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ABSTRACT
As Vision Transformers (ViTs) become standard backbones across vision, a mech-
anistic account of their computational phenomenology is now essential. Despite
architectural cues that hint at dynamical structure, there is no settled framework
that interprets Transformer depth as a well-characterized flow. In this work, we in-
troduce the Block-Recurrent Hypothesis (BRH), arguing that trained ViTs admit
a block-recurrent depth structure such that the computation of the original L blocks
can be accurately rewritten using only k ≪ L distinct blocks applied recurrently.
Across diverse ViTs, between-layer representational similarity matrices suggest few
contiguous phases. To determine whether this reflects reusable computation, we
operationalize our hypothesis in the form of block recurrent surrogates of pretrained
ViTs, which we call Recurrent Approximations to Phase-structured TransfORmers
(Raptor). Using small-scale ViTs, we demonstrate that phase-structure metrics
correlate with our ability to accurately fit Raptor and identify the role of stochastic
depth in promoting the recurrent block structure. We then provide an empirical
existence proof for BRH in foundation models by showing that we can train a
Raptor model to recover 94% of DINOv2 ImageNet-1k linear probe accuracy in
only 2 blocks. To provide a mechanistic account of these observations, we leverage
our hypothesis to develop a program of Dynamical Interpretability. We find (i)
directional convergence into class-dependent angular basins with self-correcting
trajectories under small perturbations (ii) token-specific dynamics, where cls
executes sharp late reorientations while patch tokens exhibit strong late-stage
coherence reminiscent of a mean-field effect and converge rapidly toward their
mean direction and (iii) a collapse of the update field to low rank in late depth,
consistent with convergence to low-dimensional attractors. Altogether, we find
that a compact recurrent program emerges along the depth of ViTs, pointing to a
low-complexity normative solution that enables these models to be studied through
principled dynamical systems analysis.

1 INTRODUCTION

In the last decade, Transformers have become the default neural network architecture across machine
learning communities, scaling favorably with data and compute (Vaswani et al., 2017; Kaplan et al.,
2020). In particular, Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have become the core
architecture used in visual foundation modeling frameworks such as DINOv2 (Oquab et al., 2023;
Darcet et al., 2023) and CLIP (Radford et al., 2021); and have come to dominate a wide range of
visual tasks, from general visual feature extraction (He et al., 2021; Chiu et al., 2024; Yun, 2025),
to diffusion (Peebles & Xie, 2023), image segmentation (Kirillov et al., 2023; Liu et al., 2024),
and video processing (Arnab et al., 2021; Baldassarre et al., 2025). This increasing breadth of use
motivates a move from empirical optimization to principled understanding

Two pressures make this understanding urgent. First, safety-critical deployments (Wang & Chung,
2022; Alecu et al., 2022) demand mechanisms whose internal computation is inspectable (Losch
et al., 2021), diagnosable (Adebayo et al., 2020), and verifiable (Tjeng & Tedrake, 2019) rather than
opaque. As these models proliferate across domains, the ability to explain (Doshi-Velez & Kim, 2017;
Gilpin et al., 2018; Kim et al., 2018), manipulate, and verify their behavior becomes increasingly
essential. Second, from a scientific inference perspective (Cichy & Kaiser, 2019), the algorithmic
structure of these models is central. Their performance is not anecdotal and a clearer account of the
algorithms they implement would constrain hypotheses about learned strategies and could inform
science adjacent to intelligence. The goal is not to compare present-day vision models with human
cognition, but to isolate computational motifs that would help explain why these systems work as
well as they do.

Our approach focuses on finding the underlying simplicity in these complex systems. We look for
simple principles that might explain their success, whether in functional expressivity (Balestriero
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Dinov2 SigLip ViT (small) ViT (large) 

Figure 1: Layer–layer similarity matrices across diverse Vision Transformers reveal block-
structure. Despite differences in scale and training objectives, all models exhibit contiguous block
structure along depth, visible as phase-segmented regions of high similarity. Beyond representational
similarity, this raises the question of whether a deeper functional recurrence underlies these patterns,
hinting at block-wise reusability of computation across layers. In this work, we investigate this
hypothesis, showing that these phase segments correspond to blocks with functional similarity, which
can be approximated by a single shared block applied recurrently along depth.

et al., 2018), symmetry (Cohen & Welling, 2014; Olah et al., 2020), or computation (Wilson, 2025;
Goldblum et al., 2023; Schmidhuber, 1997; Mingard et al., 2025). Discovering it should improve
both development and interpretability (Bereska & Gavves, 2024; Carvalho et al., 2019; Fel, 2024;
Ghorbani et al., 2017; Fel et al., 2023; Smilkov et al., 2017; Sundararajan et al., 2017; Zeiler &
Fergus, 2014; Templeton et al., 2024; Bricken et al., 2023). Depth offers a concrete place to look
for this simplicity. Residual connections have long suggested a link to dynamical systems (Liao &
Poggio, 2020; Veit et al., 2016; Greff et al., 2016; Boulch, 2017; Haber & Ruthotto, 2017), hinting
at implicit recurrence even when layers have distinct parameters. This makes plausible a form
of algorithmic parsimony (Ma et al., 2022) in which a small set of blocks is reused across many
layers, trading parameters for iterations. Related perspectives support this view (Dingle et al., 2020).
More concretely, residual updates invite a discrete-time interpretation of depth (Sander et al., 2022),
attention induces coupled token dynamics (Lu et al., 2019; Geshkovski et al., 2023), and in language
models contiguous block recurrence has been observed and exploited (Geiping et al., 2025). However,
no existing framework characterizes depth in ViTs as representational flow or determines whether
apparent phases correspond to functional reuse. Furthermore, vision explainability research (Bach
et al., 2015; Fong & Vedaldi, 2017; Novello et al., 2022; Muzellec et al., 2024; Petsiuk et al., 2018;
Hedström et al., 2022; Fel et al., 2025; Gorton, 2024; Kowal et al., 2024; Bau et al., 2017; Vilas
et al., 2023) has not leveraged dynamical systems analysis to model emergent network structure. In
this work, we take this possibility seriously and advance the Block-Recurrent Hypothesis (BRH):
after training, the depth of a ViT organizes into a small number of contiguous phases such that the
computation of the original L layers can be rewritten by reusing only k ≪ L distinct blocks applied
recurrently. Empirically, layer–layer representational similarity matrices consistently exhibit block-
diagonal structure across disparate models. Representational similarity alone does not guarantee
functional equivalence; therefore, we ask: Does this phase structure admit functional reuse? Our
contributions. Our study proceeds in three parts:

• Empirical evidence for block-recurrent structure. We demonstrate across diverse Vision Trans-
formers that layer-layer representational similarity matrices exhibit distinct contiguous phases of
computation, formalized through the Block-Recurrent Hypothesis. We develop a max-cut algorithm
to systematically identify phase boundaries and show that this block structure emerges during training
and is strengthened by stochastic depth.

