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Abstract

We present experiments and their corresponding theory, demonstrating that synaptic1

neural balancing can significantly enhance deep learning speed, accuracy, and gen-2

eralization, particularly on non-traditional compute paradigms. Given an additive3

cost function (regularizer) of the synaptic weights, a neuron is in balance if the total4

cost of its incoming weights equals that of its outgoing weights. For various net-5

works, activation functions, and regularizers, neurons can be balanced using scaling6

operations without altering their functionality, associated with a strictly convex7

optimization problem. In our simulations, we systematically observe that: (1) Fully8

balancing before training results in better performance as compared to several other9

training approaches; (2) Interleaving partial (layer-wise) balancing and stochastic10

gradient descent steps during training results in faster learning convergence and11

better overall accuracy (with L1 balancing converging faster than L2 balancing;12

and (3) When given limited training data, neural balanced models outperform plain13

or regularized models. and this is true both for both feedforward and recurrent14

networks. These balancing operations are entirely local, making them viable for15

biological or neuromorphic systems. This positions synaptic neural balancing as16

a promising approach for leveraging the unique characteristics of emerging AI17

accelerators, advancing the efficiency and sustainability of machine learning.18

1 Introduction19

Broadly speaking, neural balance refers to the idea of achieving or keeping a certain equilibrium in20

a neural network during training or after training, whereby such equilibrium may facilitate better21

information flow, or lower energy expenditure Shwartz-Ziv [2022]. As such, there are different notions22

of neural balance including, for example, the notion of balance between excitation and inhibition in23

biological neural networks [Froemke, 2015, Field et al., 2020, Howes and Shatalina, 2022, Kim and24

Lee, 2022, Shirani and Choi, 2023]. Here we develop the concept of synaptic neural balance which25

refers to any systematic relationship between the input and output synaptic weights of individual26

neurons, or layers of neurons. Specifically, we consider the case where the cost of the input weights27

is equal to the cost of the output weights, where the cost is defined by some regularizer. One of28

the most basic examples of such a relationship, described below, is when the sum of the squares of29

the input weights of a neuron is equal to the sum of the squares of its output weights. In this work,30

we briefly describe the theory of synaptic neural balance and demonstrate its applications to deep31

learning regularization. We now describe the base case of synaptic neural balance.32

Base Case: Consider a neuron with a ReLU activation function inside a network trained to minimize33

a regularized error function E = E +R, where E is the data-dependent error (typically the negative34

log-likelihood of the data) and R is the regularizer (typically L2 regularizer). If we multiply the35
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incoming weights of the neuron by some λ > 0 (including the bias) and divide the outgoing weights36

of the neuron by the same λ, it is easy to see that this scaling operation does not affect in any way the37

contribution of the neuron to the rest of the network. Thus, the error E which depends only on the38

input-output function of the network is unchanged. However, the value of the L2 regularizer changes39

continuously with λ, and the corresponding contribution is given by:40

∑
i∈IN

(λwi)
2 +

∑
i∈OUT

(wi/λ)
2 = λ2A+

1

λ2
B (1)

where IN and OUT denote the set of incoming and outgoing weights respectively, A =
∑

i∈IN w2
i ,41

and B =
∑

i∈OUT w2
i . When λ moves away from 1, the contribution increases in one direction and42

decreases in the other. In the direction where it decreases, we can solve for the value λ∗ associated43

with the mimimal cost. Without taking derivatives, we note that the product of the two terms on44

the right-hand side of Equation 1 is equal to AB and does not depend on λ. Thus, the minimum45

is achieved when these two terms are equal, which yields: (λ∗)4 = B/A for the optimal λ∗. The46

corresponding new set of weights, vi = λ∗wi for the input weights and vi = wi/λ
∗ for the outgoing47

weights, must be balanced:
∑

i∈IN v2i =
∑

i∈OUT v2i . This is because the optimal scaling factor for48

the optimal synaptic weights can only be λ∗ = 1. Thus, we can define two operations that can be49

applied to the incoming and outgoing weights of a neuron: scaling and balancing. In between, we can50

also consider favorable scaling, or partial balancing, where λ is chosen to reduce the cost without51

necessarily minimizing it.52

There have been isolated previous studies of this kind of synaptic balance [Du et al., 2018, Stock et al.,53

2022] under special conditions. For instance, in Du et al. [2018], it is shown that if a deep network is54

initialized in a balanced state with respect to the sum of squares metric, and if training progresses55

with an infinitesimal learning rate, then balance is preserved throughout training. However, using an56

infinitesimal learning rate is not practical. Furthermore, there are many intriguing questions that can57

be raised. For instance: Why does balance occur? Does it occur only with ReLU neurons? Does it58

occur only with L2 regularizers? Does it occur only in fully connected feedforward architectures?59

Does it occur only at the end of training? What happens if we iteratively balance neurons at random in60

a large network? And can partial or full balancing, before or during learning, be used as an effective61

regularization technique? All these questions, but the last one, are addressed by the theory of synaptic62

neural balance that we have developed and briefly describe in the next section. The last question,63

on using balancing as a learning regularizer, is the main topic of this paper and is addressed by the64

experiments presented in the following sections. Unless otherwise specified, throughout the paper,65

terms like “balancing” or “neural balancing” refer to “synaptic neural balancing”.66

2 The Theory of Synaptic Neural Balance67

We present a brief summary of the main point of the theory. The complete theory is described in68

the Appendix with the detailed proofs of all the theorems. The first key point is that the base case69

described in the Introduction, can be extended in three main directions in terms of the activation70

functions, the regularizers, and the network architectures.71

Theorem: (Balance and Regularizer Minimization) Consider a neural network with BiLU activation72

functions in all the hidden units and overall error function of the form:73

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (2)

where each function gw(w) is continuously differentiable, depends on the magnitude |w| alone, and74

grows monotonically from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any75

hidden unit i in the network and any λ > 0 we can multiply the incoming weights of i by λ and the76

outgoing weights of i by 1/λ without changing the overall error E. Then, for any neuron, there exists77

at least one optimal value λ∗ that minimizes R(W ). Any optimal value must be a solution of the78

consistency equation:79

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (3)
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Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance80

equation:81 ∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (4)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal82

value λ∗ is unique and equal to:83

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(5)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:84

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(6)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:85 ∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (7)

Proof: The proof is given in the Appendix. We use the optimal value λ∗, which we proved how to86

find in the Appendix, for our experiments in the next Section.87

Network Architectures: It is easy to see that the reasoning behind the base case can be applied to88

any BiLU neurons inside any architecture, such a fully connected feedforward, locally connected89

feedforward, or recurrent. Again this is because scaling does not change the effect of the neuron90

on the rest of the network and therefore we can always scale the neuron in a way that minimizes a91

particular cost function or regularizer. It is even possible to train a network with a certain regularizer92

and balance it with respect to a different regularizer. This brings us to the main result of the theory93

which is related to balancing algorithms. Imagine that we have a neural network containing BiLU94

(e.g. ReLU) neurons, with a fixed set of weights W . These could be the weights before learning has95

started, during learning (i.e. at a particular epoch), or after learning has finished. Imagine that we96

start balancing the BiLU neurons one after the other, in some regular order or, more generally, even97

in a stochastic order. Balancing the weights of a neuron may break the balance of another neuron. So98

while the value of the regularizer always decreases after each balancing operation, it is not clear what99

happens to the weights of the network, whether they converge to a stable value, and if so whether100

this value is unique. The main theorem of the theory is the proof that indeed not only the regularizer101

converges, but the weights themselves must converge and, most interestingly, they must converge to a102

unique point, which depends only on the initial set of weights W . The limit does not depend on the103

order in which the balancing operations are applied.104

3 Related Work105

Yang et al. [2022] proposed to replace the L2 regularization term in the loss with the sum of products106

of l2 norms of the input and output weights. Stock et al. [2022] proposed a new local heterosynaptic107

learning rule by adding a kind of reconstruction loss term in which neurons try to balance themselves.108

Du et al. [2018] proved that gradient descent with infinitesimal step size effectively conserves the109

differences between squared norms of inputs and outputs weights of each layer without explicit110

regularization. Related results are also described in Arora et al. [2018]. Saul [2023] computes111

multiplicative rescaling factors—one at each hidden unit— to balance the weights of neural networks.112

Neyshabur et al. [2015a] shows that training with stochastic gradient descent does not work well113

in highly unbalanced neural networks, so they proposed a rescaling-invariant solution Neyshabur114

et al. [2015c]. Others have proposed that learning in neural networks can be accelerated with115

rescaling transformations Zhao et al. [2022], Armenta et al. [2023] without mentioning balancing116

the weights though. In our case we present both theoretical results on neural synaptic balance,117

including the existence and uniqueness of a globally balanced state (given an initial set of weights118
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Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Table 1: Test accuracy during training of Plain, L1 Regularized, and L2 Regularized Fully Connected
Networks trained on MNIST, comparing full balancing before training with no full balance before
training. Full balancing before training results in faster convergence, as well as universally higher
attained test accuracy.

W ), and experimental results showing that balancing neurons can expedite learning convergence and119

improve learning performance. This is also the first work experimenting with neural balance in both120

feedforward and recursive neural networks.121

4 Experiments and Results122

In our experiments, we train and compare various neural network architectures using full neural123

balancing, partial balancing, and L1 or L2 regularization. The term “plain” is used to refer to training124

of neural networks without balancing or regularizers. Full balance is obtained by iteratively balancing125

all BiLU neurons in the network until convergence is achieved. Partial balance is implemented by126

balancing the neurons in a layer-wise fashion, starting from the input layer and moving towards the127

output layer or vice-versa (no significant differences are observed). Due to the gradual nature of128

partial balance, the periodicity of the balancing operation is key to its implementation. In partial129

balance, the balancing operation can be performed up to once per epoch. Through the use of partial130

balancing during training, it has been observed that the ratio of the norms of a neuron’s output to131

input weights tends to equalize, irrespective of the periodicity of epochs that we perform partial132

balancing operations. We have also observed that partial balancing helps the network converge faster133

and achieve a balanced state as is expected in a fully-trained network, same is in full balancing. The134

balancing operations for each neuron in each layer take place in parallel so they do not impose a135

bottleneck during training. Our results suggest that neural balancing is effective in training various136

types of neural networks with limited data. Furthermore, this approach proves beneficial in reducing137

overfitting and enhancing generalization in data-scarce environments.138

To ensure reproducibility and fairness, experiments comparing training methodologies use the same139

range of seeds, learning rates, and train/test splits. Every experiment was run with 8 different seeds140

and the result reported is the average of them. A more detailed description of our experimental setup141

can be found in the Appendix. The roadmap of our experiments is organized as follows: first, we142

present experiments with the full dataset on both FCNs and RNNs. Then, we move onto data-scarce143

environments, amplifying the complexity of the experiments. For every experiment we deploy FCNs144

and RNNs ranging from smaller to larger sizes. The term FCN refers to Feedforward-layered networks145

with full connectivity between the layers.146

4.1 Assessment of Full Balance Before Training147

In table 1, we assess the use of the full balancing operation before the commencement of training.148

