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Abstract

When adapting Large Language Models for001
Recommendation (LLMRec), it is crucial to002
integrate collaborative information. Existing003
methods achieve this by learning collaborative004
embeddings in LLMs’ latent space from scratch005
or by mapping from external models. How-006
ever, they fail to represent the information in007
a text-like format, which may not align op-008
timally with LLMs. To bridge this gap, we009
introduce BinLLM, a novel LLMRec method010
that seamlessly integrates collaborative infor-011
mation through text-like encoding. BinLLM012
converts collaborative embeddings from exter-013
nal models into binary sequences — a specific014
text format that LLMs can understand and op-015
erate on directly, facilitating the direct usage016
of collaborative information in text-like format017
by LLMs. Additionally, BinLLM provides op-018
tions to compress the binary sequence using019
dot-decimal notation to avoid excessively long020
lengths. Extensive experiments validate that021
BinLLM introduces collaborative information022
in a manner better aligned with LLMs, result-023
ing in enhanced performance.024

1 Introduction025

Due to the remarkable power of large language026

models (LLMs), there is a growing focus on adapt-027

ing them for recommender systems (LLMRec),028

which has seen significant progress in the past029

year (Bao et al., 2023b,a,c; Harte et al., 2023; Ra-030

jput et al., 2023; Wei et al., 2024). In recommen-031

dation, collaborative information, which delineates032

the co-occurrence patterns among user-item inter-033

actions, has emerged as a pivotal component in034

modeling user interests, especially for active users035

and items (Zhang et al., 2023b). However, this036

information exists in a different modality from tex-037

tual data and thus presents a challenge in directly038

leveraged by LLMs like textual information (Zhang039

et al., 2023b; Li et al., 2023b). To enhance rec-040

ommendation quality, it is undoubtedly crucial to041

seamlessly integrate collaborative information into 042

LLMs. 043

To date, two integration strategies have emerged. 044

The first strategy resembles latent factor mod- 045

els (Koren et al., 2009) by incorporating additional 046

tokens and corresponding embeddings into LLMs 047

to represent users and items, subsequently fitting 048

interaction data to implicitly capture collaborative 049

information within the embeddings (Zheng et al., 050

2023; Hua et al., 2023). However, this approach 051

suffers from low learning efficacy due to the inher- 052

ent low-rank nature of the information, leading to 053

tokenization redundancy within LLMs (Delétang 054

et al., 2023; Zhang et al., 2023b). To address these 055

challenges, an alternative approach leverages an 056

external latent factor model to capture the infor- 057

mation, which is then mapped into the LLM token 058

embedding space (Zhang et al., 2023b; Li et al., 059

2023c; Liao et al., 2023), circumventing the need to 060

learn it from scratch. While effective, this method 061

introduces the additional overhead of training the 062

mapping model. 063

Whether learning collaborative information di- 064

rectly from scratch in the LLM token embedding 065

space or mapping it from external models, the re- 066

sulting representations diverge significantly from 067

the LLM’s original textual-level encoding. This, 068

to a certain extent, hampers the full utilization of 069

LLMs’ capabilities, as LLMs are initially trained 070

on textual data and excel at processing textually en- 071

coded information. For instance, introducing new 072

tokens alters the generative space of LLMs, poten- 073

tially compromising their original functionalities, 074

let alone capitalizing on their capabilities. There- 075

fore, exploring text-like encoding of collaborative 076

information in LLMs holds immense promise. Nev- 077

ertheless, it poses challenges due to the inherent 078

differences between textual and collaborative infor- 079

mation modalities (Zhang et al., 2023b). 080

In this study, we delve into the central theme of 081

encoding collaborative information in LLMs for 082
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recommendation, an area of promise yet not ex-083

