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ABSTRACT

Object-centric learning (OCL) aims to represent each object’s information inde-
pendently and minimize interference from backgrounds and other objects. OCL
is expected to aid model generalization, especially in out-of-distribution (OOD)
settings. However, the community’s effort has been focused on improving unsu-
pervised entity segmentation performances which is secondary to the main ob-
jective. We challenge this. We argue that segmentation is no longer the main
barrier: recent class-agnostic segmentation methods reliably localize objects in a
zero-shot manner. Instead, we advocate for a renewed emphasis on how decom-
posed representations can improve OOD generalization. As a first step, we pro-
pose Object-Centric Classification with Applied Masks (OCCAM) that exploits
discovered objects to extract their representations for downstream classification
tasks. Our experiments on datasets with background spurious correlations sug-
gest that even in this task OCL representations do not lead to better generalization
than object-centric representations provided by foundational segmentation mod-
els. These results showcase the importance of recognizing advances in zero-shot
image segmentation when high-performant object-centric representations are the
end goal. In addition to that, we suggest exploring new benchmarks for OCL
methods evaluation that better reflect the problems these methods are designed to
solve and highlight scenarios where OCL methods are more favorable solutions
than foundational segmentation models.

1 INTRODUCTION

Object-centric learning (OCL) seeks to learn image representations where each object is encoded
independently. The OCL community posits that learning object-centric representations is key for
out-of-distribution generalization (Dittadi et al., 2022; Arefin et al., 2024) because it aligns with
causal mechanisms (Schölkopf et al., 2021), human cognition (Spelke, 1990; Téglás et al., 2011;
Wagemans, 2015) and leverages the compositional nature of scenes (Greff et al., 2020). Some
works provided evidence that OCL methods can express compositional generalization (Wiedemer
et al., 2024), and help in out-of-distribution (OOD) segmentation (Dittadi et al., 2022) and classi-
fication (Arefin et al., 2024). Since direct object-centric representations’ quality evaluation is not
straightforward, most research has focused on a proxy task - unsupervised image segmentation,
where segmentation and matching metrics serve as the primary benchmarks (Locatello et al., 2020;
Jiang et al., 2023; Seitzer et al., 2023; Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022).

In this paper, we question whether the OCL community should continue prioritizing unsupervised
segmentation as a core research goal. Recent advances in class-agnostic segmentation models like
CropFormer (Lu et al., 2023) have demonstrated remarkable zero-shot object discovery, let alone
large-scale foundational models such as Segment Anything (SAM) (Kirillov et al., 2023; Ravi et al.,
2025). Identifying objects in an image is not a critical obstacle it once was.

In search of a different task for tracking the progress of OCL methods while having them as compet-
itive baselines, we use OOD image classification as a new benchmark. Conceptually, this task can
benefit from OCL methods by capitalizing on the appealing properties of object-centric represen-
tations such as disentanglement of different objects’ features. To utilize object-centric representa-
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tions in this task, we introduce Object-Centric Classification with Applied Masks (OCCAM) that
leverages them to boost the performance of zero-shot image classifiers. Our pipeline is described
as follows. The first module generates object-centric representations by combining images with ob-
jects’ masks provided by the underlying mask generator, e.g. an OCL method. The second module
selects representations of foreground objects and uses them for image classification, thus making
predictions independent of such common sources of spurious correlations as backgrounds.

To measure the performance of the proposed pipeline on OOD test cases we focus on datasets
containing background spurious correlations, occurring when the central cue for recognition lies
not on the foreground object but on the background or other objects. For this purpose, we use
spurious background datasets.

To support our claim that unsupervised object discovery might not be a suitable benchmark for OCL
methods we show that zero-shot segmentation models significantly outperform the zero-shot object
discovery capabilities of existing OCL approaches. Then we leverage these zero-shot capabilities
to generate object-centric representations and achieve state-of-the-art results in several robust image
classification benchmarks with OCCAM. Our results indicate that foundational segmentation models
are more performant alternatives to OCL even for building such robust recognition systems. Such
dominance of foundational segmentation models suggests that they should be considered as a strong
baseline for building object-centric representations. Our results also point to the need to develop a
new benchmark that better reflects the promises and capabilities of OCL, such as the simulation of
the development of human cognition (Spelke, 1990; Téglás et al., 2011; Wagemans, 2015) and the
causal reasoning capabilities in models (Schölkopf et al., 2021).