• Constructive verification via recurrent surrogates. We operationalize the BRH by training weight-
tied block-recurrent approximations of pretrained ViTs, termed Raptor. Critically, our goal is not
compression or efficiency optimization per se, but rather to demonstrate that functional reuse is
genuinely possible. Raptor reconstructs the complete internal representation trajectory across all
layers, not merely the final output, providing strong evidence for true computational equivalence
rather than input-output mimicry. Specifically, we provide empirical evidence for the BRH on
foundational vision models by training a Raptor that recovers 94% of DINOv2’s ImageNet-1k
linear-probe accuracy using only 2 recurrent blocks, and 97% with 3 blocks.

• Dynamical systems analysis framework. Leveraging our hypothesis, we develop a program of
Dynamical Interpretability that treats ViT depth as an iterated dynamical system. Our analysis reveals:
(i) directional convergence into class-dependent angular basins with self-correcting trajectories
under perturbations, (ii) token-specific dynamics where cls tokens execute sharp late reorientations
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while patch tokens exhibit strong coherence reminiscent of mean-field behavior, and (iii) collapse
of layer-to-layer updates to low-rank subspaces consistent with convergence to low-dimensional
attractors.
As a first step, we characterize emergent phases in representation space, motivating the formulation
of the Block-Recurrent Hypothesis.

2 EMERGENT PHASE STRUCTURE & THE BLOCK-RECURRENT HYPOTHESIS

Our investigation starts with a simple experiment: we construct layer-layer similarity matrices by
computing the cosine similarity of each token at layer l with the same token at layer m. As shown in
Figure 1, despite significant differences in tasks, training objectives, and scale, all models exhibit
consistent block-wise organization where contiguous layers exhibit high mutual similarity within
blocks and lower similarity across block boundaries. This finding echoes early observations in
residual networks (Kornblith et al., 2019), but raises a fundamental question: does representational
similarity reflect deeper computational structure? In fact, representational similarity alone provides
no guarantee of functional equivalence. Layers might produce similar representations through entirely
different computational pathways, or conversely, functionally equivalent computations might yield
representations that appear dissimilar due to linear transformations or noise. The critical question
is whether these apparent phases correspond to genuine functional recurrence – that is, whether
the same computational operations are being reused across different layers within each phase. We
formalize this possibility through the Block-Recurrent Hypothesis:
Definition 1 (Block-Recurrent Hypothesis (BRH)). Let f be a trained Vision Transformer with
nominal depth L and intermediate maps fℓ : X → Aℓ, ℓ ∈ {1, . . . , L}. We say that f satisfies the
ε-BRH if for any ℓ, there exist k ≪ ℓ blocks B1, . . . ,Bk and integers n1, . . . , nk with

∑k
j=1 nj = ℓ

such that
Ex∼P

(
∥fℓ(x)− (B

(nk)
k ◦ · · · ◦B(n1)

1 )(x))∥
)
≤ ε.

where || · || is prescribed norm, B(nj)
j denotes nj repeated applications of the same parameter-tied

block Bj and the entire approximation maintains comparable runtime.

To test this hypothesis, the first step is to operationalize it by proposing a method for constructing
such recurrent approximations. We naturally turn to recurrent architectures but develop a specialized
training technique that we describe now.

Operationalizing Block-Recurrence with Raptor. Since the BRH asserts only the existence
of recurrent blocks satisfying its conditions without specifying their precise form, the most direct
validation is constructive: demonstrating existence by example. We therefore introduce a procedure to
distill existing Vision Transformers into Recurrent Approximations to Phase-structured TransfORmers
(Raptors), using k parameter-tied blocks with repetition counts determined by a max-cut phase
discovery algorithm. This approach transforms the abstract hypothesis into a concrete architectural
and training framework that can be empirically validated.

This constructive approach requires that Raptor models reproduce the internal activations of the
full ViT they approximate, similar to Dasgupta & Cohn (2025); Sanh et al. (2019); Shleifer & Rush
(2020), not merely mimic the final output1. The BRH implies that such reproduction should be
possible within tolerance ε, making activation matching a natural training objective. Formally, let
f be a reference ViT with intermediate activations aℓ(x) ≡ fℓ(x) ∈ Rt×d for ℓ = 0, . . . , L, where
layer ℓ = 0 denotes the patch encoder and 1 ≤ ℓ ≤ L refer to transformer layers. Here, t is the
number of tokens and d the feature dimension. Let Bj denote the j-th parameter-tied block in our
recurrent decomposition. The Raptor approximation produces activations:

ãℓ(x) ≡ (B
(nk)
k ◦ · · · ◦B(n1)

1 )(a0(x)) (1)

where the composition covers layers 1 to ℓ according to our phase segmentation. We train Raptor us-
ing an autoregressive loss (AR) that enforces trajectory fidelity across all intermediate layers:

LAR
h (x) = Ex

( h∑
ℓ=1

∥ãℓ(x)− aℓ(x)∥2
)
, h ≤ L. (2)

1Unlike classical distillation, which typically supervises logits (and occasionally a few intermediate “hints”),
we enforce one-to-one alignment of all layers representations across the entire depth for the same inputs. The
recurrent surrogate must generate the teacher’s intermediate activations, not just its predictions.
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3 Blocks cut 2 Blocks cut

Figure 2: Block discovery via max-cut segmentation of
the layer–layer similarity matrix. Our algorithm partitions
depth into contiguous segments by maximizing within-block
similarity and minimizing cross-block ℓ2 similarity. Shown
are two cuts of the same ViT-B: with 3-blocks (left, green)
and 2-blocks (right, magenta). These cuts reveal candidate
block boundaries where the representation dynamics undergo
sharp transitions, providing an operational method for detect-
ing recurrent phases in trained Vision Transformers.

k=2 k=3 k=4
Number of Recurrent Blocks

0.77

0.78

0.79

0.80

0.81

0.82

0.83

CI
FA

R-
10

0 
Ac

cu
ra

cy

Max Cut
Random (Mean ± Std)

Figure 3: Evaluation of
Raptor models on CIFAR-100
using our max-cut partitioning
algorithm versus random contigu-
ous partitions. Reported values are
classification accuracy. Results for
random partitions are aggregated
over 10 different random partitions.

