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Abstract

We propose SCONE (Scalable, Contextualized, Offloaded, N-gram Embedding),
a new method for extending input embedding layers to enhance language model
performance. To avoid increased decoding costs, SCONE retains the original
vocabulary while introducing embeddings for a set of frequent n-grams. These
embeddings provide contextualized representation for each input token and are
learned with a separate model during training. After training, embeddings are
precomputed and stored in off-accelerator memory; during inference, querying
them has minimal impact on latency due to the low complexity of embedding
lookups. SCONE enables two new scaling strategies: increasing the number of
n-gram embeddings and scaling the model used to learn them, both while main-
taining fixed accelerator usage during inference (in terms of FLOPS and memory).
We show that scaling both aspects enables a model with 1B accelerator-resident
parameters to outperform a 1.9B-parameter baseline across diverse corpora, while
using only about half the FLOPS and accelerator memory during inference.

1 Introduction

Input embedding layers in language models map discrete tokens to continuous vector representa-
tions [Mikolov et al., 2013, Sennrich et al., 2016] before passing them to the subsequent layers. Since
tokens are typically simple integer values, the mapping can be implemented purely as memory fetch
operations with no additional computation needed. This allows embedding layers to be offloaded
from the limited accelerator memory to main memory or even to secondary storage, such as solid-
state drives, with minimal impact on inference speed. This is highly desirable, as main memory
and secondary storage are significantly more cost-effective than accelerator memory (e.g., GPUs
and TPUs) [McCallum, 2024]. These advantages motivate us to explore methods for scaling up
embedding layers.

However, scaling the embedding layer by simply increasing the token vocabulary size has limited
benefits. A larger vocabulary also enlarges the output (logits) layer, whose weight matrix is tied
to the vocabulary size and embedding dimension. Typically, predicting the next token requires
computing logits over all tokens in the vocabulary, and prior work shows that the decoding cost
becomes impractical once the vocabulary exceeds a few hundred thousand tokens [Wang et al., 2019,
Zheng et al., 2021, Liang et al., 2023, Tao et al., 2024, Dagan et al., 2024]. Even if faster hardware
or more efficient algorithms might partially offset this cost [Joulin et al., 2017, Shim et al., 2017], a
second problem remains: scaling the token vocabulary leads to a large number of tail tokens, which
occur infrequently in the training corpus. The embeddings of these tokens (both input and output)
receive very few updates, resulting in lower-quality representations [Liao et al., 2021, Dou et al.,
2024]. In Appendix D, we train GPT-2 models with vocabulary sizes ranging from 32K to 2M and
observe performance degradation as the vocabulary size exceeds 512K. We attribute this degradation
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Figure 1: Illustration of SCONE with a maximum n-gram length of 3. The f-grams are a set of
frequent n-grams selected using the method described in Section 3.1.

to the increasing sparsity of updates per token as the vocabulary grows. Additionally, we observe a
linear increase in accelerator memory usage once the vocabulary size exceeds 1M.

Our contributions. In this paper, we propose SCONE, a novel approach for scaling input embedding
layers by learning them through a separate transformer model, referred to as the f-gram model. This
model takes as input a set of frequently occurring n-grams (called f-grams), which we select using an
approach inspired by Byte-Pair Encoding-based tokenization (Section 3.1). Crucially, the number of
f-grams is decoupled from the token vocabulary size, allowing us to build a separate f-gram input
embedding table with up to billions of entries, without blowing up the vocabulary size. An overview
of the proposed method is illustrated in Figure 1.

During both training and inference, SCONE leverages the f-gram model to efficiently handle large
embedding spaces without overwhelming accelerator resources. During training, the f-gram model
learns to generate contextualized embeddings for each f-gram without requiring the instantiation of a
massive embedding table. During inference, the output of the f-gram model can be precomputed to
form the f-gram embedding layer. This embedding layer can then be offloaded from the accelerator,
thereby eliminating the need for accelerator resources during inference.

SCONE introduces two novel scaling approaches for improving model performance: (i) increasing
the number of cached f-gram embeddings and (ii) scaling up the f-gram model used to learn these
embeddings. The first approach requires additional off-accelerator memory during inference, while
the second demands greater accelerator resources during training. Importantly, both approaches
preserve a fixed inference-time accelerator resource footprint, a property not supported by traditional
scaling methods. Indeed, prior works [Jones, 2021, Hoffmann et al., 2022] have shown that scaling the
training compute for a fixed model size beyond some compute-optimal threshold leads to diminishing
returns. Therefore, the typical method for utilizing additional training compute is to increase
model size. However, directly scaling model size also increases FLOPS and accelerator memory
requirements during inference. In contrast, SCONE leverages larger f-gram models to effectively
consume more accelerator resources during training but without increasing inference-time accelerator
demands, offering a novel scaling paradigm that previous studies have not explored.

There are important scenarios where maintaining a fixed inference-time accelerator footprint is
especially valuable. In many deployments, where a model is queried billions of times per day,
inference costs during deployment can far exceed training costs. In such cases, even small increases
in inference-time computation can lead to substantial operational expenses. The recent emergence of
test-time scaling techniques further highlights this trend [Jones, 2021, Snell et al., 2025], emphasizing
situations where inference costs dominate the overall expenses of LLM deployment. Furthermore,
many latency-sensitive applications impose strict limits on inference-time computation, leaving no
margin for increased computational demands during deployment.

Our contributions can be summarized as follows:
• A new scalable method, SCONE, to improve language models by expanding the input embeddings

(Section 3) but requiring no additional accelerator resources at inference time.
• Extensive experiments to validate SCONE, analyzing key design choices and their impact on

evaluation perplexity and accuracy on downstream tasks (Section 4).
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Figure 2: (Left) Perplexity on the OLMo [Groeneveld et al., 2024] evaluation set. Model sizes along the x-axis
indicate the number of parameters residing on the accelerator during inference. With 10M f-grams, the 1.3B
model matches the performance of the 1.9B baseline; with 1B f-grams, the 1B model surpasses it. (Right)
End-to-end token generation speed on a single A100 GPU. Storing f-gram embeddings in main memory adds
negligible latency, while using NVMe storage introduces a minor slowdown without causing a bottleneck.

Our results show that SCONE significantly boosts model performance without introducing inference
latency bottlenecks; Figure 2 highlights representative findings. Notably, a SCONE model with 1B
accelerator-resident parameters outperforms a 1.9B baseline that requires approximately 2× more
inference FLOPS and accelerator memory.

2 Preliminaries

We focus on pre-training decoder-only language models with causal language modeling [Radford
et al., 2019]. We now introduce notations that will later help us formally describe the proposed
SCONE method. For clarity, we omit details that are not essential to describing our method.