2 RELATED WORK

Object-centric learning Object-centric learning (OCL) captured widespread attention with the in-
troduction of SlotAttention (Locatello et al., 2020), which enabled iterative learning of separate
latent representations for each object in an image. These latent “slots” can then be decoded back
to the pixel space. Extensions have included SlotAttention paired with diffusion decoders (Jiang
et al., 2023) and SlotAttention architectures built on top of Dino (Seitzer et al., 2023; Didolkar et al.,
2025) features. In video contexts, sequential adaptations leverage temporal dependencies (Kipf
et al., 2022) and depth information (Elsayed et al., 2022). Some studies also propose theoretical
foundations for OCL (Wiedemer et al., 2024; Brady et al., 2023). Although OCL promises a more
principled approach of object classification by separating foreground objects from background ele-
ments — often the source of spurious correlations (Sagawa et al., 2020; Li et al., 2023; Xiao et al.,
2021; Zhang et al., 2024; Wang et al., 2024) — much of the field’s progress is tracked by unsuper-
vised object discovery metrics, essentially entity segmentation (Locatello et al., 2020; Jiang et al.,
2023; Seitzer et al., 2023; Didolkar et al., 2025; Kipf et al., 2022; Elsayed et al., 2022). Specialized
segmentation models already do well on these benchmarks (Table 1 and Figure 2), suggesting that
the primary goal of OCL is merely to rediscovering class-agnostic segmentation, but with vastly
inferior performance. Furthermore, empirical support for the commonly claimed benefits—such as
parameter/learning efficiency (Kipf et al., 2022) and improved generalization (Dittadi et al., 2022;
Arefin et al., 2024) or better understanding of representations — remains limited.

For the extended list of related works on foundational segmentation models, spurious correlations,
and methods to use object masks, please see § D.

3 METHOD

This section gives an overview of our proposed method. Subsection §3.1 defines the notation needed
for the method description in §3.2.

3.1 NOTATIONS

We denote an image as x ∈ R[3, H, W] and a label as y ∈ Y = {1, . . . , C}, where C is the number of
classes. We will write an image encoder, or a feature extractor, as ψ and image embedding, or feature
vector, as ψ(x) ∈ Rd, where d ≥ 1 is the feature dimensionality. We define the classifier’s pre-
softmax logits as f(ψ(x)) ∈ R|Y| and softmax probabilities as p(ψ(x)) = Softmax(f(ψ(x))) ∈
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Figure 1: An overview of Object-Centric Classification with Applied Masks (OCCAM). It consists
of two main parts. The first part described in § 3.2.1 uses entity segmentation masks for object-
centric representation generation. The second part described in § 3.2.2 selects representations cor-
responding to the foreground object and uses them for classification.

[0, 1]|Y|. We also denote indices for the last two dimensions in tensors as superscripts (e.g. last two
dimensions of sizes H, W for x) and all other dimensions as subscripts (e.g. first dimension of size
3 in x). We will use shorthands “FG” and “BG” for foreground and background correspondingly.

3.2 METHOD

Our Object-Centric Classification with Applied Masks (OCCAM) pipeline is summarized in Fig-
ure 1. We use object-centric representations to reduce spurious correlations in image classification.
It consists of the two main parts: 1. generate object-centric representations, 2. perform robust
classification by classifying an image using only representations of the foreground object. In the
following subsections, we will explain these parts in more detail.

3.2.1 GENERATING OBJECT-CENTRIC REPRESENTATIONS

To generate the object-centric representations we first generate masks for all objects and back-
grounds in the image using a mask predictor. We then apply generated masks to images by combin-
ing masks with images. Each object is then encoded with an image encoder.

Generating masks To produce object representations given an original image x ∈ R[3, H, W], we
generate a set of masks for all the foreground objects and the background. That is done with the
help of mask predictor S , which takes x as input and assigns each pixel in x to one of Kmax masks.
The output of this model is the stack of K binary masks:

Skl
i (x) = 1(pixel xkl is assigned to mask i)

where 1(·) is the indicator function.

OCL method like FT-Dinosaur (Didolkar et al., 2025) or an external segmentation model like Crop-
Former (Lu et al., 2023) can be used as masks generator in this pipeline.

Applying masks After producing the binary masks for each object, we segregate the pixel contents
for each mask by “applying mask” on the input image. It can be any operation involving an image
x and mask m: a(x,m) ∈ R[3, H, W ],∀m ∈ {Si, i = 1 . . .K},m ∈ R[H, W ].

Masks can for example be applied by cropping an image by the mask contours and resizing the result
to the full image size. For details of applying masks please see § C.

Encoding applied masks To get the final object-centric representations we encode applied masks
by an image encoder ψ and get the following set of object-wise feature vectors:

ψ(a(x, Si(x))) ∈ Rd, i = 1 . . .K

ViT (Dosovitskiy et al., 2021) can be used as an image encoder for example.
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3.2.2 ROBUST CLASSIFIER

We hypothesize that by isolating foreground object representations from the representations of back-
ground and other objects we eliminate sources of spurious correlations, hence performing more ro-
bust classification. For that reason, we first use the set of object-centric representations obtained in
the previous stage to select the single representation that corresponds to the foreground. Then we
provide the selected foreground representation to the classifier to make the final prediction.

FG detector After applying masks to the image we select the mask that corresponds to the fore-
ground object by the following process. At first, we compute the foreground score g(x,m) ∈ [0, 1]
for all applied masks. This score reflects how likely a given applied mask is to correspond to the
foreground object. Then we take the mask with the highest foreground score among all masks for
the current image:

m⋆ = Si⋆(x),

where i⋆ = argmaxi g(x, Si(x)).