With this approach, each block learns to approximate its designated contiguous segment while the
overall model reproduces the complete representational trajectory of the teacher network. However,
this formulation does not specify how to determine the block boundaries or phase assignments.
We address this now with a simpler algorithmic approach based on the representational similarity
structure observed earlier.

Choosing partitions. For a given number of blocks k, we must introduce a practical method to
determine the number of recurrent iterations of each block (nk); in other words, where the recurrent
“phases” of computation begin and end. We accomplish this by casting this “block discovery” process
as a weighted max-cut problem, solved via dynamic programming. Specifically, the algorithm seeks
to partition depth into contiguous segments by maximizing within-block similarity and minimizing
cross-block similarity. We visualize the results of this procedure applied to ViT-B in Figure 2,
demonstrating that the discovered blocks align reasonably with qualitative assessment.

To validate this approach, we train recurrent transformer models using max-cut partitions to repro-
duce the activations of trained vision transformers on CIFAR-100 (validation set accuracy 90.7%).
Remarkably, as shown in Figure 3, Raptors with only 2 recurrent blocks closely match the perfor-
mance of the full models they approximate. The max-cut algorithm provides partitions that achieve
strong performance out of the box, with accuracy near or even exceeding one standard deviation of
randomly chosen partitions. This initial success on smaller ViTs provides compelling evidence that
the block-recurrent structure is not merely representational but genuinely functional.

How do blocks emerge? Having operationalized the BRH and demonstrated a method for block
discovery, we now turn to a fundamental question: under what conditions does this block-recurrent
structure emerge in trained Vision Transformers? To investigate this systematically, we examine
small-scale ViTs where we can control training conditions and isolate potential contributing factors.
Specifically, we hypothesize that training procedures such as stochastic depth (Huang et al., 2016)
may promote the emergence of block-recurrent patterns.

Motivated by evidence that residual networks tolerate variable effective depth (Wu et al., 2019),
we examined the effect of stochastic depth (SD) on block recurrence. During training, each layer
may be dropped with probability p, applied uniformly across depth. We trained ViT-B/14 from
random initialization on CIFAR-100, using the cls token for the linear probe across a sweep of SD
p rates. We observe an increase in layer-layer similarity with increasing SD p rates (Figure 4A).
We next used these trained ViT networks as teachers for student Raptor models (see Appendix B).
Raptor models were trained to reconstruct the hidden activation states of the teacher ViT across
layers. Raptor forward passes are fully autoregressive, meaning each layer’s output is fed into the
next layer and is also trained to match the corresponding layer in the teacher network. We quantify
the similarity of the CLS and patch token representations in each layer between the teacher and
student networks as the R2 of their matched token embeddings (Figure 4B).

We observe that, as stochastic depth increases, a separately trained Raptor model becomes sig-
nificantly better at reconstructing the ViT’s internal hidden states. These results demonstrate that
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stochastic depth regularizes the ViT to learn a representational trajectory that is more compressible
into a recurrent form. The observed decoupling between student accuracy and teacher–student
reconstruction fidelity (Figure 4C) suggests that recurrence-based compressibility does not require
a trained teacher. Indeed, we observe that Raptor can also reconstruct hidden states of a randomly
initialized ViT (Figure 11).
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Figure 4: Stochastic depth promotes representational similarity across layers block-recurrence.
A) ViT layer-layer cosine similarity matrices for models trained with increasing stochastic depth
(SD) dropout probability p (probabilities of 0.0-0.9, uniform over layer depth). Dashed red lines
delineate blocks, as defined by the max-cut algorithm. Higher SD p values lead to a more similar
representation across layers. B) Layerwise teacher-student representational alignment R2 (Raptor vs.
ViT) of the class cls and patch tokens. Increases in SD p correspond to an increase in the ability
of Raptor to match the ViT’s layerwise representations. C) CIFAR classification accuracy for a
ViT trained on CIFAR, and a Raptor model with k = 3 blocks trained to match the hidden state of
the ViT. The gap in performance between the teacher ViT and student Raptor models narrows as
the SD p rate grows (applied to the ViT training). D) Last layer hidden-state similarity R2 of the
ViT and Raptor model as a function of SD p. Increases in stochastic depth lead to a greater ability
to reconstruct ViT function using Raptor . E) Association between layer-layer representational
similarity and Raptor reconstruction R2. Stochastic depth encourages the formation of more similar
blocks of layers within the ViT, which facilitates approximation by the recurrent Raptor model.

We further quantified this relationship, and observed that while ViT image classification performance
peaks with an intermediate SD probability (Figure 4C), teacher-student ViT-Raptor representation
reconstruction consistently improves with increasing SD probability (Figure 4D). We combine the
above results in Figure 4E and observe a strong positive association between the ViT’s layer-layer
representational similarity and Raptor reconstruction fidelity. These results support the view that
the representational block structure seen in small-scale and foundation models reflects an emergent
functional recurrence that can be quantified and exploited via architectural recurrence. Using
the methods established here, we next scale up our application of Raptor to modern large-scale
foundation models.

3 SCALING Raptor TO FOUNDATION MODELS
Having demonstrated the BRH on controlled experiments, we now test whether it extends to large-
scale foundation models. We apply Raptor to DINOv2, chosen for its widespread adoption across
vision tasks, and optimize it to reproduce DINOv2’s internal activations on ImageNet-1k.