Decoder Transformer Model. Let Vtoken denote the token vocabulary. The token embedding layer
is parameterized by a function T : Vtoken → Rd, mapping each token to a d-dimensional embedding
vector. We abstract the transformer itself as a function A : (Rd)≤S → Rd, which takes as input a
sequence of up to S token embeddings and outputs a single embedding vector2. For completeness,
we present the pseudocode of a basic next-token prediction model in Algorithm 2 (Appendix C).

Efficient Indexing for Large Embedding Layers. Mappings from tokens or f-grams to embedding
vectors can be implemented as key–value stores, enabling highly efficient lookup. Hash-based and
tree-based data structures support lookup times that are constant or logarithmic in the number of
entries, respectively. These data structures make it feasible, in principle, to offload large embedding
layers from accelerators with minimal impact on latency. In practice, however, the traditional token
embedding layer T is kept on accelerator memory, as it is typically shared with the output (logits)
layer, which requires fast access for matrix multiplications during next-word prediction. In contrast,
the f-gram embedding layer introduced by SCONE is decoupled from the output layer and can
therefore be offloaded, which is critical for maintaining a fixed accelerator memory footprint as the
f-gram layer scales. In Section 4.3, we study two strategies for storing the f-gram embedding table.
When stored in main system memory, the f-gram embedding table consists of a dense embedding
matrix paired with a hash dictionary that maps f-grams to matrix indices. When stored on NVMe
solid-state drives, we use the Lightning Memory-Mapped Database (LMDB) [Chu, 2011] to directly
map f-grams to their embeddings using a B+ tree data structure.

3 SCONE Architecture

We propose to augment a standard transformer model with an additional f-gram embedding layer.
Figure 1 provides a high-level overview of the approach. We first construct a set Vf-gram ⊆ V

[2,K]
token :=⋃K

n=2 V
n
token consisting of frequently occurring n-grams of length up to K, which we refer to as

f-grams. Throughout this paper, K denotes the maximum length of f-grams considered. To construct

2A decoder transformer typically produces a sequence of embeddings for an input sequence. We define the
output as the final token embedding, used either for next-word prediction or as the embedding for a f-gram.
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Algorithm 1 SCONE method FT ,Vf-gram,Af-gram|F .

• T : Vtoken → Rd: token embedding layer.
• Vf-gram ⊆ V ≤K

token: set of f-grams.
• TRAINING: f-gram transformer model

▷ Af-gram : (Rd)≤K → Rd.
• INFERENCE: f-gram embedding layer

▷ F : Vf-gram → Rd.
Input: A sequence (σ1, . . . , σm) ∈ V m

token of tokens.
Output: Embeddings (e1, . . . , em) ∈ (Rd)m.
for i = 1, . . . ,m do

j ← smallest j′ < i such that (σj′ , . . . , σi) ∈ Vf-gram if such a j′ exists, otherwise i.
if j = i then

ei ← T (σi)

else

ei ←

{
Af-gram(T (σj), . . . , T (σi)) at training,

F(σj , . . . , σi) at inference.
return (e1, . . . , em)

Vf-gram, we use an efficient implementation that requires only K − 1 linear scans over the training
corpus, as detailed in Section 3.1; the formal construction is described in Algorithm 3 (Appendix C).

Next, we define the SCONE method, which maps a given sequence of tokens to a sequence of
embeddings. SCONE behaves differently during training and inference, as described in Algorithm 1.
During training, it is parameterized by an f-gram transformer model Af-gram : (Rd)≤K → Rd,
which takes an f-gram as input and uses the output embedding of the final token as the embedding
for that f-gram. During inference, in contrast, it is parameterized by an f-gram embedding layer
F : Vf-gram → Rd, a key–value store that directly maps each f-gram to its precomputed embedding.
This embedding layer is implemented by caching the outputs of Af-gram for all f-grams in Vf-gram
and storing them in off-accelerator memory.

The embeddings produced by SCONE are passed to a standard transformer model Amain, referred
to as the main model. This is followed by a prediction head D : Rd → ∆Vtoken

. Together, these
components form the end-to-end process for next-word prediction with SCONE. We present the full
description in Algorithm 4 (Appendix C).

In the rest of this section, we will discuss the motivation behind the design chocies of SCONE and
provide further implementation details.

3.1 BPE-Style Discovery of f-grams
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Figure 3: Number of unique 2- to 6-grams ap-
pearing at least five times. We uniformly sample
tokenized sequences from Dolma [Soldaini et al.,
2024] to vary the corpus size.

The construction of Vf-gram, outlined in Algo-
rithm 3 (Appendix C), can be implemented ef-
ficiently with K − 1 linear scans over the train-
ing corpus. We perform one scan for each
n ∈ [2,K], starting with 2-grams. In subse-
quent scans, we impose a minimum frequency
threshold of 5 to reduce memory usage. At the
(n + 1)th scan, the set of n-grams from the
previous scan allows us to skip any (n + 1)-
gram candidates that cannot meet the minimum
threshold. Specifically, if an (n+ 1)-gram sur-
passes the threshold, its n-suffix or prefix must
appear at least as many times. Figure 3 shows
how the number of unique n-grams (up to 6-
grams) grows as the training corpus scales from
a few billion to one trillion tokens. Finally, all
found n-grams (for n ∈ [2,K]) are ranked by
frequency, and the top ones are selected to com-
prise Vf-gram.
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Our procedure for counting and ranking n-grams is analogous to continuing the training of a BPE
tokenizer on an existing vocabulary. In each BPE iteration [Gage, 1994, Sennrich et al., 2016], the
frequencies of all token pairs (2-grams) are counted, and the most frequent pair is merged to form a
new token, expanding the vocabulary by one. However, merging and recounting pairs repeatedly to
obtain a large number of f-grams is prohibitively expensive for large training corpora. Instead, we
simply collect and sort all n-grams up to a small constant K.

3.2 Learning f-gram Embeddings with Af -gram

We motivate the use of Af-gram by contrasting it with the alternative of directly backpropagating
gradients to a large embedding table. The direct approach fails to exploit dependencies between
n-grams, leading to fewer updates per embedding. We observed this by pretraining GPT-2 models
with vocabulary sizes ranging from 32K to 2M. As vocabulary size increases, embedding updates
become sparser, eventually degrading performance. For example, when training on 100M tokens,
97.6% of tokens in a 32K vocabulary receive more than 100 updates, compared to only 7.3% in
a 2M vocabulary (Appendix D). This sparsity makes it difficult to train a large embedding table
through direct gradient updates. SCONE addresses this by parameterizing embeddings with an f-gram
transformer Af-gram, avoiding the sparse update problem.

Additionally, Af-gram removes the need to instantiate a full embedding table during training, a
requirement that would otherwise strain accelerator memory. This is because, unlike inference, where
next-word prediction is largely sequential, training parallelizes computation across the sequence
dimension, demanding much higher token throughput. Moreover, during training, embeddings must
be updated frequently, whereas inference only requires read access. Together, these factors make
it difficult to offload the embedding layer from accelerators during training. As a result, avoiding
full-table instantiation is crucial for scaling the embedding layer to extremely large sizes.

