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Abstract. We propose a novel reinforcement learning (RL) design to op-
timize the charging strategy for autonomous mobile robots in large-scale
block stacking warehouses. RL design involves a wide array of choices
that can mostly only be evaluated through lengthy experimentation. Our
study focuses on how different reward and action space configurations,
ranging from flexible setups to more guided, domain-informed design
configurations, affect the agent performance. Using heuristic charging
strategies as a baseline, we demonstrate the superiority of flexible, RL-
based approaches in terms of service times. Furthermore, our findings
highlight a trade-off: While more open-ended designs are able to discover
well-performing strategies on their own, they may require longer conver-
gence times and are less stable, whereas guided configurations lead to a
more stable learning process but display a more limited generalization
potential. Our contributions are threefold. First, we extend SLAPStack,
an open-source, RL-compatible simulation-framework to accommodate
charging strategies. Second, we introduce a novel RL design for tack-
ling the charging strategy problem. Finally, we introduce several novel
adaptive baseline heuristics and reproducibly evaluate the design using
a Proximal Policy Optimization agent and varying different design con-
figurations, with a focus on reward.

Keywords: Autonomous Block Stacking Warehouses · Vehicle Dispatch-
ing · Discrete Event Simulation · Battery Management · Reinforcement
Learning · AGV

1 Introduction

With increasing uncertainty and supply chain disruptions, innovative logistics
solutions are becoming vital. The adoption of autonomous mobile robots (AMR)
in block storage warehouses (BSW) reflects this trend.

In a BSW, goods are stored directly on the floor or on top of each other.
This storage system has several benefits, such as low investments due to the
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minimal infrastructure needed and high throughput. While pallets are stored in
lanes next to each other for higher storage efficiency, aisles and cross-aisles are
used by vehicles to travel through the BSW.

The authors of [17] have presented the autonomous block stacking warehouse
problem (ABSWP), which consists of interdependent decision problems in combi-
nation with the usage of AMRs in a BSW. Problems include the storage location
assignment problem (SLAP), which assigns incoming items to storage locations,
the unit load selection problem (ULSP) to determine which items are retrieved
to fulfill an outbound order, and the vehicle dispatching problem, in which ve-
hicles are assigned to transport tasks. Due to the combinatorial complexity of
these decision problems, simulation studies are used to derive configurations for
a given ABSWP instance. The importance of battery management is often over-
looked in such studies. Recognizing the crucial role that battery management
plays in autonomous systems, as highlighted in [7, 29], we extend the ABWSP
model to include it.

Fig. 1: The problems associated with battery management as per [30].

According to [30], battery management consists of three sub-problems visu-
alized in Figure 1: The selection of battery charging technology (e.g. induction
charging, battery swaps), the charging station layout (i.e. the number and posi-
tion of charging stations), and the battery charging strategy. The former prob-
lems are more strategic in nature, while the last problem is operational. The
charging strategy, which is the focus of this work, can be further broken down
into three sub-problems pertaining to (1) the charging decision, i.e. deter-
mining when an AMR should go charge, (2) the charging station selection,
i.e. assigning a specific charging station and the route to that destination to an
AMR, and (3) the charging duration, i.e. determining how long AMRs should
remain at charging stations.

This work employs a reinforcement-learning (RL) meta-heuristic approach to
jointly solve the charging decision and charge duration problems. To accomplish
this, the agent must decide between discrete charge levels including a no-charge
option, at the conclusion of any travel event. We use a fixed heuristic solution
for the charging station selection problem and evaluate the resulting charging
strategy using a large-scale, real-world ABSWP benchmark — WEPAStacks [18].
Charging strategy solutions can be either exact, heuristic, or meta-heuristic. Ex-
act solutions are intractable for large real-world scenarios such as WEPAStacks.
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Simple heuristic solutions are likely not able to adapt to varying AMR demand,
resulting in inefficiency. Meta-heuristic solutions provide more adaptability while
maintaining tractability. We chose RL as the meta-heuristic paradigm for two
reasons. Firstly, in recent years, RL has emerged as a promising approach for
solving complex combinatorial optimization problems [11]. Secondly, an RL-
compatible ABSWP simulation with mechanisms safeguarding reproducibility
was made available in [18], alongside real-world use-case data. This makes the
RL training and evaluation effort manageable. Among various RL algorithms,
we selected Proximal Policy Optimization (PPO) [23] due to its suitability for
practical applications in combinatorial optimization [13].