plored in LLMRec. The crux lies in transforming084

collaborative information into a sequence format-085

ted like text. We believe that this text-like sequence086

need not be comprehensible to humans; rather, it087

should be interpretable by LLMs for effective uti-088

lization, such as facilitating reasoning tasks like089

discerning user and item similarities through se-090

quence comparisons. Thus, this text sequence does091

not necessarily have to adhere to conventional nat-092

ural language patterns.093

To this end, we introduce BinLLM, an innovative094

LLMRec approach that integrates collaborative in-095

formation into LLMs using a text-like encoding096

strategy. We transform the collaborative embed-097

dings obtained from external models into binary098

sequences, treating them as textual features directly099

usable by LLMs. This design is motivated by two100

primary considerations: 1) the feasibility of binariz-101

ing collaborative embeddings without compromis-102

ing performance (Tan et al., 2020); 2) LLMs can103

naturally perform bitwise operations or do so after104

instruction tuning (Savelka et al., 2023), enabling105

the comparison of similarities between binarized106

sequences. Taking a step further, we explore rep-107

resenting the binary sequence in dot-decimal nota-108

tion (Abusafat et al., 2021), resulting in shorter rep-109

resentations, akin to converting binary sequences110

to IPv4 addresses. By fine-tuning LLMs with rec-111

ommendation instruction data containing such en-112

coded collaborative information, we could leverage113

both textual semantics and collaborative data for114

recommendation without modifying the LLMs.115

The main contributions of this work are summa-116

rized as follows:117

• We emphasize the significance of text-like encod-118

ing for collaborative information in LLMRec to119

enhance alignment with LLMs.120

• We introduce BinLLM, a novel method that ef-121

ficiently encodes collaborative information tex-122

tually for LLMs by converting collaborative em-123

beddings into binary sequences.124

• We perform comprehensive experiments on two125

datasets, showcasing the effectiveness of our ap-126

proach through extensive results.127

2 Methodology128

In this section, we introduce our BinLLM method,129

starting with presenting the model architecture and130

followed by a description of the tuning method.131

2.1 Model Architecture 132

Figure 1 depicts the model architecture of BinLLM, 133

comprising two main components: prompt gener- 134

ation and LLM prediction. Similar to previous 135

approaches, we convert recommendation data into 136

prompts and then input them directly into LLMs 137

for prediction. However, the key distinction of Bin- 138

LLM is that it represents collaborative information 139

in a text-like format by converting collaborative 140

embeddings into binary sequences. We next delve 141

into the specifics of these two components. 142

2.1.1 Prompt Construction 143

As depicted in Figure 1, we construct prompts us- 144

ing a template featuring empty fields, encompass- 145

ing both textual fields (e.g., “<ItemTitleList>") and 146

ID fields (e.g., “<UserID>"). By populating these 147

fields with corresponding users’ data, we can gener- 148

ate personalized prompts for recommendation pur- 149

poses. The textual fields are utilized to incorporate 150

textual information, which can be directly filled 151

with corresponding textual data from the recom- 152

mendation dataset, such as historical item titles in 153

the "<ItemTitleList>" fields. The ID fields are des- 154

ignated for embedding collaborative information, 155

which is acquired through a Text-like Encoding 156

(TE) module. Next, we delve into the encoding 157

process of collaborative information. 158

Text-like Encoding of Collaborative Informa- 159

tion. To better integrate with LLMs, we aim to 160

encode collaborative information in a text-like for- 161

mat. To accomplish this, we convert collaborative 162

information into a binary sequence, enabling LLMs 163

to perform bitwise operations for reasoning. The 164

encoding model involves two components: 1) Col- 165

laborative Model, a conventional latent factor mod- 166

ule capable of encoding collaborative information 167

as numerical latent vectors (i.e., collaborative em- 168

beddings). 2) Binarization & Compression Module, 169

utilized to transform collaborative embeddings into 170

binary sequences or further compressed formats. 171

• Collaborative model. Given a user u and an item 172

i, the collaborative model generates corresponding 173

embeddings for them, denoted as eu and ei, respec- 174

tively. Formally, 175

eu = fc(u; θ), ei = fc(i; θ), (1) 176

where fc represents the collaborative model param- 177

eterized by θ. Here, eu ∈ Rd and ei ∈ Rd are 178

d-dimensional embeddings that encode collabora- 179

tive information for the user and item, respectively. 180
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31

#Question: A user has …... <ItemTitleList>…… <UserID> …… enjoy the book titled 

<TargetItemTitle> …. feature <TargetItemID>? \n#Answer:

Text User and item ID

Collaborative model

Binarization & compression

“Outlive: The Science and 

Art of Longevity”

Binary  sequence

Recommen-

dation data

Text-like 

encoding

LoRA Large Language Model (LLM)

Figure 1: Model architecture overview of our BinLLM. The purple line is used to fill the text fields in the prompt
template, introducing textual information like item titles, while the red line is used to fill the ID fields in the prompt
template, introducing collaborative information.

