (HQES) (Lu et al., 2023) are far better alternatives to latest slot-centric OCL
approaches, already achieve impressive zero-shot object discovery. Moreover, these models are
scalable, with foundation models like Segment Anything (SAM) (Kirillov et al., 2023; Ravi et al.,
2025) showing remarkable zero-shot segmentation, addressing much of what is usually tackled with
slot-centric approaches. Yet, the broader potential of OCL remains largely unexplored. We pose
a critical question: How does the ability to separate objects within scenes contribute to other OCL
objectives, such as OOD generalization.
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Methods Pre-training Datasets FT Movi-C Movi-E
Encoder Decoder FG-ARI mBO FG-ARI mBO

Slot Diffusion (Jiang et al., 2023) OpenImages (1.9M) COCO (118k) ✗ 66.9 43.6 67.6 26.4
Dinosaur (Seitzer et al., 2023) GLD (1.2M) COCO (118k) ✗ 67.0 34.5 71.1 24.2
FT-Dinosaur (Didolkar et al., 2025) GLD (1.2M) COCO (118k) ✓ 73.3 44.2 71.1 29.9

HQES (Lu et al., 2023) (Ours) COCO (118k) + EntitySeg (33k) ✗ 79.3 65.4 87.2 63.8
SAM (Kirillov et al., 2023) SA-1b (11M) ✗ 79.7 73.5 84.7 69.7

Table 1: Object Discovery Performance. Quantitative results for object discovery on Movi-C and
Movi-E; column “FT” indicates whether the model was fine-tuned on the training split of the cor-
responding dataset (Movi-C or Movi-E). HQES outperforms the OCL baselines like Slot Diffusion
and Dinosaur, despite being sample-efficient (151k training samples).

We bridge this gap by directly linking OCL to OOD generalization, especially in known hard set-
tings with spurious background cues. We introduce Object-Centric Classification with Applied
Masks (OCCAM), a simple, object-centric probe for robust zero-shot image classification. OC-
CAM consists of two stages: (1) generating object-centric representations via object-wise mask
generation, and (2) applying OCL representations to downstream application by classifying images
by selectively focusing on relevant object features while discarding misleading background cues.

Empirically, we find that, on Stage (1), sample-efficient segmentation models outperform current
OCL approaches in obtaining object-centric representations without additional training. However,
Stage (2)—the task of identifying relevant object cues amidst numerous possible masks—remains a
challenge. Nevertheless, when Stage (2) is executed correctly, simple OCL probes such as OCCAM
already have the potential for robust OOD generalization.

We recommend more focus by future OCL works on creating benchmarks, methodologies testing
real-world applications where object-centric representations offer clear practical benefits, and ex-
plore fundamental questions, such as how object perception works in human cognition.

2 EXPERIMENTS

In this section, we first evaluate slot-centric OCL approaches to foundational segmentation models
on unsupervised object discovery tasks. We then evaluate whether OCL methods provide robust
object classification by benchmarking them against a strong baseline that uses mask predictions
from foundational segmentation models, following the OCCAM pipeline (§A).

2.1 ARE WE DONE WITH OBJECT-DISCOVERY?

OCL methods are often evaluated by how well they perform on unsupervised object discovery,
measured via instance segmentation for every object in the scene. We explore whether the emergence
of strong zero-shot segmentation models (class-agnostic) such as HQES (Lu et al., 2023) and SAM
(Kirillov et al., 2023) allows reliable decomposition of the scene into objects. We compare these
foundational segmenters against state-of-the-art OCL approaches (Jiang et al., 2023; Seitzer et al.,
2023; Didolkar et al., 2025).

Setup. We first describe our experimental setup, including datasets, metrics, and compared base-
lines. Following prior work (Kipf et al., 2022; Elsayed et al., 2022; Seitzer et al., 2023; Didolkar
et al., 2025), we use two synthetic image datasets from Greff et al. (2022): Movi-C and Movi-E. We
quantify model performance using FG-ARI (Rand, 1971; Hubert & Arabie, 1985; Kipf et al., 2022)
and mBO (Pont-Tuset et al., 2015; Seitzer et al., 2023).

Results. Table 1 and Figure 3 show quantitative and qualitative results. Across both metrics FG-
ARI and mBO across out-of-distribution benchmarks like Movi-C and Movi-E, HQES far surpasses
the OCL baselines. This gap is especially notable in mBO on Movi-E, improving 29.9% to 63.8%.
Qualitatively, HQES masks fit objects much better than masks predicted by OCL methods (Figure 3).
HQES also shows it is possible to be sample efficient, only being trained on 151k samples in contrast
to 11M samples for SAM.

Conclusion. Sample-efficient segmentation models, even in zero-shot setting excel at object dis-
covery, surpassing OCL methods by large margins. This suggests that one key aspect of OCL —
decomposing the scene into objects — can be largely solved by powerful pre-trained segmentation
models, effectively replacing the slot-based OCL methods. Given the decomposition, we explore in
the next section downstream applications where OCL methods can contribute lot of practical value.
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(a) ImgNet-D (BG) (Zhang et al., 2024)
Method Acc. (↑)

CLIP ViT-L

CLIP (Radford et al., 2021) 23.5
O-D (Ours) 57.7
O-H (Ours) 68.0
CLIP-SigLip (Zhai et al., 2023) 59.4
O-D-SigLip (Ours) 71.5
O-H-SigLip (Ours) 78.5

Multi-modal LLMs

MiniGPT-4 (Zhu et al., 2024) 71.8
LLaVa (Liu et al., 2023a) 52.9
LLaVa-NeXT (Liu et al., 2024b) 68.8
LLaVa-1.5 (Liu et al., 2024a) 73.3⋆

(b) UrbanCars (Li et al., 2023)
Method WGA (↑)