A key challenge in applying RL lies in the multitude of design choices such
as the design of the reward function and action space. We explore different
configurations varying the amount of structure imposed on the agent’s decision-
making process. Our results suggest a tradeoff between learning stability and
optimization potential. A more flexible approach to RL-design provides greater
optimization potential at the cost of learning stability. Conversely, a more con-
strained, domain-knowledge informed design, can lead to good results quickly,
but may limit the agent’s learning potential. Overall, we make the following
contributions to the field:

1. Firstly, we extend SLAPStack, a fine-grained, rl-compatible, ABSWP sim-
ulation framework [18], to account for battery management, and publish the
associated code.

2. Secondly, we introduce a novel Markov decision process (MDP) for
AMR charging.

3. Finally, we train a state-of-the-art RL algorithm on a large-scale ABSWP
instance and reproducibly evaluate several different MDP-configu-
rations against existing and novel heuristic strategies.

We start with an overview of battery charging strategies in literature in Sec-
tion 2. We then present the problem setting and benchmark instance in Section
3, including a selection and evaluation of baseline charging strategies. In Section
4, we present the different RL design choices for AMR charging, and detail the
configurations we evaluate. Finally, we evaluate the proposed configurations in
terms of learning stability and generalization capabilities in Section 5, before
drawing our conclusions in Section 6.

2 Related Work

While some research exists on battery management for AMRs in intralogistics,
no existing work offers suitable charging strategies for real-world ABSWPs. Our
review shows that exact methods handle only small problems, heuristics lack
flexibility, and RL approaches suffer from non-reproducible simulations.
Learning Free Approaches: The lower level decisions comprising battery
charging strategies, i.e. deciding when to charge, for how long, and which charg-
ing station to use, are often tackled using simple heuristic rules or expert knowl-
edge. A common approach for deciding when AMRs should charge is to use fixed
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lower-bound battery capacity thresholds. In [25, 3], for instance, the 20% level
is chosen to prevent AMRs from blocking production due to insufficient battery
levels. A more flexible approach is opportunity charging. Here, charging is done
when an opportunity arises. This may occur when vehicles are idle and near a
charging station or during off-peak times. For this strategy, it is important that
the placement of the charging station coincides with the regions where AMRs
are likely to idle, e.g. on the way to a central parking area or near an in- or
outbound dock as described in [5].

While modern AMRs are able to partially recharge via inductive or plug-
in charging, battery swapping is still widespread. Herein, the empty battery is
replaced with a full one at designated swapping stations. Although battery swap-
ping eliminates idle time for the AMR during charging, it introduces significant
disadvantages. It is less safe than charge-based techniques and requires special
safety measures such as acid-proof floors at the swapping stations, as noted in
[5]. For inductive or plug-in charging systems, a common practice is to recharge
to a defined upper level, e.g. 50% / 80% / 100% as in [7, 3, 31, 9]. The charg-
ing station selection is also often done in a rule-based fashion, e.g. selecting the
closest or the least queued charging station [5, 10].

In addition to these myopic strategies, mixed integer linear programming
(MILP) is sometimes applied to determine optimal charging schedules for AMR
dispatching as in [27, 14]. In both works, the computational efforts to solve larger
instances are mentioned. To overcome this Meyer et al formulate a branch-price-
and-cut approach which can solve instances with up to 144 tasks in [14]. They
model the problem of assigning transport tasks in intralogistic warehouses to
AMRs as an electric vehicle routing problem. Two objectives are proposed to
minimize completion times and due dates, respectively. The authors compare
battery swapping, partial charging, and full recharging strategies. Besides a
MILP program the authors of [27] present a matheuristic approach to solve in-
stances larger than 22 tasks. AMRs can partially recharge after a critical battery
threshold is reached. For recharging, the nearest charging station is selected.

Metaheuristic approaches have been proposed in several other works. Mousavi
et al. employ a hybrid genetic algorithm-particle swarm algorithm to optimize an
AMR scheduling process in a flexible manufacturing system [15]. A constraint
ensures that the charge level of an AMR is sufficient to fulfill a given trans-
port order. The objective function minimizes both the makespan and number of
AMRs required for the transport tasks. The problem sizes range from 6 to 15
transport jobs. Han et al. use a genetic algorithm to solve an AMR scheduling
problem in [6]. A constraint prevents AMRs from accepting transportation or-
ders if their battery level is below 20 %. First, a regular scheduling is carried
out, then the schedule is repaired to account for necessary charging tasks. The
approach is applied to a case study with 29 tasks.