• Binarization & compression. After obtaining181

the collaborative embeddings, this component is182

used to convert them into binary sequences, with183

the option to compress the sequences.184

Binarization. To binarize the collaborative em-185

beddings, we generally follow the mechanism pro-186

posed by Tan et al. (2020). Firstly, we transform187

the collaborative embeddings into a suitable space188

using a fully connected layer and then apply the189

sign function to obtain the binary results. Formally,190

for collaborative embeddings eu and ei of user u191

and item i, they are converted into binary sequences192

as follows:193

hu = sign(σ(Weu+b)) hi = sign(σ(Wei+b)),
(2)194

where hu ∈ {0, 1}d and hi ∈ {0, 1}d denote the195

obtained binary representation of collaborative in-196

formation for the user and item, respectively. Here,197

W ∈ Rd×d and b ∈ Rd are the weights and bias198

for the fully connected layer, σ(·) represents the199

tanh activation function, and sign(·) denotes the200

sign function. For a numerical value x, we have:201

sign(x) =

{
1, if x > 0

0, else
. (3)202

Through this method, we convert the numerical203

collaborative embeddings into binary sequences204

(e.g., ’010110....’). These sequences can be directly205

inputted into LLMs and utilized for operations such206

as computing logical ’AND’, thereby aiding in user207

preference reasoning.208

Compression. A limitation of binary sequences 209

is their relatively long length, which poses a chal- 210

lenge for LLMs not proficient in handling lengthy 211

sequences. Moreover, long sequences can con- 212

strain the inference efficiency of LLMRec. We thus 213

consider compressing the binary sequences while 214

keeping them leverageable by LLMs. Given that 215

IPv4 (Peterson and Davie, 2007) is originally en- 216

coded from binary sequences and the Web includes 217

sufficient knowledge about IPv4, the LLMs trained 218

on the Web data could potentially understand the 219

dot-decimal notation used by IPv4. Therefore, we 220

consider compressing the binary embeddings in 221

dot-decimal notations (Abusafat et al., 2021). We 222

convert every eight binary digits into a decimal 223

number, ranging from 0 to 255, and use the full 224

stop (dot) as a separation character. Here is an 225

example of compressing a 32-bit binary sequence: 226

10101100︸ ︷︷ ︸
172.

00010000︸ ︷︷ ︸
16.

11111110︸ ︷︷ ︸
254.

00000001︸ ︷︷ ︸
1

. (4) 227

Here, “172.16.254.1" is the compressed result, 228

which significantly reduces the representation 229

length. Notably, the compression is optional, and 230

its usage depends on the length of the original bi- 231

nary sequence. 232

2.1.2 LLM Prediction 233

Once the empty fields in the prompt template are 234

filled, the resulting prompt is fed into the LLMs 235

for prediction. Similar to prior research, given the 236

absence of specific recommendation pre-training 237
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in LLMs, we introduce an additional LoRA mod-238

