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ABSTRACT

Protein design relies critically on the generation of plausible sequences. Yet, the efficacy
of many common model architectures from simple interpretable models, like position-
specific scoring matrix (PSSM) and direct couplings analysis (DCA), to newer and less
interpretable models, like variational autoencoders (VAESs), autoregressive large language
models (AR-LLMs) and flow matching (FM), for sequence sampling remains uncertain.
While some models offer unique sequence generation methods, issues such as mode col-
lapse, generation of nonsensical repeats, and protein truncations persist. Trusted methods
like Gibbs sampling are often preferred for their reliability, but can be computationally
expensive. This paper addresses the need to evaluate the performance and limitations of
different generation methods from protein models, considering dependencies on multiple
sequence alignment (MSA) depth and available sequence diversity. We propose rigorous
evaluation methods and metrics to assess sequence generation, aiming to guide design de-
cisions and inform the development of future model and sampling techniques for protein
design applications.

1 INTRODUCTION

Using machine learning to design proteins is useless unless we can generate plausible sequences, regardless
of training data or model type. Many different approaches to protein design to achieve different goals have
been quite successful (Shin et al., 2021; Madani et al., [2023; |Lian et al., 2022; |[Hawkins-Hooker et al.,
2021)), and all of these projects have hinged on generating sequences that ‘make sense’. In almost all protein
engineering and protein design quests, we want to create proteins that fold and function. However, conditions
that encourage stability, dynamic movements, tolerance to stressors, proper expression levels, etc, are often
specific protein-to-protein and project-to-project. In order to increase efficacy of these studies we must ask
the simple question: How well do generative protein models generate?

Newer model architectures, such as variational autoencoders (VAE) and autoregressive large language mod-
els (AR-LLM), have shown some promise for function and structure prediction [Frazer et al.| (2021); [Hsu
et al.| (2022); Notin et al.|(2022). And the importance of comparing to simpler, more interpretable models
has also been noted |Zhang et al|(2024). Often, However, there are no theoretical guarantees that models
successful for structure or fitness predictions are also guaranteed to be better for sampling new sequences.
These models’ architectures enable unique ways of generating: for instance, sampling sequences from a
learned latent space from a VAE and ancestral sampling for AR-LLMs. But often, there are malignancies
that come from these generation methods that go ignored.

When drawing sequences from the latent space of a VAE, it is common to observe issues with the diversity
of sequences that are generated: (a) mode collapse, (b) posterior collapse, (c) even distribution of sequence
diversity across the length of the protein, and/or (d) low quality sequences that have mutated active site or
other key residues (Figure 1a). Examples of malignancies from ancestral sampling from AR-LLMs include:
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Figure 1: Common Pathologies in VAE and AR-LLM Geneartion (a) VAEs can suffer from mode col-
lapse where variation captured in the latent space collapses into a single entity, and if sequences are pulled
from various places they will either be fully identical or very similar. (b) AR-LLMs can suffer from nonsen-
sical sequence generation where the sequences can have repeats or early termination.

(a) nonsensical and highly variable lengths, (b) repeats of single amino acids or small motifs, and/or (c)
sequences completely out of distribution (Figure 1b). These issues have been noted in previous publications
Hsu et al.|(2022); Lucas et al.|(2019), but are largely not explicitly interrogated in the field of protein design.
Instead, tried and true methods like Gibbs sampling are frequently used to design proteins. Though, Gibbs
sampling can become costly with calculating the probability of all mutations at each step of sampling; and
if sampling one mutation at a time, it can ignore epistatic effects between multiple mutations. There are
many sampling strategies that traverse all model types and several that are specific to different architectures
(Figure 2). Where’s the balance and what is optimal for different design tasks? Recently, an interrogation of
generating GFP sequences from LLMs underscores the importance of compiling rigorous benchmarks for
generating from the full suite of models at our fingertips Darmawan et al.| (2023).

1.1 BENCHMARKED PROTEINS

First, we chose 9 example proteins from a benchmark of protein fitness models [Notin et al.| (2023)) to serve
as the explorative set (Table 1). These 9 proteins are a useful starting point for generation comparison be-
cause they all contain deep mutational scanning data with one and more mutations from wildtype Weng
et al. (2022); Ding et al.| (2023); |Chen et al.| (2023); |Pokusaeva et al.|(2019); |[Faure et al.| (2022)); Melamed
et al.| (2013); |Gonzalez Somermeyer et al.| (2022); |Sarkisyan et al.| (2016). We can therefore assess gen-
eration capacity with metrics like recall of top performing multi-mutants from the experimental datasets.
Additionally, these proteins span diverse parts of the tree of life including humans, fungi, bacteria, and algae
and they range in length with the longest protein being 724 residues and the shortest being 93 residues. In
this way, we can ensure that results will not be unintentionally biased towards particular kinds of proteins.
Finally, they have varying MSA depths as defined previously in ProteinGym [Notin et al.| (2023), spanning
610,129 sequences to 15 sequences. It is known that evolutionary model performance is dependent on the
MSA depth used in training [Hopf et al.|(2017) and because of this, we want to evaluate model performance
across a wide range of depths.