From the problem sizes used in these works, it is evident that MILP and other
exact methods are ill-suited for dynamic, online variants of the ABSWP, which
require frequent re-optimization in response to new tasks. This is due to the
strong interdependence between battery management and other sub-problems,
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meaning that storage assignment, routing, and task precedence must be decided
jointly with charging-related variables. Proposed Meta-heuristics other than RL
also exist, but these are also typically designed for offline settings with limited
task volumes.

Reinforcement Learning Approaches: In [12] a feature-based SARSA algo-
rithm is formulated to determine the charging duration for AMRs. AMRs below
a certain threshold are required to go to a standby area. If then a free charging
station is available, the AMR occupies it. The action is to determine the charging
duration of each AMR at the charging station according to the system state and
the current energy price. The RL approach is compared to an industry heuristic
that uses a safety threshold of 20 % and aims to keep the battery level between
40% and 80%. The observation space consists of information on the AMRs in the
standby area and at the charging stations, such as battery charge levels, battery
ages, and battery types of the AMRs. 50 AMRs are considered with 0.8 trans-
portation tasks arriving each minute over a course of 30 days. Charging decisions
are made every time a task arrives. The authors report improved utilization for
their approach.

The authors of [4, 16] present an RL approach for an automated warehouse
setting. Twin Delayed Deep Deterministic Policy Gradient is used as the RL
algorithm. At each time step, a set of AMRs with the lowest battery in the
working area has to go charging, and charging AMRs with a battery level above
a certain threshold must return to the working area. The action is to select the
number of AMRs to go charging and the working battery threshold. A setting
with 640 AMRs and 3,500 to 4,500 orders per day is used to train and evaluate
the approach. They simulate 25 days and divide each day into 510 time steps.
The number of orders fulfilled per step is used as the reward function. Their
results are compared with rule-based charging strategies that are parameterized
by a working and charging threshold that determine when the AMRs have to
charge and when they have to return to the working area.

In [26] an RL is applied to the dispatching of heterogeneous AMR in an online
setting. A Noisy Dueling Double Deep Q-Network which enhances exploration
via NoisyNets is employed. Their approach is trained on instances containing
up to 12 AMRs and 900 tasks. The approach is compared to the exact and
matheuristic methods in [27].

From the reviewed RL approaches we identify a number of gaps. In addition
to the missing publication of the simulation and possibilities to reproduce the
results, neither of the proposed approaches evaluates different RL design spaces
but present single action and reward spaces. The approaches also differ in terms
of decision granularity. In [12] decisions are made at the level of individual AMRs,
but only the charging duration is optimized. The decision of when to go charging
is fixed. In [4, 16] both the number of AMRs to go charging and a target charging
threshold are determined, but on an aggregated level without taking the states
of the individual AMRs into account.
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3 Benchmark Extensions and Baseline Evaluation

Meaningful RL experiments require a strong grasp of the experimentation frame-
work and its underlying data. This section outlines the battery management ex-
tensions in SLAPStack and WEPAStacks, and compares the heuristic charging
strategies used as RL baselines. To keep within the frame of this work, we defer
the implementation details to the published repository [1] and elaborate only on
the parts needed to understand the RL design discussion that follows.

3.1 Benchmark Framework Extension

Augmented SLAPStack: SLAPStack is a discrete event simulation imple-
menting an intuitive event chain concept detailed in its public GitHub repository
[21]. Event chains model the process logic of the block storage and can pause
the simulation execution to request inputs from control algorithms. The deliv-
ery event chain, for instance, is implemented as follows: When a delivery order
arrives, an AMR is sent to the dock to pick up the pallet. When it arrives at the
dock, the simulation requests a decision from a SLAPStrategy. The vehicle then
moves the pallet to the indicated position, where it is released upon arriving.

Following this pattern, we implemented a charging event chain that requires
a decision after every completed transportation task. An external decision entity
determines how long an AMR should charge. A value of 0 indicates no charging,
while any other value up to 100 specifies both the decision to charge and the
desired duration. The vehicle then goes to the charging station and remains there
for a corresponding time period, after which the vehicle is released. On every
AMR movement, its battery is depleted based on movement time and load. The
capacity replenishment occurs on vehicle release at a charging station.