ViT-L-14 CLIP

CLIP (Radford et al., 2021) 87.2
O-D (Ours) 98.4
O-H (Ours) 100.0

ResNet50 CLIP

CLIP (Radford et al., 2021) 64.8
O-D (Ours) 98.4
O-H (Ours) 100.0

ResNet50

CoBalT (Arefin et al., 2024) 80.0
LfF (Nam et al., 2020) 34.0
JTT (Liu et al., 2021) 55.8
SPARE (Yang et al., 2023) 76.9
LLE (Li et al., 2023) 90.8⋆

(c) ImgNet-9 (MR) (Xiao et al., 2021)
Method Acc. (↑)

ViT-L-14 CLIP

CLIP (Radford et al., 2021) 91.9
O-D (Ours) 93.8
O-H (Ours) 95.2

ResNet50 CLIP

CLIP (Radford et al., 2021) 81.1
O-D (Ours) 80.6
O-H (Ours) 85.6

ResNet50

CoBalT (Arefin et al., 2024) 80.3
SIN (Sauer & Geiger, 2021) 63.7
INSIN (Sauer & Geiger, 2021) 78.5
INCGN (Sauer & Geiger, 2021) 80.1
MaskTune (Asgari et al., 2022) 78.6
CIM (Taghanaki et al., 2021) 81.1⋆

(d) Waterbirds (Sagawa et al., 2020)
Method WGA (↑)

ViT-L-14 CLIP

CLIP (Radford et al., 2021) 83.6
O-D (Ours) 92.1
O-H (Ours) 96.0

ResNet50 CLIP

CLIP (Radford et al., 2021) 72.9
O-D (Ours) 83.3
O-H (Ours) 92.5

ResNet50

CoBalT (Arefin et al., 2024) 90.6
GDRO (Sagawa et al., 2020) 89.9
AFR (Qiu et al., 2023) 90.4
SPARE (Yang et al., 2023) 89.8
MaskTune (Asgari et al., 2022) 86.4
CIM (Taghanaki et al., 2021) 77.2
DFR (Kirichenko et al., 2023) 91.8⋆

Table 2: Object-Centric Learning for Spurious Background OOD Generalization. We report
versions of accuracies in each benchmark. Results are grouped according to backbone architecture.
“ImgNet-D (BG)” stands for the ImageNet-D “background” subset. “ImgNet-9 (MR)” stands for
the ImageNet-9 “mixed rand” subset. “WGA” stands for the worst group accuracies. O-H/O-D
stands for OCCAM with HQES/FT-Dinosaur masks generator correspondingly. For cited methods,
we show results reported in the papers (Arefin et al., 2024) and (Zhang et al., 2024). ⋆ indicates the
state-of-the-art results in each benchmark.

2.2 APPLICATION: CLASSIFICATION WITH SPURIOUS BACKGROUND CORRELATIONS

As foundational segmentation models outperform OCL methods in decomposing the scene into
constituent objects, we take a further step and evaluate OCL methods on a downstream task that
leverages the disentangled representations for distinct objects: robust classification under spurious
background cues. This subsection demonstrates that object masks are a simple but effective strategy
to mitigate the influence of spurious correlations with backgrounds in classification tasks (Table 2).

Setup. We first describe our experimental setup, including datasets, metrics, and compared base-
lines. We use several standard datasets with spurious backgrounds or co-occurring objects — Ur-
banCars (Li et al., 2023), ImageNet-D (Zhang et al., 2024) (background subset), ImageNet-9 (Xiao
et al., 2021) (mixed rand subset), Waterbirds (Sagawa et al., 2020), and CounterAnimals (Wang
et al., 2024). We measure model performance using standard metric used in the respective bench-
mark: accuracy and worst group accuracy (WGA). We provide per-benchmark comparisons for
reference, including results from other relevant methods, citing them alongside their names in the
tables. We use the foundational segmentation model HQES (Lu et al., 2023) (O-H) and the state-of-
the-art OCL method FT-Dinosaur (Didolkar et al., 2025) (O-D) for mask prediction in our training-
free probe, OCCAM. We categorize methods with comparable image encoder backbone for fairness.

Results. Using masks significantly improves performance across all datasets, sometimes reach-
ing 100% accuracy (e.g., on UrbanCars; Table 2(b)) or close to that performance on Waterbirds
and ImageNet-9 (mixed rand) subsets. This shows the potential of simple, training-free object-
centric methods like OCCAM to address otherwise challenging downstream problems, if we can
robustly identify the foreground object of interest. On harder benchmarks like ImageNet-D (back-
ground subset), HQES-based masks with SigLip models yield far better performance (78.5%) even
compared to recent models like LLAVA 1.5 (Liu et al., 2023a) (73.3%), and outperform their best
slot-based counterparts (71.5%) using FT-Dinosaur (Table2(a)). Throughout, HQES consistently
provides more effective masks than FT-Dinosaur.

Conclusion. These experiments show that mask-based, training-free object-centric probes can pro-
vide practical value on challenging robust classification tasks, if the task of foreground detection
is sufficiently addressed (§A.2.2). It provides substantial gains on all tested benchmarks over the
state-of-the-art methods for tackling spurious correlations. We hope this encourages the community
to develop segmentation-based OCL approaches, and demonstrate practical benefits across a variety
of downstream applications. We next perform data-centric analysis with properties of OCCAM.

2.2.1 COUNTERANIMALS: SPURIOUS OR SIMPLY HARD?

Our object-centric classification pipeline can isolate an object’s influence apart from its background.
This property of OCL can be used to analyze the recently proposed CounterAnimals dataset (Wang
et al., 2024).
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Setup. CounterAnimals (Wang et al., 2024) highlights models’ reliance on spurious back-
grounds. It consists of two splits from iNaturalist,1 each containing animals from 45
classes in ImageNet1k (Russakovsky et al., 2015). The Common split features typi-
cal backgrounds (e.g., polar bears on snow), while the Counter split features less com-
mon ones (e.g., polar bears on dirt). It primarily demonstrates that models consistently
perform better on the Common than on the Counter, due to spurious background cues.

