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ABSTRACT

Reducing serving costs and latency is a fundamental challenge for deploying large-scale
models in business applications. To cope with this demand, the Learngene framework
encapsulates shareable information from large models into a compact unit called a
learngene. This unit serves to initialize downstream models, enabling them to inherit
the knowledge from the large model efficiently, hopefully diminishing deployment
expenses. However, existing learngene methods are constrained by their strong
dependence on the architecture of large model and overlook the features of target tasks,
resulting in suboptimal adaptability of downstream models to deployment requirements.
In this paper, we present Task-Aware Learngene (TAL), a novel method based on graph
hypernetworks that predicts model parameters conditioned on desired model scales and
task-specific characteristics. Extensive experiments demonstrate that TAL effectively
scales model initialization parameters, selectively utilizes shareable information
pertinent to target tasks, and consistently outperforms random initialization and existing
parameter prediction methods. Furthermore, TAL exhibits promising transfer learning
capabilities for unseen tasks, underscoring its effectiveness in condensing large model
knowledge while being aware of downstream requirements.

1 INTRODUCTION

Large-scale foundation models Dosovitskiy (2020); Radford et al. (2021) have revolutionized multi-task
learning by enabling the fine-tuning of a single model across various downstream tasks Dosovitskiy
(2020); Liu et al. (2021). This paradigm rests on the belief that the shareable information among different
tasks allows foundation models to provide effective parameter initialization for arbitrary tasks. However,
fine-tuning typically necessitates maintaining the entire model’s parameters and updating them for a
specialized task Mahabadi et al. (2021), which usually comes at a significant cost. Furthermore, the size
of the fine-tuned model may not always align with the scale of the downstream task Houlsby et al. (2019),
posing unnecessary computational burdens, particularly in real-time deployments with stringent latency
or memory footprint constraints. These challenges have sparked great interest in developing techniques
that target specific issues left by the pre-training and fine-tuning paradigm, such as parameter-efficient
fine-tuning methods Houlsby et al. (2019); Li & Liang (2021); Lester et al. (2021) and model compression
methods Liu et al. (2017); Jiao et al. (2019); Touvron et al. (2021).

Beyond conventional strategies, a new concept of learngene Wang et al. (2022) offers an alternative
parameter initialization scheme. Inspired by the intergenerational transfer of information in biology, a
learngene philosophically acts as a functional unit that encapsulates shareable information from a pretrained
model (referred to as the ancestry model in learngene-based methods). Instead of replicating the entire
pretrained model to obtain a parameter initialization, downstream models (termed descendant models)
inherit the learngene, that is, initialized by learngene in some way. Thus the Learngene framework is
expected to confer many advantages, such as efficient knowledge transfer and adaptability to descendant
models of flexible scales, however, the exploration for its central challenges in the representation and
extraction of learngene remains in its early stages.

The initial learngene work Wang et al. (2022) posited that the memorization of shareable information
can be localized, that is, certain neurons exhibit greater generalizability. Consequently, the approach aims
to identify these neurons and directly extract them, along with their trained parameters, to form a learngene.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

v

(a) Pre-train Fine-tune Task 1

Task 2

Task k
foundation model

(b) Learngene

learngene

foundation
model

learngene

TAL model

decoder

Task 1

Task 2

Task k

(d) Task-Aware Learngene

gene

(c) Gene expression

(e) Performance comparisonTask 1

Task 2

Task k

… …

…

…

Figure 1: (a) Pre-train fine-tune approach does not necessarily work for many real-world application
scenarios. (b) Learngene method can better adapt to different task scenarios. (c) In biology, genes exhibit
different expressions under different environments, e.g., temperatures. (d) Task-Aware Learngene (TAL)
generates task-specific model parameters for different tasks. (e) Untrained descendant models initialized
with TAL outperform those trained for 200 epochs with random initialization across different datasets.

By combining the learngene with an arbitrary number of randomly initialized neurons, the descendant
model is effectively initialized. More advanced efforts Shi et al. (2024); Xia et al. (2024b;a), focused on
the Transformer architecture, seeking to identify a single module that can approximate a linear mapping
to all modules in the ancestry network, thereby serving as a learngene. This kind of approach enables
a more compact representation of information across the entire network while ensuring that the process
of flexibly initializing the descendant model does not dilute the efficacy of the learngene.

However, current methods heuristically translate shareable information into shareable parameters,
thus learngene only providing parameter initialization information to descendant models with specific
architectures — typically those identical to the ancestry model — which leads to downstream models
that remain insufficiently flexible. Recently, Graph HyperNetworks (GHNs) Zhang et al. (2018); Knyazev
et al. (2021) have demonstrated the ability of encoding the network architectures. A GHN is composed of
an encoder that learn the compact latent representations from different network architectures and a decoder
that then uses those latent representations to reconstruct the networks. Once trained, the hypernetwork’s
weights encode the network architectures, which to some extent resonates with the need for learngene
to integrate structural information, but its applicability in the Learngene framework is not straightforward.
More importantly, it would be preferable if the process of using the learngene to initialize a descendant
model not only supports variable architectures with scaling but also customizes the parameters based
on the specific downstream task it targets.