ule (Hu et al., 2022) for recommendation predic-239

tion. Formally, for a generated prompt p, the pre-240

diction can be formulated as:241

ŷ = LLMΦ̂+Φ′ (p), (5)242

where Φ̂ represents the pre-trained LLM’s parame-243

ters, Φ
′

denotes the LoRA model parameters, and244

ŷ represents the prediction results, which could be245

the predicted next item or the predicted likelihood246

of liking a candidate item, depending on the task.247

2.2 Training248

In our model architecture, two modules require249

training: the text-like encoding module and the250

LoRA module. The tuning for the text-like en-251

coding module focuses on learning to generate the252

binary sequence for collaborative information, in-253

dependent of the LLMs. The tuning for LoRA aims254

to instruct the LLM in making recommendations255

by leveraging collaborative information. We now256

present the two tuning paradigms, respectively.257

2.2.1 Pre-training for Text-like Encoding258

To train the text-like encoding module, we directly259

utilize the binarized representation from Equa-260

tion (2) to fit the training data. Formally, let D261

denote the training data, and (u, i, t) ∈ D denote262

an interaction between user u and item i with label263

t. We train the module by minimizing the following264

optimization problem:265

minimize
θ,W,b

∑
(u,i,t)∈D

ℓ(t,h⊤
uhi), (6)266

where {θ,W, b} denote the model parameters in267

our text-like encoding module as discussed in Sec-268

tion 2.1.1, hu and hi denote the binary representa-269

tions obtained from Equation (2), h⊤
uhi represents270

the predicted likelihood of user u liking item i, and271

ℓ(·) denotes the common recommendation loss, in272

this work, the binary cross-entropy loss.273

Notably, the sign function lacks smoothness, and274

its gradient is ill-defined as zero, posing an ap-275

parent challenge for back-propagation. To enable276

training the model in an end-to-end fashion, we ap-277

proximate the gradient using the straight-through278

estimator (STE), following the approach outlined279

by Tan et al. (2020). That is, we directly use the280

gradients of the output as the gradients of the input281

for the sign function.282

2.2.2 LoRA Tuning 283

To tune the LoRA module, we consider two tuning 284

methods: intuitive tuning and two-step tuning. 285

Intuitive tuning: This method directly tunes the 286

LoRA module from scratch with the prompts that 287

contain the collaborative information. 288

Two-step tuning: In intuitive tuning, a potential 289

challenge arises in scenarios like rating prediction 290

tasks, where binary representations can serve as 291

highly effective features with relatively low learn- 292

ing complexity1. Incorporating collaborative in- 293

formation from scratch might cause the model to 294

overly depend on these features, potentially ne- 295

glecting other attributes akin to learning shortcut 296

features. To address this, we propose an additional 297

two-step tuning strategy. Initially, we train the 298

model using a prompt that excludes collaborative 299

information. Subsequently, we refine the model 300

further by fine-tuning it using the complete prompt 301

that contains the collaborative information. 302

3 Experiments 303

In this section, we conduct experiments to answer 304

the following research questions: 305

RQ1: Does BinLLM effectively incorporate col- 306

laborative information into LLMs to improve rec- 307

ommendation performance? How does its perfor- 308

mance compare with that of existing methods? 309

RQ2: How do our design choices influence the 310

performance of the proposed method BinLLM? 311

3.1 Experimental Settings 312

Recommendation Task. Given that this is an ini- 313

tial exploration of text-like encoding for collabora- 314

tive information, our experiments primarily concen- 315

trate on the click/rating prediction task, with other 316

recommendation tasks being ignored. Specifically, 317

we aim to predict whether a user u (comprising 318

other profile information such as historical interac- 319

tions) would click on/like a given candidate item i. 320

The task aligns with that of CoLLM, which inves- 321

tigates the utilization of collaborative information 322

for recommendation through embedding mapping 323

in latent space. Hence, our experimental setup gen- 324

erally follows that of CoLLM. 325

Datasets. We conduct experiments on two repre- 326

sentative datasets: 327

1Because the model could achieve satisfactory results by
solely performing bitwise "AND" operations on the collab-
orative representations of the given user and candidate item,
referencing the learning process of binary representation.
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Table 1: Statistics of the processed datasets.