CounterAnimals
Method Cmn/Cntr (↑) Cmn-Ctr (↓)

AlphaCLIP ViT-L

CLIP (Radford et al., 2021) 79.0/62.0 17.0
O-D (Ours) 85.8/70.5 15.3
O-H (Ours) 84.4/69.2 15.2

Table 3: Data-Centric Understand-
ing using OCL. We report the accura-
cies on the Common and Counter sub-
set of the Counteranimals dataset. We
see that after eliminating the spurious
background using OCL methods, the
gap (Cmn-Ctr) does not substantially
decrease.

What is the Contribution of Spurious Correlations?
We perform a simple check using OCCAM – If the drop
from Common to Counter is caused by spurious back-
ground correlations, then using OCCAM we can ablate
the contribution of everything except the foreground ob-
ject. Ideally, ablating the background should result in
roughly equal performance on both Common and Counter
sets (the gap should be 0%). However, we see from Ta-
ble 3, Table 4 that even after ablating the background en-
tirely, there is a substantial gap between the Common and
Counter subsets. For example, when using AlphaCLIP
the gap reduces from 17.0% to 15.2%. Similarly, using
HQES masks and gray background for both sets, we still
observe a 8.5% gap. This provides interesting evidence
that images in the Common subset might be simply substantially easier than images from the Counter
subset by about 8-10%.

Conclusion. OCL methods allow analyzing datasets, and analyse the contribution of individual
objects. In the case of CounterAnimals, we find that spurious backgrounds might not be the primary
reason models perform worse on the Counter subset than on Common subset, although they are
a factor. A significant (10%) gap might be caused by the Counter subset simply being harder to
classify than the Common subset due to a wide variety of other factors. Overall, we show the
potential for OCL methods to help inform data-centric fields like data attribution.

3 CONCLUSION AND OPEN PROBLEMS

The motivation for object-centric learning (OCL) originates from a variety of goals, including out-
of-distribution generalization, sample-efficient composition, and insights into human cognitive ob-
ject perception. Despite this broad scope, progress has been measured mostly by object-discovery
benchmarks only. With the advent of strong segmentation methods such as High-Quality Entity
Segmentation (HQES) (Lu et al., 2023), we confirm that class-agnostic segmentation models far
surpass slot-based OCL methods in obtaining isolated object representations, effectively meeting
OCL’s initial goal.

However, its relevance extends beyond object discovery. We advocate for shifting OCL evaluation
towards more realistic downstream tasks that leverage object-centric representations, such as miti-
gating spurious background correlations. We design a simple training-free probe, OCCAM, to show
the efficacy of object-centric approaches to help classifiers generalise even in the presence of spu-
rious correlations (§2.2), achieving near-perfect accuracies across many benchmarks (Table 2). By
separating object-wise representation (well-addressed by HQES) from object selection (still a key
challenge), OCCAM sheds light on where further improvements are needed.

Looking ahead, we hope OCL-based approaches benchmark visual understanding through scene-
graph construction, more interpretable intermediate representations, and human-in-the-loop feed-
back for cue selection. We hope diverse applications and creating corresponding benchmarks will
push the field forward. Beyond immediate use cases, OCL may also inform fundamental cognitive
questions about how objects and causal structures emerge in the real world and how infants under-
stand objects without explicit supervision (Spelke, 1990; Téglás et al., 2011). Realizing this broader
vision will require refining the OCL objective and breaking it down into well-defined subproblems
that can further illuminate these deeper inquiries.

1https://www.inaturalist.org/observations
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fano Soatto, Bernhard Schölkopf, and Francesco Locatello. Leveraging sparse and
shared feature activations for disentangled representation learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 27682–27698. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/57fabaa549352c52d5d312171b16970e-Paper-Conference.pdf. 15

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208, 2020. 1, 15

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J
Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu,
Dmitry Lagun, Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi
S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scalable
dataset generator. 2022. 2

Sebastian Gruber and Florian Buettner. Uncertainty estimates of predictions via a general bias-
variance decomposition. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2022. 19, 23

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 15

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.
19

Lawrence J. Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 1985. 2,
15

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip. July 2021. doi: 10.5281/zenodo.5143773. If you
use this software, please cite it as below. 23

Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 2023. 1, 2, 15, 16

Thomas Kipf, Gamaleldin F. Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional Object-Centric
Learning from Video. In International Conference on Learning Representations (ICLR), 2022. 1,
2, 15

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. In International Conference on Learning Representations
(ICLR), 2023. 3, 17, 19, 20

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment anything. In International Conference on Computer Vision (ICCV), 2023. 1, 2

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. 2013 IEEE International Conference on Computer Vision Workshops, pp. 554–
561, 2013. URL https://api.semanticscholar.org/CorpusID:14342571. 22

6

https://proceedings.neurips.cc/paper_files/paper/2023/file/57fabaa549352c52d5d312171b16970e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/57fabaa549352c52d5d312171b16970e-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:14342571


Published as an SCSL Workshop Paper at ICLR 2025

Tejas D. Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, An-
drew Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception
and control. In Neural Information Processing Systems, 2019. 15

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. 19

Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer,
Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where
mitigating one amplifies others. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 3, 21, 22

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
6781–6792. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
liu21f.html. 3

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Confer-
ence on Neural Information Processing Systems (NeurIPS), 2023a. 3

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296–26306, June 2024a. 3

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. 3

Yuejiang Liu, Alexandre Alahi, Chris Russell, Max Horn, Dominik Zietlow, Bernhard Schölkopf,
and Francesco Locatello. Causal triplet: An open challenge for intervention-centric causal rep-
resentation learning. In Conference on Causal Learning and Reasoning, pp. 553–573. PMLR,
2023b. 15

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot atten-
tion. In Conference on Neural Information Processing Systems (NeurIPS), 2020. 1, 15

Qi Lu, Jason Kuen, Shen Tiancheng, Gu Jiuxiang, Guo Weidong, Jia Jiaya, Lin Zhe, and Yang
Ming-Hsuan. High-quality entity segmentation. In International Conference on Computer Vision
(ICCV), 2023. 1, 2, 3, 4, 12