Maximum output probability can be used as a foreground score for example. Details on the fore-
ground scores can be seen in § C.

Image classification using foreground object representations Finally, once we have identified
the mask that matches the foreground object, we apply it to the original image and classify the result
of this operation. The final output of our method is:

OCCAM(x) = p(ψ(a(x,m⋆))).

4 EXPERIMENTS

In this section, we empirically validate the ability of object-centric learning (OCL) approaches to
result in robust object classification capabilities by comparing against the viable baseline of us-
ing mask predictions from foundational segmentation models, using the OCCAM pipeline in § 3.
Throughout the section, we also compare against the state-of-the-art generalization results in each
benchmark, noticing that new state-of-the-art results can be achieved by combining CLIP models
with OCCAM.

4.1 CASE FOR MOVING BEYOND OBJECT DISCOVERY

In this section, we compare zero-shot (class-agnostic) segmentation methods CropFormer (Lu et al.,
2023) and SAM (Kirillov et al., 2023), with the state-of-the-art object-centric learning methods
(Jiang et al., 2023; Seitzer et al., 2023; Didolkar et al., 2025) in Table 1 and Figure 2. The goal
of these experiments is to see whether, in the presence of foundational segmentation models, OCL
methods remain reasonable solutions to the object discovery task (Locatello et al., 2020).

4.1.1 SETUP

Datasets Following the prior work (Kipf et al., 2022; Elsayed et al., 2022; Seitzer et al., 2023;
Didolkar et al., 2025) we use two synthetic image datasets Movi-C and Movi-E (Greff et al., 2022).
They both contain images of around 1000 realistic 3D-scanned objects placed on HD backgrounds.
Movi-C includes 3 to 10 objects per scene. Movi-E includes 11 to 23 objects per scene.

Metrics We evaluate object representation quality by comparing masks predicted for objects with
ground truth instance masks. To do so, we use foreground adjusted random index (FG-ARI) (Rand,
1971; Hubert & Arabie, 1985; Kipf et al., 2022) and mean best overlap (mBO) (Pont-Tuset et al.,
2015; Seitzer et al., 2023), please see § F.1 for details.

Baselines We compare segmentation models to three recent state-of-the-art methods for object-
centric learning in real-world settings: SlotDiffusion (Jiang et al., 2023), Dinosaur (Seitzer et al.,
2023), and FT-Dinosaur (Didolkar et al., 2025). Please see § F.1 for details.
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Pre-training Datasets FT Movi-C Movi-E
Encoder Decoder FG-ARI mBO FG-ARI mBO

Slot Diffusion (Jiang et al., 2023) OpenImages (1.9M) COCO (118k) ✗ 66.9 43.6 67.6 26.4
Dinosaur (Seitzer et al., 2023) GLD (1.2M) COCO (118k) ✗ 67.0 34.5 71.1 24.2
FT-Dinosaur (Didolkar et al., 2025) GLD (1.2M) COCO (118k) ✓ 73.3 44.2 71.1 29.9

CropFormer (Lu et al., 2023) (Ours) COCO (118k) + EntitySeg (33k) ✗ 79.3 65.4 87.2 63.8
SAM (Kirillov et al., 2023) SA-1b (11M) ✗ 79.7 73.5 84.7 69.7

Table 1: Quantitative results for object discovery on Movi-C and Movi-E; column “FT” has ✓ if the
model was fine-tuned on the training split of the corresponding dataset (Movi-C or Movi-E) and ✗
otherwise.

Method Masks source Worst Group Acc

CLIP (Radford et al., 2021) - 87.2
OCCAM (Ours) FT-Dinosaur 99.2
OCCAM (Ours) CropFormer 100.0
CoBalT (Arefin et al., 2024) - 80.0
LLE (Li et al., 2023) - 90.8⋆

Table 2: Worst group accuracies on UrbanCars (Li et al., 2023) for ViT-L-14 CLIP model. ⋆ indi-
cates state-of-the-art results.

4.1.2 RESULTS

Factual results As can be seen in Table 1, SAM achieves significantly higher mBO scores than the
best object-centric method: 73.5% vs 44.2% on Movi-C and 69.7% vs 29.9% on Movi-E. For FG-
ARI, CropFormer-EntitySeg shows large improvement over all methods including SAM, with scores
gap of 87.2% vs 71.1% on Movi-E when compared to object-centric baselines. The qualitative
results in Figure 2 also confirm the superior performance of segmentation models.

Conclusion. Segmentation models pre-trained with supervision for segmentation tasks and used
in a zero-shot manner on new test datasets outperform object-centric methods fine-tuned for these
datasets.

4.2 SPURIOUS CORRELATIONS MITIGATION

The goal of the experiments in this section is to show that object masks help mitigate spurious
correlations in the image classification task (Tables 2- 7).