Dataset #Train #Valid #Test #User #Item
ML-1M 33,891 10,401 7,331 839 3,256

Amazon-Book 727,468 25,747 25,747 22,967 34,154

• ML-1M (Harper and Konstan, 2016): This refers328

to a widely recognized movie recommendation329

benchmark dataset, MovieLens-1M2, provided330

by GroupLens research. The dataset comprises331

user ratings for movies and includes textual infor-332

mation for users and items, such as movie titles.333

• Amazon-Book (Ni et al., 2019): This pertains334

to the "Books" subset within the renowned Ama-335

zon Product Review dataset3. This dataset ag-336

gregates user reviews of books from Amazon,337

encompassing both the review score and review338

comments. Additionally, it includes textual infor-339

mation about the items.340

For dataset processing, we adhere entirely to the341

setup of CoLLM, encompassing label processing342

and data selection/splitting methods. The statistics343

of the processed datasets are presented in Table 1.344

Compared Methods. In this work, we imple-345

ment BinLLM with Matrix Factorization (Koren346

et al., 2009) as the collaborative model in its text-347

encoding module. To assess the effectiveness of348

BinLLM, we compare it with four categories of349

methods: conventional collaborative filtering meth-350

ods (MF, LightGCN, SASRec, DIN), LLMRec351

methods without integrating collaborative informa-352

tion (ICL, Prompt4NR, TALLRec), LLMRec meth-353

ods with integrated collaborative information (Per-354

sonPrompt, CoLLM), and methods combining lan-355

guage models and collaborative models (CTRL).356

• MF (Koren et al., 2009): This refers to a classic357

latent factor-based collaborative filtering method358

— Matrix Factorization.359

• LightGCN (He et al., 2020): This is one rep-360

resentative graph-based collaborative filtering361

method, utilizing graph neural networks to en-362

hance collaborative information modeling.363

• SASRec (Kang and McAuley, 2018): This is364

a representative sequential-based collaborative365

filtering method that utilizes self-attention for366

modeling user preferences.367

• DIN (Zhou et al., 2019): This is a representative368

collaborative Click-Through Rate (CTR) model,369

2https://grouplens.org/datasets/movielens/1m/
3https://nijianmo.github.io/amazon/index.html

which employs target-aware attention to activate 370

the most relevant user behaviors, thereby enhanc- 371

ing user interest modeling. 372

• CTRL (DIN) (Li et al., 2023b): This is a state- 373

of-the-art (SOTA) method for combining lan- 374

guage and collaborative models through knowl- 375

edge distillation. We implement its collaborative 376

model as DIN. 377

• ICL (Dai et al., 2023a): This is an In-Context 378

Learning-based LLMRec method, which directly 379

asks the original LLM for recommendations. 380

• Prompt4NR (Zhang and Wang, 2023): This 381

is a state-of-the-art (SOTA) soft prompt tuning- 382

based LLMRec method. Initially designed to 383

leverage the language model (LM), we extend 384

it to utilize LLMs, taking the implementation in 385

CoLLM (Zhang et al., 2023b). 386

• TALLRec (Bao et al., 2023b): This is a state-of- 387

the-art LLMRec method that aligns LLMs with 388

recommendations through instruction tuning. 389

• PersonPrompt (Li et al., 2023a): This is a LLM- 390

Rec method, which integrates collaborative in- 391

formation by adding new tokens and token em- 392

beddings to represent users and items. It could 393

be regarded as a personalized soft-prompt tuning 394

method. 395

• CoLLM (Zhang et al., 2023b): This is a state- 396

of-the-art LLMRec method that integrates col- 397

laborative information by mapping collaborative 398

embeddings into the latent space of the LLM. 399

We consider two implementations: CoLLM-MF, 400

which utilizes MF to extract collaborative embed- 401

dings, and CoLLM-DIN, which uses the DIN to 402

extract collaborative embeddings. 403

Hyper-parameters and Evaluation Metrics. 404

For all methods, we strictly adhere to the hy- 405

perparameter settings outlined in the CoLLM pa- 406

per (Zhang et al., 2023b), with Vicuna-7B used as 407

the employed LLM. It’s worth noting that for our 408

method, we set the dimension of the collaborative 409

embeddings (i.e., the length of the binary represen- 410

tations in Equation (2)) to 32 by default. Consid- 411

ering the length is not very large, we choose not 412

to perform compression in our text-like encoding 413

module by default. We tune the hyper-parameters 414

based on the AUC metric on the validation dataset. 415

Regarding evaluation metrics, we employ two 416

widely used metrics for click/rating prediction: 417

AUC (Area under the ROC Curve), which measures 418

the overall prediction accuracy, and UAUC (AUC 419
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Table 2: Overall performance comparison on the ML-1M and Amazon-Book datasets. “Collab.” denotes collabora-
tive recommendation methods. “Rel. Imp.” denotes the relative improvement of BinLLM compared to baselines,
averaged over the two metrics.

Dataset ML-1M Amazon-Book
Methods AUC UAUC Rel. Imp. AUC UAUC Rel. Imp.

Collab.

MF 0.6482 0.6361 12.9% 0.7134 0.5565 14.7%
LightGCN 0.5959 0.6499 15.8% 0.7103 0.5639 14.2%
SASRec 0.7078 0.6884 3.0% 0.6887 0.5714 15.3%

DIN 0.7166 0.6459 5.6% 0.8163 0.6145 2.0%
LM+Collab. CTRL (DIN) 0.7159 0.6492 5.4% 0.8202 0.5996 3.0%

LLMRec
ICL 0.5320 0.5268 35.8% 0.4820 0.4856 50.7%

Prompt4NR 0.7071 0.6739 4.1% 0.7224 0.5881 10.9%
TALLRec 0.7097 0.6818 3.3% 0.7375 0.5983 8.2%