Shoya Matsumori, Kosuke Shingyouchi, Yukikoko Abe, Yosuke Fukuchi, Komei Sugiura, and Mi-
chita Imai. Unified questioner transformer for descriptive question generation in goal-oriented
visual dialogue. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
1878–1887, 2021. 15

Toki Migimatsu and Jeannette Bohg. Object-centric task and motion planning in dynamic environ-
ments. IEEE Robotics and Automation Letters, 5(2):844–851, 2020. doi: 10.1109/LRA.2020.
2965875. 15
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Thaddäus Wiedemer, Jack Brady, Alexander Panfilov, Attila Juhos, Matthias Bethge, and Wieland
Brendel. Provable compositional generalization for object-centric learning. In International Con-
ference on Learning Representations (ICLR), 2024. 16

Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The
role of image backgrounds in object recognition. In International Conference on Learning Rep-
resentations(ICLR), 2021. 3, 21

Jianwei Yang, Jiayuan Mao, Jiajun Wu, Devi Parikh, David Cox, Joshua B. Tenenbaum, and Chuang
Gan. Object-centric diagnosis of visual reasoning. ArXiv, abs/2012.11587, 2020. 15

Yu Yang, Eric Gan, Gintare Karolina Dziugaite, and Baharan Mirzasoleiman. Identifying spurious
biases early in training through the lens of simplicity bias. ArXiv, abs/2305.18761, 2023. 3

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-
centric representations for reinforcement learning. In International Conference on Machine
Learning, pp. 40147–40174. PMLR, 2023. 15

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
11941–11952, 2023. 3

9

https://api.semanticscholar.org/CorpusID:16119123
https://api.semanticscholar.org/CorpusID:16119123


Published as an SCSL Workshop Paper at ICLR 2025

Chenshuang Zhang, Fei Pan, Junmo Kim, In So Kweon, and Chengzhi Mao. Imagenet-d: Bench-
marking neural network robustness on diffusion synthetic object. Conference on Computer Vision
and Pattern Recognition (CVPR), 2024. 3, 21

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing
vision-language understanding with advanced large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. 3

10



Published as an SCSL Workshop Paper at ICLR 2025
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Figure 1: Where Should We Go? Object-centric learning (OCL) has focused on developing unsu-
pervised mechanisms to separate the representation space into discrete slots. However, the inherent
challenges of this task have led to comparatively less emphasis on exploring downstream applica-
tions, and exploring fundamental benefits. Here, we introduce simple, effective OCL mechanisms
by separating objects in pixel space and encoding them independently. We present a case study that
demonstrates the downstream advantages of our approach for mitigating spurious correlations. We
outline the need to develop benchmarks aligned with fundamental goals of OCL, and explore the
downstream efficacy of OCL representations.
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A OCCAM: PROPOSED METHOD
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Figure 2: Overview of Object-Centric Classification with Applied Masks (OCCAM). There
are two main parts. The first part (§ A.2.1) uses entity segmentation masks for object-centric
representation generation. The second part (§ A.2.2) performs robust classification by selecting
representations corresponding to the foreground object and using them for classification. Indices
i0, . . . , ik, . . . correspond to each object in the scene.

This section gives an overview of our proposed method. Subsection §A.1 defines the notation needed
for the method description in §A.2.

A.1 NOTATIONS

We denote an image as x ∈ R[3, H, W] and a label as y ∈ Y = {1, . . . , C}, where C is the number of
classes. We will write an image encoder, or a feature extractor, as ψ and image embedding, or feature
vector, as ψ(x) ∈ Rd, where d ≥ 1 is the feature dimensionality. We define the classifier’s pre-
softmax logits as f(ψ(x)) ∈ R|Y| and softmax probabilities as p(ψ(x)) = Softmax(f(ψ(x))) ∈
[0, 1]|Y|. For simplicity, we will use p(ψ(x)) and p(x) interchangeably. We also denote indices for
the last two dimensions in tensors as superscripts (e.g. last two dimensions of sizes H, W for x)
and all other dimensions as subscripts (e.g. first dimension of size 3 in x). We will use shorthands
“FG” and “BG” for foreground and background correspondingly.

A.2 METHOD

Our Object-Centric Classification with Applied Masks (OCCAM) pipeline is summarized in Fig-
ure 2. We use object-centric representations to reduce spurious correlations in image classification.
It consists of the two main parts: 1. generate object-centric representations, 2. perform robust
classification by classifying an image using only representations of the foreground object. In the
following subsections, we will explain these parts in more detail.

A.2.1 GENERATING OBJECT-CENTRIC REPRESENTATIONS

To generate the object-centric representations we first generate masks for all objects and back-
grounds in the image using a mask predictor. We then apply generated masks to images by combin-
ing masks with images. Each object is then encoded with an image encoder.

Generating masks. To produce object representations given an original image x ∈ R[3, H, W], we
generate a set of masks for all the foreground objects and the background. That is done with the
help of mask generator S, which takes x as input and assigns each pixel in x to one of Kmax masks.
The output of this model is the stack of K binary masks each corresponding to a different object.
An OCL method like FT-Dinosaur (Didolkar et al., 2025) or an external segmentation model like
High-Quality Entity Segmentation (HQES) (Lu et al., 2023) can be used as a mask generator in this
pipeline.
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Applying masks. After producing the binary masks for each object, we segregate the pixel contents
for each mask by applying mask on the input image. We will interchangeably call mask applying
operation as mask method throughout the paper. One way to apply masks to images is to simply add
a gray background to all but selected pixels, cropping the image that follows the mask contours, and
resizing the result to the size of the original image. In such case, we call the operation as Gray BG
+ Crop.

However, a mask method can be any operation involving an image x and mask m: a(x,m) ∈
R[3, H, W ],∀m ∈ {Si, i = 1 . . .K},m ∈ R[H, W ]. We additionally show ease-of-use in incor-
porating latest masking techniques like AlphaCLIP which combines a mask and original image by
appending masks as an additional α-channel to the image tensor resulting in RGB-A 4-dimensional
tensor. This allows using masks as a source of focus instead of removing backgrounds entirely,
useful for some practical applications. We call such an operation as “α-channel”.