SCONE jointly trains the Af-gram model with the main model Amain and the token embedding layer
T . This overcomes the sparse updates issue but also introduces additional compute costs. For
each ω ∈ Vf-gram, the computation is the same as that of processing a short sequence of length |ω|
through a standard transformer. Since |ω| is a small constant, the primary overhead comes from the
feed-forward layer. In our experiments (Section 4), we account for this overhead in one of two ways:
(1) by training baseline models long enough to reach near-convergence at a fixed model size, ensuring
that additional training compute would yield minimal gains; or (2) by reducing the number of training
tokens for models using SCONE so that their total training FLOPS match those of the baselines.

During inference, the f-gram embedding layer F can be precomputed and stored in a lookup table,
offloaded to system main memory or secondary storage while still permitting efficient retrieval.
Meanwhile, the token embedding layer T remains on the accelerator for decoding. In Section 4.3, we
evaluate the query latency and space usage of the f-gram embedding layer under various configurations.
We show that the latency is not a bottleneck for language model inference and the space costs are low
due to the use of relatively inexpensive system memory and solid-state drives.

4 Experimental Evaluation

In this section, we evaluate SCONE in pre-training settings. In Section 4.1, we assess SCONE on
GPT-2–sized models to study various design choices, and in Section 4.2, we extend the evaluation to
large-scale pre-training scenarios involving trillions of tokens. Finally, in Section 4.3, we analyze the
inference and storage costs during deployment.

For completeness, we also evaluate SCONE in post-training settings by applying it during the SFT
stage of recent Qwen3 models [Yang et al., 2025]; these results, presented in Appendix E.3, show
that SCONE remains effective in post-training as well.

4.1 Experiments with GPT-2

We analyze three key hyperparameters: (i) the maximum f-gram length K in Vf-gram, (ii) the number
of f-grams used, |Vf-gram|, and (iii) the Af-gram model size. We use the released GPT-2 tokenizer,
which has |Vtoken| = 50,257, and train on the WebText dataset [Peterson et al., 2019]. The tokenized
corpus contains 9B training tokens, from which we extract f-grams using the method in Section 3.1.
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Figure 4: Evaluation perplexity on WebText (left) and WikiText-103 (right) as a function of |Vf-gram|.
Model sizes in the legend are number of parameters residing on the accelerator during inference.
Dashed lines and leftmost stars show baseline performance.

We consider three main model sizes with 76M, 340M, and 510M non-embedding parameters. In-
cluding the token embedding layer, the total parameter counts increase to 128M, 419M, and 589M,
respectively. These models are either trained using only the token embedding layer as a baseline
or with an additional Af-gram when SCONE is applied. We train all models for 80B tokens, roughly
twice the number of training tokens used in Radford et al. [2018], to ensure that the baseline models
approach convergence. For evaluation, we use the validation split of WebText and WikiText-103
[Merity et al., 2017], one of the largest downstream datasets in Radford et al. [2019]. Additional
implementation details are provided in Appendix F.1.

4.1.1 Varying the Maximum f-gram Length

We study the impact of varying the maximum f-gram length K in Vf-gram. We vary K from 2 to 8
while keeping the total number of f-grams fixed at 20M. As K increases, the frequency cutoff, which
is the minimum number of times an n-gram appears in the training corpus to be included in Vf-gram,
also increases. The cutoff is 7 when K = 2 and 108 when K = 8.

For each value of K, we evaluate (i) the model’s perplexity and (ii) the average length of matched
f-grams on WikiText-103. The results are shown in Figure 5. We find that evaluation perplexity
rises between K = 2 and K = 4, after which it plateaus with some fluctuations. A similar trend
is observed for the average match length, defined as the average length of the f-grams matched by
SCONE for each token in the evaluation set. The average match length also increases between K = 2
and K = 4 and then stabilizes. This trend is likely because longer f-grams are rarer after frequency-
based ranking. As a result, even when K is larger, most selected n-grams remain short. Additionally,
longer f-grams from the training corpus are less likely to match sequences in downstream data.
Experiments on the WebText validation split (Appendix E.1) show a similar trend, although the
average match length continues to increase slightly longer, plateauing around K = 6.

Considering these findings, for the experiments in the remainder of this paper, we set the maximum
f-gram length to K = 5 unless stated otherwise.

4.1.2 Varying the Number of f-grams

We observe consistent improvements in language modeling performance as we scale up |Vf-gram|. To
implement Af-gram, we replicate the baseline model architecture but remove the token embedding
layer. This results in the size of Af-gram matches the baseline model’s non-embedding parameters.

Figure 4 shows the evaluation perplexity as |Vf-gram| increases from 512K to 100M. On the WebText
validation split, the perplexity decreases consistently as the number of f-gram embeddings increases.
Similarly, on WikiText-103, the perplexity generally decreases with more f-gram embeddings, though
minor fluctuations are observed.

In Figure 4, we include three additional baselines where the non-embedding parameters of the three
main models are doubled, resulting in models with 204M, 759M, and 1099M parameters for the
original 128M, 419M, and 589M models, respectively. This ensures that the total parameter count of
each baseline matches the training-time parameter count when SCONE is applied. With 100M f-gram
embeddings, the 419M and 589M models trained with SCONE match or surpass the performance
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Table 1: Zero-shot evaluation accuracy on downstream tasks. Models with f-gram embedding layers
show clear improvements over the baseline models.

Model PIQA HellaSwag ARC-E ARC-C CSQA MMLU Avg.

OLMo-1B 73.6 60.9 69.5 31.8 48.7 37.6 53.7 (+0)
OLMo-1.9B 75.3 65.9 74.2 36.8 49.7 38.6 56.8 (+3.1)
OLMo-1B + OE-12.8M [Huang et al., 2025] 73.7 62.7 70.3 32.1 49.9 37.8 54.4 (+0.7)
OLMo-1B + 10M f-grams 74.0 63.6 70.4 32.1 49.9 39.3 54.9 (+1.2)
OLMo-1.3B + 10M f-grams 75.0 65.5 75.3 36.4 49.9 38.5 56.8 (+3.1)
OLMo-1B + 1B f-grams 75.3 67.1 72.5 36.4 50.8 39.9 57.0 (+3.3)

of the 759M and 1099M baselines, respectively, despite using only half as many non-embedding
parameters during inference.

4.1.3 Varying the Size of the Af-gram Model

We observe that, for a fixed |Vf-gram|, scaling up the Af-gram model size provides a new way to
improve language modeling performance. We vary the model size by changing the number of layers
in the main model architecture. For each Amain model size, we evaluate four Af-gram model sizes:
0.5x, 1x, 2x, and 3x the non-embedding parameters of the main model. We set |Vf-gram| to be 100M.
Figure 6 presents the evaluation perplexity on Wikitext-103. The observations on WebText validation
split are similar, and we present the results in Appendix E.1.