PersonPrompt 0.7214 0.6563 4.5% 0.7273 0.5956 9.9%
LLMRec+Collab. CoLLM-MF 0.7295 0.6875 1.5% 0.8109 0.6225 1.7%

CoLLM-DIN 0.7243 0.6897 1.7% 0.8245 0.6474 -1.0%
Ours BinLLM 0.7425 0.6956 - 0.8264 0.6319 -
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(b) Amazon-book Warm
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Figure 2: Performance comparison in warm and cold
scenarios on ML-1M and Amazon-Book. The left y-axis
represents AUC, while the right one represents UAUC.

averaged over users), which provides insights into420

the ranking quality for users.421

3.2 Performance Comparison422

In this subsection, we initially examine the overall423

performance of the compared methods and subse-424

quently analyze their performance in warm-start425

and cold-start scenarios, respectively.426

3.2.1 Overall Performance (RQ1)427

We summarize the overall performance of the com-428

pared methods in Table 2. From the table, we draw429

the following observations: 430

• When compared to baselines, our BinLLM 431

achieves the best performance overall, except 432

when compared to CoLLM-DIN on the UAUC 433

metric. These results confirm the superiority of 434

BinLLM in leveraging both collaborative infor- 435

mation and the power of LLMs to achieve better 436

recommendation performance. 437

• Comparing LLMRec methods that integrate col- 438

laborative information with LLMRec methods 439

that do not consider collaborative information, 440

we observe that incorporating collaborative in- 441

formation generally improves performance and 442

enables LLMRec to surpass traditional collabora- 443

tive and LM-based methods. These results under- 444

score the importance of integrating collaborative 445

information into LLMs for recommendation. 446

• Comparing BinLLM with existing LLMRec 447

methods that also consider collaborative infor- 448

mation, our BinLLM consistently outperforms 449

CoLLM-MF and PersonPrompt. Compared with 450

CoLLM-DIN, BinLLM still achieves better re- 451

sults except for the UAUC metric on Amazon- 452

book. Considering that CoLLM-DIN employs a 453

more advanced collaborative model while Bin- 454

LLM relies solely on MF, these results confirm 455

that encoding collaborative information in a text- 456

like manner better aligns with LLMs, allowing 457

us to leverage their power for recommendation 458

more effectively. 459

• Among LLMRec methods that consider collabo- 460

rative information, PersonPrompt, which learns 461
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Table 3: Results of the ablation studies on ML-1M and
Amazon-Book, where “TO", “IO", “IT" denote “Text-
Only", “ID-Only", “Intuitive-Tuning", respectively.

Datasets ML-1M Amazon-book
Methods AUC UAUC AUC UAUC
BinMF 0.7189 0.6654 0.8087 0.5895

BinLLM-TO 0.7097 0.6818 0.7375 0.5983
BinLLM-IO 0.7307 0.6797 0.8173 0.5919
BinLLM-IT 0.7286 0.6842 0.8246 0.6165

BinLLM 0.7425 0.6956 0.8264 0.6319

token embeddings for users and items from462

scratch, performs the worst, significantly lagging463

behind others. This can be attributed to the low464

learning efficacy resulting from the introduction465

of additional tokens and token embeddings.466

3.2.2 Warm and Cold Performance467

When integrating collaborative information into468

LLMRec, one consideration is to enhance their469

warm-start performance, enabling them to achieve470

good performance in both warm-start and cold-start471

scenarios. We now investigate the performance472

in the two scenarios. Specifically, we adhere to473

the protocol outlined in the CoLLM paper (Zhang474

et al., 2023b) to partition the testing data into warm475

data and cold data based on the interaction count476

of users and items, and subsequently evaluate the477

model on them. We summarize the results in Fig-478

ure 2. Here, we compare four representative meth-479

ods: MF, TALLRec, CoLLM-MF, and BinLLM.480

According to the figure, in the warm scenarios,481

TALLRec, an LLMRec method without consider-482

ing collaborative information, performs worse than483

MF, while both CoLLM and BinLLM outperform484

MF, with BinLLM being the best. These results485

indicate that collaborative information is impor-486

tant for warm-start performance, and our text-like487

encoding has superiority in combining the infor-488

mation with LLMs. In the cold-start scenarios,489

all LLMRec methods outperform MF, confirming490

the superiority of LLMRec in cold-start scenar-491

ios. Moreover, BinLLM enhances the cold-start492

performance compared to CoLLM in most cases,493

possibly due to the binarized embeddings having494

better generalization.495

3.3 In-depth Analyses (RQ2)496

In this subsection, we conduct experiments to an-497

alyze the influence of BinLLM’s different compo-498

nents on its effectiveness.499

AUC UAUC
0.70

0.72

0.74

0.76

0.60

0.64

0.68

0.72
w/o comp.
w comp.

