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ABSTRACT

To promote the safe deployment of object detectors, a task of unsupervised out-
of-distribution object detection (OOD-OD) is recently proposed, aiming to detect
unknown objects during training without reliance on any auxiliary OOD data. To
alleviate the impact of lacking OOD data, for this task, one feasible solution is to
exploit the known in-distribution (ID) data to synthesize proper OOD information
for supervision, which strengthens detectors’ discrimination. From the frequency
perspective, since the phase generally reflects the content of the input, in this paper,
we explore leveraging the phase of ID features to generate expected OOD features
involving different content. And a method of Modulated Phase Diffusion (MPD) is
proposed, containing a shared forward and two different reverse processes. Specifi-
cally, after calculating the phase of the extracted features, to prevent the rapid loss
of content in the phase, the forward process gradually performs Gaussian Average
on the phase instead of adding noise. The averaged phase and original amplitude
are combined to obtain the features taken as the input of the reverse process. Next,
one OOD branch is defined to synthesize virtual OOD features by continually
enlarging the content discrepancy between the OOD features and original ones.
Meanwhile, another modulated branch is designed to generate augmented features
owning a similar phase as the original features by scaling and shifting the OOD
branch. Both original and augmented features are used for training, enhancing the
discrimination. Experimental results on OOD-OD, incremental object detection,
and open-set object detection demonstrate the superiorities of our method. The
source code will be released at https://github.com/AmingWu/MPD.

1 INTRODUCTION

Detecting unknown objects is critical for the safe application of detection systems. Currently, most
detection methods (Ren et al., 2015; He et al., 2017; Carion et al., 2020) usually follow a closed-set
assumption, i.e., the training and testing processes share the same category space. However, the real
scenario is open and filled with unknown objects, presenting enormous challenges for closed-set
assumption based detectors. To facilitate the deployment of object detectors, a task of unsupervised
out-of-distribution object detection (OOD-OD) (Du et al., 2022c) is recently proposed, whose purpose
is to detect unknown OOD objects during training without exploiting any auxiliary OOD data.

Due to lacking OOD data for training, the challenge of unsupervised OOD-OD (Du et al., 2022c)
mainly lies in how to only leverage the known in-distribution (ID) data to enhance the ability of
distinguishing OOD objects while reducing the impact on the performance of detecting ID objects.
One feasible solution (Du et al., 2022c; Reiss et al., 2022) is to synthesize a series of proper virtual
OOD features for supervision based on the ID data, which is conducive to promoting the object
detector to learn a clear boundary between ID and OOD objects. Particularly, the work (Du et al.,
2022c) first leverages ID data to estimate class-conditional distribution for each category. Then,
virtual OOD features are sampled from the region that slightly deviates from the estimated distribution.
However, to estimate the distributions accurately, it is important to utilize abundant objects for each
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Figure 1: Modulated Phase Diffusion for OOD-OD, which exploits the Phase information for content-
oriented feature synthesis and consists of a shared forward and two different reverse processes. To
alleviate the impact of lacking unknown data, the first reverse branch (as shown in orange arrows) is
to synthesize virtual OOD features that differ from the content of the ID features. Meanwhile, another
branch (as shown in green lines) aims to synthesize the augmented features of the ID features. By
taking these synthesized features for training, our method could enhance the ability of discriminating
OOD objects while reducing the impact on detecting ID objects (as shown in red and black lines).
category, which limits its application in the case of few samples. Meanwhile, when the number
of categories is large, estimating the distribution for each category may lead to an increase of
computational costs.

In this paper, we still explore feature synthesis to alleviate the impact of lacking OOD data. In
general, the extracted features of input images could be recognized as containing style and content
information (Lee et al., 2023). And the content of the OOD features should be different from that of
the ID features. Besides, from the frequency perspective, recent researches (Lee et al., 2023; Chen
et al., 2021; Oppenheim & Lim, 1981) have shown that the amplitude and phase could be separately
regarded as the style and content of the input. To this end, we pay more attention to exploiting the
phase information to perform content-oriented feature synthesis, which is instrumental in addressing
the key challenge of unsupervised OOD-OD (Du et al., 2022c).