We assume vehicles that are capable of automated plug-in or inductive charg-
ing. Following the assumptions of [7] the battery capacity of the vehicles is set to
52 ampere hours (Ah). We also use the same consumption rates of travelloaded =
15Ah and travelunloaded = 10Ah. Further, a charging duration of half an hour
to recharge to 100% is assumed. For recharging the battery, we assume a linear
charging behavior as no non-linear movement model was available for this work.
Battery degradation effects are not considered in this study.
Augmented WEPAStacks: Each SLAPStack use-case is defined by three
components: warehouse layout, order set and an initial fill level. The initial fill
level maps different stock keeping units (SKU) to the volume present in the
warehouse. The order stream defines the times at which pallets with associated
SKUs need to be stored or retrieved from the warehouse along with their in-
/output point (dock). The layout defines the spatial dimension of all warehouse
elements, i.e. storage, aisles and docks. Battery management augments this setup
by specifying charging station locations.

WEPAStacks models a finished goods warehouse located at the WEPA GbmH
hygiene paper company production site. Figure 2 visualizes the augmented lay-
out and the order stream of the dataset we employ. Three charging stations are
placed equidistantly along the north warehouse wall (Figure 2a). The warehouse
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(a) Warehouse layout. (b) Order arrival distributions per week.

Fig. 2: WEPAStacks use-case data visualization.

is 150 by 80 meters, and has 4 input and 10 output docks. The order stream
contains 400,000 in- and outbound orders spanning 89 days. Figure 2b displays
the order distribution over hours aggregated on a weekly basis. Outbound trucks
arrive from 06:00 am to 22:00 pm, while the production outputs are continuous.

To prevent truck and, in particular, production queues in WEPAStacks, the
number of pending retrieval and delivery orders is limited to 330 and 240, re-
spectively, as described in [18]. We determine the required number of charging
stations using a workflow similar to the one used in [22], where the nr of AMRs
is inferred. We first fix simple heuristic solutions for all battery-augmented AB-
SWP decisions. Then, starting from a single charging station, we run simulations
while gradually increasing their numbers until all system constraints are satis-
fied.

We use the solvers for the ABSW subproblems as reported in [18]. For SLAP
we employ the closest open pure lanes strategy. Here, SKUs are stored in the
closest lane that contains only that SKU. If no such lane exists, the nearest
open location is chosen. The ULSP is solved using a last in first out strategy, in
which the SKU that arrived last at the warehouse is retrieved first. For vehicle
dispatching, the nearest available vehicle is selected.

3.2 Baseline Strategies

Definition: We introduce three strategies to address the charging-decision and
charging-duration problems.

– Fixed-threshold : A fixed-threshold strategy is parameterized by two thresh-
olds: THlower, which determines the battery level at which an AMR has
to go charge, and THupper, which specifies the target battery level. We set
THlower to 20 % and vary THupper from 30 % to 100 % in steps of ten.

– Opportunity : The opportunity-charge definition from [5], which was explained
in Section 2, is not applicable in our scenario since the charging stations are
not placed near the inbound and outbound docks. In our context, opportu-
nity charging refers to charging when stations are available, and no work is
pending. THupper is fixed to 100%.
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– HighLow : In the high-low approach, THlower is fixed while THupper varies
depending on the retrieval order queue length. If there are queued retrieval
orders, we use THupper; otherwise the battery is fully re-charged. To deter-
mine a good value for THlower, we tune it using the same thresholds as in
the Fixed-threshold strategy.

The authors of [3] highlight that non-adaptive charging strategies often result
in too few AMRs being available to handle tasks. To alleviate this, we propose
the following improvement:

– Interrupt : If retrieval orders are pending and no AMR is available, the inter-
rupt strategy halts charging for any AMR whose battery level exceeds the
upper threshold THinterrupt. In this work, we set THinterrupt to 50 %

For all strategies, we fix the selection of the charging station: the nearest
available charging station is prioritized; if none is free, the station with the
shortest queue is chosen.

Fig. 3: Week and intercept dependent distribution of service times and buffer sizes.