4.2.1 SETUP

Datasets We use several popular datasets with spurious backgrounds or co-occuring objects: Ur-
banCars (Li et al., 2023), ImageNet-D (Zhang et al., 2024), ImageNet-9 (Xiao et al., 2021), Wa-
terbirds (Sagawa et al., 2020) and CounterAnimals (Wang et al., 2024). Please see § B for more
details.

Metrics To measure model performance we use CLIP (Radford et al., 2021) zero-shot accuracy.

Baselines For all the experiments in this section we use CLIP model with masked self-attention
Transformer (Vaswani et al., 2017) text encoder and ViT-L/14 (Dosovitskiy et al., 2021) image
encoder if not stated otherwise.

We use foundational segmentation model CropFormer (Lu et al., 2023) and the state-of-the-art OCL
method FT-Dinosaur (Didolkar et al., 2025) for masks prediction.

4.2.2 RESULTS

Factual results Masks usage allows to significantly improve performance on all the considered
datasets, sometimes even scoring 100% accuracy, e.g. on UrbanCars (Table 2). However, for
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Method Masks source Worst Group Acc
CLIP (Radford et al., 2021) - 83.2
OCCAM (Ours) FT-Dinosaur 91.6
OCCAM (Ours) CropFormer 96.9
CoBalT (Arefin et al., 2024) - 90.6
DFR (Kirichenko et al., 2023) - 91.8⋆

Table 3: Accuracies on Waterbirds (Sagawa et al., 2020) for ViT-L-14 CLIP model. ⋆ indicates
state-of-the-art results

Method Masks source Accuracy

CLIP (Radford et al., 2021) - 23.6
OCCAM (Ours) FT-Dinosaur 56.9
OCCAM (Ours) CropFormer 69.7
LLAVA 1.5 (Liu et al., 2023) - 73.3⋆

Table 4: Accuracies on ImageNet-D “background” subset (Zhang et al., 2024) for ViT-L-14 CLIP
model. ⋆ indicates state-of-the-art results.

max prob foreground detection method accuracy gains are much smaller, and sometimes perfor-
mance even drops (Table 8). That highlights a weak spot of the baseline foreground detection method
and leaves a vast amount of space for improvement that can fuel future research.

Speaking about masks sources - foundational segmentation model CropFormer provided more useful
masks for spurious correlations mitigation in comparison to FT-Dinosaur on all datasets across the
board. For example, on ImageNet-D CropFormer allows to achieve near LLAVA 1.5 (Liu et al.,
2023) level of accuracy - 69.7% vs 56.9% for FT-Dinosaur masks (Table 4).

Note: The final results are obtained using the best-performing combination of parameters for each
test dataset (see detailed analysis in § E).
Conclusion The experiments demonstrate that the quality of mask-based object-centric represen-
tations is already high enough to significantly improve performance on all the considered datasets,
and even completely solve some of them. However, to be able to use these masks to the full ex-
tent one needs a foreground detector that performs on par with goracle (see § 3.2.2) but does not use
ground truth labels.

In addition to that, our proposed framework allowed us to discover that contrary to the authors’
hypothesis (Wang et al., 2024) uncommon backgrounds are not the main cause for performance
drop between “Common” and “Counter” subsets of CounterAnimals dataset (See Appendix A).

5 CONCLUSION

Starting from the most popular downstream application for OCL methods, we show that in unsuper-
vised segmentation, these methods are outperformed by foundational segmentation models utilized
in zero-shot settings.

With this sober look, we encourage the OCL community to shift focus from unsupervised segmenta-
tion to the application that capitalizes on its appealing properties of learning separate representations
for separate objects in the image, we propose another downstream task for OCL methods evaluation
- spurious background correlations mitigation with the use of object-centric masks. We observe that
while OCL representations improve performance in this task, foundational segmentation models
provide object-centric representations that lead to even greater performance improvements.

We believe that in the era of foundational segmentation models, works in OCL that aim to improve
object-centric representations’ quality should either consider this strong baseline in their experi-
ments or justify the assumption that there is no access to the privileged information in the form of
foundational segmentation models, which can be downloaded from the internet.

In addition to that, we encourage the community to develop benchmarks that reflect the goals of
OCL. These include discovering causal mechanisms (Schölkopf et al., 2021) in model predictions
and aligning model predictions with human cognition (Spelke, 1990; Téglás et al., 2011).
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A COUNTERANIMALS: SPURIOUS OR SIMPLY HARD?

We have demonstrated that our object-centric classification pipeline is able to in-principle isolate the
contribution of the object independent of the background, we now investigate the recently proposed
CounterAnimal dataset (NeurIPS’24).

Dataset description The goal of the CounterAnimals dataset (Wang et al., 2024) is to highlight
models’ reliance on spurious backgrounds. This dataset consists of the two splits of realistic images
taken from iNaturalist1 dataset. The first split named “Common” contains images of animals on
the most frequently co-occurring backgrounds for example a polar bear on the snow background.
The second split named “Counter” contains animals on non-standard backgrounds for example a
polar bear on dirt. This dataset includes 45 animal classes. Each of them is part of the ImageNet1k
(Russakovsky et al., 2015) class set.