In this paper, we explore a GHN-based learngene method to encode shareable information to predict
initial parameters for descendant models across flexible scales. Our approach enables the learngene to
dynamically adjust its parameter initialization in response to the requirements of descendant models, thereby
significantly enhancing the scalability of existing learngene methods. By leveraging a hypernetwork, we
achieve an end-to-end mechanism for the representation and transfer of shareable knowledge, seamlessly
integrating structural information into the parameter initialization process. Taking one step beyond existing
learngene methods, we introduce a fine-tuning procedure that imbues the learngene with task-specific
awareness, allowing it to modulate the expression of shared knowledge tailored to targeted downstream
tasks. Crucially, our approach is the first to explore dual customization of descendant models based on
both scale and task characteristics, yielding a significantly improved quality-cost trade-off for information
sharing. We systematically investigate the effectiveness of TAL. Extensive experiments show the
superiority of TAL. For example, descendant models initialized with TAL outperform those initialized
using LoGAH Zhou et al. (2024) by an average of 24.39% across Decathlon datasets Rebuffi et al. (2017).
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Figure 2: (a) Training TAL model on a large dataset under the guidance of a large-scale foundation model
(ancestry model). (b) Tuning TAL model to multiple tasks. (c) Customizing task-specific Descendant
models with flexible scale based on new task scenarios.

Our main contributions are summarized follows: (1) We propose a new Learngene method that uses
an encoder-decoder structure to generate descendant models, enabling greater flexibility in scales. (2)
We design a task-aware learngene that transfers task-specific knowledge across different tasks and
predicts model parameters based on desired model scales and task-specific characteristics. (3) Extensive
experiments demonstrate that the effectiveness of TAL, e.g., compared to training from scratch, descendant
models initialized with TAL can achieve better performance while reducing huge training cost.

2 PRELIMINARIES

Graph HyperNetworks. Graph HyperNetworks method (GHNs) is originally proposed for neural
architecture search. The input of GHN HD(θ) is a computational graph fG of a neural network f and
the output of GHN is the parameters of the model wpred=HD(f

G;θ).

In Knyazev et al. (2021), GHN HD is trained by SGD over M training architectures {fG
a }Ma=1 and N

training data samples {xj,yj}Nj=1 on the following optimization problem:

argmin
θ

1

NM

N∑
j=1

M∑
a=1

L(fa(xj;HD(f
G
a ;θ)),yj), (1)

when training GHN HD(θ), a meta-batch of m training architectures is sampled as input for GHN.
Meanwhile, a mini-batch of n training datas x is sampled and fed into the parameter-predicted m
architectures to get m×n predictions yhat. The cross-entropy loss L is computed between yhat and
ground truth labels y of x for classification tasks. Afterward, the loss is back-propagated to update the
parameters θ of HD by gradient descent.

The latest GHN work improves the decoder part of the model, introducing LoGAH Zhou et al. (2024),
a low-rank Graph HyperNetwork (GHN), which avoids the redundancy of multiple copies of small
parameter blocks when predicting large-scale parameters, greatly improving the prediction ability and
scalability of model parameters.

In GHN-1/2 Knyazev et al. (2021) and GHN-3 Knyazev et al. (2023), training architectures are sampled
from DeepNets-1M a dataset of 1 million architectures Knyazev et al. (2021), in LoGAH works, to
generate Transformer models for classification tasks, the build ViTs-1K datasets Zhou et al. (2024), which
contains 1K different ViT-style computational graphs. In this work, We use the ViTs-1K model dataset
to train a HyperNetwork to generate ViT models of various sizes and shapes.
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3 METHOD

Fig. 2 illustrates the overall pipeline of Task-Aware Learngene (TAL). First, we train the TAL model on
a large dataset under the guidance of an ancestry model to transfer knowledge. Then, we tune the trained
TAL model on multi-task datasets to effectively filter and convey the task-specific knowledge from the
ancestry model to descendant models. Finally, the trained TAL model can predicting descendant model
parameters for various tasks, even unseen ones and supports model customization at different scales. Next,
we introduce the problem definition for TAL.

3.1 PROBLEM DEFINITION

We are committed to addressing the challenges that large-scale foundation models face when adapting
to downstream tasks. First, fine-tuning typically necessitates maintaining the entire model’s parameters
and updating them for a specialized task, which usually comes at a significant cost. Additionally, in
resource-constrained environments, the large memory footprint of the foundation model can hinder its
deployment and using large models for small-scale tasks may result in unnecessary computational burdens
and resource wastage.

TAL seeks to inherit knowledge from ancestry models, while selectively expressing in specific tasks. This
enables descendant models initialized with TAL to adapt to various tasks in resource-limited environments.
These descendant models not only inherit task-specific and shared knowledge from the large model but
also have the flexibility to adjust their size according to task requirements, thereby better accommodating
diverse task scenarios.

3.2 TASK-AWARE LEARNGENE

TAL model structure and components. In the TAL, we adopt encoder-decoder structure for model
parameters prediction Knyazev et al. (2023); Zhou et al. (2024). We refer to the encoder part of the
TAL model as learngene because it first inherits knowledge from the ancestry model and then transfers
task-specific knowledge based on different tasks. Specifically, learngene receives both model configuration
through model computational graph and task information. Based on task information, learngene can filter
out task-specific knowledge which previously inherited from the ancestry model and inject it into model
computational graphs, thereby producing task-specific computational graphs.