Evaluation: In Figure 3, we show the results of the proposed baseline strategies
for all weeks as violin plots. We compare the strategies in terms of average service
time and maximum number of queued retrieval orders, both with and without
the interrupt scheme. The figure suggests that charging strategies can help main-
tain AMR availability, either through short charging bursts, as Fixed-threshold
with THupper = 40%, or by interrupting the charging process. Fixed-threshold
strategies with target thresholds of 80% to 100% violate queue constraints and
result in long service times. This is in line with the results of [14], where the
poor performance of full recharge strategies was highlighted. Implementing the
interrupt scheme consistently improves all metrics, with the most significant
improvements observed in high-threshold configurations. For example, applying
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interruption to the Fixed-threshold strategy with THupper = 100% shows a 33%
reduction in service time and 47% reduction in maximum queue size. Notably,
the HighLow strategy with THupper = 40% achieves the best overall perfor-
mance among non-interrupted strategies, with an average service time of 741
seconds and maximum queue size of 290 orders. This suggests that adapting
charging durations based on the system load helps to maintain AMR availabil-
ity. With interruption enabled, the benefits of the HighLow strategy are reduced.
In this case, HighLow with THupper = 90% performs best, closely matching the
corresponding Fixed-threshold strategy.

The Opportunity strategy on the other hand is not able to satisfy the con-
straints. In addition, it leads to the highest average service times. This indicates
flaws in the design of the heuristic.

4 A Reinforcement Learning Charging Strategy

In this section, we outline the proposed approach to AMR charging using RL. We
present the core components of the MDP, and motivate the use of PPO. Following
the extension described in Section 3.1, SLAPStack now supports training and
deploying RL agents for charging decisions in addition to SLAP, and ULSP. Since
this work focuses on charging decisions, we adopt the best-performing heuristic
solvers from [18] to handle SLAP and ULSP in the background. The simulation
only pauses to request a charging decision from the RL agent. A charging decision
is triggered after any completed transport task.
State Representation and Feature Design: Using the full system state of
the ABSWP — encompassing all vehicle movements and storage locations — as
the agent input would be computationally prohibitive. In line with [16] and [4],
we adopt a feature-based state representation.

This includes AMR-related and operational features, such as battery level,
distance to the charging stations, and the number of pending charging events
and orders. We further incorporate ABSWP-specific features, most notably the
average lane-wise entropy introduced in [18], which takes a value in [0,∞), with
lower values indicating more ordered lanes.

As shown in [20], normalizing the observation space is essential for on-policy
deep actor-critic algorithms such as PPO. We therefore scale all features to the
[0, 1] range. Table 2 provides the formal definitions of these features using the
notation in Table 1.
Reward and Action Space Design: We propose several reward and action
space configurations that progressively transition from a broad, flexible design to
a more structured one. The underlying intuition is that a wider action space and
sparse rewards offer more room for the agent to discover novel strategies, while
a narrower, reward-engineered approach — augmented by domain knowledge —
may lead to faster convergence, but could limit the discovery of high-performing
strategies.

We vary configurations in terms of the reward function definition, action
space, and use of the interrupt heuristic. We utilize a discrete action space A. At
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Table 1: Feature space variables.
Symbol Description

V, C Set of AMRs (V) and charging station (C) indices
L,O Set of lane (L), and finished order (O) indices
B Maximum battery capacity
Bcs

n Battery level of AMR at charging station n

V bl
j Battery level of AMR j

V depleted
j 1 if AMR j is depleted; 0 otherwise

V busy
j 1 if AMR j is busy; 0 otherwise

V free
j 1 if AMR j is free; 0 otherwise

qn Queue length at charging station n
qr, qd Queue lengths of retrieval and delivery orders
qmax
r , qmax

d Maximum queue length for retrieval and delivery orders
T ol, Tnl Number of occupied and total storage locations
h, d Current hour and current day
TRi, DRi Travel time (TRi), and distance (DRi) for retrieval order i
TDi, DDi Travel time (TDi), and distance (DDi) for delivery order i
Lk Warehouse Lane k
pSKU Relative SKU amount in a Lane

each time step t, given agent state St the agent can select a non-zero charging
time threshold, or decide not to charge by selecting the 0 action. This allows
us to address both charging decision and charging duration sub-problems. The
number of target thresholds is a design choice. In this work, we employ two
alternatives. Afull := [0, 30, 40, 50, 60, 70, 80, 90, 100] contains all the thresholds
used in our baseline evaluation. Abinary := [0, 100] is a binary action space,
triggering full charge or no charge at all.