The authors evaluate more than 20 different image classifiers of various architectures and pre-
training techniques and observe that they all perform better on the “Common” split than on the
“Counter” split. Therefore, the authors reasonably hypothesize that it happens because the Com-
mon split in contrast to the Counter split contains backgrounds that often correlate with ground truth
labels.

Counterintuitive findings Our results in Table 7 contradict the hypothesis that the “Counter” sub-
set is harder due to uncommon backgrounds. We show that even when backgrounds are removed,
and only main objects are classified, still, there is a significant gap between performance on “Com-
mon” and “Counter” datasets. For example, the CLIP enhanced with CropFormer masks used with
oracle foreground selection and ”crop + resize” image combining achieves 66.0% on the “Com-
mon” subset but only 55.7% on the “Counter” subset as can be seen in Table 8. This is despite the
fact that the background has no influence on predictions as its pixels are replaced by gray pixels.
This gap between performance on “Common” and “Counter” subsets remains when classifying only
foreground objects for all the CLIP models originally considered by the CounterAnimals authors
(Table 5). Even for the best performing ViT-L-14-quickgelu model gap does not change much when
classifying only foreground images: 10.2% vs 8.3%.

That suggests that the “Counter” subset is harder because of shifts in the distribution of foreground
objects rather than backgrounds. These shifts include occlusions and uncommon camera perspec-
tives.

We believe that the ability of our framework to make such counterintuitive discoveries makes it a
valuable tool for new spurious background dataset development.

Note: The fact that absolute accuracies drop when classifying only foreground objects (Cmn/Ctr ac-
curacies are higher than corresponding Cmn-FG/Ctr-FG accuracies in Table 5), e.g. 90.8%/80.6%
vs 78.2%/69.9% for ViT-L-14-quickgelu model suggests that by isolating foreground objects OC-
CAM removes some predictive signal contained in background which can be useful for both “Com-
mon” and “Counter” subsets.

1https://www.inaturalist.org/observations
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Model Pre-Train-Dataset Cmn Ctr Cmn-FG Ctr-FG Gap Gap-FG

RN50 openai 64.1 40.6 39.8 31.6 23.6 8.3
RN101 openai 65.9 46.5 42.1 33.5 19.3 8.6
RN50x4 openai 71.9 50.8 46.6 38.5 21.1 8.1
RN50x16 openai 78.2 60.4 51.4 41.9 17.7 9.4
RN50x64 openai 80.5 68.5 64.4 52.8 12.0 11.6
ViT-B/32 openai 69.3 45.7 47.8 39.2 23.6 8.6
ViT-B/16 openai 73.4 56.8 53.5 42.6 16.6 10.9
ViT-L/14 openai 85.3 70.4 66.3 56.5 14.9 9.8
ViT-L/14@336px openai 86.2 73.3 69.2 58.8 12.9 10.4
ViT-B-16 laion400m 73.7 53.6 50.9 41.7 20.2 9.2
ViT-B-16 datacomp 66.1 45.8 46.6 38.0 20.3 8.5
ViT-B-16 laion2b 73.4 53.2 52.3 43.4 20.3 8.9
ViT-B-16 dfn2b 84.7 70.3 67.7 59.0 14.4 8.7
ViT-B-32 laion400m 67.5 38.1 40.9 31.0 29.4 9.9
ViT-B-32 laion2b 73.2 49.1 52.7 40.5 24.1 12.2
ViT-B-32-256 datacomp 80.9 61.6 67.4 55.2 19.4 12.2
ViT-L-14 laion400m 81.7 64.1 61.8 50.1 17.7 11.7
ViT-L-14 datacomp 89.3 79.9 78.3 69.5 9.3 8.8
ViT-L-14 laion2b 82.4 66.6 65.8 54.6 15.8 11.2
ViT-L-14-quickgelu dfn2b 90.8 80.6 78.2 69.9 10.2 8.3
ViT-H-14 laion2b 85.8 73.5 69.7 61.9 12.3 7.8
ViT-H-14-quickgelu dfn5b 88.5 79.1 82.7 75.2 9.4 7.5
ViT-H-14-378-quickgelu dfn5b 90.4 84.1 85.3 78.6 6.3 6.7
ViT-G-14 laion2b 87.5 73.7 71.4 61.6 13.8 9.8
convnext base laion400m 74.7 51.8 51.7 40.7 22.9 11.0
convnext base w laion2b 77.3 56.4 58.6 46.9 20.9 11.7

Table 5: Accuracies on CounterAnimals dataset for different CLIP models. Ctr/Cmn stands for
“Counter”/“Common” subsets correspondingly; FG stands for accuracy while using OCCAM with
CropFormer masks and oracle foreground selection method. Gap(-FG) columns store differences:
[Cmn(-FG) - Ctr(-FG)] up to rounding error.
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B EXTENDED SPURIOUS BACKGROUNDS RESULTS

In this section, we provide results on ImageNet-9 (Table 6), and CounterAnimals (Table 7) datasets
in addition to UrbanCars (Table 2), Waterbirds (Table 3), and ImageNet-D (Table 4) results men-
tioned in the main paper.