Compared to a standard initialization, the application of full balancing results in faster convergence,149

and higher overall accuracy when using the same model architecture, hyperparameters, and training150

methodologies. Partial balancing at every epoch after a full balance results in the least change due to151

the fundamentally similar nature of the full balancing operation to the partial balancing operation,152

hence its omission from the plots. Repeated partial balancing results in the same outcome weights153

when using the same seed, albeit, over time since those weights aren’t balanced from the start. Larger154

model sizes tend to exhibit a stronger correlation between the use of neural balancing, and the model’s155

rate of convergence. These observations are especially exhibited in the normally trained models,156

where the use of full balancing at the start results in much faster convergence, as well as a higher157

final accuracy achieved by the model. table 1 displays the comparison between full balancing and158

no balancing performed on an FCN on MNIST before training. Each square in the grid represents159
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Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 2: Test accuracy across training comparisons of partial balancing, L2 Regularization, and Plain
Accuracy for FCNs of varying sizes on MNIST. We observe that L1 partial balancing outperforms
the other training methodologies on all model sizes

Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26% 88.23% 88.22%
NB at Start 88.64% 88.24% 88.57%

Table 3: Test accuracy for a Recurrent Neural Network trained on the IMDB sentiment analysis
dataset, comparing Plain, L1 Regularized, and L2 Regularized models with and without a full balance
at the start of training. A full balance before the commencement of training universally results in a
higher test accuracy during training.

a combination of a model size and a training methodology, where in every case, neural balancing160

results in an improvement in the rate of convergence and model accuracy.161

4.2 Partial Balance with FCNs on MNIST162

We test all forms of neural balancing on the MNIST handwritten digit dataset exclusively through163

FCNs. To fully capture the regularization capability of neural balancing, we test on a range of model164

architectures. From table 2, we observe that neural partial balancing results in faster convergence and165

test accuracy across all model sizes.166

4.3 Full Balance with RNNs on IMBD167

We continue our assessment of neural balancing with experiments performed on the RNN architecture.168

We train a 3-layered RNN on the IMDB sentiment analysis dataset, once again assessing full neural169

balancing with a ’plain’, and regularized models. table 3 demonstrates that when full balancing170

is performed before training, the model has a better final accuracy when compared to equivalent,171

non-balanced methodlologies.172

4.4 Neural Balance in Limited-data Environments173

In data-scarce environments, models employing neural partial balancing techniques demonstrate ac-174

celerated convergence compared to unmodified models. These experiments are executed by stratifying175

samples equally according to their class labels to maintain a balanced distribution of classes within176
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Figure 1: A comparison between partial balancing, Plain Accuracy, and L2 Regularization as per-
formed on a 3 Layer RNN using 5% of the available dataset. Neural balancing reports the best overall
performance.
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Type No FB at Start FB at Start
2 Layer FCN 3 Layer FCN 5 Layer FCN 2 Layer FCN 3 Layer FCN 5 Layer FCN

Plain 84.15% 73.49% 88.9% 91.39% 91.42% 90.86%
L1 NB 91.25% 90.57% 92.87% 93.26% 93.3% 92.92%
L2 NB 87.99% 84.53% 91.06% 91.94% 91.37% 90.59%
L1 Reg. 83.92% 72.03% 11.35% 85.99% 81.33% 19.79%
L2 Reg. 83.35% 75.21% 86.81% 91.16% 90.86% 88.78%

Table 4: A comparison of test accuracy during training of various methodologies, using 1% of the
MNIST dataset to simulate a limited data environment. The use of full balancing at the start of
training not only increases the rate of convergence of every training methodology, but also allows for
a higher attainable overall accuracy.

the training data. We observe that neural balancing results in higher accuracy and faster convergence,177

which could be attributed to better performance in data-scarce environments.178

Further, we continue this study with an assessment of neural balancing on an RNN trained with a179

fraction of the original IMDB dataset. fig. 1 contains the comparison between training methodologies180

using a 3 layer RNN trained on the IMDB sentiment analysis dataset with 5% of the available training181

data. Partial balancing has higher accuracy on average, as well as a faster convergence, hinting at a182

characteristic of being able to generalize without a lot of training data.183

4.5 Discussion184

Summing up our experiments we observe the following quantitative results. In FCNs, Neural Balance185

yields a notable improvement in model performance and convergence speed. Specifically, this method186

results in a 3-5% performance increase over plain models, and more than a 1% improvement over187

optimally L1-regularized models. Additionally, L1 neural balancing facilitates convergence at a rate188

1.5 to 10 times faster, contingent on model size. When trained on limited datasets (1% of the full189

data), L1 neural balancing enhances performance by 3-10% compared to plain models, and by 1-5%190

relative to models regularized with L1 and L2 techniques. Moreover, it achieves up to a 10-fold191

increase in convergence speed, depending on model size. In RNNs, L1 neural balancing contributes to192

a 2-5% increase in convergence speed, with the application of L2 neural balancing leading to a more193

than 15% acceleration in convergence when training on 5% of the data. These findings underscore194

the efficacy of L1 neural balancing in optimizing both performance and training efficiency across195

different model architectures. We have extended our experiments due to page limits in the Appendix.196

5 Conclusions197

Synaptic balancing provides a novel approach to regularization that is supported by an underlying198

theory. Synaptic balancing is very general in the sense that it can be applied with all usual cost199

functions, including all Lp cost functions. Synaptic balancing can be carried in full or in partial200

manner, due to the convexity connection provided by the main theorem. It can be applied at any time201

during the learning process: at the start of learning, at the end of learning, or during learning, by202

alternating balancing steps with stochastic gradient steps. Given, neural balance has some limitations;203

as mentioned earlier it can be applied only to neurons with specific activation functions (BiLU or204

slightly more general activation functions as shown in the Appendix). Another limitation is that it205

cannot be applied to neurons in Convolution layers due to the nature of the convolution operation206

with the kernels. Simulations show that these approaches can improve learning in terms of speed207

(fewer epochs), accuracy or generalization abilities. Thus, in short, balancing is a novel effective208

approach to regularization that can be added to the list of tools available to regularize networks, like209

dropout, and other regularization tools. Finally, a neuron can balance its weights independently of all210

other neurons in the network. The knowledge required for balancing is entirely local and available at211

each neuron. In this sense, balancing is a natural algorithm for distributed asynchronous architectures212

and physical neural systems, and as such it may find applications in neuromorphic chip designs or213

brain studies.214
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A Appendix / supplemental material257

B Appendix258

Here we detail the additional theory, datasets, models, and training procedures used in the experiments259

in the main paper, separated into subsections which correspond to that of the main paper. We also260

included some supplemental experiments that are not present in the main paper.261

In order to ensure that our results are reproducible, when we compare training methodologies, we do262

so using a sample size of 8 different, and random, seeds per methodology, with those seeds being263

shared with the other training methodologies. We train all of our models on a server equipped with 8264

Nvidia RTX A6000 Ada Generation graphics cards, with 384 GB of total memory, run on CUDA265

version 12.4.266

B.1 Establishing Partial Balancing267

In our experiments, we annotate 2 different kinds of neural balancing operations: L1 Neural Balancing,268

and L2 Neural Balancing. The names represent the norms used when balancing the input and output269

weights, with the L1 norm being used for L1 Neural Balancing, and the L2 norm being used for L2270

Neural Balancing.271

B.2 Toy Experiment on a Circle Toy Dataset272

To validate our initial hypothesis, which is that the balancing operation results in the equalization of273

the norms of the input and output weights for every neuron in a neural network, we observe the ratio274

between the aforementioned norms during training. We do this through a toy network trained on a275

simple 2-dimensional dataset for a binary classification task, where the limited number of layers and276

’neurons’ allow us to measure weights without the computational intensity attributed to accessing277

values from a large network. We compare the use of full balancing with partial balancing during278

training. Both methodologies result in the optimal factor λ∗ calculated during balancing to converge279

to 1, confirming that the norms of the input and output weights for each neuron equalize through the280

use of balancing. fig. 2 contains partial balancing performed every epoch on a 5-neuron toy model281

trained on a 2-dimensional concentric circle toy dataset showing that the input and output weight282

norms equalize for each neuron.283
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Figure 2: Partial balancing performed every
epoch on a 5-neuron toy model trained on a 2-
dimensional dataset for a binary classification
task showing that the input and output weight
norms equalize for each neuron
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Figure 3: Full balancing performed every
epoch on a 5-neuron toy model trained on
a 2-dimensional dataset for a binary classifi-
cation task showing that the input and output
weight norms equalize for each neuron

To contextualize the rate of convergence of the norms from the partial balancing toy experiment,284

we measure the input and output norms of each neuron after a full-balance has been performed on285

the network. While the full-balance guarantees that the input and output norms of each neuron will286

always be close to each other, since full balancing is performed until that requirement is met, it287

remains useful as a benchmark for the rate of convergence of partial-balancing. fig. 3 delineates288
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Figure 4: A demonstration of the effect of a full neural balance before the start of training on
various sizes of fully connected networks, using various training methodologies. Regardless of L2
Regularization, neural partial balancing, or plain accuracy used in training, a neural full balance
results in faster convergence, and a higher overall accuracy.

Type No FB at Start FB at Start
Plain L1 Reg. L2 Reg. Plain L1 Reg. L2 Reg.

2 Layer FCN 90.09% 90.05% 90.062% 91.22% 93.96% 91.18%
3 Layer FCN 89.594% 89.67% 89.70% 90.83% 93.47% 90.79%
5 Layer FCN 89.09% 87.85% 90.3% 91.37% 95.50% 91.59%

Figure 5: Accompanying fig. 4, Test accuracy during training of Plain, L1 Regularized, and L2
Regularized Fully Connected Networks trained on MNIST, comparing full balancing before training
with no full balance before training. As observed in fig. 4, full balancing before training results in
faster convergence, as well as universally higher attained test accuracy.

the rate of convergence of the input and output norms, doing so almost immediately, due to the289

methodology of full balancing. fig. 2 demonstrates the efficacy of partial-balancing, resulting in a290

rapid, and computationally less expensive method of ’balancing’ neurons.291

B.3 Assessment of Full Balance Before Training292

In the main paper, we assess the use of the full balancing operation before the start of training to293

demonstrate its efficacy at increasing the rate of convergence and overall test accuracy of various294

model architectures and training styles. Partial balancing at every epoch after a full balance results295

in the least change due to the fundamentally similar nature of the full balancing operation to the296

partial balancing operation, hence its omission from the plots. Repeated partial balancing results in297

the same outcome weights when using the same seed, albeit, over time since those weights aren’t298

balanced from the start. In these experiments, we use fully connected neural networks in a few sizes299

to demonstrate the range of the balancing operation. Full balance before training is shown to increase300

the rate of convergence, as well as the overall accuracy obtainable during training. To assess full301

neural balance before training, we performed a full balancing operation on the neurons of the model302

after the initialization of the model’s weights, and before the commencement of training.303

B.4 Partial Balance with FCNs304

In the main paper, we assess the use of the partial balancing operation during training to demon-305

strate its efficacy at increasing the rate of convergence and overall test accuracy of various model306

architectures and training styles. As included in the main paper in section 4.2, we supplement our307

tabular results in fig. 6 with plots that delineate the positive impact of partial and full neural balance308

as performed through the balancing operation during/before training. Following the line of inquiry309
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Figure 6: Accompanying table 2, comparison of neural balance, L1 and L2 Regularization on MNIST.
We observe that as the models grow bigger, neural balance helps model converge faster and perform
better than the other techniques.