Specifically, as shown in Fig. 1, an approach of Modulated Phase Diffusion (MPD) is proposed,
which is a dedicated phase diffusion generator and mainly consists of a shared forward and two
different reverse processes. After extracting the features of the input images, we first utilize Fourier
transform to decompose the corresponding amplitude and phase components. For traditional diffusion
models (Ho et al., 2020; Luo, 2022; Rombach et al., 2022), the forward process is to gradually
add noise to progressively weaken the content of the input. However, experimental results show
that directly adding noise into the phase could not boost the performance of discriminating OOD
objects. The reason may be that the phase components generally describe sensitive angle-related
information (Oppenheim & Lim, 1981). Adding much noise may rapidly destroy the content in the
phase. Therefore, during the forward process, Gaussian Average is gradually performed on the phase,
alleviating the loss speed of content in phase. The averaged phase and original amplitude are input
into the inverse Fourier transform, whose output is taken as the input of the reverse process. Next,
by continually enlarging the content discrepancy between the OOD features and ID features, one
OOD branch (as shown in orange lines) is designed to synthesize expected virtual OOD features.
Meanwhile, another modulated branch (as shown in green lines) is presented to generate augmented
features owning a similar phase as the ID features by scaling and shifting the OOD branch. Finally,
these synthesized features are used for training, enhancing the discrimination ability. Experimental
results on multiple datasets demonstrate the superiorities of our method.

In summary, our contributions are mainly three-fold: (1) To alleviate the impact of lacking unknown
data, we explore leveraging the phase information to perform content-oriented feature synthesis,
which is conducive to improving the discrimination. (2) To generate expected features, a method
of Modulated Phase Diffusion is proposed to synthesize virtual OOD features and augmented ID
features, which is instrumental in addressing the key challenge of unsupervised OOD-OD. (3) In the
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experiments, our method is evaluated on OOD-OD (Du et al., 2022c), incremental object detection
(Kj et al., 2021), and open-set object detection (Han et al., 2022). Particularly, for OpenImages
dataset (Kuznetsova et al., 2020), compared with the baseline method (Du et al., 2022c), our method
significantly reduces FPR95 by around 8.78%.

2 RELATED WORK

OOD Detection. Discovering unknown objects is an important ability of human intelligence. To
simulate this ability, OOD detection (Hendrycks & Gimpel, 2017; Liang et al., 2017; Wu & Deng,
2023a;b) has recently attracted much attention, whose goal is to discriminate OOD data from ID
data. Currently, most methods (Geifman & El-Yaniv, 2019; Jeong & Kim, 2020; Katz-Samuels
et al., 2022; Malinin & Gales, 2018; Meinke & Hein, 2020) focus on OOD image classification
and try to design regularization methods to improve the discrimination. Particularly, many methods
(Hendrycks et al., 2019; Liu et al., 2020; Bendale & Boult, 2016; Wang et al., 2021; Sun et al.,
2022) aim to design some specific score mechanisms to regularize the model to produce different
scores for OOD and ID data. And the score could be used to distinguish OOD data from ID data.
Besides, reconstruction (Denouden et al., 2018; Zhou, 2022) is also a commonly used idea for OOD
detection, which assumes that the reconstruction loss for OOD data is usually larger than that for ID
data. Though these methods have been shown to be effective, since object detection involves object
localization and classification, these methods could not be directly applied to OOD-OD.

Recently, a task of unsupervised OOD-OD (Du et al., 2022c; Wu et al., 2023) is proposed to localize
and recognize unknown objects during training. To reduce the impact of lacking OOD data for
supervision, Du et al. (Du et al., 2022c) proposed to use large-scale object samples to estimate the
distribution of each category, which is used to sample virtual OOD features that slightly deviate
from the estimated distribution. However, when the number of categories is large, estimating the
distribution for each category may increase computational costs. Besides, the work (Du et al., 2022b)
presented to learn unknown-aware knowledge from auxiliary videos, which does not match the
setting of unsupervised OOD-OD. Finally, Du et al. (Du et al., 2022a) further presented to use a
distance-based mechanism to shape the learned representations. Different from the above methods, in
this paper, we explore leveraging the phase components to perform content-oriented feature synthesis,
which is beneficial for improving the discrimination ability of the object detector.