Below we provide details on these datsets (for details on CounterAnimals dataset please see § A):

The core of the datasets consists of the popular choices for robust image classification tasks: Ur-
banCars (Li et al., 2023), Waterbirds (Sagawa et al., 2020), and ImageNet-9 (Xiao et al., 2021).
We also add ImageNet-D (Zhang et al., 2024) dataset to this group as we believe that it contains
more realistic images thanks to blending objects with backgrounds using diffusion model (Rombach
et al., 2022) instead of cropping foreground objects onto new backgrounds as done in the previous
datasets. Finally, we use the CounterAnimals (Wang et al., 2024) dataset, the latest benchmark that
contains natural images which are spurious background correlations, specifically designed even for
CLIP models.

1. UrbanCars (Li et al., 2023): a dataset for binary classification of cars into “urban” and
“country” types. Each image contains one urban or country car paired with either urban or
country secondary objects (e.g. fire hydrant for urban or cow for country) on either urban
or country backgrounds. It is synthetically generated by placing cut-out cars paired with
cut-out secondary objects on urban or rural backgrounds.

2. ImageNet-D (Zhang et al., 2024): a diffusion-model-synthesized dataset for image classi-
fication for 113 classes. Its class set is a subset of ImageNet-1k (Russakovsky et al., 2015)
class set. We use “background” subset of this dataset which features objects appearing with
uncommon backgrounds (e.g. plates in a swimming pool).

3. ImageNet-9 (Xiao et al., 2021): synthetically generated dataset for image classification for
9 classes. It has 9 classes which are supersets of ImageNet classes (e.g. dog, bird etc). We
use ”mixed random” subset of this dataset which is generated by placing cut-out objects of
one class on backgrounds from images of some other random class.

4. Waterbirds (Sagawa et al., 2020): a dataset for binary classification of birds into “land” and
“sea” types. Each image contains land or sea birds on either land or sea backgrounds. It is
synthetically generated by placing cut-out birds on land or sea backgrounds.

Method Masks source Accuracy

CLIP (Radford et al., 2021) - 91.9
OCCAM (Ours) FT-Dinosaur 93.8
OCCAM (Ours) CropFormer 96.4
CoBalT (Arefin et al., 2024) - 80.3

CIM (Taghanaki et al., 2021) - 81.1⋆

Table 6: Accuracies on ImageNet-9 (Xiao et al., 2021) ”mixed rand” subset for ViT-L-14 CLIP
model. ⋆ indicates state-of-the-art results

C IMPLEMENTATION DETAILS

Foundational segmentation model choice While in general CropFormer and SAM perform sim-
ilarly on the segmentation task, SAM is much better in the mBO metric. Nevertheless, for the rest of
our experiments, we use CropFormer. This choice is justified because we know the exact data it was
trained on, and therefore, can confirm it was not trained on images from the spurious correlations
datasets on which we test our method in the following section.

Applying masks One way to combine masks and images is to make a crop from the original image
that follows the mask contours and then resize it to the original size. This approach follows the steps
of masked dataset construction in (Sun et al., 2023). We call such an approach ”crop + resize”.
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Method Masks source Common Counter

CLIP (Radford et al., 2021) - 85.1 70.7
OCCAM (Ours) FT-Dinosaur 85.8 71.1
OCCAM (Ours) CropFormer 87.0 72.3
CLIP-DFN-2B (Wang et al., 2024) - 90.8⋆ 80.6⋆

Table 7: Accuracy on CounterAnimals (Wang et al., 2024) for ViT-L-14 CLIP model. ⋆ indicates
state-of-the-art results

Another way is to combine masks and images using AlphaClip (Sun et al., 2023), a modified version
of CLIP (Radford et al., 2021) model. It adapts the original CLIP model to using masks as a source
of additional information. AlphaClip model combines a mask and original image by appending
masks as an additional α-channel to the image tensor resulting in RGB-A 4-dimensional tensor.
We use checkpoints of this model fine-tuned on mask-grounded data generated from GRIT (Peng
et al., 2024) and ImageNet (Russakovsky et al., 2015) datasets combined with proposals from SAM
(Kirillov et al., 2023). We call this way of applying masks as ”α-channel”. Related work for this
design choice can be seen in § D.

Foreground scores Currently, we use two types of foreground scores, both computed from the
classifier’s outputs:

1. max prob: gmax prob(x,m) = maxc p
c(ψ(a(x,m))) - maximum probability across all pos-

sible classes (confidence).

2. oracle: goracle(x,m) = py(ψ(a(x,m))) - probability of predicting a ground truth label. We
consider this foreground score to measure the efficacy of the object-centric representation
rather than to suggest it as a final method to use in practice. Although in reality, we do not
have access to ground truth labels, it provides critical signals as to whether the insufficient
generalization performance is due to object representation or due to foreground selection
and classifier.