The results in Figure 6 show that the perplexity generally decreases as the Af-gram model size
increases, although the improvements become smaller as the model size grows larger. For instance,
with the 419M main model, a 170M Af-gram model improves the perplexity from 26.1 to 23.4,
outperforming the 589M baseline (24.7) by a clear margin. Further scaling of the Af-gram model to
1020M (resulting in 1439M total parameters during training) lowers the perplexity to 22.1, which
is slightly higher than the 1099M baseline (21.9). This suggests that scaling up the Af-gram model
initially yields a better scaling curve, but beyond a certain size, it becomes less optimal compared to
directly scaling up Amain. However, scaling Amain also increases accelerator usage during inference,
whereas scalingAf-gram does not, since it is replaced with an off-accelerator lookup table at inference
time. This highlights our method as a novel way to leverage additional training compute while
maintaining fixed accelerator usage during inference.

4.2 Scaling Up the Training Corpus

After exploring several design choices for SCONE, we now evaluate its performance in large-scale
pretraining. Our implementation builds on the open-source OLMo codebase [Groeneveld et al., 2024],
licensed under Apache 2.0. Additional implementation details are provided in Appendix F.2.
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Downstream Tasks. We report zero-shot accuracy on six standard downstream benchmarks: MMLU-
var, Hellaswag, ARC-Challenge, ARC-Easy, CommonsenseQA (CSQA), and PIQA. In the main text,
we focus on presenting downstream accuracy results under our primary training setting. Additional
results, including perplexity evaluations, training curves, and further SCONE configurations under
alternative settings, are provided in Appendix E.2. Notably, perplexity trends closely correlate with
downstream performance.

Baselines. We compare SCONE against three baselines: OLMo-1B, OLMo-1.9B, and a concurrent
method, the over-tokenized transformer [Huang et al., 2025]. Model configurations for OLMo-1B
and OLMo-1.9B are detailed in Appendix F.2. For the over-tokenized transformer, we adopt the
best-performing OE-12.8M variant, which introduces an additional input embedding layer comprising
12.8M embedding vectors, applied on top of the OLMo-1B model. Further discussion of this method
can be found in Section 5. All baseline models are trained for 1T tokens.

SCONE Configuration. We apply SCONE with two f-gram embedding layer sizes: 10M and 1B
f-grams, respectively. The cutoff frequencies are 21,956 for 10M f-grams and 70 for 1B f-grams.
SCONE is integrated into OLMo-1B and OLMo-1.3B models, with an Af-gram model size of 1.8B
parameters (matching the architecture of OLMo-1.9B but excluding the token embedding layer).
Models equipped with SCONE are trained for 500B tokens, half the number of tokens used by the
baselines, to account for the additional training cost of the Af-gram model and ensure comparable
total training FLOPS. In Appendix E.2, we also explore a smaller Af-gram model of 0.6B parameters,
where we observe consistent improvements.

Results. Table 1 presents the downstream accuracy results. Models with SCONE demonstrate clear
improvements over the baselines. Specifically, with 10M f-grams, OLMo-1.3B achieves parity with
the OLMo-1.9B baseline while using approximately 32% less inference FLOPS and accelerator
memory. With 1B f-grams, OLMo-1B slightly outperforms the OLMo-1.9B baseline while requiring
approximately 48% less inference FLOPS and accelerator memory. Compared to the over-tokenized
transformer, OLMo-1B + 10M f-grams surpasses OLMo-1B + OE-12.8M, which we attribute to the
additional capacity introduced by the Af-gram model during training.

4.3 Space Usage and Query Latency

We show that the latency of the f-gram embedding layer does not constitute a bottleneck during
inference, and that system memory and solid-state storage are relatively inexpensive. In Appendix E.4,
we also provide a unified table summarizing the key metrics: (1) GPU memory, (2) CPU memory, (3)
disk usage, and (4) FLOPS/latency for training and inference.

Table 2: Space usage of the f-gram embedding layer F , along with unit cost for memory and NVMe
solid-state drives [McCallum, 2024].

# of n-grams System memory
(GB)

Solid-state drive
(GB)

107 41.4 77.3
108 413.6 766.8
109 (does not fit) 7665.4

Price (per GB) ∼ 2 USD ∼ 0.1 USD

We experiment with |Vf-gram| being 10M, 100M, and 1B with embedding dimension of d = 2048
and 16-bit precision per floating point value. Experiments were conducted on a workstation with 64
Intel Xeon CPU cores and 512 GB of memory. Space and latency were measured for both in-memory
and on-disk storage. In memory, embeddings are stored as a single matrix with a hash dictionary
mapping f-grams to indices, while on-disk storage uses the Lightning Memory-Mapped Database
[Chu, 2011] to directly store f-gram and embedding pairs on NVMe solid-state drives.

Table 2 summarizes the space usage for both storage methods. In both cases, the space required
increases linearly with the number of embedding vectors. The 10M and 100M f-gram embedding
layers are able to fit within main memory, with the 10M layer requiring 41.4 GB. For on-disk storage,
there is additional overhead as the same 10M layer occupies 77.3 GB storage.
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Figure 7: Amortized per-token query latency (ms), averaged over 100,000 batches. The latency spike
from batch size 1 to 2 when reading from system memory is due to batch operator overhead, which is
less pronounced for solid-state drives.

Figure 7 shows the latency of retrieving embeddings at different batch sizes. Latency is measured
as the end-to-end time from loading a batch of tokens to having the f-gram embeddings ready on
the GPU. Before each test, the CPU cache is cleared. Up to four queries per token are performed
to find the longest matching n-gram (for a maximum n-gram length of K = 5). For in-memory
storage, sequential queries are sufficient since they are not the bottleneck, whereas on-disk storage
uses parallel queries to the database. At a batch size of 1, retrieval from a 10M f-gram embedding
layer on NVMe takes 1.1 ms, increasing to 2.3 ms for a 1B-layer: both well below the latency
threshold for LLM inference (typical commercial APIs generate at∼100 tokens/sec, or∼10 ms/token
[ArtificialAnlys, 2025]). Larger batch sizes further improve efficiency: at batch size 16, amortized
per-token latency drops to 0.5 ms. In-memory access is much faster: for a 100M f-gram layer at
batch size 16, per-token latency is only 0.017 ms. We also report end-to-end generation speed in
Figure 2, which aligns with these latency trends: when embeddings are stored in main memory, there
is negligible impact on throughput; when stored on NVMe drives, throughput slightly decreases but
no major bottleneck arises.