Encoding applied masks. To get the final object-centric representations we encode applied masks
by an image encoder ψ such as ViT (Dosovitskiy et al., 2021) for example.

A.2.2 ROBUST CLASSIFIER

We hypothesize that by isolating foreground object representations from the representations of back-
ground and other objects we eliminate sources of spurious correlations, hence performing more ro-
bust classification. For that reason, we first use the set of object-centric representations obtained in
the previous stage to select the single representation that corresponds to the foreground. Then we
provide the selected foreground representation to the classifier to make the final prediction.

FG detector. After applying masks to the image we select the mask that corresponds to the fore-
ground object by the following process. At first, we compute the foreground score that reflects how
likely a given applied mask is to correspond to the foreground object. Then we take the mask with
the highest foreground score among all masks for the current image.

Currently, we use two types of foreground scores, both computed from the classifier’s outputs:

1. Ens. H: gH(x,m) = 1
M

∑M
k=1 H[pk(x)] - ensemble entropy (see details in § C.1). Here,

M is the ensemble size, and H stands for entropy.
2. Class-Aided: gclass aided(x,m) = py(ψ(a(x,m))) - probability of predicting a ground truth

label. We consider this foreground score to measure the efficacy of the object-centric rep-
resentation rather than to suggest it as a final method to use in practice. Although in reality,
we do not have access to ground truth labels, it provides critical signals as to whether the
insufficient generalization performance is due to object representation or due to foreground
selection and classifier.

For the comparison of different foreground scores, see § C.1.

Image classification using FG object representations. Finally, once we have identified the mask
that matches the foreground object, we apply it to the original image and classify the result of this
operation. The final output of our method is:

OCCAM(x) = p(ψ(a(x,m⋆)),

where m⋆ is the FG mask selected by the FG detector.
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Image DINOSAUR SlotDiffusion FT-DINOSAUR SAM HQES

Figure 3: Qualitative Results on Object Discovery. DINOSAUR, SlotDiffusion, and FT-DINOSAUR are
existing object-centric learning (OCL) approaches. SAM and HQES refer to zero-shot segmentation
methods. Images are from MOVi-E. SAM and HQES masks fit objects much better than the masks
predicted by OCL methods.
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B RELATED WORK

We cover prior work in the object-centric learning (OCL) community from three different angles:
motivation, evaluation, and methodologies.

Motivation for OCL. The OCL community has inspired research from different perspectives. From
one perspective, learning object-centric representations can help discover latent variables of the
data-generating process, such as object position and color (Fumero et al., 2023), or even identify
its causal mechanisms (Liu et al., 2023b; Schölkopf et al., 2021) by encoding structural knowledge
that allows interventions and changes. From another perspective, OCL aims to simulate human
cognition (Spelke, 1990; Téglás et al., 2011; Wagemans, 2015) in neural networks. For example,
infants intuitively understand physics by tracking objects with consistent behavior over time (Dittadi
et al., 2022). They later reuse this knowledge to learn new tasks quickly. Advances in OCL can help
neural networks develop this ability as well. In addition to that, some studies focus on understanding
the compositional nature of scenes (Greff et al., 2020) by providing separate representations for
different elements (e.g. human, hat, bed, table) and their interactions (a cat wearing a hat or a
bear guiding cubs). Several papers claim that there is a potential to improve sample efficiency and
generalization (Locatello et al., 2020; Kipf et al., 2022; Seitzer et al., 2023) or object-centric methods
can be more robust (Seitzer et al., 2023). Others refer to the structure of the world saying that the
fundamental structure of the physical world is compositional and modular (Jiang et al., 2023) or that
humans understand the world in terms of separate objects (Kipf et al., 2022; Didolkar et al., 2025).
However, we have observed a consistent lack of empirical evidence demonstrating that object-centric
approaches improve sample efficiency or aid in identifying causal mechanisms. To address this gap,
we believe more empirical research is needed. As a first step, we show that robust classification is
achievable even in the presence of explicitly distracting backgrounds and other object interference.

OCL evaluation. Measuring progress on the primary motivations of object-centric learning is a hard
problem and suffers from chronic lack of scalable benchmarks. Hence, empirical support for the
commonly claimed benefits such as parameter/learning efficiency (Kipf et al., 2022) and improved
generalization (Dittadi et al., 2022; Arefin et al., 2024) or better understanding of representations,
remains limited. Some papers study the link between object-centric learning and downstream ap-
plications. These include reinforcement learning (Watters et al., 2019; Kulkarni et al., 2019; Berner
et al., 2019; Sun et al., 2019; Yoon et al., 2023), scene representation and generation (Kulkarni et al.,
2019; El-Nouby et al., 2018; Matsumori et al., 2021; Burgess et al., 2019), reasoning (Webb et al.,
2023; Yang et al., 2020), and planning (Migimatsu & Bohg, 2020). We highlight that these pa-
pers provide valuable contribution to benchmarking progress in OCL field. However, most research
does not focus on these tasks. Much of the progress is tracked by unsupervised object discovery
benchmarks, essentially entity segmentation (Locatello et al., 2020; Jiang et al., 2023; Seitzer et al.,
2023; Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022). Model performance is usually
quantified with foreground adjusted random index (FG-ARI) (Rand, 1971; Hubert & Arabie, 1985;
Kipf et al., 2022), which is a permutation-invariant clustering metric or mean best overlap (mBO)
(Pont-Tuset et al., 2015; Seitzer et al., 2023). These evaluations primarily assess whether slots re-
liably isolate individual objects—a criterion we argue is overly restrictive in the broader context of
object-centric learning. In our paper, we urge more works to additionally evaluate downstream ap-
plications, particularly given the emergence of foundational segmentation models that significantly
outperform object-centric methods on standard object discovery tasks (see Table 1 and Figure 3).