D EXTENDED RELATED WORK

Foundational segmentation models Because OCL methods are often evaluated using segmenta-
tion benchmarks, large-scale segmentation models with strong class-agnostic zero-shot performance
(Kirillov et al., 2023; Ravi et al., 2025; Cheng et al., 2022; Lu et al., 2023) are particularly relevant.
These foundation models were successfully scaled with Segment Anything (SAM) (Kirillov et al.,
2023; Ravi et al., 2025), followed by CropFormer (Lu et al., 2023), Mask2Former (Cheng et al.,
2022; Qi et al., 2023) In this work, we focus on CropFormer (Lu et al., 2023), which is trained on
very limited images from COCO (Lin et al., 2014) and EntitySeg (Lu et al., 2023), yet still achieves
competitive segmentation accuracy. CropFormer additionally ensures a large gap (and no overlap)
between its training data and our test datasets, ensuring we are indeed measuring OOD generalizable
performance.

Using object-centric representations to mitigate spurious correlations. Representations of only
Foreground-object masks help improve robustness against backgrounds and co-occurring elements
that may introduce spurious signals. This has been explored with various mechanisms, including
(Li et al., 2023) uses an augmentation strategy where cropped objects form a background-agnostic
branch in a last-layer ensemble (Kirichenko et al., 2023), enhancing generalization. Another strat-
egy (Arefin et al., 2024) employs latent object-centric representations. In our experiments, both
methods serve as baselines on relevant datasets. However, because they require fine-tuning, it is not
a fair comparison to our zero-shot approach using object-centric representations to enhance CLIP’s
performance.

Combining masks and images After obtaining masks for foreground objects, we combine them
with original images to create object-centric representations suitable for image classification.
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To achieve this, masks can be combined with images by directly cropping objects out following the
mask contours or highlighting objects corresponding to masks with red circles (Shtedritski et al.,
2023).

However, such operations might result in out-of-distribution images for the image classifiers. There-
fore, another line of work blends masks with images into a single representation for the CLIP’s joint
text-image representation space. Namely, AlphaCLIP (Sun et al., 2023) suggests adding projected
masks as a fourth α-channel in an extended RGBA image tensor before processing it by image en-
coder. Another method developed for the attention-based image encoders adds mask’s patch tokens
to cross-attention layers (Ding et al., 2023) within standard CLIP encoders.

In this project, we focus on the AlphaCLIP approach, as it achieved the best image classification
performance among CLIP representations blending approaches (Sun et al., 2023; Ding et al., 2023;
Zhou et al., 2022; Shtedritski et al., 2023), and the cropping approach as we find it very intuitive.

Foreground masks selection By itself, having masks for all objects in an image is not enough to
solve the classification task. It is also necessary to select the mask that corresponds to the object of
interest. This selection depends on the task. The problem can be viewed as a reformulation of OOD
detection (Mukhoti et al., 2021; Gruber & Buettner, 2022). Here, masked foreground objects are
ID data, and other objects are OOD data. However, to the best of our knowledge, no papers have
addressed this problem from this perspective.

Current methods select the foreground masks as the ones that maximize either intersection-over-
union with ground truth bounding boxes (Li et al., 2023) or the classifier’s ground truth probability
(Sun et al., 2023). This project will use the latter as a baseline because while many images have
ground truth class labels, fewer have ground truth bounding boxes. We will also use a relaxed
version of this baseline that does not require access to the ground truth labels by selecting those
masks that maximize maximum class probability (i.e. model’s confidence).
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E FACTORS INFLUENCE ON SPURIOUS CORRELATIONS MITIGATION

E.1 SETUP

Here we give a few additional comments to the setup described in § 4.2.1.

Foreground detector To compare different strategies for selecting foreground object masks, we
varied the type of foreground detector between max prob and oracle (see §3.2.2 for details) as indi-
cated by corresponding words in ”FG det” columns. Since AlphaCLIP always expects a mask as part
of the input we simulate scenarios when no masks are available by providing a mask covering the
whole image as a foreground mask and saying that we use ”whole image” as a foreground detector
in that case. However, technically we consider that as mask-free performance as no real masks are
used in this case.

Image and mask combining Operation used for combining image and mask is indicated in ”Ap-
ply Mask” column. For the cases when we use ”α-channel” image and mask combining we utilize
AlphaCLIP version of used CLIP model, described in § 3.2.1. It is fine-tuned for using masks and
therefore is not identical to the original CLIP model.

Choosing background. For the ”crop + resize” way of combining masks and images, there is still one
more question to answer: what to do with the empty spaces that are left after cropping and resizing
the mask? To control for the amount of spurious correlations that come from the background we
kept it either as in the original image (we call it “original” in “BG” columns) or substituted all its
pixels with gray pixels (we call it “gray” in “BG” columns). By background here we mean all the
pixels outside of the foreground mask provided to the model.