Using discrete charging thresholds instead of continuous durations, we enable
action masking, which prevents agents from taking illegal actions. Action mask-
ing applies a binary mask over the action space at time step t to mask out invalid
actions by setting their sample probability to negative infinity [8]. Action mask-
ing is crucial for our application to prevent infeasible battery states, e.g. a target
battery level lower than the current one. We apply the following action mask to
determine feasible actions for an AMR at time step t: Action Ai ∈ A is feasible
if Ai > V bl

t , where V bl
t denotes the battery level of the AMR being considered

at time step t. This allows us to tackle both charging decisions and charging
duration sub-problems. We use 20% as the final battery level where recharg-
ing is required to prevent AMRs from stranding during operation. Therefore, if
V bl
t <= 20, action 0 becomes invalid and charging becomes mandatory.

To the best of our knowledge, there is no universal approach for constructing a
reward function. The design of an effective reward function involves several chal-
lenges, such as managing competing objectives. The so-called credit assignment
problem [28] is another major challenge: Due to the delayed nature of rewards, it
is difficult to identify the actions that led to a particular outcome. For these rea-
sons, finding a suitable reward is often a trial-and-error process [2]. To overcome
the credit assignment problem, reward shaping is often used, where domain and
expert knowledge are incorporated to guide the agent’s learning process, thus
providing more direct feedback [28].

In the context of the ABSWP, our main objective is to minimize the average
service time STavg, defined as the sum of all service times divided by the number
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Table 2: Features used during RL-training.
Fi Feature Name Definition

1 Mean battery level for all AMRs 1
|V|

∑
j∈V

V bl
j
B

2 Mean battery level for all busy AMRs 1∑
j∈V V

busy
j

∑
j∈V

V bl
j ·V busy

j
B

3 Battery level of charging AMRs Bcs
n , n ∈ C

4 Battery level of AMRs 1
|V|V

bl
j , j ∈ V

5, 6, 7 Number of currently depleted/free/busy AMRs 1
|V|

∑
j∈V V

depleted | free | busy
j

8 Overall fleet utilization 1
|V|

∑
j∈V V busy

j

9 Warehouse fill level 1 − Tol

Tnl
10 Number of queued AMRs at charging stations qn, n ∈ C
11 Number of queued retrieval, and delivery orders qr

qmax
r

, qd
qmax
d

12 Hour (sinusoidal encoding) sin(2π · h · 24−1), cos(2π · h · 24−1)
13 Day of the week d ∈ {1, . . . , 7}

14 Number of currently free charging stations |{n ∈ C | qn = 0}|
15 Average lane-wise entropy − 1

|L|
∑

k∈L
∑

SKU∈Lk
pSKU log(pSKU)

16, 17 Average travel time retrieval | delivery 1
|O|

∑
i∈O TRi|TDi

18, 19 Average distance retrieval | delivery 1
|O|

∑
i∈O DRi|DDi

of completed orders. The service time STi for an order i ∈ O is the difference
between its completion time and arrival time. In addition, we want to incentivize
the agent to stay within the order queue limits. To achieve these goals, we propose
four reward functions that progressively incorporate higher levels of guidance:

– Service time-based reward: The first reward function directly penalizes
the agent based on the negative average service time observed at the current
decision step −STavg, thus aiming to directly optimize for the main objective.

– Queue-based reward: The second reward function is −qr+qd, representing
the negative sum of all queued retrieval and delivery orders in the current
step. Although it does not explicitly optimize service time, our baseline anal-
ysis shows that high queue levels can lead to increased service times.

– Composite reward + free AMR component: This reward function
combines the previous two components, while introducing an additional in-
centive to keep AMRs available during busy system states: when orders are
pending, the agent receives a bonus for having free AMRs available, as this
increases flexibility in fulfilling orders.

– Shaped reward: This reward extends the queue-based approach and in-
troduces explicit penalties and incentives for charging decisions. The agent
is penalized for initiating charging when no stations are available and for
charging actions that result in situations where no AMRs remain free while
there are queued orders. Conversely, rewards are given for charging actions
taken when there are no queued orders and when a free charging station is
available.

Where possible, we aim to normalize the reward components to the range
[0, 1]. To that end, we divide the service time and queued retrieval orders by de-
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fined upper limits. The number of free AMRs is normalized by the total number
of AMRs.