5 Related Work

Scaling of Embedding Layers. Prior research on the scalability of embedding layers has primarily
focused on token embeddings, where the vocabulary is shared with the language model’s decoding
head. For instance, Tao et al. [2024] show that larger models benefit from larger vocabularies,
reflecting trends where vocabulary sizes have grown from tens of thousands [Devlin et al., 2019,
Radford et al., 2019] to hundreds of thousands of tokens [Google, 2024, Adler et al., 2024, Dubey
et al., 2024, Liu et al., 2024]. However, even for the largest models, the optimal vocabulary sizes
predicted by Tao et al. [2024] remain much smaller relative to model size. For instance, a vocabulary
of 216K tokens for a 70B-parameter model. This relatively small token embedding layer limits the
potential for expanding model capacity through token embeddings alone. To address this, Roy et al.
[2022] propose decoupling input and output embeddings by introducing an additional embedding
layer for bi-grams. Building on this idea, we also decouple the input and decoding embedding layers,
but crucially, we parameterize the additional embedding table with a neural network during training.
This approach allows us to efficiently scale the additional input embedding layer and introduces a
new scaling strategy: scaling the Af-gram model that learns to generate the additional embeddings.

Concurrently, Huang et al. [2025] propose the over-tokenized transformer, which also decouples input
and decoding embeddings by introducing an additional input embedding layer for n-grams. They
observe similar performance gains as the input embedding size increases. Unlike our approach, which
selectively retains only frequent n-grams, they hash n-grams into a fixed number of embeddings to
manage the vast n-gram space, a strategy that likely also mitigates sparse updates (Appendix D).
A key distinction is that their additional embedding layer must be fully instantiated and resident
on accelerators during training, leading to significant memory challenges despite tensor sharding.
Moreover, through the design of Af-gram, SCONE expands model capacity not only by enlarging
the embedding table but also by introducing a scalable Af-gram model for learning the embeddings.
We compare SCONE with the over-tokenized transformer in Section 4.2. Results suggest that while
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both SCONE and the over-tokenized transformer show clear improvements over the baseline, SCONE
offers better gains owing to the additional capacity provided by Af-gram.

Mixture of Lookup Experts. A concurrent work by Jie et al. [2025] proposes discretizing the inputs
to a Mixture-of-Experts (MoE) layer so that, at inference time, it can be implemented as a simple
lookup table. They use token embeddings from the input embedding layer as keys for the lookup.
This design enables training with a larger MoE layer to improve performance, while having negligible
impact on FLOPs and accelerator memory usage during inference. Their approach shares a similar
insight with our design of the Af-gram model: constructing a neural network module with discretized
inputs that can be switched to an efficient lookup table at inference. However, a key difference is
that we introduce a method for scaling the number of keys by constructing the set Vf-gram. This
enables an additional axis of scaling, namely expanding the size of the lookup table at inference. It
also allows for fully utilizing the increased model capacity during training. Without this extension, a
small number of discretized keys would lead to diminishing returns when scaling the parameters of
the discretized module during training.

We discuss additional related work in Appendix B due to space constraints.

6 Conclusion

We introduce SCONE, a scalable approach for generating n-gram contextualized embeddings for each
input token. These embeddings are learned during training and cached in off-accelerator storage for
inference. SCONE enables two new strategies for scaling language models under fixed inference-time
accelerator memory and FLOPS budgets, making it particularly useful for reducing serving costs and
supporting latency-sensitive applications.

We discuss limitations and promising directions for future work in Appendix A.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE Trans. Big
Data, 2019.

Andy L Jones. Scaling scaling laws with board games. arXiv:2104.03113, 2021.
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• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We made efforts to include statistical information in some of our experiments,
such as in Figure 7 and Figure 5. However, for the large-scale pre-training experiments, we
did not conduct formal statistical significance testing due to the prohibitive computational cost.
Nevertheless, we observe consistent performance improvements across different settings.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We describe the hardware used in this work in Appendix F.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirm we have reviewed the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: The goal of our work is to advance the field of language models. Our work does not
introduce new potential societal consequences beyond those already associated with LLMs, and
therefore we do not believe any specific impacts need to be highlighted.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We’ve ensured that all assets used in this work are properly licensed and have
provided references and links to their sources.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should
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some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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A Limitations and Future Work

A promising direction for future work is extending SCONE beyond short n-grams by enabling
caching for longer queries. A central challenge lies in designing effective keys for such queries.
Using raw text as keys may result in low cache hit rates, as semantically similar queries often vary
at the surface level. Alternatively, using semantic embeddings as keys would require discretization
techniques to map continuous embeddings into a discrete key space that supports efficient indexing.

One limitation of the current study is that we evaluate SCONE only on models with up to 3B
parameters at training time. This constraint is primarily due to hardware limitations, which restrict
our ability to conduct large-scale pretraining on larger models. Although the model scales we tested
are widely used in real-world applications, exploring the performance of SCONE at larger scales
presents an exciting direction for future research. We believe applying SCONE to larger models
would be highly beneficial to the community and leave this exploration for future work. Notably, our
experiments in Section 4 provide encouraging evidence, as the benefits of SCONE are consistent
across all model sizes we tested.

B Additional Related Work

Contextualized Word Embeddings. Words can have different meanings depending on context.
Prior work has incorporated context into word embeddings, either from the entire sequence [McCann
et al., 2017, Peters et al., 2018] or short n-grams [Gupta et al., 2019], before applying them to down-
stream tasks. Modern language models inherently use contextualized token embeddings, leveraging
attention mechanisms. In this study, we extend the embedding layer to include contextualized f-gram
embeddings for each token. A key novelty is that our approach allows embeddings to be precomputed
and offloaded from accelerators, providing contextual embeddings for each token without increasing
FLOPS and accelerator memory usage at inference.

Tokenization in Language Models. Our method assumes a predefined vocabulary from a trained
tokenizer. Several popular algorithms exist for training tokenizers [Sennrich et al., 2016, Wu et al.,
2016, Kudo, 2018b,a]. In this work, we use a BPE tokenizer, following prior seminal works [Radford
et al., 2019, Touvron et al., 2023]. However, our method is not tied to any specific tokenization
algorithm and can be applied seamlessly to others.

Tokenization-free language models have also been widely explored [Kim et al., 2016, Choe et al.,
2019, Xue et al., 2022, Yu et al., 2023, Wang et al., 2024, Deiseroth et al., 2024, Meta, 2024, Pagnoni
et al., 2024]. While we have not tested our method on tokenization-free models, we believe our core
idea—introducing an off-accelerator embedding layer by precomputing embeddings for frequent
input patterns—remains applicable.

Mixture-of-Experts (MoE) and Memory Layers. MoE and memory layers are two established
approaches for scaling language models within a fixed FLOPS budget.