Architecture and Training. We extract activations from DINOv2 (ViT-B) and use our max-cut
algorithm to identify partitions with k = 2, k = 3, and k = 4 recurrent blocks. Two modifications
distinguish Raptor from standard transformers: we replace GELU with SwiGLU activation for
improved accuracy, and introduce depth scaling that conditions each block on its target layer index.
This depth scaling allows blocks to adapt their behavior across repeated applications, making Raptor a
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Method Arch. IN-1k (Acc ↑) ADE20k (mIoU ↑) NYUv2 (RMSE ↓)

Raptor k = 2 79.9 37.4 0.707
k = 3 82.1 40.6 0.640
k = 4 82.3 41.6 0.630

DINOv2 ViT-S 81.1 44.6 0.601
ViT-B 84.6 47.6 0.578

Table 1: Performance of Raptor compared to DINOv2 with linear probes. We report top-1
accuracy on ImageNet-1k, mean Intersection-over-Union (mIoU) on ADE20k semantic segmentation,
and root mean squared error (RMSE) on NYUv2 depth estimation. Higher values are better for
accuracy and mIoU, while lower values are better for RMSE. For Raptor, Arch denotes the number
of recurrent blocks, while for DINOv2, Arch denotes the vision transformer backbone.

non-autonomous dynamical system. We train Raptor using a two-stage approach that combines
teacher forcing (TF) and autoregressive (AR) objectives. In the first stage, teacher forcing trains each
block to predict the immediate next layer given the correct previous layer, while the autoregressive
objective requires the model to use its own predictions as inputs for subsequent layers.

Teacher Forcing:

 âℓ+1(x) ≡ B
(1)
k (aℓ(x)),

LTF(x) = Ex

(∑L−1
ℓ=0 ∥âℓ+1(x)− aℓ+1(x)∥2

)
,

(3)

Which yields the following total loss:

Ltotal(x) = λLTF(x) + (1− λ)LAR,H(x) + Ω(θ),

where Ω(θ) denotes additional regularization applied to each tied block. See appendix B for com-
plete details. An attentive reader will notice that this training approach naturally lends itself to
parallelization: since each block operates on a distinct layer range, the first training stage can be
executed simultaneously across multiple GPUs or machines. Each block learns to approximate
its designated segment of the original network using the combined objective, with teacher forcing
gradually annealed to zero as training progresses. The first stage thus allows blocks to develop their
specific computational roles while benefiting from ground-truth activations as inputs.

The second stage connects all trained blocks into the complete recurrent architecture and trains
the entire system end-to-end using only the autoregressive loss. This crucial phase teaches blocks
to coordinate their computations and handle their own predicted activations rather than relying
on ground-truth inputs from the teacher network. The transition from teacher forcing to pure
autoregression ensures that the final model can operate independently while maintaining fidelity
to the original network’s representational trajectory. We provide an implementation framework at
https://github.com/anonymous123-user/raptor. With the training methodology established,
we now evaluate how effectively Raptors can reproduce the performance of their teacher networks
across multiple vision tasks.
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Figure 5: Raptor’s performance on
ImageNet-1k as a function of DI-
NOv2 ViT-B accuracy (left), and R2

score (right). DINOv2 ViT-S accuracy
shown as a dashed horizontal line.

Results. We evaluate Raptor against DINOv2 by training
linear probes on ImageNet-1k (classification), ADE20k (seman-
tic segmentation), and NYUv2 (monocular depth), covering
both classification and dense prediction. For ImageNet-1k, we
initialize the classifier from the public DINOv2 probe and re-
port the best score across initialization and fine-tuning. In all
experiments, the ViT backbone is frozen for both Raptor and
DINOv2; only the linear heads are updated, and we reuse DI-
NOv2’s final layer normalization (also frozen). Results ap-
pear in Table 1. Raptor performs well across tasks and is
strongest on classification: with k = 3 it attains 82.1% top-
1 on ImageNet-1k (about 97% of DINOv2 ViT-B and above
ViT-S; see Fig. 5). Accuracy improves markedly from k = 2
to k = 3 and then saturates at k = 4. In short, a two-block
Raptor at iso-FLOPs retains about 94% of DINOv2 ViT-B with a frozen backbone, a compact
rewriting that substantiates the BRH.

Ablations. Although our aim is not maximal compression nor exact accuracy matching, we perform
targeted ablations to identify the factors most critical to Raptor performance (Table 2). Training
with teacher forcing alone collapses, yielding worse than random accuracy (∼ 1% on ImageNet-1k),
indicating that one-step supervision without trajectory exposure is insufficient. Introducing the
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Figure 6: Directional convergence on the unit sphere. (Left) Qualitative view of the average
normalized trajectories (in PCA space) shows collapse into compact class-dependent basins, consistent
with low-dimensional angular attractors. (Right) Quantitative measure of cosine to final token
representation γℓ are S-shaped and saturate near 1 for cls, registers, and patch, indicating
directional fixed points.
autoregressive loss and gradually annealing teacher forcing to zero raises accuracy by more than
60%, underscoring the necessity of closed-loop training for stable block-recurrent approximation.
Further gains come from depth scaling, which conditions blocks on their depth-position, and from
up-weighting the CLS token loss in the final block (see Eq. 4, Appendix B). Finally, connecting all
blocks and fine-tuning the model end-to-end with the autoregressive objective produces a dramatic
jump in performance, and a final boost is obtained by fine-tuning the linear probe. Now that we have
shown that the BRH holds for a foundation model, and before turning to Dynamical Interpretability,
we first examine one implication of this phenomena: the algorithmic and computational implications
of the BRH.

Method Accuracy

Teacher Forcing (TF) 1.2
+ Autoreg (anneal TF) 62.1 ↑ 60.9
+ Depth Scaling 63.3 ↑ 1.2
+ Weighted CLS 67.9 ↑ 4.6
+ Connect 81.2 ↑ 13.3
+ Finetune (Classifier) 82.1 ↑ 0.9

Table 2: Ablations to original (TF) al-
gorithm with Raptor(k=3), showing
ImageNet-1k accuracy with DINOv2
pretrained linear classifier. Connect
refers to putting all three blocks together
and training the full model autoregres-
sively.

Algorithmic and computational implications. At
scale, BRH holds in practice: a two-block Raptor recov-
ers most of DINOv2 ViT-B, with three blocks essentially
closing the gap. This reveals a strong simplicity bias in
trained ViTs: depth reuses a small set of computations,
effectively trading parameters for iterations. This reuse
has two immediate consequences. First, it shortens the de-
scription length of the program that realizes the network’s
computation, pointing to low algorithmic complexity. Yet
the implication is subtler than a Kolmogorov complexity
bound. In principle, Kolmogorov compression could re-
place a long program with a very short one that only runs
in unbounded time. By contrast, Raptor preserves com-
pute: applying the same block nj times within a phase is
essentially iso-FLOPs relative to nj distinct untied copies.
In other words, ViTs admit a more compact program under
the same runtime, which is better captured by Levin’s KLevin complexity (Levin, 1973).