The architecture of learngene is shown in Fig. 3. Inspired by Perez et al. (2018); Oreshkin et al. (2018),
we introduce a task hypernet h that processes task information to dynamically generate parameters for
the task-specific layer (TSL), which is implemented as a simple MLP. Then task-specific layer acts on
the model computational graph, transferring task information to the it.

In this process, task information is passed in the form of a task embedding
{Iτ}Tτ=1 for each task, which is generated by the ancestry model through
the average feature extraction of the task images Vu et al. (2020).

The task hypernet h generates task bias parameters γτ , and βτ of the
task-specific layer.

(γτ ,βτ):=h(Iτ)=
(
Wγ,Wβ

)
Iτ , (2)

where Wγ∈Rh×t and Wβ∈Rh×t.

The task-specific layers apply these bias parameters to the model’s compu-
tation graph using the following formula:

fG
τ =γτ×fG+βτ (3)

The task-specific model computational graph generated by learngene is
then passed to the decoder Zhou et al. (2024), which decodes the graph to
generate the model parameters.

Feedforward

Layer Norm

+

TSL

Multi-Head 
Attention

Layer Norm
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Task 
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Task
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graph

Task-specific
Computational  graph

Figure 3: The learngene
is based on a transformer
architecture and consists
of a stack of transformer
blocks.
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Model Training state RandInit LoGAH v1 TAL

12-layer ViT-Tiny Untrained 0.10 22.79 26.20
Trained 64.98 62.53 63.03

12-layer ViT-Small Untrained 0.10 16.78 23.28
Trained 64.65 65.41 66.61

Table 1: Performance of descendant models on ImageNet-1K initialized with RandInit, LoGAH v1 and
TAL, after 75 epochs of training for all initialization methods.

Train TAL model on a large dataset. In order to inherit the knowledge of the ancestry model, we
first train the TAL model on a large dataset under the guidance of the ancestry model. Since this process
does not involve multi-task training, we do not use the TSL module in learngene. We adopt the method
from Shu et al. (2021), converting features extracted by the ancestry model from the images into a
probability distribution map. For the training models of the TAL, we also apply the same method to obtain
their feature probability distributions and compute the KL divergence between those of the ancestry model.
This function is denoted as:

Laux=KL(softmax(EtrainM)||softmax(Eanc)), (4)
where Etrain and Eanc refer to the encoders’ output of the training model and ancestry model respectively.
The matrix M∈Rd×d′ , which transforms the output dimension d of Etrain to match the output dimension
d′ of Eanc, like the parameters of other parts of the training model, the transformation matrix’s parameters
are predicted directly by TAL model.

Considering loss between training model’s predicted label and ground truth label:
Lcls=CE(yc,ftrain(x)), (5)

where ftrain(x) represents the training model’s predicted label of input image data x and yc denotes the
ground truth label belonging to category c. Then, while one model is used as training data for TAL model,
the total training loss is computed as follows:

L=αLaux+(1−α)Lcls, (6)
Through this process, the TAL model can inherit and utilize the vast amount of domain knowledge already
learned in the ancestry model, enabling models initialized by TAL model to handle complex tasks.

Tuning TAL model under multi-task setting. We then tune the TAL model on multiple tasks, leveraging
task information to enable learngene to generate task-specific computation graphs, thereby decoding
the model parameters tailored to each task. We formulate the loss function for this part of the TAL
model’s training. Given the data from a set of tasks {Dτ}Tτ=1, here T is the total number of tasks and
Dτ ={(xτi ,yτi )}

Nτ
i=1 shows the training data for τ-th task with Nτ samples.

Assuming there is a TAL model HD(θ) parameterized by θ that computes the output the parameters of
the model wpred=HD(f

G;θ) for input computational graph fG of a neural network. In multi-task setting,
TAL model is trained by SGD over M training models {fG

a }Ma=1 and T training tasks {Dτ}Tτ=1 on the
following optimization problem:

argmin
θ

1

TM

T∑
τ=1

M∑
a=1

∑
(xj

τ ,y
j
τ)∈Dτ

wτL(fa(xjτ ;HD(f
G
a ;θ)),yjτ), (7)

where L is typically the cross-entropy loss and wτ shows the sampling weight for τ-th task.

Multi-task training allows the descendant models predicted by TAL to inherit task-specific knowledge
filtered by learngene from the ancestry model, as well as the shared knowledge across tasks.

Customize descendant models. After training on a large dataset and tuning on multiple tasks, the
TAL model can provide task-specific, variable-sized models for both seen and unseen tasks. By simply
passing the required model configuration and task information to the TAL model, one can instantly obtain
well-initialized model parameters tailored to the task at hand.

4 EXPERIMENTS

In this section, we employ our proposed Task-Adaptive Learning (TAL) method to predict model parameters
for diverse tasks at varying scales. First, we evaluate TAL’s capability to predict model parameters using
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Model Method Airc. C100 DPed DTD GSTR OGle SVHN UCF Flwr Avg

3-Ti
GHN-3 3.12 34.06 85.41 6.38 87,77 0.06 10.00 2.25 7.06 26.23

LoGAH v1 2.58 29.16 78.83 8.30 92.12 0.26 17.32 3.94 6.96 26.61
LoGAH v2 2.07 40.91 83.06 11.22 91.15 0.20 26.04 24.44 9.22 32.03