Type Plain L2 NB L1 NB L2 1e-5 L1 1e-5
2-FCN 91.22% 91.19% 94.542% 91.18% 93.96%
3-FCN 90.84% 90.86% 93.94% 90.79% 93.47%
5-FCN 91.37% 91.63% 96.26% 91.59% 95.48%

Table 5: Test accuracy across training comparisons of partial balancing, L2 Regularization, and Plain
Accuracy for FCNs of varying sizes on MNIST. We observe that L1 partial balancing outperforms
the other training methodologies on all model sizes

on the performance of neural balancing on FCNs trained on MNIST, we assess its performance on310

FashionMNIST using the same model architectures. We use FCNs of various sizes, and perform a311

partial balance on the model at every epoch, identically to the MNIST experiments. We observed312

similar results on performance and convergence on FashionMNIST. Regardless of the size of the313

model, or the methodology used to train said model, neural balancing significantly increases the rate314

of convergence, as well as its overall test accuracy.315
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Figure 7: Test accuracy across training comparisons of partial balancing, L2 Regularization, and
Plain Accuracy for FCNs of varying sizes on Fashion MNIST. We observe that L1 partial balancing
outperforms the other training methodologies on all model sizes.

B.5 Full Balance with RNNs on IMDB316

In the main paper, we assess the use of the partial balancing operation during training to demonstrate317

its efficacy at increasing the rate of convergence and overall test accuracy of a recurrent neural318

network architecture, comparing various training styles in the process. For these experiments, we319

use the IMDB sentiment analysis dataset. The IMDB dataset is a collection of positively/negatively320

labeled text containing movie reviews from the popular movie review website IMDB. We use a321

recurrent neural network with 3 hidden layers to demonstrate the efficacy of the partial balancing322

operation.323
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Figure 8: A comparison between partial balancing, L2 Regularization, and Plain Accuracy on a 3
Layer RNN using the IMDB sentiment analysis dataset. We also contrast the standard initialization
with a full neural balancing operation performed before the start of training. We observe that neural
partial balancing performed every epoch, paired with a full balance before training, results in the best
overall accuracy, and convergence speed.

Type Plain L1 Regularization L2 Regularization
No NB at Start 88.26 88.23 88.22
NB at Start 88.64% 88.24% 88.57%

Table 6: Accompanying fig. 8, Test accuracy for a Recurrent Neural Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized models with and
without a full balance at the start of training. A full balance before the commencement of training
universally results in a higher test accuracy during training.

B.6 Neural Balance in Limited Data Environments324

As mentioned in the main paper, we assess the performance of a full neural balance, as well as partial325

balance during training. These experiments are executed by stratifying samples equally according to326

their class labels to maintain a balanced distribution of classes within the training data. Accompanying327

table 4, we add plots to visualize the tabular information, and to demonstrate the efficacy of neural328

balance at incresing the rate of convergence of training. fig. 9 delineates the efficacy of partial balance329

at improving overall accuracy and training speed.330

B.7 Neural Balancing in Transformers331

Transformers models, characterized by their attention mechanism, represent the state of the art332

in the field of Natural Language Processing. In our study, neural balancing is only applied to the333

feed-forward, linear layers in the transformer block, as any manipulation of the attention matrix334

strongly affects the model output. We observe that the best training method is the ’clean’ style, where335

neither neural balancing, nor L2 regularization is applied to the model. For these experiments, we use336
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Figure 9: A comparison between partial balance, standard regularization, and Plain Accuracy, on
various Fully Connected Networks trained on 1% of the MNIST dataset. We observe that neural
balancing consistently has a positive impact on the rate of convergence and overall accuracy of the
model.
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Type Plain L1 Regularization L2 Regularization
No NB at Start 83.66% 81.95% 83.36%
NB at Start 83.52% 81.65% 83.21%

Table 7: Accompanying fig. 10, Test accuracy for a Transformer Network trained on the IMDB
sentiment analysis dataset, comparing Plain, L1 Regularized, and L2 Regularized models with and
without a full balance at the start of training.

the IMDB sentiment analysis dataset, and we use a transformer model with 8 attention heads, and 6337

feedforward encoder layers, each with a hidden dimensionality of 2048 units.338
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Figure 10: A comparison of various combinations of full balancing and training methodologies using
a transformer model. The combination of L2 regularization and neural balancing fails after some
epochs, and the clean model without any form of balancing performs the best out of the training
styles.

B.8 Neural Balance in Bioplausible Architectures339

In the main paper, we detail the use of neural balancing operations in biologically plausible systems.340

Specifically, we employ Direct Feedback Alignment (DFA) in place of backpropagation as the341

biologically plausible alternative, and perform partial balancing during the training of the model to342

achieve neural balance.343

Type Accuracy
clean 97.764%
nb 97.764%
L2 with λ = 1e− 4 97.758%
L2 with λ = 1e− 5 97.764%

Figure 11: Comparison between neural bal-
ancing and L2 with various lambda values
using a ’clean’ model as a benchmark, trained
with DFA on a 2-layer fully connected net-
work

Type Accuracy
clean 97.4525%
nb 97.4525%
L2 with λ = 1e− 4 95.417%
L2 with λ = 1e− 5 97.4525

Figure 12: Comparison between neural bal-
ancing and L2 with various lambda values
using a ’clean’ model as a benchmark, trained
with DFA on a 7-layer fully connected net-
work

C Full Proof and Theory344

C.1 Homogeneous and BiLU Activation Functions345

In this section, we generalize the basic example of the introduction from the standpoint of the346

activation functions. In particular, we consider homogeneous activation functions (defined below).347

The importance of homogeneity has been previously identified in somewhat different contexts348

Neyshabur et al. [2015b]. Intuitively, homogeneity is a form of linearity with respect to weight scaling349

and thus it is useful to motivate the concept of homogeneous activation functions by looking at other350

notions of linearity for activation functions. This will also be useful for Section C.5 where even more351

general classes of activation functions are considered.352
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C.1.1 Additive Activation Functions353

Definition C.1. A neuronal activation function f : R → R is additively linear if and only if354

f(x+ y) = f(x) + (f(y) for any real numbers x and y.355

Proposition C.2. The class of additively linear activation functions is exactly equal to the class of356

linear activation functions, i.e., activation functions of the form f(x) = ax.357

Proof. Obviously linear activation functions are additively linear. Conversely, if f is additively linear,358

the following three properties are true:359

(1) One must have: f(nx) = nf(x) and f(x/n) = f(x)/n for any x ∈ R and any n ∈ N. As a360

result, f(n/m) = nf(1)/m for any integers n and m (m ̸= 0).361

(2) Furthermore, f(0 + 0) = f(0) + f(0) which implies: f(0) = 0.362

(3) And thus f(x− x) = f(x) + f(−x) = 0, which in turn implies that f(−x) = −f(x).363

From these properties, it is easy to see that f must be continuous, with f(x) = xf(1), and thus f364

must be linear.365

C.1.2 Multiplicative Activation Functions366

Definition C.3. A neuronal activation function f : R → R is multiplicative if and only if f(xy) =367

f(x)(f(y) for any real numbers x and y.368

Proposition C.4. The class of continuous multiplicative activation functions is exactly equal to the369

class of functions comprising the functions: f(x) = 0 for every x, f(x) = 1 for every x, and all the370

even and odd functions satisfying f(x) = xc for x ≥ 0, where c is any constant in R.371

Proof. It is easy to check the functions described in the proposition are multiplicative. Conversely,372

assume f is multiplicative. For both x = 0 and x = 1, we must have f(x) = f(xx) = f(x)f(x) and373

thus f(0) is either 0 or 1, and similarly for f(1). If f(1) = 0, then for any x we must have f(x) = 0374

because: f(x) = f(1x) = f(1)f(x) = 0. Likewise, if f(0) = 1, then for any x we must have375

f(x) = 1 because: 1 = f(0) = f(0x) = f(0)f(x) = f(x). Thus, in the rest of the proof, we can376

assume that f(0) = 0 and f(1) = 1. By induction, it is easy to see that for any x ≥ 0 we must have:377

f(xn) = f(x)n and f(x1/n) = (f(x))1/n for any integer (positive or negative). As a result, for any378

x ∈ R and any integers n and m we must have: f(xn/m) = f(x)n/m. By continuity this implies that379

for any x ≥ 0 and any r ∈ R, we must have: f(xr) = f(x)r. Now there is some constant c such380

that: f(e) = ec. And thus, for any x > 0, f(x) = f(elog x) = [f(e)]log x = ec log x = xc. To address381

negative values of x, note that we must have f [(−1)(−1 = f(1) = 1f(−1)2. Thus, f(−1) is either382

equal to 1 or to -1. Since for any x > 0 we have f(−x) = f(−1)f(x), we see that if f(−1) = 1383

the function must be even (f(−x) = f(x) = xc), and if f(−1) = −1 the function must be odd384

(f(−x) = −f(x)).385

We will return to multiplicative activation function in a later section.386

C.1.3 Linearly Scalable Activation Functions387

Definition C.5. A neuronal activation function f : R → R is linearly scalable if and only if388

f(λx) = λf(x) for every λ ∈ R.389

Proposition C.6. The class of linearly scalable activation functions is exactly equal to the class of390

linear activation functions, i.e., activation functions of the form f(x) = ax.391

Proof. Obviously, linear activation functions are linearly scalable. For the converse, if f is linearly392

multiplicative we must have f(λx) = λf(x) = xf(λ) for any x and any λ. By taking λ = 1, we get393

f(x) = f(1)x and thus f is linear.394

Thus the concepts of linearly additive or linearly scalable activation function are of limited interest395

since both of them are equivalent to the concept of linear activation function. A more interesting396

class is obtained if we consider linearly scalable activation functions, where the scaling factor λ is397

constrained to be positive (λ > 0), also called homogeneous functions.398
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C.1.4 Homogeneous Activation Functions399

Definition C.7. (Homogeneous) A neuronal activation function f : R → R is homogeneous if and400

only if: f(λx) = λf(x) for every λ ∈ R with λ > 0.401

Remark C.8. Note that if f is homogeneous, f(λ0) = λf(0) = f(0) for any λ > 0 and thus402

f(0) = 0. Thus it makes no difference in the definition of homogeneous if we set λ ≥ 0 instead of403

λ > 0).404

Remark C.9. Clearly, linear activation functions are homogeneous. However, there exists also405

homogeneous functions that are non-linear, such as ReLU or leaky ReLU activation functions.406

We now provide a full characterization of the class of homogeneous activation functions.407

C.1.5 BiLU Activation Functions408

We first define a new class of activation functions, corresponding to bilinear units (BiLU), consisting409

of two half-lines meeting at the origin. This class contains all the linear functions, as well as the410

ReLU and leaky ReLU functions, and many other functions.411

Definition C.10. (BiLU) A neuronal activation function f : R → R is bilinear (BiLU) if and only if412

f(x) = ax when x < 0, and f(x) = bx when x ≥ 0, for some fixed parameters a and b in R.413

These include linear units (a = b), ReLU units (a = 0, b = 1), leaky ReLU (a = ϵ; b = 1) units,414

and symmetric linear units (a = −b), all of which can also be viewed as special cases of piece-wise415

linear units Tavakoli et al. [2021], with a single hinge. One advantage of ReLU and more generally416