The final two configuration aspects we investigate pertain to the use of the
previously introduced Interrupt heuristic. We consider both training and evalu-
ation with and without Interrupt enabled. We compare the four different con-
figurations shown in Table 3. The first three configurations differ in their re-
ward formulations. Basic1 and Basic2 use the service-time and queue-based re-
ward, respectively, incorporating minimal domain knowledge. LightShaped uses
the composite reward, including the free AMR component. All three configura-
tions use Afull and exclude Interrupt during training. The fourth configuration,
FullyShaped, combines the shaped reward with the reduced action space Abinary.
Additionally Interrupt is enabled during training. During evaluation, we assess
configurations both with and without Interrupt.

Table 3: Overview of the different RL-configurations.
Reward Action Space Interrupted

Training
Interrupted
Evaluation

Basic1 Service time-based Afull False True, False
Basic2 Queue-based Afull False True, False

LightShaped Composite reward
+ Free AMRs Afull False True, False

FullyShaped Shaped reward Abinary True True, False

Model: We use PPO, an on-policy deep actor-critic RL algorithm [24], primarily
chosen for its stable action masking implementation in [19]. Another advantage
of PPO is its use of a clipped objective function, which constrains policy up-
dates and mitigates the instability typical of policy gradient methods, thereby
promoting stable and reliable training.

5 Experiments

In this section, we first present our setup, followed by an analysis of the training
outcomes for the proposed configurations. This is followed by a comprehensive
evaluation of the best models in terms of generalization capabilities and opera-
tional performance metrics.
Setup: All experiments were carried out on an Intel(R) Xeon(R) w5-2445 CPU.
We use the open-source implementation of the masked PPO algorithm from [19]
applying the default parameters. A rollout buffer size of 2048 and a minibatch
size of 64 were used. Both the policy and value networks use a multi-layer percep-
tron, each consisting of two layers with 64 neurons. The order dataset, containing
400,000 orders, was divided on a weekly basis.

Four randomly sampled weeks were used for training. Each training episode
terminates once all orders within the selected week have been simulated. The
sampling resulted in weeks 3, 4, 6 and 13 being selected, containing 34,610,
37,134, 36,668, and 18,833 orders, respectively. Training was limited to 4 million
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steps, with periodic evaluation every 200,000 steps to retain the best performing
model. This periodic evaluation was carried out over all training data sets and
averaged. The same simulation setting as in the baseline comparison was used,
involving 3 charging stations and 40 AMRs.

(a) Mean episode reward. (b) Entropy loss.

Fig. 4: Learning metric evolution during training for the proposed configurations.

Training: The average episode reward for the different configurations is dis-
played in Figure 4a. For a better visualization, we normalized the rewards to
the range [0, 1]. As described by Schulman et al. in [23], the policy entropy can
be used to encourage exploration during training by incorporating an entropy
bonus to the loss function. This additional loss is the negative mean entropy of
the policy’s action distribution across a batch of observations and is visualized
for the different configurations in Figure 4b. Note that our training runs disre-
gard the entropy term during policy update as we set the entropy coefficient to
zero. Nevertheless, the value is still useful as an indicator of stochasticity and
exploratory behavior of the policy during training.

In terms of reward the Basic1 configuration initially performs well but de-
clines after around 200,000 steps and never recovers. The reward curve for Basic2
improves over a longer duration begins to decline after one million steps. Light-
Shaped maintains strong performance for more than three million steps, with a
decline observed after approximately 3.5 million steps. The FullyShaped config-
uration yields the most stable reward curve, with an indication of convergence
toward the end of training. The entropy loss curves provide further insight into
these dynamics. Basic1 and Basic2 exhibit poor convergence behavior, with
persistently unstable entropy indicating ongoing exploration and a failure to
form stable policies. This is consistent with their subpar reward performance.
This suggests that the service-time- and queue-based rewards are not suited
to effectively guide the agent toward reliable long-term strategies. FullyShaped,
by contrast, converges rapidly to a low-entropy policy, with the entropy loss
approaching and remaining near zero. This indicates limited exploration. Light-
Shaped strikes a balance: entropy remains relatively high, supporting contin-
ued exploration, while gradually decreasing, reflecting policy stabilization. This
controlled exploration aligns with its strong and sustained reward performance.
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While Basic1 and Basic2 struggle with instability and performance degradation,
the configurations with shaped reward functions LightShaped and FullyShaped
demonstrate more robust learning dynamics. This suggests that incorporating
more structured feedback into the reward function and reducing the action space
enhances the agent’s learning stability but may limit the exploration of the ac-
tion space and encourage early deterministic policies, as can be seen from the
entropy loss curve of FullyShaped.
Evaluation: To assess the model generalization capabilities, we report the
performance of the best models found during training, averaged over all non-
training weeks (Table 4). We compare the average service time, the maximum
and average number of queued retrieval orders, the average battery level, and the
average distance traveled per AMR. The results are grouped based on the use
of the Interrupt heuristic, and we further include the top-performing heuristics
from the baselines in Section 3.