Proposition 1 (BRH induce a low Levin Complexity). Let fℓ be a depth-ℓ ViT satisfying ε-BRH with
k tied blocks (Bj)

k
j=1 and schedule (nj)

k
j=1 (

∑
j nj = ℓ ). Then one can implement fℓ with

KU
Levin(fℓ) ≤

k∑
j=1

DLU

(
θ(Bj)

)
+O(k log ℓ) + log

(
c ℓFLOPs(Bmax)

)
+O(1),

i.e., BRH yields a short program with only a logarithmic surcharge for runtime, preserving the linear
in ℓ compute scale. See App. E.

Thus BRH implies low algorithmic complexity at essentially unchanged computational cost. Beyond
its algorithmic implications, BRH also reshapes how we can interpret ViTs. If depth is organized
into recurrent phases governed by a small set of iterated maps, then it is natural to analyze ViTs
as dynamical systems. In the next section we develop this perspective, proposing a program of
Dynamical Interpretability.

4 FROM BLOCK RECURRENCE TO Dynamical Interpretability IN VITS
Having observed block-structured representational similarity and confirmed that this similarity
translates to functional recurrence, even in foundational models, we are naturally inclined
to now seriously consider Vision Transformers as dynamical systems that can be interpreted
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B) Self-correcting perturbation sensitivity

Patches CLS

A) Average perturbated directory

Figure 8: Self-correction under small angular perturbations. Perturbed trajectories bend back
toward the baseline path, evidencing local basin stability. Sensitivity decays approximately log-
linearly with remaining depth for patch tokens, but grows late for cls, consistent with stronger
late-stage aggregation.

using dynamical systems analysis tools – what we term dynamical interpretability. We
begin by establishing the basic dynamical properties of this depth flow, and present three
key findings: (i) tokens converge directionally toward angular attractors with self-correcting
dynamics, (ii) different token types exhibit specialized dynamics with punctuated transi-
tions at phase boundaries, and (iii) later layers exhibit low-rank collective motion under
weak contraction, reminiscent of mean-field processes with collapsing update dimensionality.
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80

100

120

L2
 n

or
m

DINOv2 Giant

Figure 7: Depth-wise fea-
ture norms. Magnitudes
grow with depth, motivat-
ing analysis on directions.

Directional Convergence and Angular Attractor Geometry.
We begin by isolating direction from scale. Feature norms increase
steadily with depth across token types, which makes Euclidean dis-
tances difficult to interpret; we therefore normalize states and study
their angular evolution (Fig. 7). Concretely, let x̂ℓ = xℓ/∥xℓ∥ denote
the direction of a token at layer ℓ, and consider the depth trajectory
{x̂ℓ}Lℓ=0 on the unit sphere Sd−1. Directional convergence is quantified
by γℓ = ⟨x̂ℓ, x̂L⟩. Empirically, γℓ follows smooth S-shaped curves that
approach 1 and saturate in late layers for all token types (Fig. 6, right).
This behavior indicates a directional fixed point: while norms may con-
tinue to grow, directions stabilize so that x̂ℓ+1 ≈ x̂ℓ as ℓ increases. The
acceleration of γℓ near the end of depth suggests phase-local attraction
that strengthens in the final phase, we clarify this with our coherence
study (Fig. 10, middle). A complementary geometric view comes from
projecting the depth trajectories onto a low-dimensional subspace. PCA reveals that sample-specific
paths enter class-dependent basins in a shared angular subspace, we took 1, 000 images coming
from 5 imagenet classes with trajectories curling into compact terminal regions rather than scattering
(Fig. 6, left). We interpret these regions as angular attractors: small sets on Sd−1 toward which
iterates of the phase-local map steer directions, up to within-class variability. Finally, we probe
stability by injecting a small additive perturbation at layer ℓ and following the perturbed direction
thereafter. The average perturbed path bends back toward the unperturbed trajectory, indicating local
self-correction and on-sphere contraction around the limiting direction (Fig. 8). Taken together, these
measurements establish property (i): token directions evolve under depth toward angular attractors
with mild contraction, making directional geometry an appropriate lens for subsequent dynamical
analysis.

Token-Specific Dynamics. Token groups follow distinct angular update laws. For a token with
normalized state x̂ℓ define the per-layer angular speed sℓ = arccos⟨x̂ℓ+1, x̂ℓ⟩. Aggregating sℓ by
token type reveals stable small speeds for registers, intermediate speeds for patches, and sharp late
reorientations for CLS (Fig. 9). The variance of sℓ is smallest for registers after early depth, by
contrast, CLS exhibits increased angular activity near the end, consistent with its function as a global
aggregator. These token-specific laws are not uniform across depth. Angular speed statistics display
abrupt changes aligned with previously discovered block boundaries, producing a punctuated pattern
in which each phase maintains near-stationary behavior that is reset at phase transitions (Fig. 9). This
structure matches the block-recurrent view in which a phase applies a reused update map with stable
statistics before handing off to a new regime at the boundary. Sensitivity analyses corroborate this
specialization. Inject a small additive perturbation of magnitude ε at layer ℓ and measure the final
angular deviation using the cosine distance dcos(x̂

(ε,ℓ)
L , x̂L). The scaled sensitivity |ε|−1dcos decays

approximately log-linearly with deeper injection for patch tokens, indicating on-sphere attenuation
within phases, whereas it increases for CLS when injected late, indicating accumulation at the readout
stage where global information is consolidated (Fig. 8B). Directional convergence rates mirror these
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Figure 10: (Left) Low-rank updates and coordinated patch motion. Left Stable and effective rank
of the layer-to-layer update matrix collapse with depth, indicating confinement to a restricted subspace.
Right Patch-token coherence with their mean update direction rises strongly, revealing increasing
collective alignment. (Right) Dynamic Mode Decomposition (DMD) of depth dynamics. For each
token group (cls, registers, patch), we average token states within the group and fit the exact-DMD
(see Section D). Each layer state is ℓ2-normalized to unit norm (trajectories on the unit sphere),
so eigenvalue angles arg(λi) characterize angular updates, while radii |λi| measure contraction on
the sphere (not absolute feature-norm growth). The DMD eigenvalues {λi} lie just inside the unit
circle (dashed) and concentrate near the positive real axis, indicating near-neutral, mostly angular
updates with mild on-sphere contraction. cls modes lie closest to +1 (longest memory), registers
are slightly more dispersed, and patch shows the widest angular spread and stronger contraction.
The cls spectrum decays slowest (highest effective rank/complexity), registers are intermediate, and
patch decays fastest (lower-rank dynamics). Together, these spectra support a weakly contracting,
block-recurrent depth flow with token-specific complexity.