MoE layers replace traditional feedforward layers with multiple parallel “experts,” activating only
one or a few per token using a lightweight routing mechanism [Shazeer et al., 2017, Lepikhin et al.,
2021, Fedus et al., 2022, Jiang et al., 2024, He, 2024]. This allows the model to scale by increasing
the number of experts without increasing the computational cost per token. However, all experts must
reside on the accelerator, resulting in significantly higher memory usage.

Memory layers, on the other hand, store large collections of embeddings (continuous vectors) and
retrieve the nearest neighbors during the forward pass via (approximate) similarity search [Weston
et al., 2015, Sukhbaatar et al., 2015, Lample et al., 2019, Berges et al., 2024]. These retrieved
embeddings enhance the model’s capabilities without adding much to the FLOPS budget. Despite
improvements in similarity search techniques [Lample et al., 2019, Johnson et al., 2019], memory
layers still require storing the embeddings on the accelerator, making memory demands impractically
high at larger scales [Berges et al., 2024]. Furthermore, because embeddings are typically updated
via backpropagation, memory layers introduce additional challenges related to sparse updates as the
memory size grows.

While MoE layers, memory layers, and our proposed method SCONE all maintain fixed inference
FLOPS, a key advantage of SCONE is it also maintains fixed accelerator memory usage at inference.
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Algorithm 2 Basic Next-Word Prediction Model MT ,A,D.

Parameters:
• T : Vtoken → Rd: token embedding layer,
• A : (Rd)≤T → Rd: transformer model, where T is the maximum sequence length,
• D : Rd → ∆Vtoken

: prediction head.
Input: (σ1, . . . , σm) ∈ V ∗

token for m ≤ T .
Output: Probability distribution over next token σ̂m+1.
for i = 1, . . . ,m do
ei ← T (σi) : Input embedding per token.

eout ← A(e1, . . . , em): Output embedding.
return D(eout)

Algorithm 3 Constructing a set of f-grams Vf-gram.

Parameters: S: desired size of Vf-gram.
Input: {(σ1, . . . , σT )

(i)} : token sequences from training set.
Output: Vf-gram ⊆ V

[2,K]
token : set of f-grams of size S.

for n = 2, . . . ,K do
for ω := (σ

′

1, . . . , σ
′

k) ∈ V n
token do

Cω ← the number of times ω appears in all sequences {(σ1, . . . , σT )
(i)}.

Let ω1, ω2, . . . be list of elements of
⋃K

n=2 V
n
token, sorted such that Cω1

≥ Cω2
≥ · · · , breaking

ties arbitrarily.
return {ω1, . . . , ωS}: set of f-grams of size S.

By focusing on the input embedding layer, SCONE ensures that the computational overhead remains
O(1) during inference and enables offloading the additional parameters off-accelerator with negligible
impact on end-to-end latency.

Implicit n-gram Patterns in Transformers. Recent work analyzing the internal mechanisms of
transformers has shown that these models often utilize implicit n-gram patterns for prediction [Geva
et al., 2021, 2022, Voita et al., 2024]. For instance, Chen et al. [2024] demonstrate that certain
attention heads can detect specific n-gram patterns, while MLPs can perform linguistic operations
such as adding the “-ing” suffix. These findings underscore the importance of n-gram information in
language modeling and offer a potential explanation for the effectiveness of SCONE. An interesting
future direction is to examine how SCONE’s f-gram embeddings interact with the transformer’s
implicit n-gram patterns.

Embedding Sparsity in Multilingual Applications and Recommender Systems. This work
focuses on a common setting for training LLMs: language modeling on large-scale text corpora,
primarily in English. However, scaling embedding layers presents challenges beyond this context,
particularly due to frequency-related performance degradation caused by sparsity. Multilingual
applications are one such scenario. Two phrases in different languages may refer to the same concept
but correspond to different embedding vectors. Their embeddings should ideally be close. Recent
work has explored methods for learning transferable embeddings in cross-lingual settings [Artetxe
et al., 2020, Chen et al., 2023]. Another relevant example is scaling the embeddings for recommender
systems [Chen et al., 2019, Liu et al., 2021], where embeddings often dominate the model’s parameter
count due to the high cardinality of user or item categories. For both scenarios, SCONE ’s strategy, i.e.,
parameterizing large embedding tables using a neural network, provides a complementary approach
to help mitigate sparsity issues.

C Additional Algorithms
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Algorithm 4 Next-word prediction with SCONE MT ,Vf-gram,Af-gram|F,Amain,D

Parameters:
• T : Vtoken → Rd: token embedding layer,
• Vf-gram ⊆ V

[2,K]
token : set of f-grams,

• TRAINING: f-gram transformer model
▷ Af-gram : (Rd)≤K → Rd,

• INFERENCE: f-gram embedding layer
▷ F : Vf-gram → Rd.

• Amain : (Rd)≤T → Rd: main transformer model.
• D : Rd → ∆Vtoken

: Prediction head.
Input: (σ1, . . . , σm) ∈ V ∗

token for m ≤ T , where T is the maximum sequence length.
Output: Probability distribution over next token σ̂m+1.
(e1, . . . , em)← FT ,Vf-gram,Af-gram|F (σ1, . . . , σm) (Algorithm 1)
eout ← Amain(e1, . . . , em)

return D(eout)

In Section 2, we discuss a simple next-word prediction model, MT ,A,D, consisting of a token
embedding layer T , a transformer model A, and a prediction head D. This model takes a token
sequence (σ1, . . . , σm), with each token from the token vocabulary Vtoken, and produces a probability
distribution for the next token. We provide the pseudocode for MT ,A,D in Algorithm 2.

In Section 3, we introduce an algorithm for constructing a set of f-grams given a target number of f-
grams. We present the pseudocode for the construction process in Algorithm 3. Although Algorithm 3
clearly illustrates the procedure, it is too expensive to implement in practice. In Section 3.1, we
describe an efficient implementation that requires only K − 1 linear scans over the pre-training
corpus, where K is a hyperparameter controlling the maximum length of f-grams.

In Algorithm 1 in Section 3, we present the pseudocode for SCONE’s process of generating contex-
tualized f-gram embeddings. Next, we describe the end-to-end next-word prediction process using
SCONE (Algorithm 4). Specifically, the process, denoted as MT ,Vf-gram,Af-gram|F,Amain,D, takes an
input sequence (σ1, . . . , σm) ∈ V ∗

token and produces a distribution over the next token σ̂m+1. Note
that in Algorithm 4, f-gram embeddings are generated with Af-gram during training and retrieved
from a lookup table F during inference.