TAL 6.69 39.53 79.83 22.55 94.86 28.37 83.31 28.33 33.82 46.37

6-Ti
GHN-3 3.24 35.19 87.72 6.86 89.12 0.06 10.00 3.43 10.88 27.39

LoGAH v1 3.21 46.33 81.19 9.2 96.82 0.31 20.82 5.02 8.33 30.14
LoGAH v2 2.31 48.18 86.79 23.83 94.02 0.15 26.54 24.85 12.35 35.45

TAL 17.43 48.95 85.87 28.3 99.25 48.98 89.85 38.63 45.69 55.88

12-Ti
GHN-3 3.15 31.12 85.63 6.86 85.02 0.06 10.00 3.07 9.90 26.09

LoGAH v1 3.15 33.80 79.86 9.41 96.52 0.18 20.56 5.53 9.12 28.68
LoGAH v2 1.32 46.64 86.38 4.04 93.83 0.18 25.10 23.92 11.27 32.52

TAL 16.71 44.72 84.76 28.03 99.15 28.11 88.87 39.81 45.00 52.80

3-S
GHN-3 2.91 35.75 86.77 6.70 87.68 0.06 10.00 2.61 10.39 26.99

LoGAH v1 3.15 44.95 80.66 9.36 96.35 0.28 19.91 5.33 8.73 29.86
LoGAH v2 2.16 46.93 86.43 21.86 94.11 0.11 26.33 25.2 12.55 35.08

TAL 17.16 47.25 83.78 27.23 98.93 47.75 87.83 38.32 44.31 54.73

6-S
GHN-3 3.12 35.30 86.80 7.34 90.05 0.06 10.00 2.36 12.75 27.53

LoGAH v1 3.18 45.93 80.60 9.95 96.97 0.26 21.04 5.38 8.63 30.22
LoGAH v2 2.43 48.43 85.95 24.2 94.95 0.20 25.16 25.51 15.59 35.82

TAL 17.85 49.88 83.91 28.67 99.30 50.29 89.82 40.83 46.47 56.34

12-S
GHN-3 2.64 5.55 84.30 7.23 84.39 0.06 10.00 1.74 9.51 22.82

LoGAH v1 2.64 35.77 80.39 8.24 96.81 0.18 20.66 4.30 6.57 28.40
LoGAH v2 1.98 12.90 85.36 15.74 94.66 0.22 16.14 21.77 11.86 28.96

TAL 17.16 45.63 82.16 27.87 99.18 39.66 88.55 40.98 45.10 54.03

Table 2: Performance of untrained descendant models on Decathlon tasks initialized with LoGAH v1,
LoGAH v2 and TAL.

Model Method Airc. C100 DPed DTD GSTR OGle SVHN UCF Flwr Avg

3-Ti

RandInit 7.41 53.33 97.93 22.93 98.58 18.31 87.10 22.08 37.94 49.51
GHN-3 5.04 47.39 97.18 21.44 98.15 1.54 10.00 22.44 30.29 37.05

LoGAH v1 8.70 55.42 96.16 20.59 98.78 17.85 83.85 23.36 32.65 48.60
LoGAH v2 9.66 53.05 98.03 28.09 98.74 20.59 85.49 43.65 32.25 52.21

TAL 19.8 54.89 98.61 30.21 99.57 63.57 90.38 48.1 47.84 61.44

6-S

RandInit 8.79 61.80 98.67 22.61 99.11 17.13 84.78 24.39 35.39 50.30
GHN-3 5.16 53.43 97.94 19.15 97.99 9.46 10.00 23.72 30.98 38.65

LoGAH v1 9.12 62.25 97.41 18.99 98.69 25.62 86.35 32.27 33.43 51.56
LoGAH v2 10.38 59.80 98.74 31.54 99.09 24.91 86.08 52.20 42.45 56.13

TAL 19.17 61.03 98.69 30.90 99.85 63.68 91.77 48.41 49.61 62.57

Table 3: Performance of trained descendant models on Decathlon tasks initialized with RandInit, LoGAH
v1, LoGAH v2 and TAL. For descendant models initialized with RandInit, accuracy is reported after 200
epochs of training for each task, while for models initialized with other methods, trained for 100 epochs.

both training tasks and previously unseen tasks. Subsequently, we conduct an ablation study to investigate
various contributing factors and present visualization experiments to demonstrate the effectiveness of TAL.

4.1 EXPERIMENTAL SETUP

Datasets. We use the ViTs-1K dataset Zhou et al. (2024), which contains 1000 different ViT-style
computational graphs. We conduct experiments on Visual Domain Decathlon Challenge Rebuffi et al.
(2017), containing 10 datasets: (1) ImageNet-1K (IN-1K) Russakovsky et al. (2015), (2) CIFAR-100
(C100) Krizhevsky et al. (2009), (3) Aircraft(Airc.) Maji et al. (2013), (4) Daimler pedestrian classification
(DPed) Munder & Gavrila (2006), (5) Describable textures (DTD) Cimpoi et al. (2014), (6) German traffic
signs (GSTR) Stallkamp et al. (2012), (7) Omniglot (OGlt) Lake et al. (2015), (8) SVHN Netzer et al.
(2011), (9) UCF101 Dynamic Images (UCF) Soomro et al. (2012), (10) Flowers102 (Flwr) Nilsback
& Zisserman (2008). The multi-task training with Decathlon datasets in the experiment means using nine
other tasks besides ImageNet-1K. For a detailed description to the dataset, see the appendixA.1.
Baselines. We compare TAL with GHN-3 Knyazev et al. (2023) and the latest LoGAH method Zhou
et al. (2024), which improves the design of the decoder and significantly enhances the initialized models’
performance. Besides, we use the most efficient LoGAH-small model. Following the training strategy
of LoGAH, we train individual LoGAH models for each task, referring to as LoGAH v1. Additionally we
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Dataset Model Training epochs RandInit LoGAH v1 TAL