Diffusion Models. As a popular generator, diffusion models (Rombach et al., 2022; Yang et al.,
2022b) generally contain forward diffusion for gradually adding noise and a reverse process to
continually recover the denoised data. Particularly, Ho et al. (Ho et al., 2020) first propose Denoising
Diffusion Probabilistic Models, accelerating the deployment of diffusion models. Based on this
work, some methods (Rombach et al., 2022; Gu et al., 2022; Hu et al., 2022) explore introducing
the attention mechanism (Vaswani et al., 2017) and Variational AutoEncoder (VAE) (Van Den Oord
et al., 2017) into existing diffusion models, which produce stable diffusion models and generate
high-quality images. However, diffusion models are rarely used for specific feature synthesis. In
this paper, we propose a method of Modulated Phase Diffusion, which is a dedicated phase-based
diffusion generator including a shared forward and two different reverse processes. By this diffusion
model, we can obtain expected OOD features and augmented ID features, which strengthens the
discrimination. Experimental results on multiple datasets demonstrate the superiorities of our method.

3 MODULATED PHASE DIFFUSION FOR FEATURE SYNTHESIS

For unsupervised OOD-OD (Du et al., 2022c), the key is how to overcome the difficulty of lacking
OOD data. To this end, we design a Modulated Phase Diffusion for synthesizing specific features.
Concretely, we follow the settings (Du et al., 2022c) and only utilize the ID data that own a fixed
number of categories for training. During inference, the object detector should distinguish ID objects
from OOD objects accurately.

3.1 FORWARD DIFFUSION VIA AVERAGING PHASE

As shown in Fig. 2, we follow the baseline work (Du et al., 2022c) and exploit the widely used
object detector, i.e., Faster R-CNN (Ren et al., 2015; He et al., 2017), as the basic detection model.
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Figure 2: The details of MPD for detecting unknown objects. MPD mainly contains three functions:
(1) The output of the forward process is used to enhance object-related information in the features
extracted by the backbone network, which is conducive to improving localization performance. (2)
To alleviate the impact of lacking OOD data, one OOD branch (as shown in orange lines) is presented
to synthesize expected OOD features F̂0 that differ from the content of the original features F0. (3)
Another modulated branch (as shown in green lines) is designed to generate augmented features F̃0

of the original features F0, strengthening the discrimination of the object classifier.

Given an input image, a backbone network, e.g., ResNet (He et al., 2016), is utilized to extract the
corresponding feature map F0 ∈ Rw×h×c, where w, h, and c separately denote width, height, and
the number of channels.

Then, F0 is input into fast Fourier transform (FFT) (Cochran et al., 1967; Lee et al., 2023) to
decompose the corresponding amplitude A ∈ Rw×h×c and phase P0 ∈ Rw×h×c. Next, to attain
content-oriented feature synthesis, the diffusion operation is performed on the phase P0 containing
the content information of the input. In general, the forward diffusion (Yang et al., 2022b; Ho et al.,
2020) gradually adds noise to progressively cover up the content of the input image. Unfortunately,
experimental results show that adding noise into the phase of input features could not boost the
performance. Taking PASCAL VOC (Everingham et al., 2010) and MS-COCO (Lin et al., 2014) as
the ID data for training and OOD data for evaluation, based on the FPR95 metric, the performance of
using the traditional diffusion model (Ho et al., 2020) and adding noise into the phase is increased by
6.48%. The reason may be that the phase of the features describes sensitive angle-related information
(Oppenheim & Lim, 1981). Adding much noise may rapidly destroy the content in the phase, affecting
the performance of the diffusion model.

To this end, we explore replacing adding noise with Gaussian Average, which is beneficial for slowing
down the loss speed of content in phase. Specifically, the forward process is fixed to a Markov chain
that gradually performs Gaussian Average on the phase P0:

Pt = Pt−1 ∗ G(σ), G(σ) = 1

2πσ2
e−(i2+j2)/2σ2

, (1)

where G(σ) represents Gaussian Kernel with the variance σ. (i, j) indicates the position in the kernel.
t = 1, ..., T . Pt ∈ Rw×h×c is the convolutional output. Meanwhile, the kernel size is set to 5× 5.
Finally, it is worth noting that the forward process has no learnable parameters.

Since Gaussian Average is a local operation, compared with globally adding noise on the phase, this
operation reduces the damage to the content involved in P0. Finally, after multiple iterations, the
averaged phase PT ∈ Rw×h×c and original amplitude A are input to inverse fast Fourier transform
(IFFT) (Cochran et al., 1967; Lee et al., 2023) to acquire the output FT ∈ Rw×h×c that is taken as
the input of the following reverse stage to synthesize specific features.