D Challenges of Scaling Vocabulary Size in Embedding Layers

Scaling the token vocabulary size is the most straightforward way to enlarge an embedding layer,
but we find that larger token vocabularies degrade performance beyond a certain threshold and
significantly increase accelerator usage during decoding. We pre-train GPT-2 models [Radford et al.,
2019] with three sizes of non-embedding parameters: 85M (small), 302M (medium), and 708M
(large) on the WebText dataset [Peterson et al., 2019], testing six vocabulary sizes ranging from
32,768 to 2,097,152. The tokenizers are trained using the BPE algorithm [Gage, 1994, Sennrich et al.,
2016]. We follow the implementation in Tao et al. [2024], which allows token merges across word
boundaries. Each model is trained on 80B tokens. Since larger vocabularies produce fewer tokens for
the same dataset, they effectively enable models to process more data. Additional implementation
details such as training hyperparameters are provided in Appendix F.1.

Figure 8 presents the average bits per character (BPC) on the WebText validation set. We report BPC
instead of cross-entropy loss because the latter is sensitive to vocabulary size, with larger vocabularies
typically producing higher losses. BPC, by contrast, is a common vocabulary-insensitive metric for
comparing models trained with different tokenizers [Huang et al., 2024]. We observe that BPC for all
three models initially improves with larger vocabulary sizes but eventually deteriorates.

Figure 9 shows the percentages of tokens that receive more than a given number of updates over
100M training tokens. In standard embedding layers, gradients are directly backpropagated to the
embedding vectors. With a fixed number of training tokens, larger vocabularies lead to fewer updates
per token. For a vocabulary size of 2,097,152, only 7.3% of tokens receive more than 100 updates,
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Figure 8: BPC of three model sizes on the validation set (lower is better). For all three model sizes,
BPC initially improves as vocabulary size increases but eventually deteriorates.
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Figure 9: Percentages of tokens (y-axis) that receive more than a given number of updates (x-axis),
measured over 100M training tokens. As the vocabulary size increases, tokens receive increasingly
sparse updates.

compared to 97.6% for a vocabulary size of 32,768. This suggests that the performance drop for
larger vocabularies may stem from sparse updates to per-token embedding vectors.
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Figure 10: Number of embedding layer parameters stored on GPU and the corresponding memory
usage. For large vocabulary sizes, the memory usage increases linearly with the vocabulary size.

In addition to performance degradation, increasing the vocabulary size significantly raises accelerator
usage during the inference stage. This is because predicting the next token involves running a linear
layer and softmax operation across the entire vocabulary to identify the closest embedding. Figure 10
illustrates that both the number of embedding layer parameters stored on the GPU and the GPU
memory cost increase linearly with vocabulary size. These costs are measured using a batch size of 1,
a sequence length of 1024, and 16-bit precision.
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Figure 12: Evaluation perplexity on WebText
as a function of the size of Af-gram.

E Additional Experiments

E.1 More Results for Training on WebText

Varying Maximum f-gram Length. In Section 4.1.1, we discuss the impact of varying the
maximum f-gram length in Vf-gram and present results on Wikitext-103. We observe that a relatively
small maximum length is sufficient, as long as it is not too small, otherwise, the number of available
n-grams for ranking becomes too limited. Here, in Figure 11, we show the corresponding results
on WebText, which exhibit similar trends. The left y-axis represents the evaluation loss (averaged
over three seeds), with the leftmost star indicating baseline performance. The right y-axis shows the
average length of matched f-grams. As the maximum size increases, the loss initially decreases but
then plateaus with some fluctuations. Meanwhile, the matched length rises initially before stabilizing
for larger values.

Varying Af -gram Model Size. In Section 4.1.3, we discuss the impact of varying the size of
Af-gram on evaluation perplexity for Wikitext-103. We find that increasing the model size leads
to further performance improvements for a fixed |Vf-gram|. In Figure 12, we present the results on
WebText, which show a similar trend. Model sizes in the legend correspond to inference-time sizes
on accelerators. Dashed lines and stars on the left represent baseline performance. The evaluation
perplexity improves as the size of Af-gram grows.

E.2 Additional Results for Training on the OLMo Corpus

We present training curves and perplexity evaluations for models trained on the OLMo corpus. For
SCONE, we introduce an additional Af-gram model size of 0.6B, alongside the 1.8B Af-gram model
discussed in Section 4.2. Due to the large number of experiments, all models in this section are
trained for 200B tokens, constrained by computational resources. This differs from Section 4.2,
where SCONE-enabled models are trained for 500B tokens and baseline models for 1T tokens.
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Figure 13: Average perplexity on the OLMo evaluation mixture throughout training. Models with
SCONE enabled converge later, indicating stronger capacity, and achieve better perplexity.
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Training Curves. Figure 13 shows the evaluation perplexity curves for OLMo-0.7B, OLMo-
1B, and OLMo-1.3B throughout training. The curves indicate that models trained with SCONE
converge more slowly, suggesting that SCONE effectively increases model capacity. Furthermore,
both increasing the number of f-grams and enlarging the Af-gram model size enhance model capacity.

Table 3: SCONE consistently improves perplexity (lower is better) across all evaluation corpora. We
train three baseline models with sizes of 1B, 1.3B, and 1.9B parameters. For the 1B and 1.3B baseline
models, we apply SCONE using four different configurations and present the results directly below
each corresponding baseline.

Model size c4-en books common-crawl pes2o reddit stack wiki ice m2de-s2orc pile wikitext-103 Average

1B baseline 16.813 21.570 16.752 11.682 22.612 3.360 14.453 15.281 27.900 10.429 16.053 16.082
+10M Vf-gram (0.6B Af-gram) 16.087 20.963 16.039 11.270 21.797 3.274 13.777 14.979 26.361 10.128 15.371 15.459
+10M Vf-gram (1.8B Af-gram) 15.727 20.429 15.473 11.124 21.388 3.231 13.454 14.709 25.785 9.956 15.104 15.125
+1B Vf-gram (0.6B Af-gram) 15.846 20.593 15.684 11.071 21.411 3.213 13.543 14.702 26.026 9.889 15.077 15.187
+1B Vf-gram (1.8B Af-gram) 15.158 19.680 14.857 10.761 20.757 3.133 12.964 14.220 24.958 9.553 14.354 14.581

1.3B baseline 15.994 20.157 15.921 11.148 21.634 3.248 13.721 14.651 26.583 9.927 15.143 15.284
+10M Vf-gram (0.6B Af-gram) 15.509 19.816 15.407 10.887 21.022 3.192 13.260 14.372 25.450 9.757 14.616 14.844
+10M Vf-gram (1.8B Af-gram) 15.193 19.587 14.995 10.795 20.735 3.171 13.071 14.272 25.258 9.674 14.438 14.654
+1B Vf-gram (0.6B Af-gram) 15.270 19.510 15.106 10.707 20.763 3.139 13.073 14.177 25.009 9.546 14.397 14.609
+1B Vf-gram (1.8B Af-gram) 14.803 18.996 14.541 10.502 20.296 3.085 12.637 13.971 24.533 9.357 13.971 14.245

1.9B baseline 15.270 19.017 15.184 10.719 20.752 3.163 13.119 14.095 25.461 9.570 14.229 14.598

Perplexity Evaluation. Figure 2 presents perplexity results on the OLMo evaluation mixture3,
which covers 11 diverse corpora, including web crawl data, literature, online forums, scientific
writing, coding, and more. Table 3 details the performance breakdown by corpus. Results show
that increasing both |Vf-gram| and the size of Af-gram consistently improves performance across all
datasets.