roles. When tracking cℓ = ⟨x̂ℓ, x̂L⟩ by token type, registers approach their terminal directions
earliest, patches follow with a smoother rise, and CLS saturates only in the final phase where its
reorientation peaks (Fig. 6, left). Together, these measurements show that ViT depth implements
specialized, phase-local dynamics with phase transitions, consistent with block-recurrent computation.

Figure 9: Token-specific an-
gular speed with phase over-
lays. Mean angular speed sℓ
across depth for cls, registers,
and patch, with max-cut phase
boundaries from Sec. 2 overlaid
as vertical lines.

Low-Rank Collective Motion and Linearized Depth Flow. We
quantify the dimensional structure of layer-to-layer updates and
observe a progressive collapse to a low-dimensional regime. For
token-wise angular updates (see App. C). Both the stable rank and
effective rank decrease steadily with depth, reaching values near
six in the final phase, indicating confinement to a restricted sub-
space (Fig. 10, left). In parallel, the patch-token coherence κℓ rises
sharply and peaks late, showing increasingly aligned, collective up-
dates (Fig. 10, middle). The joint pattern (rank collapse with rising
coherence) marks a transition from many weakly independent direc-
tions to a few shared directions. We then linearize the depth flow
via exact DMD on group-averaged, ℓ2-normalized states, yielding
x̄ℓ+1 ≈ Ax̄ℓ with rank r = 10 (App. D). Eigenvalues are con-
centrated just inside the unit circle and near the positive real axis,
consistent with weak on-sphere contraction and predominantly angu-
lar updates; CLS modes lie closest to +1 (longest memory), registers
are intermediate, and patches show wider angular spread and stronger contraction (Fig. 10, right).
Stacked-depth singular spectra mirror this ordering, decaying slowest for CLS and fastest for patches.
These results indicate that late depth implements low-rank, near-neutral dynamics that compress
variation into a small set of collective directions while preserving long-memory channels for cls.

5 DISCUSSION
We advanced the Block-Recurrent Hypothesis (BRH), showing empirically and constructively (via
weight-tied surrogates) that recurrence can match untied baselines, and we developed Dynamical
Interpretability by viewing depth as a flow on directions. This revealed (i) directional convergence
to angular attractors with self-correction, (ii) token-specific, phase-local dynamics with punctuated
transitions, and (iii) a late low-rank regime that coordinates updates to low dimensional subspace.
While residual pathways and stochastic depth appear implicated in block recurrence, isolating causal
mechanisms will require controlled training-dynamics at scale; and although two tied blocks recover
most of DINOv2, a small residual gap remains that may call for improved recurrent distillation or
additional time-varying components. Overall, our work highlights a recurrence-induced simplicity
bias, suggesting current models admit a recurrent version, implicating a potential simpler analysis.
Taken together, this recurrence-induced simplicity bias and its interpretability potential point toward
a broader principle: in deep learning, recurrence finds a way.
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A APPENDIX

B TRAINING BLOCK RECURRENT FOUNDATION MODELS

Model Architecture. All Raptor variants (k = 2, 3, 4) are trained on top of DINOv2 (ViT-B with
registers) (Darcet et al., 2023) and use the same transformer architecture:

• Feature dimension: 784

• MLP ratio: 4

• Multi-head attention heads: 12

The depth-scale MLP consists of a linear layer expanding from dimension 1 to 16, followed by a
SiLU activation, and a second linear layer mapping from 16 to 3× dim. This produces three separate
scaling vectors.

Below, we provide the hyperparameters and training settings used to train Raptor. We first describe
the layer divisions for different values of k, followed by the training procedure.

Layer Splits. For each choice of k, the encoder layers are divided into blocks as follows:

k Block Input → Predicted Layers

2 Block 1 0 → 1–7
Block 2 7 → 8–12

3 Block 1 0 → 1–7
Block 2 7 → 8–10
Block 3 10 → 11–12

4 Block 1 0 → 1–4
Block 2 4 → 5–7
Block 3 7 → 8–10
Block 4 10 → 11–12

Table 3: Layer splits used for training with different values of k.

We select these partitions using the max cut algorithm applied to the DINOv2 ViT-B activation
layer-layer cosine similarity matrix using the ImageNet-1k validation set.

Stage 1: Independent Block Training. Each block is trained independently on the subset of layers
it is responsible for predicting. For example, when k = 3, Block 1 is trained to predict Layers 1–7.
Training details are summarized in Table 4.

Setting Value

Dataset ImageNet-1k (train split)
Epochs 20
Batch Size 64
Optimizer AdamW
Weight Decay 0.0001
Learning Rate Schedule Linear warmup (10,000 steps) to 1×10−4,

then cosine decay to 1×10−6

Teacher Forcing Loss Weight (annealed, first 5 epochs) λ : 0.5 → 0
Block 3 Token Loss Weights λCLS = 0.34, λREG = 0.33, λPATCH = 0.33

Table 4: Stage 1 training hyperparameters for block-wise training.

Stage 2: Joint Training. After independent training, all blocks are connected to autoregressively
predict Layers 1–12 end-to-end. Each block still predicts its designated segment, but the entire model
now backpropagates through the full sequence. Training details are summarized in Table 5.
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Setting Value

Dataset ImageNet-1k (train split)
Epochs 20
Batch Size 64
Weight Decay 0.0001
Optimizer AdamW
Learning Rate Schedule Same as Stage 1
Token Loss Weights λCLS = 0.45, λREG = 0.1, λPATCH = 0.45

Table 5: Stage 2 joint training hyperparameters.