3.2 REVERSE PROCESS FOR OOD FEATURE SYNTHESIS

To reduce the impact of lacking OOD data, as shown in Fig. 2, one OOD reverse branch is presented to
use FT to synthesize expected OOD features that differ from the content of F0, which is instrumental
in improving the ability of discriminating OOD objects from ID objects. Concretely, in Fig. 1
and 2, taking FT as the input, a U-Net model (Ronneberger et al., 2015) is designed to predict the
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feature D̂t−1 ∈ Rw×h×c. Then, we perform FFT on D̂t−1 to decompose the corresponding phase
P̂t−1 ∈ Rw×h×c. Next, P̂t−1 and A are input to IFFT, whose output is taken as the input of the next
step. The processes are as follows:

D̂t−1 = ϵθ(F̂t, t), P̂t−1 = fft(D̂t−1), F̂t−1 = ifft(P̂t−1, A), (2)

where ϵθ(·, ·) represents the learned U-Net model. And t = T, ..., 1. F̂T = FT . Since the amplitude
generally describes the style information, to alleviate the style impact and focus on content-oriented
feature synthesis, we replace the amplitude from D̂t−1 with the original amplitude A. F̂t−1 ∈
Rw×h×c is the output at the timestep t. Next, taking F̂t−1 as the input, we continually perform the
above operations to obtain the synthesized virtual OOD map F̂0 ∈ Rw×h×c.

During training, a loss function Lood is proposed to facilitate the designed U-Net model to possess
the capability of OOD feature synthesis:

Lood = Et[||ϵt − fft(ϵθ(F̂t, t))||2], ϵt = PT−t − PT−t+1, (3)

where ϵt describes the lost phase information in P0 from the timestep T − t to T − t+ 1. Since the
average operation is continually performed on P0, as the iteration increases, the information about P0

involved in ϵt gradually decreases, which is conducive to promoting F̂0 to contain rich information
that differs from the content in F0. Finally, to further enlarge the gap between F̂0 and F0, a loss Ldis

is defined to maximize the KL-divergence between the virtual OOD features and ID features, i.e.,
Ldis = KL[q(F̂0), q(F0)], where q(·) represents the probability distribution.

3.3 MODULATED REVERSE PROCESS FOR AUGMENTED FEATURE SYNTHESIS

The modulated reverse process aims to recover the original features from the forward output FT ,
which is taken as the augmentation for training and is instrumental in strengthening the discrimination
of the classifier for ID objects. Specifically, as shown in Fig. 1 and 2, taking FT as the input, we still
employ the U-Net model of the OOD branch to predict the corresponding feature D̃t−1 ∈ Rw×h×c.
Since D̃t−1 involves plentiful OOD-related information, we exploit the modulation mechanism (Perez
et al., 2018; Wang et al., 2020) to perform a transformation on D̃t−1:

D̃t−1 = ϵθ(F̃t, t), Dt−1 = γ ⊙ D̃t−1 + β, (4)

where γ and β are learnable parameters for channel-wisely scaling and shifting D̃t−1. Dt−1 ∈
Rw×h×c and t = T, ..., 1. F̃T = FT . Compared with employing a newly-designed U-Net model,
leveraging the modulation mechanism (Perez et al., 2018; Wang et al., 2020) does not introduce
a large number of parameters, alleviating the overfitting risk. Then, FFT is performed on Dt−1 to
decompose the phase Pt−1 ∈ Rw×h×c, which corresponds to the lost phase caused by the forward
average. Next, we utilize the IFFT operation to calculate the input of the next iteration:

Pt−1 = fft(Dt−1), P̃t−1 = P̃t + Pt−1, F̃t−1 = ifft(P̃t−1, A), (5)

where P̃T = PT . P̃t−1 ∈ Rw×h×c represents the recovered phase. Similarly, to reduce the impact of
amplitude, P̃t−1 and original amplitude A are input to IFFT to acquire the output F̃t−1 ∈ Rw×h×c.
Next, we continually perform the above operations in equation 4 and equation 5 to generate the
augmented feature map F̃0 ∈ Rw×h×c of the original feature map F0.

During training, a loss Laug is defined to promote the modulated parameters to contain the ability of
transforming OOD information:

Laug = Et[||ϵt − fft(Dt−1)||2], ϵt = Pt−1 − Pt, (6)

where ϵt describes the lost phase information from the timestep t− 1 to t. By optimizing equation 6,
the decomposed phase Pt−1 could be facilitated to contain rich information about the lost phase,
which makes F̃0 retain plentiful content about F0.