OCL methodologies. OCL captured widespread attention with the introduction of SlotAttention
(Locatello et al., 2020), which enabled iterative learning of separate latent representations for each
object in an image. These latent “slots” can then be decoded back to the pixel space. Extensions
have included SlotAttention paired with diffusion decoders (Jiang et al., 2023) and SlotAttention
architectures built on top of DINO (Seitzer et al., 2023; Didolkar et al., 2025) features. Dinosaur
(Seitzer et al., 2023) uses pre-trained self-supervised DINO (Caron et al., 2021) features as a target
for reconstruction loss. This loss is used to train a decoder with Slot Attention (Locatello et al.,
2020) on top of the ResNet (He et al., 2016) encoder. FT-Dinosaur (Didolkar et al., 2025) improves
Dinosaur by replacing the ResNet encoder with a DINO-ViT (Dosovitskiy et al., 2021) encoder sep-
arate from the one used to compute target features. It jointly fine-tunes the encoder with the decoder.
SlotDiffusion (Jiang et al., 2023) uses pre-trained features from the Stable Diffusion Encoder (Rom-
bach et al., 2022) and trains a diffusion-based decoder with Slot Attention (Locatello et al., 2020)
on top of them. In video contexts, sequential adaptations leverage temporal dependencies (Kipf
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et al., 2022) and depth information (Elsayed et al., 2022). Some studies also propose theoretical
foundations for OCL (Wiedemer et al., 2024; Brady et al., 2023). There is also a line of work that
studies object-centric representation in the context of out-of-distribution (OOD) generalization in
segmentation (Dittadi et al., 2022) and classification, e.g. CoBalT (Arefin et al., 2024) that employs
model distillation and slots clustering into concepts to refine features quality. In our experiments, we
compare with latest methods – SlotDiffusion (Jiang et al., 2023) and (FT-)Dinosaur (Seitzer et al.,
2023; Didolkar et al., 2025) for object discovery and CoBalT (Arefin et al., 2024) across robust
classification benchmarks.
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C ABLATIONS: IDENTIFYING BOTTLENECKS IN OCCAM

Name Mask Method Mask Model FG Detector WB↑ IN-9↑ IN-D↑ UC↑ Cmn-Ctr↓

CLIP

- - - 83.6 91.9 17.6 87.2 15.0

Gray BG + Crop
FT-Dinosaur Ens. H 83.8 84.0 52.4 95.2 13.1

Class-Aided 92.1 93.8 57.7 98.4 12.7

HQES Ens. H 86.8 88.6 60.4 95.2 8.8
Class-Aided 96.0 95.2 68.0 100.0 8.5

AlphaCLIP

- (α = 1) - - 79.8 90.2 23.5 87.2 17.0

α-channel
FT-Dinosaur Ens. H 81.0 90.3 40.7 92.0 17.2

Class-Aided 86.9 93.1 49.1 96.0 15.3

HQES Ens. H 84.7 91.2 44.7 91.2 16.4
Class-Aided 89.1 93.1 53.9 97.6 15.2

Table 4: Factor Analysis for Spurious Background OOD Generalization. Accuracies on spurious
correlations datasets when varying factors for ViT-L-14 CLIP architecture. We use AlphaCLIP for
α-channel masking and CLIP for Gray Crop masking. We first report their baseline performances
without masking (where mask method and model are both “-”) and with 2 different mask models
(FT-Dinosaur and HQES) as well as 2 different foreground detectors (Ens. H and Class-Aided).
Results are reported on 5 benchmark datasets, Waterbirds (WB), ImageNet-9 (IN-9), ImageNet-
D (IN-D), UrbanCars (UC), and CounterAnimals (Cmn-Ctr). For the CounterAnimals results, we
report the gap between the common-split (Cmn) and the counter-split (Ctr) accuracies. Unlike other
metrics, a smaller Cmn-Ctr gap is deemed a better generalization.

We now ablate the contributions of different components in the OCCAM pipeline. We first test
two CLIP models (CLIP and AlphaCLIP), to see whether our results generalize beyond simply
removing backgrounds to recent techniques such as AlphaCLIP which use the α-channel to focus on
the mask instead of eliminating the background. Secondly, we study the effect of masking generator,
testing HQES along with current SOTA OCL method FT-Dinosaur. Lastly, we study the influence
of different FG Detection methods. We showcase our analysis in Table 4.

Effect of mask applying method. Using masks with Class-Aided FG detector improves perfor-
mance on all the datasets for both Gray BG + Crop and α-channel mask methods, but for the former
accuracy is usually higher. For example, on Waterbirds (Table 4), accuracy for Gray BG + Crop
mask method and HQES mask generator is 96.0% while for AlphaCLIP it is 89.1%. This indicates
the backgrounds have strong spurious correlations still affects α-CLIP to a small extent.

Effect of mask generator. Comparing the rows from mask models to original CLIP model, we see
that both FT-Dinosaur and HQES improve performance, across CLIP and AlphaCLIP given that we
use Class-Aided FG detector. In this scenario, HQES improves accuracy more than FT-Dinosaur.
For example, for the Gray BG + Crop mask method it leads to 68.0% accuracy on ImageNet-D,
while FT-Dinosaur reaches only 57.7%. This indicates that the segmentation-based OCL performs
better consistently for downstream OCL applications.

Selecting foreground mask. Accuracy gains with Ens. H are always smaller than for Class-Aided
FG detector and sometimes can be negative (Table 4). For example, for Gray BG + Crop mask
method and HQES mask generator accuracy on ImageNet-9 drops from 91.9% to 88.6% when
using Ens. H FG detector, while jumping to 95.2% with Class-Aided FG detector. This reveals a
weakness in the baseline foreground detection method. It leaves room for improvement and future
research.