Loss Function with weight on CLS token For a given set of ground truth DINOv2 activations
x ∈ RN×D, where N is the number of tokens and D is the embedding dimension, we use the
following to calculate the mean squared error between predictions by Raptor x̂ and x:

L = λCLS ∥x̂CLS−xCLS∥2+λREG ∥x̂REG−xREG∥2+λPATCH ∥2x̂PATCH−xPATCH∥2, (4)

B.1 PHASE DISCOVERY VIA A CONTIGUOUS MAX-CUT ON THE LAYER–LAYER SIMILARITY

Problem setup. Let S ∈ RL×L be the (symmetrized) layer-layer similarity matrix, where Sij

measures the similarity between layers i and j (for example, cosine similarity). We seek a partition of
depth into k contiguous segments or “phases”. Π = {[b1, e1], . . . , [bk, ek]} with 1 = b1 ≤ e1 < b2 ≤
e2 < · · · < bk ≤ ek = L and et + 1 = bt+1, that maximizes within-block similarity (equivalently,
minimizes cross-block cut).

Objectives. For a segment [i, j] of length n = j − i+ 1, define:

sum(i, j) =

j∑
p=i

j∑
q=i

Spq, offdiag(i, j) = sum(i, j)−
j∑

p=i

Spp.

We consider additive segment scores g(i, j) by computing the final weighted mean as:

sum(i, j)

n2
;

Maximizing
∑k

t=1 g(bt, et) prefers blocks that are internally similar and, by contiguity, implies small
cross-block interfaces (a contiguous max-cut on the line).

Fast block queries via 2-D prefix sums. Precompute a 2-D prefix (summed-area) table P ∈
R(L+1)×(L+1) with Prc =

∑
u<r

∑
v<c Suv . Then any submatrix sum obeys

sum(i, j) = Pj+1,j+1 − Pi,j+1 − Pj+1,i + Pi,i,

in O(1) time; diagonal sums use a 1-D prefix over diag(S). This is sometimes referred to as the
“integral image” trick.

Contiguous DP solver (O(kL2)). Let dp[t, j] be the best score for partitioning layers 1..j into t
blocks. With minimum block length m,

dp[1, j] = g(1, j) (j ≥ m), dp[t, j] = max
i∈{tm−1,...,j−m}

dp[t− 1, i] + g(i+ 1, j),

for t = 2, . . . , k and j ≥ tm. We keep backpointers prev[t, j] to recover boundaries by backtracking
from (t=k, j=L). With g(·) evaluated in O(1) by prefix sums, the overall complexity is O(kL2)
time and O(kL) memory. This DP structure mirrors classical optimal 1-D segmentation/partitioning
solvers.
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B.2 TEACHER-STUDENT RECONSTRUCTION R2

To stabilize measures of pairwise vector similarity over large hyperparameter sweeps when fits may
be poor, we use an alternative calculation for R2 for small-scale models (Figure 4). Here, we first
regress the student’s cls or patch tokens ∈ RN×D to the corresponding teacher tokens ∈ RN×D

using ordinary least squares with a bias term. N is the number of tokens and D is the dimensionality
of the token. We then calculate the average of the R2 values between the true teacher token vectors
and the student’s reconstruction of those vectors. Note that this regression is purely a 1-dimensional
rescaling and shifting for each student token vector. This results in an R2 value that is bounded
between 0 and 1, and can be understood to present the ‘explainable variance’ between the student and
teacher representations.

B.3 LINEAR PROBE FINE-TUNING

We fine-tune linear probes on three downstream datasets: ImageNet-1k (classification), ADE20k
(semantic segmentation), and NYUv2 (monocular depth estimation).

For ImageNet-1k and ADE20k, we use the AdamW optimizer with linear warmup followed by cosine
learning rate decay. For NYUv2, we use AdamW with GradScaler and mixed precision training. All
probes operate on the final block’s prediction of Layer 12, using either the cls token, patch tokens,
or both, depending on the task. The detailed hyperparameters are shown in Table 6.

For NYUv2, we adopt an approach similar to Oquab et al. (2023). Specifically, we use images at
a 480 × 640 resolution and center pad them so that the dimensions are multiples of 14. We feed
the images through the model and extract the predictions from the final layer. The CLS token is
concatenated with the patch tokens, and the spatial resolution is upsampled by a factor of 4. Both the
CLS and patch tokens are upscaled, after which the CLS token is concatenated to each patch token.
We treat this representation as the “logits.” To obtain depth, we normalize the logits with a softmax
and compute the weighted average of the centers of 256 evenly spaced bins. Then, we upsample this
representation to 480× 640 and consider the result our depth. For training, we use the loss function
introduced by Bhat et al. (2021).

Hyperparameter ImageNet-1k ADE20k NYUv2

Epochs 15 10 25
Batch Size 512 32 128
Base LR 1× 10−3 1× 10−3 1× 10−4

Weight Decay 1× 10−2 1× 10−2 1× 10−2

Grad. Clip Norm 1.0 1.0 1.0
Warmup Iters 100 100 100
Optimizer AdamW AdamW AdamW + GradScaler
Head Init. DINOv2 classification probe Random segmentation head Random depth head
Input Tokens concat(cls, mean patch) Patch concat(cls, patch)

Table 6: Linear probe fine-tuning hyperparameters across datasets. Base LR denotes the peak learning
rate before cosine decay.

C DYNAMICS PROTOCOLS AND METRICS

This appendix consolidates definitions and experimental procedures used in Sec. 4. All measurements
are performed on ImageNet validation data. For aggregate statistics, we use 10k randomly sampled
validation images. For trajectory visualizations (e.g., Fig. 6), we select five ImageNet classes with
1,000 images each. Inputs are resized to 256 pixels on the shorter side and center-cropped to
224× 224. Unless otherwise noted, we use DINOv2-Giant with four register tokens from the official
implementation.

Normalization. Token states xℓ ∈ Rd at depth ℓ are decomposed into norm and direction. We
study normalized states

x̂ℓ =
xℓ

∥xℓ∥
∈ Sd−1,
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so that dynamics are restricted to the unit sphere.

Directional convergence. Directional similarity to the terminal representation is measured by

γℓ = ⟨x̂ℓ, x̂L⟩,

which traces the angular alignment of layer ℓ to the final state.

Angular speed. Per-layer angular update magnitude is defined as

sℓ = arccos⟨x̂ℓ+1, x̂ℓ⟩.

Statistics of sℓ are stratified by token type.