3.4 MPD-DRIVEN OOD OBJECT DETECTION

In general, object detection involves two subtasks, i.e., object localization and recognition. Therefore,
enhancing object-related information in F0 is instrumental in detecting objects accurately.
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Algorithm 1 Modulated Phase Diffusion for Unsupervised OOD-OD
Input: ID data {X,Y }, randomly initialized detector with parameter φ, randomly initialized U-Net
with parameter θ, randomly initialized modulator with parameter γ and β, weight λ for the KL-loss,
weight α for the loss LMPD, weight τ for the uncertainty loss Luncerty.
Output: Object detector with parameter φ∗, and OOD detector C.
while train do

Sample images from the ID dataset {X,Y }.
Perform the forward phase diffusion using equation 1 to obtain PT and FT .
for t = T, ..., 1 do

D̂t−1 = ϵθ(F̂t, t), P̂t−1 = fft(D̂t−1), and F̂t−1 = ifft(P̂t−1, A). # OOD map F̂0

D̃t−1 = ϵθ(F̃t, t), and Dt−1 = γ ⊙ D̃t−1 + β.
Pt−1 = fft(Dt−1), P̃t−1 = P̃t + Pt−1, and F̃t−1 = ifft(P̃t−1, A). # Aug map F̃0

end
Calculate the overall training objective L using equation 3, equation 6, equation 7, equation 8,
and equation 9.
Update the parameters φ, θ, γ, and β based on equation 9.

end
while eval do

Calculate the OOD uncertainty score using the left part of equation 10.
Perform thresholding comparison using the right part of equation 10.

end

To this end, as shown in Fig. 2, a residual operation between F0 and FT is first performed. Since
the content in the forward output FT is blurry after multiple average operations, the residual result
contains plentiful object-related information. Then, the residual result is concatenated with F0 to
obtain the enhanced result E ∈ Rw×h×c, i.e., E = Ψ([F0, F0 − FT ]), where Ψ(·) ∈ R1×1×2c×c

represents one-layer convolution to transform the number of channels.

Next, E is taken as the input of the RPN module (Ren et al., 2015; He et al., 2017) to output a set of
object proposals O. Meanwhile, based on O, RoI-Alignment followed by RoI-Feature extraction
(He et al., 2017) is separately performed on E and augmented map F̃0 to obtain Oin ∈ Rm×n and
Oaug ∈ Rm×n, where m and n denote the number of proposals and channels. Then, Oin is input to
the object classifier and regressor to calculate the classification loss Lcls and localization loss Lloc:

Lin = Lcls + Lloc + λ ·KL[p(Oin), p(Oaug)], (7)

where λ is a hyper-parameter, which is set to 0.001 in the experiments. The KL-divergence loss is
to constrain the prediction consistency between Oin and Oaug, ameliorating the ability of the object
classifier for discriminating ID objects.

Finally, to distinguish OOD objects from ID objects, based on O, RoI-Alignment followed by RoI-
Feature extraction is performed on F̂0 to extract OOD features Oood ∈ Rm×n. Oood and Oin are
used to compute an uncertainty loss (Du et al., 2022c), regularizing the detector to produce a low
OOD score for the ID object features, and a high OOD score for the virtual OOD features:

Luncerty = Eu∽Oin [−log
exp−E(u)

1 + exp−E(u)
] + Ev∽Oood

[−log
1

1 + exp−E(v)
], (8)

where E(·) is the object-level energy score (Du et al., 2022c; Liu et al., 2020). The overall objective
is shown as follows:

L = Lin + α · LMPD + τ · Luncerty, LMPD = Lood + Laug − Ldis, (9)

where α and τ are two hyper-parameters, which are set to 0.001 and 0.1 in the experiments.

3.5 INFERENCE FOR OOD OBJECT DETECTION

During inference, we only leverage the forward phase diffusion to acquire the feature FT used to
enhance object-related information. Meanwhile, we only calculate the uncertainty score for OOD
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Table 1: The performance (%) of unsupervised OOD-OD. ↑ denotes larger values are better and ↓
represents smaller values are better.