BiLU neurons, which is very important during backpropagation learning, is that their derivative is417

very simple and can only take one of two values (a or b).418

Proposition C.11. A neuronal activation function f : R → R is homogeneous if and only if it is a419

BiLU activation function.420

Proof. Every function in BiLU is clearly homogeneous. Conversely, any homogeneous function f421

must satisfy: (1) f(0x) = 0f(x) = f(0) = 0; (2)f(x) = f(1x) = f(1)x for any positive x; and (3)422

f(x) = f(−u) = f(−1)u = −f(−1)x for any negative x. Thus f is in BiLU with a = −f(−1)423

and b = f(1).424

In Appendix A, we provide a simple proof that networks of BiLU neurons, even with a single425

hidden layer, have universal approximation properties. In the next two sections, we introduce two426

fundamental neuronal operations, scaling and balancing, that can be applied to the incoming and427

outgoing synaptic weights of neurons with BiLU activation functions.428

C.2 Scaling429

Definition C.12. (Scaling) For any BiLU neuron i in network and any λ > 0, we let Sλ(i) denote430

the synaptic scaling operation by which the incoming connection weights of neuron i are multiplied431

by λ and the outgoing connection weights of neuron i are divided by λ.432

Note that because of the homogeneous property the scaling operation does not change how neuron i433

affects the rest of the network. In particular, the input-output function of the overall network remains434

unchanged after scaling neuron i bt any λ > 0. Note also that scaling always preserves the sign of435

the synaptic weights to which it is applied, and the scaling operation can never convert a non-zero436

synaptic weight into a zero synaptic weight, or vice versa.437

As usual, the bias is treated here as an additional synaptic weight emanating from a unit clamped to438

the value one. Thus scaling is applied to the bias.439

Proposition C.13. (Commutativity of Scaling) Scaling operations applied to any pair of BiLU440

neurons i and j in a neural network commute: Sλ(i)Sµ(j) = Sµ(j)Sλ(i), in the sense that the441

resulting network weights are the same, regardless of the order in which the scaling operations are442

applied. Furthermore, for any BiLU neuron i: Sλ(i)Sµ(i) = Sµ(i)Sλ(i) = Sλµ(i).443

This is obvious. As a result, any set I of BiLU neurons in a network can be scaled simultaneously or444

in any sequential order while leading to the same final configuration of synaptic weights. If we denote445
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by 1, 2, . . . , n the neurons in I , we can for instance write:
∏

i∈I Sλi(i) =
∏

σ(i)∈I Sλσ(i)
(σ(i)) for446

any permutation σ of the neurons. Likewise, we can collapse operations applied to the same neuron.447

For instance, we can write: S5(1)S2(2)S3(1)S4(2) = S15(1)S8(2) = S8(2)S15(1)448

Definition C.14. (Coordinated Scaling) For any set I of BiLU neurons in a network and any λ > 0,449

we let Sλ(I) denote the synaptic scaling operation by which all the neurons in I are scaled by the450

same λ.451

C.3 Balancing452

Definition C.15. (Balancing) Given a BiLU neuron in a network, the balancing operation B(i) is453

a particular scaling operation B(i) = Sλ∗(i), where the scaling factor λ∗ is chosen to optimize a454

particular cost function, or regularizer, asociated with the incoming and outgoing weights of neuron455

i.456

For now, we can imagine that this cost function is the usual L2 (least squares) regularizer, but in457

the next section, we will consider more general classes of regularizers and study the corresponding458

optimization process. For the L2 regularizer, as shown in the next section, this optimization process459

results in a unique value of λ∗ such that sum of the squares of the incoming weights is equal to460

the sum of the squares of the outgoing weights, hence the term “balance”. Note that obviously461

B(B(i)) = B(i) and that, as a special case of scaling operation, the balancing operation does not462

change how neuron i contributes to the rest of the network, and thus it leaves the overall input-output463

function of the network unchanged.464

Unlike scaling operations, balancing operations in general do not commute as balancing operations465

(they still commute as scaling operations). Thus, in general, B(i)B(j) ̸= B(j)B(i). This is because466

if neuron i is connected to neuron j, balancing i will change the connection between i and j, and, in467

turn, this will change the value of the optimal scaling constant for neuron j and vice versa. However,468

if there are no non-zero connections between neuron i and neuron j then the balancing operations469

commute since each balancing operation will modify a different, non-overlapping, set of weights.470

Definition C.16. (Disjoint neurons) Two neurons i and j in a neural network are said to be disjoint471

if there are no non-zero connections between i and j.472

Thus in this case B(i)B(j) = Sλ∗(i)Sµ∗(j) = Sµ∗(j)Sλ∗(i) = B(j)B(i). This can be extended to473

disjoint sets of neurons.474

Definition C.17. (Disjoint Set of Neurons) A set I of neurons is said to be disjoint if for any pair i475

and j of neurons in I there are no non-zero connections between i and j.476

For example, in a layered feedforward network, all the neurons in a layer form a disjoint set, as long477

as there are no intra-layer connections or, more precisely, no non-zero intra-layer connections. All478

the neurons in a disjoint set can be balanced in any order resulting in the same final set of synaptic479

weights. Thus we have:480

Proposition C.18. If we index by 1, 2, . . . , n the neurons in a disjoint set I of BiLU neurons in a481

network, we have:
∏

i∈I B(i) =
∏

i∈I Sλ∗
i
(i) =

∏
σ(i)∈I Sλ∗

σ(i)
(σ(i)) =

∏
σ(i)∈I B(σ(i)) for any482

permutation σ of the neurons.483

Finally, we can define the coordinated balancing of any set I of BiLU neurons (disjoint or not484

disjoint).485

Definition C.19. (Coordinated Balancing) Given any set I of BiLU neurons (disjoint or not disjoint)486

in a network, the coordinated balacing of these neurons, written as Bλ∗(I), corresponds to coordi-487

nated scaling all the neurons in I by the same factor λ∗, Where λ∗ minimizes the cost functions of all488

the weights, incoming and outgoing, associated with all the neurons in I .489

Remark C.20. While balancing corresponds to a full optimization of the scaling operation, it is also490

possible to carry a partial optimization of the scaling operation by choosing a scaling factor that491

reduces the corresponding contribution to the regularizer without minimizing it.492

C.4 General Framework and Single Neuron Balance493

In this section, we generalize the kinds of regularizer to which the notion of neuronal synaptic balance494

can be applied, beyond the usual L2 regularizer and derive the corresponding balance equations.495
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Thus we consider a network (feedforward or recurrent) where the hidden units are BiLU units.496

The visible units can be partitioned into input units and output units. For any hidden unit i, if we497

multiply all its incoming weights IN(i) by some λ > 0 and all its outgoing weights OUT (i) by498

1/λ the overall function computed by the network remains unchanged due to the BiLU homogeneity499

property. In particular, if there is an error function that depends uniquely on the input-output function500

being computed, this error remains unchanged by the introduction of the multiplier λ. However, if501

there is also a regularizer R for the weights, its value is affected by λ and one can ask what is the502

optimal value of λ with respect to the regularizer, and what are the properties of the resulting weights.503

This approach can be applied to any regularizer. For most practical purposes, we can assume that504

the regularizer is continuous in the weights (hence in λ) and lower-bounded. Without any loss of505

generality, we can assume that it is lower-bounded by zero. If we want the minimum value to be506

achieved by some λ > 0, we need to add some mild condition that prevents the minimal value to507

be approached as λ → 0), or as λ → +∞. For instance, it is enough if there is an interval [a, b]508

with 0 < a < b where R achieves a minimal value Rmin and R ≥ Rmin in the intervals (0, a] and509

[b,+∞). Additional (mild) conditions must be imposed if one wants the optimal value of λ to be510

unique, or computable in closed form (see Theorems below). Finally, we want to be able to apply the511

balancing approach512

Thus, we consider overall regularized error functions, where the regularizer is very general, as long513

as it has an additive form with respect to the individual weights:514

E(W ) = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (8)

where W denotes all the weights in the network and E(W ) is typically the negative log-likelihood515

(LMS error in regression tasks, or cross-entropy error in classification tasks). We assume that the gw516

are continuous, and lower-bounded by 0. To ensure the existence and uniqueness of minimum during517

the balancing of any neuron, We will assume that each function gw depends only on the magnitude518

|w| of the corresponding weight, and that gw is monotonically increasing from 0 to +∞ (gw(0) = 0519

and limx→+∞ gw(x) = +∞). Clearly, L2, L1 and more generally all Lp regularizers are special520

cases where, for p > 0, Lp regularization is defined by: R(W ) =
∑

w |w|p.521

When indicated, we may require also that the functions gw be continuously differentiable, except522

perhaps at the origin in order to be able to differentiate the regularizer with respect to the λ’s and523

derive closed form conditions for the corresponding optima. This is satisfied by all forms of Lp524

regularization, for p > 0.525

Remark C.21. Often one introduces scalar multiplicative hyperparameters to balance the effect of526

E and R, for instance in the form: E = E + βR. These cases are included in the framework above:527

multipliers like β can easily be absorbed into the functions gw above.528

Theorem C.22. (General Balance Equation). Consider a neural network with BiLU activation529

functions in all the hidden units and overall error function of the form:530

E = E(W ) +R(W ) with R(W ) =
∑
w

gw(w) (9)

where each function gw(w) is continuous, depends on the magnitude |w| alone, and grows monotoni-531

cally from gw(0) = 0 to gw(+∞) = +∞. For any setting of the weights W and any hidden unit i in532

the network and any λ > 0 we can multiply the incoming weights of i by λ and the outgoing weights533

of i by 1/λ without changing the overall error E. Furthermore, there exists a unique value λ∗ where534

the corresponding weights v (v = λ∗w for incoming weights, v = w/λ∗ for the outgoing weights)535

achieve the balance equation:536 ∑
v∈IN(i)

gw(v) =
∑

w∈OUT (i)

gw(v) (10)

Proof. Under the assumptions of the theorem, E is unchanged under the rescaling of the incoming and537

outgoing weights of unit i due to the homogeneity property of BiLUs. Without any loss of generality,538

let us assume that at the beginning:
∑

w∈IN(i) gw(w) <
∑

w∈OUT (i) gw(w). As we increase λ from539

1 to +∞, by the assumptions on the functions gw, the term
∑

w∈IN(i) gw(λw) increases continuously540
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from its initial value to +∞, whereas the term
∑

w∈OUT (i) gw)w/λ) decreases continuously from541

its initial value to 0. Thus, there is a unique value λ∗ where the balance is realized. If at the beginning542 ∑
w∈IN(i) gw(w) >

∑
w∈OUT (i) gw(w), then the same argument is applied by decreasing λ from 1543

to 0.544

Remark C.23. For simplicity, here and in other sections, we state the results in terms of a network of545

BiLU units. However, the same principles can be applied to networks where only a subset of neurons546

are in the BiLU class, simply by applying scaling and balancing operations to only those neurons.547