fashion MNIST
3-Ti 5 82.71 87.56 88.86

100 89.41 91.08 90.99

6-S 5 83.66 87.78 89.78
100 88.98 90.68 91.56

Fer2013
3-Ti 5 29.20 42.57 47.06

100 59.91 60.60 61.41

6-S 5 30.00 32.57 49.99
100 62.55 61.94 65.09

HAM10000
3-Ti 5 83.09 87.56 86.59

100 97.46 97.71 97.71

6-S 5 82.13 89.61 91.18
100 97.70 97.83 97.95

Table 4: Performance of descendant models on unseen tasks initialized with RandInit, LoGAH v1 (trained
on IN-1K) and TAL, after 5 and 100 epochs of training for each task.

first train a GHN model on ImageNet-1K using the LoGAH v1 and subsequently tune it for each specific
task, which is referred to LoGAH v2.

Sampling tasks. During multi-task training, we sample tasks using conventional temperature-based
sampling Raffel et al. (2020) with a temperature of T=2 for all methods. Tasks are sampled proportionally
to p

1/T
τ , where pτ = Nτ∑T

i=1Ni
andNτ represents the number of training samples for the τ-th task.

Training Details. For experiments on ImageNet-1K, the hypernets are trained for 75 epochs using
the LoGAH v1 and the TAL. For datasets in the Decathlon Challenge, the GHN models are trained for
300 and 100 epochs using the LoGAH v1 and the LoGAH v2, respectively. For Decathlon’s multi-task
training, the TAL model is trained for 100 epochs using the TAL. All models are trained using automatic
mixed precision in PyTorch, with a cosine annealing learning rate schedule starting at lr=3e−4, weight
decay λ=1e−2 andpredicted parameter regularization γ=3e−5 Knyazev et al. (2023). For TAL, we
use ViT-Base Dosovitskiy (2020) as the ancestry model.

4.2 MAIN RESULTS

TAL achieves better performance than LoGAH trained on ImageNet-1K. We evaluate the
performance of the TAL on the ImageNet-1K. As shown in Tab. 1, the untrained descendant models,
structured as 12-layer ViT-Tiny and ViT-Small, initialized using the TAL, outperform those initialized with
LoGAH v1 by 3.41% and 6.50% on ImageNet-1K, respectively. Furthermore, after 75 epochs training,
the two descendant models initialized with TAL achieve higher accuracy, with an increase of 0.50% and
1.20% compared to those initialized with LoGAH v1. These results show that TAL can effectively inherit
and utilize the knowledge already learned in the ancestry model.

Descendant models initialized with TAL demonstrate strong performance without any training
on Decathlon tasks. We compare TAL with random initialization (RandInit) and the LoGAH v1 and
v2 methods, utilizing descendant models of various sizes, including ViT-Tiny and ViT-Small with 3, 6
and 12 layers, to evaluate the effectiveness of different initialization methods on Decathlon tasks. The
selected descendant models are not part of the ViTs-1K model dataset and are therefore unseen by any
of the methods. As shown in Tab. 2, untrained descendant models initialized with TAL outperform the
LoGAH v1 by 24.39% and the LoGAH v2 by 20.06% across Decathlon tasks.

Descendant models initialized with TAL converge faster and outperform those initialized by the
LoGAH method during the training process. We select two descendant models for further evaluation:
a 3-layer ViT-tiny (3-Ti) and a 6-layer ViT-small (6-S). Tab. 3 shows that the 3-Ti model initialized with
the TAL, achieve average accuracy improvements of 11.93%, 12.84% and 9.23% across Decathlon tasks
compared to the RandInit, LoGAH v1 and LoGAH v2, respectively. Similarly, the 6-S model, initialized
with TAL and subsequently trained, demonstrate average accuracy improvements of 12.27%, 11.01% and
6.14% across the same tasks when compared to the RandInit, LoGAH v1 and LoGAH v2. Using TAL, we
can effectively inherit the knowledge of the ancestry model and extract shared knowledge across multiple
tasks, thereby providing high-quality initialization parameters for different tasks. As shown in Tab. 2 and
3, descendant models initialized with TAL, even without training, outperform models that were initialized
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Method Airc. C100 DPed DTD GSTR OGle SVHN UCF Flwr Avg
Single-Task Training

LoGAH v1 2.99 39.32 80.26 9.08 95.93 0.25 20.05 4.92 8.06 28.98
LoGAH v2 2.05 40.67 85.66 16.82 93.79 0.18 24.22 24.28 12.14 33.31

Multi-Task Training

LoGAH v3 1.64 19.91 81.39 16.36 92.16 10.69 79.67 3.94 4.52 34.48
LoGAH v4 12.69 43.17 80.60 23.36 98.95 51.07 87.52 4.86 40.88 49.23

TAL 15.50 46.00 83.39 27.11 98.45 40.53 88.04 37.82 43.40 53.37

Table 5: Performance of untrained descendant models on Decathlon tasks initialized with LoGAH v1–v4
and TAL.