Table 4: Comparison of the best RL-models found during training. Results are grouped
by use of Interrupt and sorted by Avg. Service Time (s). Best values are highlighted.

Strategy Avg Service
Time (s)

Max
Retrieval
Queue

Mean
Retrieval
Queue

Mean
Battery
Level

Mean Travel
Distance

(km/AMR)

Interrupted False

LightShaped 588.84 290 19.94 61.99 139.77
Basic2 675.17 290 22.06 66.78 137.35
HighLow 40% Th 702.12 290 22.66 52.34 131.56
Fixed 60% Th 714.87 290 22.20 45.42 131.66
FullyShaped 719.70 346 24.10 79.79 145.38
Opportunity 1223.09 367 37.64 78.28 142.24
Basic1 4897.74 950 149.99 57.62 163.82

Interrupted True

FullyShaped 581.85 290 19.73 64.27 144.83
LightShaped 582.33 290 19.52 56.14 139.79
Basic2 601.67 290 20.23 60.74 137.97
Fixed 90% Th 628.33 296 20.84 49.42 131.37
HighLow 90% Th 685.00 317 22.39 48.87 136.01
Opportunity 709.55 290 23.85 64.11 144.42
Basic1 5027.13 935 156.72 51.97 148.87

Table 4 illustrates how reward structure, action space design, and the In-
terrupt heuristic influence AMR charging performance. We can note that with
and without the use of Interrupt we can find RL-based charging strategies that
outperform the best baseline in terms of average service times and number of
queued retrieval orders. Compared to HighLow, RL strategies show increased
average travel distance per AMR, likely due to shorter charging cycles that
necessitate more frequent trips to charging stations. The FullyShaped configura-
tion, which combines a shaped reward with a reduced action space and domain
knowledge, achieves the lowest average service time (581.85s) when interruption
is enabled. However, LightShaped performs best in the non-interrupted case,
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achieving an average service time of 588.84s. Furthermore, when interruption
is enabled, LightShaped results in lower average retrieval queues (19.52) com-
pared to FullyShaped (19.73). Both Basic1 and Basic2, which use service-time
and queue-based rewards, perform notably worse. Most notably, Basic1, which
directly optimizes for service time, performs worst overall, with average ser-
vice times of 5027.13s (with interruption) and 4897.74s (without). Basic2 that
only indirectly affects service times performs significantly better with average
service times of 675.17s when not interrupted. Both Basic2 and LightShaped
can be considerably enhanced with Interrupt, reducing both service times and
queued retrieval orders. The FullyShaped model, trained with interruption en-
abled, performs significantly worse when evaluated without it — service times
rise to 719.70s, and the queued retrieval orders peak at 346. This suggests that
FullyShaped fails to generalize as well as the more adaptable LightShaped model.

6 Conclusion

In this work, we extended an open-source simulation framework to support ex-
periments on different AMR charging strategies in an ABSW setting. We also
presented an MDP to jointly handles both the decision to charge and the dura-
tion of charging. Finally, we evaluated different MDP configurations and showed
that RL-based charging strategies can outperform common heuristics. Our study
highlights that the choice of reward function, action space, and use of heuris-
tics can have a significant impact on the learning stability and performance of
RL agents. Using a reward function without domain knowledge, such as service
times, in combination with a broad action space yielded the worst results. The
best performance was achieved using a shaped reward, a reduced action space,
and a simple heuristic rule to interrupt charging. The inability of the model
to perform well without this mechanism underscores the dangers of overfitting
to specific problem settings. The most balanced setup used a multi-objective
reward function with domain knowledge.

Given our findings, future research should explore more systematic approaches
to reward shaping and validation. To improve realism, future work should incor-
porate more detailed battery models that account for degradation and non-linear
charging behavior. Additionally, further work is needed to better isolate scenarios
where battery management is the primary performance bottleneck, as opposed
to other system aspects such as layout design or order sequence. A more thor-
ough and systematic evaluation of algorithms and parameters, e.g. learning rate,
is also essential to fully understand the potential of the promising RL designs
proposed in this work.
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