Furthermore, not all BiLU neurons need to have the same BiLU activation functios. For instance, the548

results still hold for a mixed network containing both ReLU and linear units.549

Remark C.24. In the setting of Theorem C.22, the balance equations do not necessarily minimize550

the corresponding regularization term. This is addressed in the next theorem.551

Remark C.25. Finally, zero weights (w = 0) can be ignored entirely as they play no role in scaling552

or balancing. Furthermore, if all the incoming or outgoing weights of a hidden unit were to be zero,553

it could be removed entirely from the network554

Theorem C.26. (Balance and Regularizer Minimization) We now consider the same setting as in555

Theorem C.22, but in addition we assume that the functions gw are continuously differentiable, except556

perhaps at the origin. Then, for any neuron, there exists at least one optimal value λ∗ that minimizes557

R(W ). Any optimal value must be a solution of the consistency equation:558

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (11)

Once the weights are rebalanced accordingly, the new weights must satisfy the generalized balance559

equation:560 ∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (12)

In particular, if gw(w) = |w|p for all the incoming and outgoing weights of neuron i, then the optimal561

value λ∗ is unique and equal to:562

λ∗ =
(∑

w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2
(13)

The decrease ∆R ≥ 0 in the value of the Lp regularizer R =
∑

w |w|p is given by:563

∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(14)

After balancing neuron i, its new weights satisfy the generalized Lp balance equation:564 ∑
w∈IN(i)

|w|p =
∑

w∈OUT (i)

|w|p (15)

Proof. Due to the additivity of the regularizer, the only component of the regularizer that depends on565

λ has the form:566

R(λ) =
∑

w∈IN(i)

gw(λw) +
∑

w∈OUT (i)

gw(w/λ) (16)

Because of the properties of the functions gw, Rλ is continously differentiable and strictly bounded567

below by 0. So it must have a minimum, as a function of λ where its derivative is zero. Its derivative568

with respect to λ has the form:569

R′(λ) =
∑

w∈IN(i)

wg′w(λw) +
∑

w∈OUT (i)

(−w/λ2)g′w(w/λ) (17)
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Setting the derivative to zero, gives:570

λ2
∑

w∈IN(i)

wg′w(λw) =
∑

w∈OUT (i)

wg′w(w/λ) (18)

Assuming that the left-hand side is non-zero, which is generally the case, the optimal value for λ571

must satisfy:572

λ =
(∑

w∈OUT (i) wg
′
w(w/λ)∑

w∈IN(i) wg
′
w(λw)

)1/2
(19)

If the regularizing function is the same for all the incoming and outgoing weights (gw = g), then the573

optimal value λ must satisfy:574

λ =
(∑

w∈OUT (i) wg
′(w/λ)∑

w∈IN(i) wg
′(λw)

)1/2
(20)

In particular, if g(w) = |w|p then g(w) is differentiable except possibly at 0 and g′(w) =575

s(w)p|w|p−1, where s(w) denotes the sign of the weight w. Substituting in Equation 20, the optimal576

rescaling λ must satisfy:577

λ∗ =
(∑

w∈OUT (i) ws(w)|w|p−1∑
w∈IN(i) w|ws(w)|p−1

)1/2p
=

(∑
w∈OUT (i) |w|p∑
w∈IN(i) |w|p

)1/2p
=
( ||OUT (i)||p

||IN(i)||p

)1/2 (21)

At the optimum, no further balancing is possible, and thus λ∗ = 1. Equation 18 yields immediately578

the generalized balance equation to be satisfied at the optimum:579

∑
w∈IN(i)

wg′(w) =
∑

w∈OUT (i)

wg′(w) (22)

In the case of LP regularization, it is easy to check by applying Equation 22, or by direct calculation580

that:581

∑
w∈IN(i)

|λ∗w|p =
∑

w∈OUT (i)

|w/λ∗|p (23)

which is the generalized balance equation. Thus after balancing neuron, the weights of neuron i582

satisfy the Lp balance (Equation 15). The change in the value of the regularizer is given by:583

∆R =
∑

w∈IN(i)

|w|p +
∑

w∈OUT (i)

|w|p −
∑

w∈IN(i)

|λ∗w|p −
∑

w∈OUT (i)

|w/λ∗|p (24)

By substituting λ∗ by its explicit value given by Equation 21 and collecting terms gives Equation584

14.585

Remark C.27. The monotonicity of the functions gw is not needed to prove the first part of Theorem586

C.26. It is only needed to prove uniqueness of λ∗ in the Lp cases.587

Remark C.28. Note that the same approach applies to the case where there are multiple additive588

regularizers. For instance with both L2 and L1 regularization, in this case the function f has the589

form: gw(w) = αw2 + β|w|. Generalized balance still applies. It also applies to the case where590

different regularizers are applied in different disconnected portions of the network.591

Remark C.29. The balancing of a single BiLU neuron has little to do with the number of connections.592

It applies equally to fully connected neurons, or to sparsely connected neurons.593
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C.5 Scaling and Balancing Beyond BiLU Activation Functions594

So far we have generalized ReLU activation functions to BiLU activation functions in the context of595

scaling and balancing operations with positive scaling factors. While in the following sections we596

will continue to work with BiLU activation functions, in this section we show that the scaling and597

balancing operations can be extended even further to other activation functions. The section can be598

skipped if one prefers to progress towards the main results on stochastic balancing.599

Given a neuron with activation function f(x), during scaling instead of multiplying and dividing by600

λ > 0, we could multiply the incoming weights by a function g(λ) and divide the outgoing weights601

by a function h(λ), as long as the activation function f satisfies:602

f(g(λ)x) = h(λ)f(x) (25)
for every x ∈ R to ensure that the contribution of the neuron to the rest of the network remains603

unchanged. Note that if the activation function f satisfies Equation 25, so does the activation function604

−f . In Equation 25, λ does not have to be positive–we will simply assume that λ belongs to some605

open (potentially infinite) interval (a, b). Furthermore, the functions g and h cannot be zero for606

λ ∈ (a, b) since they are used for scaling. It is reasonable to assume that the functions g and h are607

continuous, and thus they must have a constant sign as λ varies over (a, b).608

Now, taking x = 0 gives f(0) = h(λ)f(0) for every λ ∈ (a, b), and thus either f(0) = 0 or h(λ) = 1609

for every λ ∈ (a, b). The latter is not interesting and thus we can assume that the activation function610

f satisfies f(0) = 0. Taking x = 1 gives f(g(λ)) = h(λ)f(1) for every λ in (a, b). For simplicity,611

let us assume that f(x) = 1. Then, we have: f(g(λ)) = h(λ) for every λ. Substituting in Equation612

25 yields:613

f(g(λ)x) = f(g(λ))f(x) (26)
for every x ∈ R and every λ ∈ (a, b). This relation is essentially the same as the relation that defines614

multiplicative activation functions over the corresponding domain (see Proposition C.4), and thus615

we can identify a key family of solutions using power functions. Note that we can define a new616

parameter µ = g(λ), where µ ranges also over some positive or negative interval I over which:617

f(µx) = f(µ)f(x).618

C.5.1 Bi-Power Units (BiPU)619

Let us assume that λ > 0, g(λ) = λ and h(λ) = λc for some c ∈ R. Then the activation function620

must satisfy the equation:621

f(λx) = λcf(x) (27)
for any x ∈ R and any λ > 0. Note that if f(x) = xc we get a multiplicative activation function.622

More generally, these functions are characterized by the following proposition.623

Proposition C.30. The set of activation functions f satisfying f(λx) = λcf(x) for any x ∈ R and624

any λ > 0 consist of the functions of the form:625

f(x) =

{
Cxc if x ≥ 0

Dxc if x < 0.
(28)

where c ∈ R, C = f(1) ∈ R, and D = f(−1) ∈ R. We call these bi-power units (BiPU). If, in626

addition, we want f to be continuous at 0, we must have either c > 0, or c = 0 with C = D.627

Given the general shape, these activations functions can be called BiPU (Bi-Power-Units). Note that628

in the general case where c > 0, C and D do not need to be equal. In particular, one of them can629

be equal to zero, and the other one can be different from zero giving rise to “rectified power units”630

(Figure 13).631

Proof. By taking x = 1, we get f(λ) = f(1)λc for any λ > 0. Let f(1) = C. Then we see632

that for any x > 0 we must have: f(x) = Cxc. In addition, for every λ > 0 we must have:633

f(λ0) = f(0) = λcf(0). So if c = 0, then f(x) = C = f(1) for x ≥ 0. If c ̸= 0, then f(0) = 0. In634
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Figure 13

this case, if we want the activation function to be continuous, then we see that we must have c ≥ 0. So635

in summary for x > 0 we must have f(x) = f(1)xc = Cxc. For the function to be right continuous636

at 0, we must have either f(0) = f(1) = C with c = 0 or f(0) = 0 with c > 0. We can now look637

at negative values of x. By the same reasoning, we have f(λ(−1)) = f(−λ) = λcf(−1) for any638

λ > 0. Thus for any x < 0 we must have: f(x) = f(−1)|x|c = D|x|c where D = f(−1). Thus, if639

f is continuous, there are two possibilities. If c = 0, then we must have C = f(1) = D(f − 1)− and640

thus f(x) = C everywhere. If c ̸= 0, then continuity requires that c > 0. In this case f(x) = Cxc641

for x ≥ 0 with C = f(1), and f(x) = Dxc for x < 0 with f(−1) = D. In all cases, it is easy to642

check directly that the resulting functions satisfy the functional equation given by Equation 27.643

C.5.2 Scaling BiPU Neurons644

A BiPU neuron can be scaled by multiplying its incoming weight by λ > 0 and dividing its outgoing645

weights by 1/λc. This will not change the role of the corresponding unit in the network, and thus it646

will not change the input-output function of the network.647

C.5.3 Balancing BiPU Neurons648

As in the case of BiLU neurons, we balance a multiplicative neuron by asking what is the optimal649

scaling factor λ that optimizes a particular regularizer. For simplicity, here we assume that the650

regularizer is in the Lp class. Then we are interested in the value of λ > 0 that minimizes the651

function:652

λp
∑

w∈IN

|w|p + 1

λpc

∑
w∈OUT

|w|p (29)

A simple calculation shows that the optimal value of λ is given by:653

λ∗ =
(c∑OUT |w|p∑

IN |w|p
)1/p(c+1)

(30)

Thus after balancing the weights, the neuron must satisfy the balance equation:654

c
∑
OUT

|w|p =
∑
IN

|w|p (31)

in the new weights w.655

So far, we have focused on balancing individual neurons. In the next two sections, we look at656

balancing across all the units of a network. We first look at what happens to network balance when a657

network is trained by gradient descent and then at what happens to network balance when individual658

neurons are balanced iteratively in a regular or stochastic manner.659

C.6 Network Balance: Gradient Descent660

A natural question is whether gradient descent (or stochastic gradient descent) applied to a network of661

BiLU neurons, with or without a regularizer, converges to a balanced state of the network, where all662
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the BiLU neurons are balanced. So we first consider the case where there is no regularizer (E = E).663

The results in Du et al. [2018] may suggest that gradient descent may converge to a balanced state. In664

particular, they write that for any neuron i:665

d

dt

( ∑
w∈IN(i)

w2 −
∑

w∈OUT (i)

w2
)
= 0 (32)