In-distribution Data Method FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / OpenImages

PASCAL-VOC

MSP (Hendrycks & Gimpel, 2017) 70.99 / 73.13 83.45 / 81.91 48.7
ODIN (Liang et al., 2017) 59.82 / 63.14 82.20 / 82.59 48.7
Mahalanobis (Lee et al., 2018b) 67.73 / 65.41 81.45 / 81.48 48.7
Gram matrices (Sastry & Oore, 2020) 62.75 / 67.42 79.88 / 77.62 48.7
Energy score (Liu et al., 2020) 56.89 / 58.69 83.69 / 82.98 48.7
Generalized ODIN (Hsu et al., 2020) 59.57 / 70.28 83.12 / 79.23 48.1
CSI (Tack et al., 2020) 59.91 / 57.41 81.83 / 82.95 48.1
GAN-synthesis (Lee et al., 2018a) 60.93 / 59.97 83.67 / 82.67 48.5
SIREN-vMF (Du et al., 2022a) 64.68 / 68.53 85.36 / 82.78 -
SIREN-KNN (Du et al., 2022a) 47.45 / 50.38 89.67 / 88.80 -
VOS (Baseline) (Du et al., 2022c) 47.53 / 51.33 88.70 / 85.23 48.9
MPD 41.28 / 46.45 90.54 / 88.03 49.2

Berkeley
DeepDrive-100k

MSP (Hendrycks & Gimpel, 2017) 80.94 / 79.04 75.87 / 77.38 31.2
ODIN (Liang et al., 2017) 62.85 / 58.92 74.44 / 76.61 31.2
Mahalanobis (Lee et al., 2018b) 55.74 / 47.69 85.71 / 88.05 31.2
Gram matrices (Sastry & Oore, 2020) 60.93 / 77.55 74.93 / 59.38 31.2
Energy score (Liu et al., 2020) 60.06 / 54.97 77.48 / 79.60 31.2
Generalized ODIN (Hsu et al., 2020) 57.27 / 50.17 85.22 / 87.18 31.8
CSI (Tack et al., 2020) 47.10 / 37.06 84.09 / 87.99 30.6
GAN-synthesis (Lee et al., 2018a) 57.03 / 50.61 78.82 / 81.25 31.4
VOS (Baseline) (Du et al., 2022c) 44.27 / 35.54 86.87 / 88.52 31.3
MPD 37.24 / 26.76 88.56 / 92.23 31.4

Figure 3: Results on the OOD images from MS-COCO. The first and second rows respectively
indicate results based on VOS (Du et al., 2022c) and our method. The ID dataset is BDD-100k.
object detection (Du et al., 2022c). Specifically, for a predicted bounding box b, the processes of
distinguishing OOD objects are shown as follows:

S =
exp−E(b)

1 + exp−E(b)
, C(b) =

{
0 if S < δ,
1 if S ≥ δ.

(10)

For the output of the classifier C(·), we use the threshold mechanism (Du et al., 2022c) to distinguish
ID objects (the result is 1) from OOD objects (the result is 0). The threshold δ is commonly set to
0.95 so that a high fraction of ID data is correctly classified. Finally, Algorithm 1 shows the training
and testing processes of our method.

4 EXPERIMENTS

For unsupervised OOD-OD, our method is first evaluated on two different benchmarks (Du et al.,
2022c). Then, to further demonstrate the effectiveness, we evaluate our method on class-incremental
object detection (IOD) (Kj et al., 2021) and open-set object detection (OSOD) (Han et al., 2022).

4.1 OOD-OD PERFORMANCE ANALYSIS

Table 1 shows the performance of unsupervised OOD-OD. We can see that though different methods
own a similar mAP performance, the ability of detecting OOD objects differs significantly. This
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Table 2: Performance (%) analysis of class-incremental object detection. ‘iOD + Ours’ indicates that our
method is plugged into iOD (Kj et al., 2021). Here, ‘50’ and ‘75’ separately represent that the mAP metric is
calculated when the IOU threshold is set to 0.5 and 0.75.
10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP
OW-DETR (50) (Gupta et al., 2022) 61.8 69.1 67.8 45.8 47.3 78.3 78.4 78.6 36.2 71.5 57.5 75.3 76.2 77.4 79.5 40.1 66.8 66.3 75.6 64.1 65.7
ROSETTA (50) (Yang et al., 2022a) 74.2 76.2 64.9 54.4 57.4 76.1 84.4 68.8 52.4 67.0 62.9 63.3 79.8 72.8 78.1 40.1 62.3 61.2 72.4 66.8 66.8