Method Train on IN-1K STT MTT
LoGAH v1 ✕ ✓ ✕
LoGAH v2 ✓ ✓ ✕
LoGAH v3 ✕ ✕ ✓
LoGAH v4 ✓ ✕ ✓

Table 6: Comparison of different LoGAH meth-
ods, indicating whether they use IN-1K for train-
ing and whether they employ Single-Task Train-
ing (STT) or Multi-Task Training (MTT).

Method anc-net TSL Avg Acc
TAL(w/o TSL) ✓ ✕ 40.71

TAL(w/o ans-net) ✕ ✓ 46.80
TAL ✓ ✓ 53.37

Table 7: Performance of untrained descendant mod-
els on Decathlon datasets initialized with TAL with-
out using TSL in learngene or ancestry model(ans-
net) on Decathlon datasets.

with other methods with further training. For example, for the 6-layer ViT-small, the untrained descendant
models initialized using TAL, achieve an average accuracy that are 6.04%, 4.78% and 0.21% higher than
trained models that are initialized using RandInit, LoGAH v1 and LoGAH v2 on the Decathlon datasets.

TAL presents superior parameter prediction ability across unseen tasks. We evaluate the TAL on a
broader set of unseen datasets. Specifically, we use three datasets from distinct fields: Fashion MNIST Xiao
et al. (2017), a dataset of fashion item images; FER2013 Goodfellow et al. (2013), a facial expression
recognition dataset; and HAM10000m Tschandl et al. (2018), a medical dataset for the classification
of skin lesions. We train the LoGAH v1 on ImageNet-1K to obtain a GHN model that predicts model
parameters for transfer to unseen tasks. In contrast, our TAL directly initializes descendant models based
on tasks, allowing for more task-specific adaptation. Tab. 4 shows that descendant models initialized
with TAL converge faster and achieve higher test accuracy on unseen downstream tasks. For example,
compared to the LoGAH v1, the 6-S models initialized with TAL demonstrate accuracy improvements of
0.88%, 3.15% and 0.12% higher in accuracy for fashion MNIST, Fer2013 and HAM10000, respectively.
Compared with RandInit, it is 2.58%, 2.54% and 0.25% higher, respectively.

4.3 ANALYSIS AND ABLATION

In the main experiments, high-quality model initialization is shown to significantly accelerate convergence
and improve final test accuracy. Therefore, in our analysis, we evaluate the performance of untrained
descendant models on each dataset. For further analysis, we design two multi-task training methods based
on LoGAH. First, we perform multi-task training of the GHN model directly on the nine tasks of the
Decathlon challenge, referred to as LoGAH v3. Second, we first train the GHN model on ImageNet-1K
and then tune it on Decathlon datasets for multi-task training, referred to as LoGAH v4. The differences
between all LoGAH methods are detailed in the Tab. 6.

TAL outperforms LoGAH v3. As shown in Tab. 5, using LoGAH v3, the average accuracy of the
descendant models on Decathlon tasks is 1.17% higher than that of LoGAH v2. It demonstrates that
multi-task training enables knowledge sharing between tasks, which can significantly improve the accuracy
of descendant models. However, compared to TAL, the LoGAH v3 results in a 18.89% lower average
accuracy of descendant models across the Decathlon tasks.

TAL outperforms LoGAH v4. Tab. 5 shows TAL outperforms LoGAH v4 in almost all tasks.
Specifically, descendant models initialized using TAL achieve higher test accuracy than those initialized
with LoGAH v4 by 2.81%, 2.83%, 2.79%, 3.75%, 0.52%, 32.96%, 2.52% on Air., C100, Died, DTD,
SVHN, UCF and Flwr, respectively.
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model learngene Task-specific
Computational graph decoder

Task 
information

Computational graph model

Figure 4: Learngene processes the model computational graph and task information to generate a task-
specific computational graph, which is then decoded to generate the model parameters.

The effect of ancestry model and learngene. As shown in Tab. 7, for TAL(w/o TSL) we remove
the TSL module in learngene and for TAL(w/o ans-net) we remove the guidance of the ancestry model.
Descendant models initialized using TAL achieve higher test accuracy across Decathlon tasks by 12.66%
and 6.57% compared to models initialized with TAL (w/o TSL) and TAL (w/o ans-net), respectively.

Visualization of task-specific model computational graphs. Fig. 4 illustrates the process of predicting
model parameters using the TAL model. First, based on the model configuration, the model is compiled
into a standardized computational graph and passed as input to the learngene. The learngene simultaneously
receives task information and, by integrating the model configuration with the task information, generates
a task-specific computational graph. This learned computational graph is then passed to the decoder, which
decodes it to generate the model parameters for the specific task.

To verify the effectiveness of learngene in dy-
namically encoding the model computational
graph under different task conditions, we visu-
alize the output of learngene. We use 3-12 layers
of ViT-small, a total of 10 descendant models
and apply learngene to output their task-specific
computational graphs on Decathlon Challenge
datasets. We use the PCA Abdi & Williams
(2010) method to map the high-dimensional fea-
tures of the model computational graph to 2D
space and visualize them. The result is shown
in Fig. 5. As the task information changes, the
model’s learned computational graph exhibits a
significant clustering effect, the learned compu-
tational graphs of the model for different tasks
clearly cluster together in two-dimensional space.
This indicates that learngene can effectively inte-
grate task information while incorporating task
information into the model computational graph.