Thus the gradient flow exactly preserves the difference between the L2 cost of the incoming and666

outgoing weights or, in other words, the derivative of the L2 balance deficit is zero. Thus if one were667

to start from a balanced state and use an infinitesimally small learning rate one ought to stay in a668

balanced state at all times.669

However, it must be noted that this result was derived for the L2 metric only, and thus would not670

cover other Lp forms of balance. Furthermore, it requires an infinitesimally small learning rate. In671

practice, when any standard learning rate is applied, we find that gradient descent does not converge672

to a balanced state (Figure 1). However, things are different when a regularizer term is included in the673

error functions as described in the following theorem.674

Theorem C.31. Gradient descent in a network of BiLU units with error function E = E +R where675

R has the properties described in Theorem C.26 (including all Lp) must converge to a balanced state,676

where every BiLU neuron is balanced.677

Proof. By contradiction, suppose that gradient descent converges to a state that is unbalanced and678

where the gradient with respect to all the weights is zero. Then there is at least one unbalanced neuron679

in the network. We can then multiply the incoming weights of such a neuron by λ and the outgoing680

weights by 1/λ as in the previous section without changing the value of E. Since the neuron is not in681

balance, we can move λ infinitesimally so as to reduce R, and hence E . But this contradicts the fact682

that the gradient is zero.683

Remark C.32. In practice, in the case of stochastic gradient descent applied to E +R, at the end684

of learning the algorithm may hover around a balanced state. If the state reached by the stochastic685

gradient descent procedure is not approximately balanced, then learning ought to continue. In other686

words, the degree of balance could be used to monitor whether learning has converged or not.687

Balance is a necessary, but not sufficient, condition for being at the optimum.688

Remark C.33. If early stopping is being used to control overfitting, there is no reason for the689

stopping state to be balanced. However, the balancing algorithms described in the next section could690

be used to balance this state.691

C.7 Network Balance: Stochastic or Deterministic Balancing Algorithms692

In this section, we look at balancing algorithms where, starting from an initial weight configuration693

W , the BiLU neurons of a network are balanced iteratively according to some deterministic or694

stochastic schedule that periodically visits all the neurons. We can also include algorithms where695

neurons are partitioned into groups (e.g. neuronal layers) and neurons in each group are balanced696

together.697

C.7.1 Basic Stochastic Balancing698

The most interesting algorithm is when the BiLU neurons of a network are iteratively balanced in a699

purely stochastic manner. This algorithm is particularly attractive from the standpoint of physically700

implemented neural networks because the balancing algorithm is local and the updates occur randomly701

without the need for any kind of central coordination. As we shall see in the following section, the702

random local operations remarkably lead to a unique form of global order. The proof for the stochastic703

case extends immediately to the deterministic case, where the BiLU neurons are updated in a704

deterministic fashion, for instance by repeatedly cycling through them according to some fixed order.705

C.7.2 Subset Balancing (Independent or Tied)706

It is also possible to partition the BiLU neurons into non-overlapping subsets of neurons, and then707

balance each subset, especially when the neurons in each subset are disjoint of each other. In this708
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case, one can balance all the neurons in a given subset, and repeat this subset-balancing operation709

subset-by-subset, again in a deterministic or stochastic manner. Because the BiLU neurons in each710

subset are disjoint, it does not matter whether the neurons in a given subset are updated synchronously711

or sequentially (and in which order). Since the neurons are balanced independently of each other,712

this can be called independent subset balancing. For example, in a layered feedforward network with713

no lateral connections, each layer corresponds to a subset of disjoint neurons. The incoming and714

outgoing connections of each neuron are distinct from the incoming and outgoing connections of715

any other neuron in the layer, and thus the balancing operation of any neuron in the layer does not716

interfere with the balancing operation of any other neuron in the same layer. So this corresponds to717

independent layer balancing,718

As a side note, balancing a layer h, may disrupt the balance of layer h+ 1. However, balancing layer719

h and h + 2 (or any other layer further apart) can be done without interference of the balancing720

processes. This suggests also an alternating balancing scheme, where one alternatively balances all721

the odd-numbered layers, and all the evenly-numbered layers.722

Yet another variation is when the neurons in a disjoint subset are tied to each other in the sense that723

they must all share the same scaling factor λ. In this case, balancing the subset requires finding the724

optimal λ for the entire subset, as opposed to finding the optimal λ for each neuron in the subset.725

Since the neurons are balanced in a coordinated or tied fashion, this can be called coordinated or tied726

subset balancing. For example, tied layer balancing must use the same λ for all the neurons in a given727

layer. It is easy to see that this approach leads to layer synaptic balance which has the form (for an728

Lp regularizer):729

∑
i

∑
w∈IN(i)

|w|p =
∑
i

∑
w∈OUT (i)

|w|p (33)

where i runs over all the neurons in the layer. This does not necessarily imply that each neuron730

in the layer is individually balanced. Thus neuronal balance for every neuron in a layer implies731

layer balance, but the converse is not true. Independent layer balancing will lead to layer balance.732

Coordinated layer balancing will lead to layer balance, but not necessarily to neuronal balance of733

each neuron in the layer. Layer-wise balancing, independent or tied, can be applied to all the layers734

and in deterministic (e.g. sequential) or stochastic manner. Again the proof given in the next section735

for the basic stochastic algorithm can easily be applied to these cases (see also Appendix B).736

C.7.3 Remarks about Weight Sharing and Convolutional Neural Networks737

Suppose that two connections share the same weight so that we must have: wij = wkl at all times. In738

general, when the balancing algorithm is applied to neuron i or j, the weight wij will change and the739

same change must be applied to wkl. The latter may disrupt the balance of neuron k or l. Furthermore,740

this may not lead to a decrease in the overall value of the regularizer R.741

The case of convolutional networks is somewhat special, since all the incoming weights of the neurons742

sharing the same convolutional kernel are shared. However, in general, the outgoing weights are not743

shared. Furthermore, certain operations like max-pooling are not homogeneous. So if one trains a744

CNN with E alone, or even with E + R, one should not expect any kind of balance to emerge in745

the convolution units. However, all the other BiLU units in the network should become balanced by746

the same argument used for gradient descent above. The balancing algorithm applied to individual747

neurons, or the independent layer balancing algorithm, will not balance individual neurons sharing748

the same convolution kernel. The only balancing algorithm that could lead to some convolution layer749

balance, but not to individual neuronal balance, is the coordinated layer balancing, where the same λ750

is used for all the neurons in the same convolution layer, provided that their activation functions are751

BiLU functions.752

We can now study the convergence properties of balancing algorithms.753

C.8 Convergence of Balancing Algorithms754

We now consider the basic stochastic balancing algorithm, where BiLU neurons are iteratively and755

stochastically balanced. It is essential to note that balancing a neuron j may break the balance of756

another neuron i to which j is connected. Thus convergence of iterated balancing is not obvious.757
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There are three key questions to be addressed for the basic stochastic algorithm, as well as all the758

other balancing variations. First, does the value of the regularizer converges to a finite value? Second,759

do the weights themselves converge to fixed finite values representing a balanced state for the entire760

network? And third, if the weights converge, do they always converge to the same values, irrespective761

of the order in which the units are being balanced? In other words, given an initial state W for the762

network, is there a unique corresponding balanced state, with the same input-output functionalities?763

C.8.1 Notation and Key Questions764

For simplicity, we use a continuous time notation. After a certain time t each neuron has been765

balanced a certain number of times. While the balancing operations are not commutative as balancing766

operations, they are commutative as scaling operations. Thus we can reorder the scaling operations767

and group them neuron by neuron so that, for instance, neuron i has been scaled by the sequence of768

scaling operations:769

Sλ∗
1
(i)Sλ∗

2
(i) . . . Sλ∗

nit
(i) = SΛi(t)(i) (34)

where nit corresponds to the count of the last update of neuron i prior to time t, and:770

Λi(t) =
∏

1≤n≤nit

λ∗
n(i) (35)

For the input and output units, we can consider that their balancing coefficients λ∗ are always equal771

to 1 (at all times) and therefore Λi(t) = 1 for any visible unit i.772

Thus, we first want to know if R converges. Second, we want to know if the weights converge. This773

question can be split into two sub-questions: (1) Do the balancing factors λ∗
n(i) converge to a limit as774

time goes to infinity. Even if the λ∗
n(i)’s converge to a limit, this does not imply that the weights of775

the network converge to a limit. After a time t, the weight wij(t) between neuron j and neuron i has776

the value wijΛi(t)/Λj(t), where wij = wij(0) is the value of the weight at the start of the stochastic777

balancing algorithm. Thus: (2) Do the quantities Λi(t) converge to finite values, different from 0?778

And third, if the weights converge to finite values different from 0, are these values unique or not, i.e.779

do they depend on the details of the stochastic updates or not? These questions are answered by the780

following main theorem..781

C.8.2 Convergence of the Basic Stochastic Balancing Algorithm to a Unique Optimum782

Theorem C.34. (Convergence of Stochastic Balancing) Consider a network of BiLU neurons with an783

error function E(W ) = E(W ) +R(W ) where R satisfies the conditions of Theorem C.22 including784

all Lp (p > 0). Let W denote the initial weights. When the neuronal stochastic balancing algorithm is785

applied throughout the network so that every neuron is visited from time to time, then E(W ) remains786

unchanged but R(W ) must converge to some finite value that is less or equal to the initial value,787

strictly less if the initial weights are not balanced. In addition, for every neuron i, λ∗
i (t) → 1 and788

Λi(t) → Λi as t → ∞, where Λi is finite and Λi > 0 for every i. As a result, the weights themselves789

must converge to a limit W ′ which is globally balanced, with E(W ) = E(W ′) and R(W ) ≥ R(W ′),790

and with equality if only if W is already balanced. Finally, W ′ is unique as it corresponds to the791

solution of a strictly convex optimization problem in the variables Lij = log(Λi/Λj) with linear792

constraints of the form
∑

π Lij = 0 along any path π joining an input unit to an output unit and along793

any directed cycle (for recurrent networks). Stochastic balancing projects to stochastic trajectories in794

the linear manifold that run from the origin to the unique optimal configuration.795

Proof. Each individual balancing operation leaves E(W ) unchanged because the BiLU neurons are796

homogeneous. Furthermore, each balancing operation reduces the regularization error R(W ), or797

leaves it unchanged. Since the regularizer is lower-bounded by zero, the value of the regularizer must798

approach a limit as the stochastic updates are being applied.799

For the second question, when neuron i is balanced at some step, we know that the regularizer R800

decreases by:801
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∆R =

(( ∑
w∈IN(i)

|w|p
)1/2 − ( ∑

w∈OUT (i)

|w|p
)1/2)2

(36)

If the convergence were to occur in a finite number of steps, then the coefficients λ∗
i (t) must become802

equal and constant to 1 and the result is obvious. So we can focus on the case where the convergence803

does not occur in a finite number of steps (indeed this is the main scenario, as we shall see at the end804

of the proof). Since ∆R → 0, we must have:805 ∑
w∈IN(i)

|w|p →
∑

w∈OUT (i)

|w|p (37)

But from the expression for λ∗ (Equation 21), this implies that for every i, λ∗
n(i) → 1 as time806

increases (n → ∞). This alone is not sufficient to prove that Λi(t) converges for every i as t → ∞.807

However, it is easy to see that Λi(t) cannot contain a sub-sequence that approaches 0 or ∞ (Figure808

14). Furthermore, not only ∆R converges to 0, but the series
∑

∆R is convergent. This shows809

that, for every i, ∆i(t) must converge to a finite, non-zero value ∆i. Therefore all the weights must810

converge to fixed values given by wij(0)Λi/Λj .811

ȿ1(t)=1 ȿ2(t) ȿ3(t) ȿ4(t) ȿ5(t)=1
ȿ2(t)/ȿ1(t) ȿ3(t)/ȿ2(t) ȿ4(t)/ȿ3(t) ȿ5(t)/ȿ4(t)

Input Unit Output Unit

Figure 14: A path with three hidden BiLU units connecting one input unit to one output unit. During
the application of the stochastic balancing algorithm, at time t each unit i has a cumulative scaling
factor Λi(t), and each directed edge from unit j to unit i has a scaling factor Mij(t) = Λi(t)/Λj(t).
The λi(t) must remain within a finite closed interval away from 0 and infinity. To see this, imagine for
instance that there is a subsequence of Λ3(t) that approaches 0. Then there must be a corresponding
subsequence of Λ4(t) that approaches 0, or else the contribution of the weight w43Λ4(t)/Λ3(t) to
the regularizer would go to infinity. But then, as we reach the output layer, the contribution of the
last weight w54Λ5(t)/Λ4(t) to the regularizer goes to infinity because Λ5(t) is fixed to 1 and cannot
compensate for the small values of Λ4(t). And similarly, if there is a subsequence of Λ3(t) going to
infinity, we obtain a contradiction by propagating its effect towards the input layer.