iOD (50) (Kj et al., 2021) 76.0 74.6 67.5 55.9 57.6 75.1 85.4 77.0 43.7 70.8 60.1 66.4 76.0 72.6 74.6 39.7 64.0 60.2 68.5 60.5 66.3
iOD + Ours (50) 76.0 75.7 70.0 52.5 55.3 78.9 85.2 76.5 45.5 75.3 57.2 79.5 79.8 76.4 79.8 43.5 71.7 69.0 74.2 68.0 69.5
iOD (75) (Kj et al., 2021) 39.0 36.5 28.4 19.4 24.2 47.2 56.7 41.0 19.1 48.0 21.1 32.1 43.0 36.3 40.0 14.8 40.1 36.5 37.3 45.3 35.3
iOD + Ours (75) 42.2 41.3 29.6 22.3 22.8 53.7 58.0 41.4 21.5 42.6 24.6 32.9 39.8 41.4 38.5 15.5 44.2 36.5 35.0 45.6 36.5

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP
OW-DETR (50) (Gupta et al., 2022) 77.1 76.5 69.2 51.3 61.3 79.8 84.2 81.0 49.7 79.6 58.1 79.0 83.1 67.8 85.4 33.2 65.1 62.0 73.9 65.0 69.4
ROSETTA (50) (Yang et al., 2022a) 76.5 77.5 65.1 56.0 60.0 78.3 85.5 78.7 49.5 68.2 67.4 71.2 83.9 75.7 82.0 43.0 60.6 64.1 72.8 67.4 69.2

iOD (50) (Kj et al., 2021) 78.4 79.7 66.9 54.8 56.2 77.7 84.6 79.1 47.7 75.0 61.8 74.7 81.6 77.5 80.2 37.8 58.0 54.6 73.0 56.1 67.8
iOD + Ours (50) 77.5 78.7 71.7 54.7 62.3 78.7 84.5 77.0 51.3 78.8 66.1 79.7 79.8 77.0 77.8 44.9 65.0 61.8 74.9 67.1 70.5
iOD (75) (Kj et al., 2021) 40.7 40.9 28.7 19.1 23.8 61.6 56.1 38.8 23.6 47.5 18.7 40.1 40.2 41.5 39.8 9.1 40.6 32.4 41.9 47.6 36.6
iOD + Ours (75) 45.0 43.9 32.1 23.7 28.0 56.4 58.3 40.2 25.6 45.6 28.7 37.2 47.2 42.4 40.6 15.3 43.1 29.2 45.7 48.2 38.8

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP
OW-DETR (50) (Gupta et al., 2022) 70.5 77.2 73.8 54.0 55.6 79.0 80.8 80.6 43.2 80.4 53.5 77.5 89.5 82.0 74.7 43.3 71.9 66.6 79.4 62.0 70.2
ROSETTA (50) (Yang et al., 2022a) 75.3 77.9 65.3 56.2 55.3 79.6 84.6 72.9 49.2 73.7 68.3 71.0 78.9 77.7 80.7 44.0 69.6 68.5 76.1 68.3 69.6

iOD (50) (Kj et al., 2021) 78.2 77.5 69.4 55.0 56.0 78.4 84.2 79.2 46.6 79.0 63.2 78.5 82.7 79.1 79.9 44.1 73.2 66.3 76.4 57.6 70.2
iOD + Ours (50) 78.3 77.9 73.3 57.4 59.0 80.1 84.7 80.9 50.0 81.0 64.9 82.0 82.9 80.1 77.7 46.9 72.8 69.5 74.8 61.4 71.8
iOD (75) (Kj et al., 2021) 35.9 44.7 31.6 22.4 26.9 52.0 56.5 38.7 21.6 48.4 21.2 35.9 37.9 30.7 38.7 17.2 38.5 34.2 40.7 46.6 36.0
iOD + Ours (75) 40.9 45.0 38.7 23.2 32.0 56.2 62.6 40.3 24.9 48.9 28.7 46.3 41.8 42.4 41.5 18.4 44.0 37.9 44.6 48.2 40.3