It is worth mentioning that since Class-Aided foreground detector selects masks based on the high-
est ground truth probability it can be biased towards non-foreground masks that improve overall
accuracy, helping OCCAM achieve the superior performance in image classification. However, on
the Waterbirds (Sagawa et al., 2020) dataset for which we have access to ground truth foreground
masks (Kirichenko et al., 2023) we observe that it is not usually the case: non-foreground mask
was selected by Class-Aided foreground detector in only 5 out of 100 randomly sampled images.
At the same time, the accuracy for Class-Aided foreground detector, which is 96.0%, is still lower
than the 96.7% achieved using ground truth masks. Based on this, we consider masks selected by
Class-Aided foreground detector as the closest approximation of ground truth foreground masks.
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Conclusion. The empirical results show that segmentation models outperform current OCL methods
in obtaining object-centric representations that result in better classification performance. At the
same time, identifying foreground masks among many candidates remains a challenge. The simple
Gray BG + Crop mask method generally performs better than the more advanced α-channel mask
method.
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C.1 FOREGROUND DETECTORS COMPARISON

To justify the choice of gclass aided and gH in § A.2.2, we compare several foreground detection
methods. One can notice that foreground detection is an application of an out-of-distribution (OOD)
detection, a well-studied problem (Mukhoti et al., 2021; Tran et al., 2022; Gruber & Buettner, 2022)
— with foreground objects treated as in-distribution (ID) samples and background objects as OOD
samples. Hence, we evaluate OOD detection methods for this task in Figure 4.

Setup. We construct an OOD detection dataset using the ImageNet (Russakovsky et al., 2015)
validation set by leveraging ground truth bounding boxes2 to derive accurate foreground masks (see
details in § G). Performance is measured via the area under the ROC curve (AUROC), in line with
standard OOD detection frameworks (Mukhoti et al., 2021; Tran et al., 2022; Gruber & Buettner,
2022; Mucsányi et al., 2024; Rubinstein et al., 2024). We use the following strong baselines:

• Class-Aided (single model) (Hendrycks & Gimpel, 2017): py(x)

• Ensemble entropy (Ovadia et al., 2019): 1
M

∑M
k=1 H[pk(x)]

• Ensemble confidence (Lakshminarayanan et al., 2017): maxc
1
M

∑M
k=1 p

c
k(x)

• Confidence (single model) (Hendrycks & Gimpel, 2017): maxc p
c(x)

• Entropy (single model) (Depeweg et al., 2017): H[p(x)]

Here, p(x) denotes the model’s probability vector prediction for sample x, y is the corresponding
ground truth label, M is the ensemble size, and H represents entropy. We use ViT-L-14 CLIP model
pre-trained by OpenAI (Radford et al., 2021) as the single model, with the ensemble comprising
of CLIP (Radford et al., 2021) models with ViT-L-14 (Dosovitskiy et al., 2021) vision encoders
pre-trained on different datasets. Note that OpenAI ViT-L-14 was the strongest model by AUROC
among the ensemble, hence was used as the single model. Further details are provided in § G.

Results. As shown in Figure G, Class-Aided achieves the highest AUROC of 90.1% whereas the
ensemble entropy method yields 89.6%. Other methods perform significantly worse. Nevertheless,
all methods scored more than 80% AUROC.

Conclusion. The AUROC performance of Class-Aided and Ens. H foreground detectors showed
only minor differences from each other both scoring around 90% and being the best among the
compared methods; however, substantial performance gaps remain when comparing the Class-Aided
results with the Ens. H foreground detector in spurious correlation tasks, possible reason for this
is discussed in § D. This disparity highlights two key implications. Current evaluation metrics may
have a large research gap to better reflect real-world applications. Conversely, spurious correlation
foreground detection might be a promising proxy task for identifying better OOD detection models.

D CLASS-AIDED FOREGROUND DETECTOR YIELDS THE CLOSEST
APPROXIMATION TO GROUND TRUTH FOREGROUND MASKS

It is worth mentioning that since Class-Aided foreground detector selects masks based on the highest
ground truth probability (§ A.2.2), it can be biased towards non-foreground masks that improve over-
all accuracy, helping OCCAM achieve the superior performance in image classification. However,
on the Waterbirds (Sagawa et al., 2020) dataset for which we have access to ground truth foreground
masks (Kirichenko et al., 2023), we observe that it is not usually the case: a non-foreground mask
was selected by Class-Aided foreground detector in only 5 out of 100 randomly sampled images.
At the same time, the accuracy for Class-Aided foreground detector, which is 96.0%, is still lower
than the 96.7% achieved using ground truth masks (see Table 5). We do not see clear evidence that
the Class-Aided foreground detector often selects non-foreground masks but we see that it provides
masks that perform on par with ground truth masks in image classification with spurious correla-
tions. We therefore treat the masks it selects as the closest approximation to ground truth foreground
masks.

2https://academictorrents.com/details/dfa9ab25
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Figure 4: Foreground Object Detection. ROC-curves for foreground detection methods. For each
scoring scheme, we measure how well the true foreground objects in the ImageNet-validation dataset
are detected. More details in § G.

FG Detector WGA (↑)

- 83.6
Max Prob 78.6

Ens. H 86.8
Class-Aided 96.0

Ground Truth 96.7

Table 5: Different foreground detectors on Waterbirds We report the worst-group accuracies
on the Waterbirds dataset for different foreground detectors. Masks are generated by HQES and
applied via “Gray BG + Crop” (see § A.2.1); the classification model is CLIP ViT-L-14 (Radford
et al., 2021); “-” stands for classification of original images without using any masks. Max Prob
stands for foreground detector that uses the following score (in terms of § A.2.2): gmax prob(x,m) =
maxc p

c(ψ(a(x,m))) - maximum probability across all possible classes (its computation is equiva-
lent to confidence in § C.1). Class-Aided and Ens. H are described in § A.2.2. Ground Truth stands
for ground truth foreground masks that are taken from (Kirichenko et al., 2023).
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E DETAILS ON SPURIOUS BACKGROUNDS DATASETS

Below we provide details on these datasets:

The core of the datasets consists of the popular choices for robust image classification tasks: Ur-
banCars (Li et al., 2023), Waterbirds (Sagawa et al., 2020), and ImageNet-9 (Xiao et al., 2021).
We also add ImageNet-D (Zhang et al., 2024) dataset to this group as we believe that it contains
more realistic images thanks to blending objects with backgrounds using diffusion model (Rombach
et al., 2022) instead of cropping foreground objects onto new backgrounds as done in the previous
datasets. Finally, we use the CounterAnimals (Wang et al., 2024) dataset, the latest benchmark that
contains natural images which are spurious background correlations, specifically designed even for
CLIP models.