(a) ML-1M

AUC UAUC
0.80

0.81

0.82

0.83

0.84

0.85

0.60

0.61

0.62

0.63

0.64

0.65
w/o comp.
w comp.

(b) Amazon-book

Figure 3: Performance of BinLLM with (w comp.) and
without compression (w/o comp.). The left y-axis repre-
sents AUC, while the right one represents UAUC.

3.3.1 Ablation Study 500

We first further verify the benefits of introducing 501

text-like encoding of collaborative information into 502

LLMs. Specifically, we compare the default Bin- 503

LLM with the following variants: 1) BinMF, which 504

avoids using the LLM but directly utilizes the bi- 505

nary representations for recommendations like MF, 506

2) BinLLM-TO, which removes the ID field from 507

BinLLM’s prompt template, i.e., only using the 508

text information, 3) BinLLM-IO, which removes 509

the text field from BinLLM’s prompt, i.e., only us- 510

ing the collaborative information. Additionally, we 511

also study the influence of the two-step tuning by 512

comparing a variant that employs intuitive tuning, 513

denoted by BinLLM-IT. The comparison results 514

are summarized in Table 3. 515

From the table, we make the following obser- 516

vations: 1) BinMF underperforms all BinLLM 517

variants that consider collaborative information, 518

confirming the superiority of leveraging LLMs for 519

recommendation. 2) BinLLM-TO underperforms 520

other BinLLM variants, indicating that introducing 521

collaborative information is crucial for enhancing 522

LLMRec performance. 3) BinLLM-IO generally 523

underperforms BinLLM-IT and the default Bin- 524

LLM, highlighting the importance of considering 525

both textual and collaborative information. Lastly, 526

comparing BinLLM-IT with the default BinLLM, 527

BinLLM-IT consistently performs worse. This ver- 528

ifies our claims about tuning designs: directly tun- 529

ing LLMs with prompts containing collaborative 530

information from scratch may lead to underutiliza- 531

tion of both textual and collaborative information. 532

3.3.2 The Influence of Compression 533

In the preceding experiments, we did not use com- 534

pression for our text-like encoding of collaborative 535

information by default. Here, we conduct experi- 536

ments to study its influence by comparing BinLLM 537

with compression (w comp.) and without com- 538

pression (w/o comp.). The comparison results of 539
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recommendation performance are summarized in540