E.2 RESULTS

E.2.1 SELECTING FOREGROUND MASK

For AlphaCLIP on most datasets using masks always improves performance with accuracy for
max prob foreground detector being higher than accuracy on clean images and accuracy for ora-
cle foreground detector being much better than they both. For example, on ImageNet-D (Table 8)
accuracy steadily grows from 23.6% for clean images to 38.8% for max prob and 56.0% for oracle.

For ”crop + resize” mask and image combining the overall situation is similar to the ”α-channel” -
using masks increases performance by small margin when using max prob foreground detector and
by a large margin when using the oracle foreground detector.

An exception to this can be seen on the ImageNet-9 dataset in Table 8 where the mask-free accuracy
of 91.9% drops to 90.9% when using max prob foreground detector while jumping to 96.4% for
oracle.

Therefore, we used oracle foreground detection throughout our experiments.

E.2.2 COMBINING IMAGE AND MASK

On the majority of datasets using naive ”crop + resize” operation for combining masks and images
results in better performance in comparison to ”α-channel” especially when using oracle masks. For
instance, it scores 100% accuracy on UrbanCars dataset vs 96.8% for ”α-channel” (Table 8). Per-
formance difference can be explained by the fact that AlphaCLIP fine-tunes original CLIP weights
to adapt them for using masks which can harm the overall classification performance. That is why
we fixed ”crop + resize” as the main method for combining masks and images throughout our ex-
periments.
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Masks source FG det Apply Mask BG Cmn Ctr WB IN-9 IN-D UC

- whole image α-channel original 79.0 62.0 79.6 90.2 23.6 87.2
CropFormer max prob α-channel original 80.1 63.1 82.1 90.7 38.9 87.3
CropFormer oracle α-channel original 87.0 72.3 91.0 93.9 56.0 96.8

- - - original 85.1 70.7 83.2 91.9 17.8 84.0
CropFormer max prob crop + resize gray 58.9 49.0 74.8 90.9 48.7 94.4
CropFormer oracle crop + resize gray 66.0 55.7 96.9 96.4 69.7 100.0

FT-Dinosaur max prob α-channel original 79.0 61.4 78.2 90.3 35.6 88.0
FT-Dinosaur oracle α-channel original 85.8 71.1 86.8 93.4 49.3 95.2

FT-Dinosaur max prob crop + resize gray 62.3 49.2 63.7 85.3 47.1 88.8
FT-Dinosaur oracle crop + resize gray 68.1 54.2 91.6 93.8 56.9 99.2

Table 8: Accuracies on spurious correlations datasets when varying factors for ViT-L-14 CLIP
model. Factors columns are described in § E.1. Dataset explanation: Cmn/Ctr - “Common” and
“Counter” subsets of CounterAnimal; WB - Waterbirds; IN-9 - ”mixed rand” subset of ImageNet-9;
IN-D - “background” subset of ImageNet-D; UC - UrbanCars.
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Image DINOSAUR SlotDiffusion FT-DINOSAUR CropFormer

Figure 2: Zero-shot segmentation examples on MOVi-E.

F EXTENDED UNSUPERVISED SEGMENTATION RESULTS

F.1 QUANTITATIVE RESULTS

Metrics To quantify model performance on unsupervised image segmentation tasks in Table 1,
we compute the foreground adjusted random index (FG-ARI) (Rand, 1971; Hubert & Arabie, 1985;
Kipf et al., 2022), which is a permutation-invariant clustering metric. It compares pixel clusters
formed by predicted segmentation masks with clusters formed by ground-truth masks while ignoring
background pixels.

In addition to that, we also compute the mean best overlap (mBO) (Pont-Tuset et al., 2015; Seitzer
et al., 2023). This metric assigns each ground-truth mask the predicted mask with the largest overlap.
It then averages the intersection-over-union scores of the matched pairs. Unlike FG-ARI, mBO
considers background pixels. It also measures how well masks fit objects.

Baselines Dinosaur (Seitzer et al., 2023) uses pre-trained self-supervised Dino (Caron et al., 2021)
features as a target for reconstruction loss. This loss is used to train a decoder with Slot Attention
(Locatello et al., 2020) on top of the ResNet (He et al., 2016) encoder. FT-Dinosaur (Didolkar
et al., 2025) improves Dinosaur by replacing the ResNet encoder with a DINO-ViT (Dosovitskiy
et al., 2021) encoder separate from the one used to compute target features. It jointly fine-tunes the
encoder with the decoder. SlotDiffusion (Jiang et al., 2023) uses pre-trained features from the Stable
Diffusion Encoder (Rombach et al., 2022) and trains a diffusion-based decoder with Slot Attention
(Locatello et al., 2020) on top of them.

F.2 QUALITATIVE RESULTS

To show that foundational segmentation models outperform state-of-the-art object-centric methods
in unsupervised instance segmentation, in addition to the quantitative results in Table 1, we provide
qualitative results on the Movi-E dataset in Figure 2. Masks predicted by CropFormer model fits
objects much better than masks predicted by OCL methods.
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