We want to interrogate the features and bugs of different generation methods from protein models in order to
understand what models and sampling methods are better suited for different design tasks. Is the protein: (a)
being enhanced for natural function, (b) switching specificity from substrate A to substrate B, (c) designed



Protein Organism Length | MSA Depth (N eff)
Phototropin (PHOT) C. reinhardtii 118 610129
GTPase KRas (RASK) H. sapiens 188 27851
Addiction module antidote protein (F7YBWS) M. opportunism 93 16262
Imidazoleglycerol-phosphate dehydratase (HIS7) S. cerevisiae 220 5191
Growth factor receptor-bound protein 2 (GRB2) H. sapiens 217 1485
Polyadenylate-binding protein (PABP) S. cerevisiae 577 855
Disks large homolog 4 (DLG4) H. sapiens 724 354
Green-fluorescent protein 10 (D7PMOS5) C. gregaria 235 138
Green fluorescent protein (GFP) A. victoria 238 15

Table 1: Example proteins were chosen across the tree of life and spanning different evolutionary sequence
depths. Each protein listed here has a deep mutational scan that explores > 1 mutational depth from wild-

type.

for a new-to-nature function (d) stabilized in certain pH or (e) salt conditions, or (f) needing a change in

its isoelectric point? The list of possibilities is vast[Notin et al.| (2024) and the methods for assessing these
qualities are lacking.
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Figure 2: Matrix of Model Types and Generation Methods. Greedy and Gibbs sampling can be done with

all model types whereas latent space and ancestral sampling are architecture-enabled.

2 In silico METRICS

We propose a set of in silico benchmark methods and metrics for evaluating sequence generation from a
suite of model architectures and sampling methods (Figure 2) Marks et al| (2011)); [Frazer et al.| 2021);




Hawkins-Hooker et al.|(2021)); Dauparas et al.|(2022); Lipman et al|(2022)). Ideally, in a protein generation
framework, engineerable features are tunable. We want to have a quantified understanding of:

* Diversity metrics

— Site-wise column entropy

— Hamming distance from wildtype

— Hamming distance from any known protein

— Hamming distance from other generated sequences

* Perplexity
* Repeats

— Longest stretch of single amino acid repeats
— Longest stretch of double amino acid repeats

* Preservation of key residues
* Recall of top n mutants from experimental fitness measurements
* Biophysical properties
— Molecular weight
Aromaticity

Isoelectric point
Molecular extinction coefficient (oxidized and reduced)
Percent Cysteine

¢ Function

— ESM oracle Meier et al.|(2021)
* Stability
Instability index |Guruprasad et al.|(1990)
EVcouplings delta hamiltonians Marks et al.|(2011))
ESM-IF likelihoods |[Hsu et al.| (2022)
pLDDT |Pak et al.|(2023)

* Consistency of model generation

— Comparing sequences generated from different random seeds
e Scalability
* Training cost
* Inference cost
* Speed
» Resource consumption

3  RESULTS
We generated several thousand protein sequences from the proteins listed in Table 1 and calculated the
diversity and biophysical metrics listed above Chaudhury et al.|(2010); [Cock et al.|(2009).

Preliminary experiments suggest that different models are better equipped to generate sequences with differ-
ent properties. When comparing simple Gibbs sampling across PSSM, DCA Marks et al.|(2011), and VAE



Frazer et al.| (2021)), we observe two obvious differences: Generating sequences from the VAE gives con-
sistent column entropy across the length of the protein whereas PSSM and DCA generate different levels of
entropy in different parts of the protein (Figure 3a). The VAE also tends to generate sequences with a higher
molecular weight, suggesting it is exchanging side chains in different ways than PSSM or DCA (Figure 3b).
While specific examples are depicted in the figure, these trends were general across all proteins tested and
across all temperatures of generation.
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Figure 3: Different Model Architectures Generate Sequences with Different Qualities (a) Greedy
and Gibbs sampling can be done with all model types whereas latent space and ancestral sampling are
architecture-enabled.

These criteria will be crucial in choices of design decisions and will (a) help inform protein designers what
needs to be checked before beginning experiments and (b) the next generation of model/sampling methods
optimizing their generative capacity.

4 FUTURE DIRECTIONS

In the future, this work will cover the full extent of evaluation metrics outlined above. We will generate
thousands of sequences from each of these model/sampling combinations and compare across all metrics
listed. We are also going to release all of the code and create an easy-to-use interface such that people can
upload their generated sequences, alignment, and any experimental data and get automatic analysis of their
proposed sequences. Additionally, we are thinking about integrating this into the ProteinGym framework to
enable end-to-end prediction and design for any protein of interest.
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A APPENDIX

A.1 EQUATIONS
A.1.1 GENERAL GIBBS SAMPLING

P(z; = a|z—;, model) glog-prob(alz—;,model)
Where:

* x; represents the amino acid at position ¢ in the protein sequence.

* x_, represents all other amino acids except the one at position 1.

model is the probabilistic model used to generate log probabilities for amino acid mutations.

L]

log_prob(a|z—;, model) is the log probability of amino acid a at position ¢ given the surrounding
sequence context x—_; according to the model.

* P(z; = a|z—;, model) represents the conditional probability of amino acid a at position i given the
surrounding sequence context x—; and the model.

A.1.2 COLUMN ENTROPY

Column Entropy = — Z pilog(p;)

i=1

Where:

p; is the frequency of amino acid ¢ in the column.

* n is the number of unique amino acids in the column.

A.1.3 MOLECULAR WEIGHT

n

Molecular Weight = Z(Weighti X count;)
i=1

Where:
» weight; is the molecular weight of the %-th amino acid.

* count; is the number of occurrences of the ¢-th amino acid in the protein sequence.

* n is the total number of different amino acids in the sequence.
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