Figure 5: The computational graphs of all descen-
dant models generated by learngene on the Decathlon
datasets. Each point represents a model computa-
tional graph. Different colors denote different tasks
andthe size of the point corresponds to the model’s
scale, with larger points indicating larger models.

5 RELATED WORK

5.1 PARAMETER PREDICTION

Model parameter prediction is usually achieved through hypernetworks. A lot of research is devoted to
extending the parameter prediction capabilities of hypernetworks to make them applicable to unseen model
architectures or datasets. Among many methods, Graph HyperNetworks (GHN) Zhang et al. (2018);
Knyazev et al. (2021) have garnered considerable attention due to their outstanding performance and high
flexibility. GHN-2 Knyazev et al. (2021) and GHN-3 Knyazev et al. (2023) further improved the parameter
prediction capabilities of GHN by improving the learning process of the model computation graph. The
latest LoGAH method Zhou et al. (2024) introduces low-rank approximation (LoRA) technology, allowing
GHN to predict the parameters of larger models using smaller hypernetworks. This progress has greatly
improved the efficiency and ability of GHN in handling large-scale model parameter prediction tasks.
Our task-aware learngene (TAL) incorporates modules to process task information, enabling a single TAL
model to customize models of varying scales for different tasks.
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5.2 LEARNGENE

The Learngene method Wang et al. (2022), inspired by biological gene inheritance, focuses on extracting
compact components, known as Learngene, from large-scale pretrained models (referred to as ancestry
models) and using them to initialize descendant models. Existing methods such as Vanilla-LG Wang et al.
(2022), TLEG Xia et al. (2024b), Learngene Pool Shi et al. (2024) and SWS Xia et al. (2024a) employ
different strategies to select and expand Learngene to build descendant models. In the Vanilla-LG method,
the key layers of the ancestry model are screened and extracted as Learngene and are spliced together
with randomly initialized layers to construct descendant models. The TLEG method employs a linear
expansion of the layers of Learngene to initialize different descendant models. The Learngene Pool method
refines a large-scale pretrained model into multiple small models, regarding the layers of these small
models as Learngene instances, which are then spliced together to construct different descendant models.
In task-aware learngene (TAL), learngene is no longer a sub block of the ancestry model, the encoder part
of TAL model is regarded as learngene. Model generation becomes a process of encoding and decoding,
with the ancestry model and multi-task common knowledge injected through the learngene. TAL model
can handle both model and task information, initializing models of flexible scales for different tasks.

5.3 MULTI-TASK LEARNING

The goal of multitask learning is to train a model to perform well on multiple tasks simultaneously. It needs
to solve multiple challenges Arivazhagan et al. (2019), such as catastrophic forgetting and deal with the
disproportionate task sizes, resulting in overfitting in low-resource tasks and underfitting in high-resource
tasks. An efficient multi-task learning method was proposed Mahabadi et al. (2021), using hypernetworks
to achieve a common adapter between tasks. In existing work on model parameter prediction, the focus
is often limited to predicting model parameters of varying sizes for a single task, without attempting to ini-
tialize models with different parameters for multiple tasks. Our work represents a significant advancement
in the field, as it enables the prediction of parameters for different tasks and models of varying sizes.

6 CONCLUSION

In this paper, we propose a novel method based on graph hypernetworks called Task-Aware Learngene that
predicts model parameters conditioned on desired model scales and task-specific characteristics. Experi-
mental results on various datasets demonstrated the effectiveness of TAL’s ability to predict parameters. Un-
trained descendant models initialized using TAL achieved significant improvements across various datasets
compared to the previous LoGAH initialization methods. Remarkably, the accuracy of these untrained
descendant models even surpassed the performance of models trained using other initialization methods.

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson, Maxim Krikun,
Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Massively multilingual neural machine
translation in the wild: Findings and challenges. arXiv preprint arXiv:1907.05019, 2019.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3606–3613, 2014.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi Mirza, Ben Hamner, Will
Cukierski, Yichuan Tang, David Thaler, Dong-Hyun Lee, et al. Challenges in representation learning:
A report on three machine learning contests. In Neural information processing: 20th international
conference, ICONIP 2013, daegu, korea, november 3-7, 2013. Proceedings, Part III 20, pp. 117–124.
Springer, 2013.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In
International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351, 2019.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero Soriano. Parameter prediction for
unseen deep architectures. Advances in Neural Information Processing Systems, 34:29433–29448, 2021.

Boris Knyazev, Doha Hwang, and Simon Lacoste-Julien. Can we scale transformers to predict parameters
of diverse imagenet models? In International Conference on Machine Learning, pp. 17243–17259.
PMLR, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In Proceedings of the IEEE international
conference on computer vision, pp. 2736–2744, 2017.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-efficient
multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint arXiv:2106.04489,
2021.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Stefan Munder and Dariu M Gavrila. An experimental study on pedestrian classification. IEEE
transactions on pattern analysis and machine intelligence, 28(11):1863–1868, 2006.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading
digits in natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of
classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp. 722–729.
IEEE, 2008.
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A APPENDIX

A.1 DECATHLON DATASET

The Visual Domain Decathlon Challenge tests the ability of visual recognition algorithms to handle images
from different visual domains. It includes 10 datasets in total:

1. ImageNet-1K (IN-1K) is the largest dataset in the Decathlon Challenge, containing 1,000
categories and 1.2 million images.
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2. CIFAR-100 (C100) contains 60,000 32 × 32 color images for 100 object categories.
3. Aircraft (Airc.) contains 100 images for each of 100 different aircraft model variants, such as

the Boeing 737-400 and the Airbus A310.
4. Daimler Pedestrian Classification (DPed) consists of 50,000 grayscale pedestrian and

non-pedestrian images, cropped and resized to 18 × 36 pixels.
5. Describable Textures (DTD) is a texture database consisting of 5,640 images, organized into

47 categories such as bubbly, cracked andmarbled.
6. German Traffic Signs (GTSRB) contains cropped images for 43 common traffic sign categories

in different image resolutions.
7. Omniglot (OGlt) consists of 1,623 different handwritten characters from 50 unique alphabets.
8. SVHN is a real-world digit recognition dataset with around 70,000 32 × 32 images.
9. UCF101 Dynamic Images (UCF) is an action recognition dataset of realistic human action

videos, collected from YouTube. It contains 13,320 videos across 101 action categories. In
the Decathlon Challenge, the videos are converted into images using Dynamic Image encoding,
which summarizes each video into an image based on a ranking principle.

10. Flowers102 (Flwr) is a fine-grained classification task with 102 flower categories from the UK,
each consisting of 40 to 258 images.

The detailed statistics of the datasets can be found at http://www.robots.ox.ac.uk/˜vgg/
decathlon/.

A.2 EXPERIMENT DETAILS

Here we present the detailed results of the analysis and ablation studies for LoGAH v3, LoGAH v4, TAL
(w/o TSL), and TAL (w/o ans-ant) methods, as well as all descendant models on the Decathlon test.

Model Method Airc. C100 DPed DTD GSTR OGle SVHN UCF Flwr Avg

3-Ti
LoGAH v3 1.35 17.87 80.27 15.8 88.24 10.29 78.63 3.12 2.65 33.14
LoGAH v4 12.72 42.42 78.93 23.14 98.81 44.19 86.07 5.02 39.71 47.89

6-Ti
LoGAH v3 1.77 19.84 79.35 16.44 91.35 10.75 79.07 4.15 4.80 34.17
LoGAH v4 12.81 44.27 84.49 24.04 98.95 55.05 87.79 5.12 40.59 50.35

12-Ti
LoGAH v3 1.44 19.58 79.78 16.12 91.53 10.63 79.50 3.69 4.71 34.11
LoGAH v4 12.36 40.06 65.39 21.33 98.92 44.1 87.80 4.20 36.95 45.68

3-S
LoGAH v3 1.56 20.12 83.06 16.76 93.08 10.26 80.06 4.30 4.22 34.82
LoGAH v4 12.81 44.38 84.10 24.47 98.97 52.2 87.28 5.12 43.14 50.27

6-S
LoGAH v3 1.83 21.66 83.32 16.60 94.87 12.01 80.34 4.25 5.00 35.54
LoGAH v4 13.14 45.16 87.04 24.04 99.11 57.01 88.33 5.17 43.43 51.38

12-S
LoGAH v3 1.86 20.41 82.53 16.44 93.87 10.21 80.43 4.10 5.78 35.07
LoGAH v4 12.30 42.74 83.64 23.14 98.98 53.87 87.87 4.51 41.46 49.83

Table 8: Performance of untrained descendant models on Decathlon tasks initialized with LoGAH v3,
LoGAH v4.
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Model Method Airc. C100 DPed DTD GSTR OGle SVHN UCF Flwr Avg

3-Ti
TAL(w/o TSL) 4.05 17.61 72.65 11.12 65.9 1.76 35.77 2.25 9.61 24.52

TAL(w/o ans-net) 3.39 49.92 92.74 20.80 99.39 0.18 90.2 11.37 50.69 46.52

6-Ti
TAL(w/o TSL) 12.18 40.62 72.89 23.30 99.20 52.57 88.77 2.87 34.22 47.40

TAL(w/o ans-net) 3.27 49.86 92.38 20.05 99.35 0.17 90.34 12.09 51.18 46.52

12-Ti
TAL(w/o TSL) 10.23 36.09 65.83 17.13 96.00 31.28 83.92 3.02 25.10 40.96

TAL(w/o ans-net) 2.88 49.45 93.01 21.22 99.31 0.15 90.43 12.19 51.08 46.64

3-S
TAL(w/o TSL) 12.54 40.65 80.24 20.69 98.99 49.85 85.99 4.35 36.86 47.79

TAL(w/o ans-net) 2.88 50.76 92.76 21.97 99.35 0.09 90.51 11.53 52.35 46.91

6-S
TAL(w/o TSL) 13.68 42.43 77.19 22.61 99.30 52.65 89.28 3.28 37.75 48.69

TAL(w/o ans-net) 3.12 50.91 93.10 22.29 99.29 0.14 90.57 12.81 52.25 47.16

12-S
TAL(w/o TSL) 11.73 37.67 60.17 16.97 55.30 23.35 76.45 2.97 29.22 34.87

TAL(w/o ans-net) 2.88 50.86 93.52 21.76 99.34 0.12 90.64 12.19 52.16 47.05

Table 9: Performance of untrained descendant models on Decathlon tasks initialized with TAL(w/o TSL)
and TAL(w/o ans-net).
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