1. UrbanCars (Li et al., 2023): a dataset for binary classification of cars into “urban” and
“country” types. Each image contains one urban or country car paired with either urban or
country secondary objects (e.g. fire hydrant for urban or cow for country) on either urban
or country backgrounds. It is synthetically generated by placing cut-out cars paired with
cut-out secondary objects on urban or rural backgrounds.

2. ImageNet-D (Zhang et al., 2024): a diffusion-model-synthesized dataset for image classi-
fication for 113 classes. Its class set is a subset of ImageNet-1k (Russakovsky et al., 2015)
class set. We use “background” subset of this dataset which features objects appearing with
uncommon backgrounds (e.g. plates in a swimming pool).

3. ImageNet-9 (Xiao et al., 2021): synthetically generated dataset for image classification for
9 classes. It has 9 classes which are supersets of ImageNet classes (e.g. dog, bird etc). We
use “mixed random” subset of this dataset which is generated by placing cut-out objects of
one class on backgrounds from images of some other random class.

4. Waterbirds (Sagawa et al., 2020): a dataset for binary classification of birds into “land” and
“sea” types. Each image contains land or sea birds on either land or sea backgrounds. It is
synthetically generated by placing cut-out birds on land or sea backgrounds.

5. CounterAnimals (Wang et al., 2024): see details in § 2.2.1.
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F EXTENDED IMPLEMENTATION DETAILS

Classes for zero-shot classificationFollowing the original CLIP (Radford et al., 2021) work we
compute the classifier’s pre-softmax logits f(ψ(x)) using dot products. These are calculated be-
tween image embeddings and text embeddings of class name prompts. Class name prompts follow
the format: ”A photo of X”. Here X takes values from the class names of the corresponding datasets.
For Waterbirds (Sagawa et al., 2020) and UrbanCars (Li et al., 2023), we first compute dot products
for prompts based on fine-grained classes that come from the CUB (Wah et al., 2011) and Stan-
fordCars (Krause et al., 2013) datasets, respectively. We do that because the foreground objects in
Waterbirds and UrbanCars were originally cropped from these datasets. All fine-grained classes are
then grouped into two categories. For Waterbirds, they are divided into “land” and “sea” birds. For
UrbanCars, they are divided into “urban” and “country” cars. The final prediction is the group that
contains the fine-grained class corresponding to the highest dot product.

How resize is done for “Gray BG + Crop” First, find the smallest rectangle that fully contains the
foreground object. Next, expand its shortest side to match the longest side while keeping the center
of the square the same as the original rectangle’s center. Finally, resize the square to the target size.

Fixed number of slots in OCL method When using FT-Dinosaur (Didolkar et al., 2025) as a mask
generator we fix the number of slots to 5 as suggested by the original code.

Foundational segmentation model choice While in general HQES and SAM perform similarly on
the segmentation task, SAM is much better in the mBO metric. Nevertheless, for the rest of our
experiments, we use HQES. This choice is justified because we know the exact data it was trained
on, and therefore, can confirm it was not trained on images from the spurious correlations datasets
on which we test our method in the following section.

Mask-free AlphaCLIP AlphaCLIP always requires a mask as input. To simulate cases without
masks, we use a mask that covers the entire image as the foreground mask. We call this approach
the ”- (α = 1)” foreground detector. However, we treat this as mask-free performance since no real
masks are used.

Masks filtering Before using masks in our experiments, we filter them using the following rules:

1. Size: Remove masks that cover less than 0.001 of the image pixels.
2. Connected components: Remove masks with more than 30 connected components.
3. Background heuristic: Remove masks that cover at least 6 of the 8 key points (4 corners

and 4 side centres of the image).

22



Published as an SCSL Workshop Paper at ICLR 2025

G FG DETECTION AS A SPECIAL CASE OF OOD DETECTION

In this section, we give details on comparing different candidates for FG detector methods apart from
gclass aided and gH (see § A.2.2 for details). We argue that foreground detection can be seen as an out-
of-distribution (OOD) detection problem (Mukhoti et al., 2021; Tran et al., 2022; Gruber & Buettner,
2022) with foreground objects being in-distribution (ID) samples while background objects being
OOD samples. We then evaluate the OOD detection methods for such an OOD detection task in
Figure 4.

Dataset construction details. We generate the following masked dataset as follows. For each
image in ImageNet (Russakovsky et al., 2015) validation set that has a corresponding ground truth
bounding box for the foreground object (by the foreground object we mean the one for which the
ground truth classification label is provided) we predict masks for all the objects that it contains as
discussed in “Generating masks” paragraph in §A.2.1. After that, a mask is applied to the image
using “Gray BG + Crop” operation as discussed in the “Applying masks” paragraph in §A.2.1. Then
such a masked image is assigned label 1 if it corresponds to the foreground object (its corresponding
mask has the biggest intersection over union (IoU) (Rezatofighi et al., 2019) with the ground truth
bounding box) and 0 otherwise.

Ensemble members.

All models checkpoints are taken from the “openclip” (Ilharco et al., 2021) python library (corre-
sponding pre-training dataset ids: “openai”, “datacomp xl s13b b90k”, “dfn2b”, “laion400m e31”,
“laion400m e32”).

We mainly consider ensemble-based baselines for OOD detection as they are the most competitive
baseline for this task (Mukhoti et al., 2021; Ovadia et al., 2019).

All these methods are used for the OOD detection in the following manner. Firstly, we use the
above-mentioned formulae to compute uncertainty scores from models’ outputs for the given sam-
ple. Secondly, we use this score as a probability to predict class 1 for this sample in the described
binary classification problem setting.

Note: “Ensemble entropy” is equivalent to gH and “Class-Aided” is equivalent to gclass aided de-
scribed in paragraph “Foreground detector” in § A.2.2.
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