Additionally, Figure 2 reports token generation speeds measured using the vLLM framework [Kwon
et al., 2023] with a batch size of 1. Even with large |Vf-gram|, embedding retrieval remains efficient
and is not a bottleneck for inference.

As a representative example, in the 1B model variant, the baseline achieves an average perplexity
of 16.082. Setting |Vf-gram| to 10M improves perplexity to 15.459 with a 0.6B Af-gram model and
to 15.125 with a 1.8B Af-gram model—the latter outperforming the 1.3B baseline (15.284). Further
increasing |Vf-gram| to 1B improves perplexity to 15.187 (0.6B Af-gram) and 14.581 (1.8B Af-gram),
surpassing the 1.9B baseline (14.598) while requiring only about half the FLOPS and accelerator
memory at inference time.

E.3 Apply SCONE in Post-training

We apply SCONE to supervised fine-tuning of Qwen3-4B-base using the open-r14 framework and
the open-r1/Mixture-of-Thoughts dataset5. In this setup, Qwen3-4B serves as the main model,
while Qwen3-8B-base or Qwen3-14B-base are used as the f-gram models. We set the number of
f-grams to 10M and follow the training hyperparameters in open-r1. Table 4 compares the resulting
SCONE-enabled models with the Qwen3-4B baseline in terms of both accuracy and decoding latency.

Model AIME 2024
pass@1

LiveCodeBench
v4 v5 pass@1

Decoding Latency
(per-token)

(ms)

Qwen3-4B-base 45.3 30.8 10.05
SCONE-4B (8B f-gram model) 48.3 (+3.0) 34.5 (+3.7) 10.13
SCONE-4B (14B f-gram model) 51.6 (+6.3) 36.3 (+5.5) 10.13

Table 4: Performance comparison of Qwen3-4B variants on AIME 2024 and LiveCodeBench v4/v5
with decoding latency.

3https://github.com/allenai/OLMo/blob/v0.4.0/configs/official/OLMo-1B.yaml#L90
4https://github.com/huggingface/open-r1
5https://huggingface.co/datasets/open-r1/Mixture-of-Thoughts
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These results show that SCONE consistently improves performance over the baseline, with larger
f-gram models yielding greater gains, all while maintaining similar inference latency.

E.4 Summary of Comparison on Computational Resources

In Table 5, we summarize the key metrics of SCONE for the three model variants evaluated in
Section 4.2. The metrics include (1) GPU memory, (2) CPU memory, (3) disk usage, and (4)
FLOPS/latency for training and inference. All measurements are taken with a context length of 2048
and a batch size of 4 on a single A100 80 GB GPU. The three settings are: (1) the 1.9B baseline
model, (2) SCONE 1.3B, with a 1.8B f-gram model and 10M cached f-gram embeddings, and (3)
SCONE 1B , with a 1.8B f-gram model and 1B cached f-gram embeddings.

Model Variant

Peak GPU
Memory

(GB)

CPU Memory
Overhead

(GB)

Disk
Usage
(TB)

Decoding Latency
(per-token)

(ms)

Training FLOPS
(per-seq.)
(×1013)

1.9B baseline 8.38 N/A N/A 6.45 2.73

SCONE-1.3B
(10M f-grams)

5.60 41.76 N/A 4.83 4.94

SCONE-1B
(1B f-grams)

4.45 N/A 7.67 4.90 5.57

Table 5: Comparison of SCONE model variants on memory, storage, latency, and compute efficiency.

Both memory and disk usage are reported for inference. The decoding latency is averaged over one
thousand decoding steps. As shown in Section 4.2, all three models achieve similar downstream
performance. Compared to the 1.9B baseline, SCONE-enabled models significantly reduce GPU
memory usage and decoding latency, at the cost of increased CPU memory or disk storage.

F Implementation Details

We provide additional implementation details below. Most of our experiments are conducted on 4
8×H100 nodes, while some experiments are conducted on 2 16×A100 nodes.

While f-gram lookup is efficient for inference, it creates a bottleneck during training since at training
time transformer models process all token positions in parallel. This leads to GPU idle time when
fetching the longest matching f-gram on the fly. To remove this bottleneck, after we construct the
set of f-grams (Vf-gram), we pre-scan the training sequences to tag the longest matching length for
each token. During training, we can then directly retrieve the corresponding f-gram for forward
computation with the Af-gram model.

For the Af-gram model, we use an absolute position embedding layer where the maximum position
equals the longest n-gram in Vf-gram. Within each batch, all f-grams are padded to the longest n-gram
length in that batch. We train all models with the bfloat16 precision.

F.1 WebText

For pre-training on WebText [Peterson et al., 2019], we follow Radford et al. [2019] and set the batch
size and sequence length to 512 and 1024, respectively. Radford et al. [2019] do not specify the
number of training tokens or optimizer details. We train the models for 80B tokens, roughly doubling
the count in Radford et al. [2018]. For optimization, we use AdamW [Loshchilov and Hutter, 2019]
with a weight decay of 0.1. Following Hoffmann et al. [2022], we set the maximum learning rate to
2× 10−4 and apply a cosine learning rate scheduler. We list the model configurations in Table 6.
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Parameters (M) d model ffw size n layers

128 1024 4096 6
204 1024 4096 12
491 1536 6144 12
759 1536 6144 24
589 1536 6144 18

1099 1536 6144 36
Table 6: Baseline model configurations for pre-training on WebText. For constructing the f-gram
model (Af-gram), we vary the number of layers in the 128M, 491M, and 589M variants and discard
the token embedding layer.

Parameters (M) d model ffw size n layers

711 2048 8192 12
1014 2048 8192 18
1316 2048 8192 24
1920 2048 8192 36

Table 7: Model configurations for pre-training on the OLMo corpus. To construct the f-gram model
(Af-gram), we use the 711M and 1920M variants, excluding the token embedding layers.

F.2 OLMo Tokenized Training Corpus

For pre-training on the OLMo tokenized training corpus, we follow the optimizer settings for the 1B
variant in Groeneveld et al. [2024] 6. All models use a sequence length of 2048. We use DeepSpeed
[DeepSpeed, 2024] with ZeRO stage 1 that partitions the optimizer state across GPUs to reduce GPU
memory usage. We list the model configurations in Table 7.

6https://github.com/allenai/OLMo/blob/v0.4.0/configs/official/OLMo-1B.yaml#L40
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