Phase overlays. Phase boundaries are obtained from the max-cut segmentation of representational
similarity matrices (Sec. 2) and used as vertical markers in angular speed and sensitivity plots.

Perturbation protocol. To probe stability, we add a perturbation εu at layer ℓ,

x̃ℓ = xℓ + εu, u ∼ N (0, Id),

and follow the normalized trajectory thereafter. Sensitivity is quantified by the terminal cosine
deviation

dcos(x̂
(ε,ℓ)
L , x̂L) = 1− ⟨x̂(ε,ℓ)

L , x̂L⟩.

Low-rank and coherence metrics. For angular updates ∆(i)
ℓ = x̂

(i)
ℓ+1 − x̂

(i)
ℓ , we form the update

matrix Uℓ. Stable rank is given by

rs(Uℓ) =
∥Uℓ∥2F
∥Uℓ∥22

,

and coherence by

κℓ =
1
N

∑
i

⟨∆(i)
ℓ , ∆̄ℓ⟩

∥∆(i)
ℓ ∥ ∥∆̄ℓ∥

, ∆̄ℓ =
1
N

∑
i

∆
(i)
ℓ .

D DYNAMIC MODE DECOMPOSITION

Let f be a trained ViT with transformer layers {fℓ}Lℓ=1. For x ∈ X , denote by Aℓ(x) ∈ RT×d the
token matrix at depth ℓ with T = 1 + R + P (cls, R registers, P patch). Form group states by
within-layer averaging

z
(cls)
ℓ (x) = Aℓ(x)cls z

(reg)
ℓ (x) = 1

R

∑
t∈Treg

Aℓ(x)t z
(patch)
ℓ (x) = 1

P

∑
t∈Tpatch

Aℓ(x)t

and enforce per-layer ℓ2 normalization on the group averages

x
(g)
ℓ (x) =

z
(g)
ℓ (x)

∥z(g)
ℓ (x)∥2

∈ Sd−1 ⊂ Rd.

All DMD fits below are performed independently for each g ∈ {cls, reg, patch} on the depth
trajectory x

(g)
0:L(x). We start by stacking states along depth to form

Y (g) =

(x
(g)
0 )⊤

...
(x

(g)
L )⊤

 ∈ R(L+1)×d X1 = (Y
(g)
0:L )⊤ ∈ Rd×L X2 = (Y

(g)
1:L+1)

⊤ ∈ Rd×L.

DMD fits a single linear depth-step map A with X2 ≈ AX1.
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Exact DMD at rank r. Compute the thin SVD X1 = UΣV ⊤ and select r ≤ rank(X1). Let Ur

Σr Vr be the leading blocks and define the reduced operator

Ã = U⊤
r X2VrΣ

−1
r ∈ Rr×r.

Diagonalize ÃW = WΛ with Λ = diag(λ1, . . . , λr) ∈ Cr×r and W ∈ Cr×r. The exact DMD
modes in ambient space are

Φ = X2VrΣ
−1
r W ∈ Cd×r.

Modal amplitudes for the initial state are b = Φ†x
(g)
0 ∈ Cr. One-step and t-step reconstructions are

x̂
(g)
1 ≈ ΦΛb x̂

(g)
t ≈ ΦΛtb for t ≥ 0

with the induced linear predictor A = X2VrΣ
−1
r U⊤

r . No affine offset is fitted.

On-sphere interpretation. Because each x(g)
ℓ lies on Sd−1 the map A is a best linear approximation

of the depth flow restricted to the unit sphere. For λi = |λi|eiθi the modulus |λi| measures contraction
of directions within the span of modes on the sphere and the angle θi captures per-layer rotational
change. The spectral radius ρ(A) = maxi |λi| and the median of |λi| summarize contraction strength.
In particular this explain why all the eigenvalue in Fig. 10 are contain in S2, see the report of the
eigenvalue cloud {λi}ri=1 in the complex plane and the singular spectrum {σi}ri=1 of X1.

E LEVIN COMPLEXITY UNDER BRH

We formalize the time bounded description length statement implied by BRH. The construction
encodes the tied blocks and the schedule then evaluates them by simple iteration so the program is
short while runtime matches the untied model up to constants.
Proposition 2 (Time bounded description under BRH). Let fℓ be a depth ℓ ViT satisfying ε BRH with
k tied blocks (Bj)

k
j=1 and schedule (nj)

k
j=1 with

∑
j nj = ℓ. Fix a universal prefix free machine U

and a precision δ > 0. There exists a prefix free program p⋆ for U such that for all inputs x

U(p⋆)(x) ≈ fℓ(x) with error ≤ ε+O(δ)

and

|p⋆| ≤
k∑

j=1

DLU

(
θ(Bj)

)
+O(k log ℓ) +O(1) and T (p⋆) ≤ c

k∑
j=1

nj FLOPs(Bj)

hence

KU
Levin(fℓ) ≤ |p⋆|+log T (p⋆) ≤

k∑
j=1

DLU

(
θ(Bj)

)
+O(k log ℓ)+log

(
c

k∑
j=1

nj FLOPs(Bj)
)
+O(1).

Proof. Encode the k tied blocks to precision δ which costs
∑

j DLU

(
θ(Bj)

)
bits. Encode the

schedule (n1, . . . , nk) as self delimiting integers which costs O(k log ℓ) bits with O(1) parsing
overhead. The decoder reconstructs the k blocks and computes gℓ = B

(nk)
k ◦ · · · ◦ B

(n1)
1 by

iteration. A single application of Bj costs FLOPs(Bj) up to a constant c on U so total time is
T (p⋆) ≤ c

∑
j nj FLOPs(Bj) which is linear in ℓ and matches the untied compute scale up to

constants. By ε BRH the tied network gℓ approximates fℓ within ε and quantization adds O(δ) which
gives the stated error. Levin complexity adds log T to the code length which yields the bound.

F SUPPLEMENTARY RESULTS
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Figure 11: Training increases layer-layer similarity and teacher-student reconstruction. A)
Layer-layer cosine similarity matrices of a trained ViT (top) and untrained ViT (bottom). Network
trained with 0.3 uniform probability stochastic depth. B) Mean intra-block cosine similarity with
max-cut k=3 for trained and untrained ViTs. C) Teacher-student Raptor reconstruction of output
cls token for trained and untrained ViTs.
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