Figure 3. According to the figure, BinLLM with541

compression generally shows comparable perfor-542

mance to BinLLM without compression. Moreover,543

when compared with baselines, the comparison544

trends are similar to BinLLM without compres-545

sion (with only some differences observed for the546

UAUC metric on the ML-1M dataset when com-547

pared with CoLLM). These results indicate that548

compression can reduce the representation length549

while maintaining performance to a large extent.550

As shown in Equation (4), the dot-decimal nota-551

tion can compress the length of collaborative repre-552

sentation by approximately 2.5 times. However, in553

our experiments, the inference acceleration did not554

reach this level. This is because we only included555

the collaborative representations for the target user556

and items, which constitute a smaller part of the557

total prompt. Specifically, the inference time for558

BinLLM without compression and with compres-559

sion was 106s and 93s on ML-1M, and 483s and560

435s on Amazon, respectively. If considering col-561

laborative information for all historically interacted562

items, as done by Liao et al. (2023), the expected563

inference acceleration would be more significant.564

4 Related Work565

• Collaborative Information Modeling. Collab-566

orative information modeling is pivotal for per-567

sonalized recommendations, and significant efforts568

have been dedicated to this area in traditional re-569

search. Initially, the information modeling relied570

on statistical methods (Sarwar et al., 2001). Sub-571

sequently, latent factor models became prevalent,572

leading to the development of prominent models573

such as MF (Koren et al., 2009) and FISM (Kabbur574

et al., 2013). Later, neural network-enhanced latent575

factor models made substantial advancements (He576

et al., 2017; Tang and Wang, 2018; Hidasi et al.,577

2016). These studies achieved remarkable success578

in both academia and industry, inspiring explo-579

ration into collaborative information modeling for580

LLMRec. In this study, we propose a method to en-581

code collaborative information in a text-like format,582

making it suitable for LLM usage.583

• LLMRec. As the impressive capabilities exhib-584

ited by LLMs, an increasing number of researchers585

in the recommendation community are now explor-586

ing the potential of applying LLMs to recommen-587

dation systems (Wu et al., 2023; Lin et al., 2023).588

This exploration can be categorized into two groups.589

The first group focuses on directly harnessing the 590

abilities of LLMs by employing suitable prompts 591

to stimulate their performance in recommendation 592

scenarios (Dai et al., 2023b; Hou et al., 2023). On 593

the other hand, another group of researchers argues 594

that LLMs have limited exposure to recommenda- 595

tion tasks during pre-training, and recommendation 596

data often possess personalized characteristics (Bao 597

et al., 2023b; Zhang et al., 2023a). Consequently, 598

it becomes crucial to explore tuning methods that 599

can enhance the recommendation performance of 600

LLMs. As researchers delve deeper into their stud- 601

ies, it has been discovered that LLMs often exhibit 602

an excessive reliance on semantic knowledge for 603

learning, while paying insufficient attention to the 604

acquisition of collaborative information between 605

entities (Bao et al., 2023a). 606

Researchers have initiated endeavors to incorpo- 607

rate collaborative information into LLMs. Some 608

researchers attempt to look for ID encoding meth- 609

ods to introduce new tokens through vocabulary ex- 610

pansion and train these tokens from scratch (Zheng 611

et al., 2023; Hua et al., 2023; Rajput et al., 2023). 612

Among them, Hua et al. utilize statistical informa- 613

tion, Zheng et al. and Rajput et al. employ vector 614

quantization techniques. However, this approach 615

often faces with low learning efficacy. Another 616

group of researchers explores using a latent factor 617

model to capture collaborative information (Zhang 618

et al., 2023b; Li et al., 2023c; Liao et al., 2023), 619

which is then mapped onto the semantic space of 620

LLMs through a mapping layer. This method ex- 621

hibits better learning efficacy but requires addi- 622

tional training of the mapping layer. Moreover, due 623

to the non-text-like format of collaborative infor- 624

mation, both sets of methods face challenges in 625

aligning with the information processing mecha- 626

nism in LLMs, limiting their performance. 627

5 Conclusion 628

In this study, we emphasize the importance of text- 629

like encoding of collaborative information model- 630

ing to enhance recommendation performance for 631

LLMRec. We introduce BinLLM, a novel approach 632

designed to incorporate collaborative information 633

in a text-like format by binarizing collaborative 634

embeddings for LLMRec. This encoding allows 635

the collaborative information to be utilized in a 636

manner better aligned with how information is pro- 637

cessed in LLMs. Extensive results demonstrate the 638

superiority of BinLLM. 639
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6 Limitations640

Currently, this paper has certain limitations in ex-641

perimental validation: 1) It relies solely on Vicuna-642

7B for experiments; 2) The current experiments643

focus solely on rating/click prediction tasks, ne-644

glecting other recommendation tasks like next-item645

prediction. In the future, we aim to expand exper-646

iments accordingly. Additionally, at the method-647

ological level, similar to existing LLMRec meth-648

ods, this paper faces challenges with low inference649

efficiency for real-world recommendation scenar-650

ios, particularly in the all-ranking setting. In the651

future, we could explore applying existing accelera-652

tion methods like pruning to improve speed. More-653

over, exploring recommendation generation meth-654

ods that avoid multiple inferences for individual655

users is another avenue worth exploring.656

7 Ethical Considerations657

In this paper, we present BinLLM, designed to658

encode collaborative information in a text-like for-659

mat for LLMRec. Our method binarizes numeri-660

cal embeddings and thus doesn’t raise ethical con-661

cerns. Moreover, the data we use are publicly662

available and don’t include sensitive details like663

gender. However, recommendations involve user664

behavioral data, which might raise privacy con-665

cerns, which are addressable through introducing666

the mechanism of user consent. Additionally, using667

LLMs may have hidden negative societal biases.668

We advocate for conducting thorough risk assess-669

ments and advise users to be wary of potential risks670

linked with model usage.671
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