Finally, we prove that given an initial set of weights W , the final balanced state is unique and812

independent of the order of the balancing operations. The coefficients Λi corresponding to a globally813

balanced state must be solutions of the following optimization problem:814

min
Λ

R(Λ) =
∑
ij

|Λi

Λj
wij |p (38)

under the simple constraints: Λi > 0 for all the BiLU hidden units, and Λi = 1 for all the visible (input815

and output) units. In this form, the problem is not convex. Introducing new variables Mj = 1/Λj816

is not sufficient to render the problem convex. Using variables Mij = Λi/Λj is better, but still817

problematic for 0 < p ≤ 1. However, let us instead introduce the new variables Lij = log(Λi/Λj).818

These are well defined since we know that Λi/Λj > 0. The objective now becomes:819

minR(L) =
∑
ij

|eLijwij |p =
∑
ij

epLij |wij |p (39)

This objective is strictly convex in the variables Lij , as a sum of strictly convex functions (exponen-820

tials). However, to show that it is a convex optimization problem we need to study the constraints821
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Λ1 Λ2 Λ3 Λ4 Λ5Λ2/Λ1 Λ3/Λ2 Λ4/Λ3 Λ5/Λ4

Input Unit Output Unit

Figure 15: A path with five units. After the stochastic balancing algorithm has converged, each unit i
has a scaling factor Λi, and each directed edge from unit j to unit i has a scaling factor Mij = Λi/Λj .
The products of the Mij’s along the path is given by: Λ2

Λ1

Λ3

Λ2

Λ4

Λ3

Λ5

Λ4
= Λ5

Λ1
. Accordingly, if we sum the

variables Lij = logMij along the directed path, we get L21 + L32 + L43 + L54 = logΛ5 − log Λ1.
In particular, if unit 1 is an input unit and unit 5 is an output unit, we must have Λ1 = Λ5 = 1 and
thus: L21 + L32 + L43 + L54 = 0. Likewise, in the case of a directed cycle where unit 1 and unit 5
are the same, we must have: L21 + L32 + L43 + L54 + L15 = 0.

Λ1

Λ6

Λ2 Λ3 Λ4

Λ7

Λ5

Λ2/Λ1

Λ3/Λ2 Λ4/Λ3

Λ7/Λ4

Λ6/Λ5

Λ7/Λ6

Figure 16: Two hidden units (1 and 7) connected by two different directed paths 1-2-3-4-7 and
1-5-6-7 in a BiLU network. Each unit i has a scaling factor Λi, and each directed edge from unit
j to unit i has a scaling factor Mij = Λi/Λj . The products of the Mij’s along each path is equal
to: Λ2

Λ1

Λ3

Λ2

Λ4

Λ3

Λ7

Λ4
= Λ5

Λ1

Λ6

Λ5

Λ7

Λ6
= Λ7

Λ1
. Therefore the variables Lij = logMij must satisfy the linear

equation: L21 + L32 + L43 + L74 = L51 + L65 + L76 =log Λ7 − log Λ1.

on the variables Lij . In particular, from the set of Λi’s it is easy to construct a unique set of Lij .822

However what about the converse?823

Definition C.35. A set of real numbers Lij , one per connection of a given neural architecture, is824

self-consistent if and only if there is a unique corresponding set of numbers Λi > 0 (one per unit)825

such that: Λi = 1 for all visible units and Lij = logΛi/Λj for every directed connection from a unit826

j to a unit i.827

Remark C.36. This definition depends on the graph of connections, but not on the original values828

of the synaptic weights. Every balanced state is associated with a self-consistent set of Lij , but not829

every self-consistent set of Lij is associated with a balanced state.830

Proposition C.37. A set Lij associated with a neural architecture is self-consistent if and only if831 ∑
π Lij = 0 where π is any directed path connecting an input unit to an output unit or any directed832

cycle (for recurrent networks).833

Remark C.38. Thus the constraints associated with being a self-consistent configuration of Lij’ s834

are all linear. This resulting linear manifold L depends only on the architecture, i.e., the graph of835

connections, but not on the actual weight values. The strictly convex function R(Lij) depends on836

the actual weights W . Different sets of weights W produce different convex functions over the same837

linear manifold. If E denotes the total number of connections, then obviously dimL ≤ E. In order838

to infer all the Λi, there must exist at least one constrained path going through each node i. Thus,839

in a layered feedforward network, the dimension of L is given by: dimL = E −M , where here M840

denotes the size of the largest layer.841
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Figure 17: Consider two paths α+ β and γ + δ from the input layer to the output layer going through
the same unit i. Let us assume that the first path assigns a multiplier Λi to unit i and the second path
assigns a multiplier Λ′

i to the same unit. By assumption we must have:
∑

α Lij +
∑

β Lij = 0 for
the first path, and

∑
γ Lij +

∑
δ Lij = 0. But α+ δ and γ + β are also paths from the input layer

to the output layer and therefore:
∑

α Lij +
∑

δ Lij = 0 and
∑

γ Lij +
∑

β Lij = 0. As a result,∑
α Lij = logΛi =

∑
γ Lij = Λ′

i. Therefore the assignment of the multiplier Λi must be consistent
across different paths going through unit i.

Remark C.39. One could coalesce all the input units and all output units into a single unit, in which842

case a path from an input unit to and output unit becomes also a directed cycle. In this representation,843

the constraints are that the sum of the Lij must be zero along any directed cycle. In general, it is not844

necessary to write a constraint for every path from input units to output units. It is sufficient to select845

a representative set of paths such that every unit appears in at least one path.846

Proof. If we look at any directed path π from unit i to unit j, it is easy to see that we must have:847

∑
π

Lkl = logΛi − log Λj (40)

This is illustrated in Figures 15 and 16. Thus along any directed path that connects any input unit848

to any output unit, we must have
∑

π Lij = 0. In addition, for recurrent neural networks, if π is a849

directed cycle we must also have:
∑

π Lij = 0. Thus in short we only need to add linear constraints850

of the form:
∑

π Lij = 0. Any unit is situated on a path from an input unit to an output unit. Along851

that path, it is easy to assign a value Λi to each unit by simple propagation starting from the input unit852

which has a multiplier equal to 1. When the propagation terminates in the output unit, it terminates853

consistently because the output unit has a multiplier equal to 1 and, by assumption, the sum of854

the multipliers along the path must be zero. So we can derive scaling values Λi from the variables855

Lij . Finally, we need to show that there are no clashes, i.e. that it is not possible for two different856

propagation paths to assign different multiplier values to the same unit i. The reason for this is857

illustrated in Figure 17.858

We can now complete the proof Theorem C.34. Given a neural network of BiLUs with a set of859

weights W , we can consider the problem of minimizing the regularizer R(Lij over the self-admissible860

configuration Lij . For any p > 0, the Lp regularizer is strictly convex and the space of self-admissible861

configurations is linear and hence convex. Thus this is a strictly convex optimization problem that has862

a unique solution (Figure 18). Note that the minimization is carried over self-consistent configurations,863

which in general are not associated with balanced states. However, the configuration of the weights864

associated with the optimum set of Lij (point A in Figure 18) must be balanced. To see this, imagine865
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Figure 18: The problem of minimizing the strictly convex regularizer R(Lij) =
∑

ij e
pLij |wij |p

(p > 0), over the linear (hence convex) manifold of self-consistent configurations defined by the
linear constraints of the form

∑
π Lij = 0, where π runs over input-output paths. The regularizer

function depends on the weights. The linear manifold depends only on the architecture, i.e., the graph
of connections. This is a strictly convex optimization problem with a unique solution associated with
the point A. At A the corresponding weights must be balanced, or else a self-consistent configuration
of lower cost could be found by balancing any non-balanced neuron. Finally, any other self-consistent
configuration B cannot correspond to a balanced state of the network, since there must exist balancing
moves that further reduce the regularizer cost (see main text). Stochastic balancing produces random
paths from the origin, where Lij= logMij = 0, to the unique optimum point A.

that one of the BiLU units–unit i in the network is not balanced. Then we can balance it using a866

multiplier λ∗
i and replace Λi by Λ′

i = Λiλ
∗. It is easy to check that the new configuration including Λ′

i867

is self-consistent. Thus, by balancing unit i, we are able to reach a new self-consistent configuration868

with a lower value of R which contradicts the fact that we are at the global minimum of the strictly869

convex optimization problem.870

We know that the stochastic balancing algorithm always converges to a balanced state. We need to871

show that it cannot converge to any other balanced state, and in fact that the global optimum is the872

only balanced state. By contradiction, suppose it converges to a different balanced state associated873

with the coordinates (LB
ij) (point B in Figure 18). Because of the self-consistency, this point is also874

associated with a unique set of (ΛB
i ) coordinates. The cost function is continuous and differentiable875

in both the Lij’s and the Λi’s coordinates. If we look at the negative gradient of the regularizer, it876

is non-zero and therefore it must have at least one non-zero component ∂R/∂Λi along one of the877

Λi coordinates. This implies that by scaling the corresponding unit i in the network, the regularizer878

can be further reduced, and by balancing unit i the balancing algorithm will reach a new point (C in879

Figure 18) with lower regularizer cost. This contradicts the assumption that B was associated with880

a balanced stated. Thus, given an initial set of weights W , the stochastic balancing algorithm must881

always converge to the same and unique optimal balanced state W ∗ associated with the self-consistent882

point A. A particular stochastic schedule corresponds to a random path within the linear manifold883

from the origin (at time zero all the multipliers are equal to 1, and therefore for any i and any j:884

Mij = 1 and Lij = 0) to the unique optimum point A.885

Remark C.40. From the proof, it is clear that the same result holds also for any deterministic886

balancing schedule, as well as for tied and non-tied subset balancing, e.g., for layer-wise balancing887
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Figure 19: SGD applied to E alone, in general, does not converge to a balanced state, but sGD
applied to E + R converges to a balanced state. (A-C) Simulations use a deep fully connected
autoencoder trained on the MNIST dataset. (D-F) Simulations use a deep locally connected network
trained on the CIFAR10 dataset. (A,D) Regularization leads to neural balance. (B,E) The training
loss decreases and converges during training (these panels are not meant for assessing the quality of
learning when using a regularizer). (C,F) Using weight regularization decreases the norm of weights.
(A-F) Shaded areas correspond to one s.t.d around the mean (in some cases the s.t.d. is small and the
shaded area is not visible).

and tied layer-wise balancing. In the Appendix, we provide an analytical solution for the case of tied888

layer-wise balancing in a layered feed-forward network.889

Remark C.41. The same convergence to the unique global optimum is observed if each neuron,890

when stochastically visited, is partially balanced (or favorably scaled) rather than fully balanced, i.e.,891

it is scaled with a factor that reduces R but not necessarily minimizes R. Stochastic balancing can892

also be viewed as a form of EM algorithm where the E and M steps can be taken fully or partially.893

C.8.3 Convergence to a Unique Optimum for BiPU Stochastic Balancing894

We have seen that a generalized form of scaling and balancing can be defined for more general895

units than BiLUs, in particular for BiPUs. Thus now we consider a network of units with activations896

functions f satisfying the relationship: f(λx) = λcf(x) (note that this includes BiLU units for897

c = 1). We even allow c to vary from unit to unit.898

It is easy to see that most of the analyses above done for BiLU units apply to this generalization. In899

particular, if we apply stocahstic generalized balancing, in the limit the positive multipliers of each900

connection wij must satisfy:901

Mij = Λi/Λ
cj
j (41)

As above, we can define a new set of variables Lij = logMij and, for any p > 0, the regularizer902

R(L) =
∑

ij e
pLij |wij |p is strictly convex. What is different, however, is the set of constraints on903

the variables Lij . These are the constraints that allow one to compute the variables Λi uniquely from904

the variables Lij (or, equivalently, the variables Mij). This is addressed by the following theorem.905

Theorem C.42. Under the same conditions of Theorem C.34, but using activation functions that906

satisfy for each unit i the relationship f(λx) = λcif(x), the corresponding stochastic generalized907

balancing algorithm converges to the unique minimum of a strictly convex optimization problem in908

the variables Lij . The strictly convex objective function is given by R(L) =
∑

ij e
pLij |wij |p. The909

constraints are linear and of the form:910
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Figure 20: Even if the starting state is balanced, SGD does not preserve the balance unless
the learning rate is infinitely small. (A-C) Simulations use a deep fully connected autoencoder
trained on the MNIST dataset. (D-F) Simulations use deep locally connected network trained on the
CIFAR10 dataset. (A-F) The initial weights are balanced using the stochastic balancing algorithm.
Then the network is trained by SGD. (A,D) When the learning rate (lr) is relatively large, without
regularization, the initial balance of the network is rapidly disrupted. (B,E) The training loss decreases
and converges during training (these panels are not meant for assessing the quality of learning when
using a regularizer). (C,F) Using weight regularization decreases the norm of the weights. (A-F)
Shaded areas correspond to one s.t.d around the mean (in some cases the s.t.d. is small and the shaded
area is not visible).

∑
i∈π

(
n∏

k=i

ck

)
Lii−1 = 0 (42)

for each path π from an input unit to an output unit, going sequentially through the units 0, 1, . . . , n,911

where 0 corresponds to the input unit, and n corresponds to the output unit of the path. The set of912

paths in the constraints must cover all the units in the network.913

Proof. Let us assume that there is a consistent set of multipliers Λ0, . . . ,Λn associated with the914

coefficients Lii−1 = logMii−1 along the path π, with Λ0 = Λn = 1. Since Mii−1 = Λi/Λ
ci−1

i−1 , we915

can derive the multipliers Λi iteratively by propagating information from the input unit to the output916

unit, in the form:917

Λi = Mii−1Λ
ci−1

i−1 or log Λi = Lii−1 + ci−1 log Λi−1 (43)

Using the boundary conditions Λ0 = Λn = 1 gives the formula in Theorem C.42. The same918

arguments given for BiLU units can be used to complete the proof.919

Remark C.43. Note that if all the units have the same exponent c associated with the scaling of their920

activation functions, then the linear constraints have the simplified form:921

∑
i∈π

cn+1−iLii−1 = 0 (44)
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Universal Approximation Properties of BiLU Neurons922

Here we show that any continuous real-valued function defined over a compact set of the Euclidean923

space can be approximated to any degree of precision by a network of BiLU neurons with a single924

hidden layer. As in the case of the similar proof given in Baldi [2021] using linear threshold gates in925

the hidden layer, it is enough to prove the theorem for a continuous function f : 0, 1 → R.926

Theorem C.44. (Universal Approximation Properties of BiLU Neurons) Let f be any continuous927

function from [0, 1] to R and ϵ > 0. Let gλ be the ReLU activation function with slope λ ∈ Rs. Then928

there exists a feedforward network with a single hidden layer of neurons with ReLU activations of the929

form gλ and a single output linear neuron, i.e., with BiLU activation equal to the identity function,930

capable of approximating f everywhere within ϵ (sup norm).931

Proof. To be clear, gλ(x) = 0 for x < 0 and gλ(x) = λx for 0 ≤ x. Since f is continuous over a932

compact set, it is uniformly continuous. Thus there exists α > 0 such that for any x1 and x2 in the933

[0, 1] interval:934

|x2 − x1| < α =⇒ |f(x2)− f(x1)| < ϵ (45)
Let N be an integer such that 1 < Nα, and let us slice the interval [0, 1] into N consecutive slices of935

width h = 1/N , so that within each slice the function f cannot jump by more than ϵ. Let us connect936

the input unit to all the hidden units with a weight equal to 1. Let us have N hidden units numbered937

1, . . . , N with biases equal to 0, 1/N, 2/N, ...., N1/N respectively and activation function of the938

form gλk
. It is essential that different units be allowed to have different slopes λk. The input unit939

is connected to all the hidden units and all the weights on these connections are equal to 1. Thus940

when x is in the k-th slice, (k − 1)/N ≤ x < k/N , all the units from k + 1 to N have an output941

equal to 0, and all the units from 1 to k have an output determined by the corresponding slopes. All942

the hidden units are connected to the output unit with weights β1, . . . , βN , and β0 is the bias of the943

output unit. We want the output unit to be linear. In order for the ϵ approximation to be satisfied,944

it is sufficient if in the (k − 1)/N ≤ x < k/N interval, the output is equal to the line joining the945

point f((k − 1)/N) to the point f(k/N). In other words, if x ∈ [(k − 1)/N, k/N), then we want946

the output of the network to be:947

β0 +

k∑
i=1

βiλi(x− (i− 1)h) =

f(
k − 1

N
) +

f( k
N )− f(k−1

N )

h
(x− (k − 1)h)

(46)

By equating the y-intercept and slope of the lines on the left-hand side and the righ- hand side of948

Equation 46, we can solve for the weights β’s and the slopes λ’s.949

As in the case of the similar proof using linear threshold functions in the hidden layer (see Baldi950

[2021],) this proof can easily be adapted to continuous functions defined over a compact set of Rn,951

even with a finite number of finite discontinuities, and into Rm.952

Analytical Solution for the Unique Global Balanced State953

Here we directly prove the convergence of stochastic balancing to a unique final balanced state, and954

derive the equations for the balanced state, in the special case of tied layer balancing (as opposed to955

single neuron balancing). The Proof and the resulting equations are also valid for stochastic balancing956

(one neuron at a time) in a layered architecture comprising a single neuron per layer. Let us call tied957

layer scaling the operation by which all the incoming weights to a given layer of BiLU neurons are958

multiplied by λ > 0 and all the outgoing weights of the layer are multiplied by 1/λ, again leaving the959

training error unchanged. Let us call layer balancing the particular scaling operation corresponding960

to the value of λ that minimizes the contribution of the layer to the L2 (or any other Lp) regularizer961

vaue. This optimal value of λ∗ results in layer-wise balance equations: the sum of the squares of all962

the incoming weights of the layer must be equal to the sum of the squares of all the outgoing weights963

of the layer in the L2 case, and similarly in all LP cases.964
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Theorem C.45. Assume that tied layer balancing is applied iteratively and stochastically to the965

layers of a layered feedforward network of BiLU neurons. As long as all the layers are visited966

periodically, this procedure will always converge to the same unique set of weights, which will satisfy967

the layer-balance equations at all layers, irrespective of the details of the schedule. Furthermore, the968

balance state can be solved analytically.969

Proof. Every time a layer balancing operation is applied, the training error remains the same, and the970

L2 (or any other Lp) regularization error decreases or stays the same. Since the regularization error971

is always positive, it must converge to a certain value. Using the same arguments as in the proof of972

Theorem C.34, the weights must also converge to a stable configuration, and since the configuration973

is stable all its layers must satisfy the layer-wise balance equation. The key remaining question is974

why is this configuration unique and can we solve it analytically? Let A1, A2, . . . AN denote the975

matrices of connections between the layers of the network. Let Λ1,Λ2, . . . ,ΛN−1 be N − 1 strictly976

positive multipliers, representing the limits of the products of the corresponding λ∗
i associated with977

each balancing step at layer i, as in the proof of Theorem C.34. In this notation, layer 0 is the input978

layer and layer N is the output layer (with Λ0 = 1 and ΛN = 1).979

After converging, each matrix Ai becomes the matrix Λi/Λi−1Ai = MiAi for i = 1 . . . N , with980

Mi = λi/Λi−1. The multipliers Mi must minimize the regularizer while satisfying M1 . . .MN = 1981

to ensure that the training error remains unchanged. In other words, to find the values of the Mi’s we982

must minimize the Lagrangian:983

L(M1, . . . ,MN ) =

N∑
i=1

||MiAi||2 + µ(1−
N∏
i=1

Mi) (47)

written for the L2 case in terms of the Frobenius norm, but the analysis is similar in the general Lp984

case. From this, we get the critical equations:985

∂L
∂Mi

= 2Mi||Ai||2 − µM1 . . .Mi−1Mi+1 . . .MN = 0

for i = 1, . . . , N and

N∏
i=1

Mi = 1

(48)

As a resut, for every i:986

2Mi||Ai||2 −
µ

Mi
= 0 or µ = 2M2

i ||Ai||2 (49)

Thus each Mi > 0 can be expressed in a unique way as a function of the Lagrangian multiplier µ as:987

Mi = (µ/2||Ai||2)1/2. By writing again that the product of the Miis equal to 1, we finally get:988

µN = 2N
N∏
i=1

||Ai||2 or µ = 2

N∏
i=1

||Ai||2/N (50)

Thus we can solve for Mi:989

Mi =
µ

2||Ai||2
=

∏N
i=1 ||Ai||2/N

||Ai||2
for i = 1, . . . , N (51)

Thus, in short, we obtain a unique closed-form expression for each Mi. From there, we infer the990

unique and final state of the weights, where A∗
i = MiAi = ΛiAl/Λl−1. Note that each Mi depends991

on all the other Mj’s, again showcasing how the local balancing algorithm leads to a unique global992

solution.993
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