Table 3: Performance analysis of OSOD. We report close-set performance (mAPK) on VOC, and
both close-set (mAPK) and open-set (WI, AOSE, APU ) performance of different methods on VOC-
COCO-{20, 40, 60}. Here, ‘20’, ‘40’, and ‘60’ indicate that the testing COCO images separately
contain 20, 40, and 60 non-VOC classes.
Method VOC VOC-COCO-20 VOC-COCO-40 VOC-COCO-60

mAPK↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑ WI↓ AOSE↓ mAPK↑ APU↑

FR-CNN (Ren et al., 2015) 80.10 18.39 15118 58.45 0 22.74 23391 55.26 0 18.49 25472 55.83 0
FR-CNN† (Ren et al., 2015) 80.01 18.83 11941 57.91 0 23.24 18257 54.77 0 18.72 19566 55.34 0
PROSER (Zhou et al., 2021) 79.68 19.16 13035 57.66 10.92 24.15 19831 54.66 7.62 19.64 21322 55.20 3.25
ORE (Joseph et al., 2021) 79.80 18.18 12811 58.25 2.60 22.40 19752 55.30 1.70 18.35 21415 55.47 0.53
DS (Miller et al., 2018) 80.04 16.98 12868 58.35 5.13 20.86 19775 55.31 3.39 17.22 21921 55.77 1.25

OpenDet (Han et al., 2022) 80.02 14.95 11286 58.75 14.93 18.23 16800 55.83 10.58 14.24 18250 56.37 4.36
OpenDet + Ours 80.18 12.23 10160 59.88 15.89 14.38 13580 57.51 11.82 12.08 16681 57.25 5.07

indicates that existing detection methods are easily affected by OOD objects. Meanwhile, based
on FPR95 and AUROC metrics, our method significantly outperforms the compared methods. This
not only demonstrates that synthesizing virtual features is feasible for OOD-OD but also shows that
our MPD method could perform content-oriented feature synthesis effectively. Fig. 3 shows some
detection results. Compared with the baseline method (Du et al., 2022c), our method accurately
localizes and recognizes OOD objects, which further demonstrates the superiorities of our method.

4.2 PERFORMANCE ANALYSIS OF IOD AND OSOD

To further demonstrate the effectiveness of our method, we verify our method on two different tasks,
i.e., IOD (Kj et al., 2021) and OSOD (Han et al., 2022). We directly plug our method into the
two state-of-the-art methods (Kj et al., 2021; Han et al., 2022). Meanwhile, we do not utilize the
uncertainty loss. The training and testing processes are the same as the two baselines (Kj et al., 2021;
Han et al., 2022). Table 2 and 3 show the detection results. We can see that plugging our method into
the two baseline methods improves their performance significantly. This further demonstrates that
leveraging the phase information indeed could synthesize expected features, which strengthens the
discrimination ability of the object detector.

4.3 ABLATION AND VISUALIZATION ANALYSIS

In this section, we utilize PASCAL VOC as the ID data for training and MS-COCO as the OOD data
to perform an ablation analysis of our method.

Analysis of MPD. Our method mainly includes the module for synthesizing OOD features, the
module for feature enhancement, and that for generating augmented features. In Table 4, we make an
ablation experiment of our method. We can see that only synthesizing virtual OOD features could
improve the ability of detecting OOD objects. This shows that leveraging the phase is beneficial
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(a) Input Image (b) Source Map (c) Enhance (d) Source Phase (e) Aug Phase (f) OOD Phase

Figure 4: Visualization of the Source map F0, Enhanced map E (i.e., E = Ψ([F0, F0−FT ])), Source
phase P0, Augmented phase P̃0, and OOD phase P̂0 based on the OOD data (MS-COCO).

for obtaining the features owning different content. Besides, we observe that performing feature
augmentation and enhancement further boosts the performance, which demonstrates that our method
could effectively synthesize the features enhancing the discrimination.

Table 4: Ablation analysis of MPD for unsupervised
OOD-OD. ‘OOD’ and ‘Aug’ separately indicate syn-
thesizing virtual ood features and augmented features.
‘Enhance’ represents E = Ψ([F0, F0 − FT ]).

OOD Aug Enhance FPR95 ↓ AUROC ↑ mAP↑
✓ 44.15% 89.44% 48.9%
✓ ✓ 42.26% 89.91% 49.1%
✓ ✓ 43.58% 89.62% 49.2%
✓ ✓ ✓ 41.28% 90.54% 49.2%

Reverse iteration number T . During reverse
processes, we continually repeat the same oper-
ations to obtain virtual OOD features and aug-
mented features. Here, we analyze the impact
of the iteration number. We do not change our
method and training details. Table 5 shows the
results. Through multiple average operations,
the content in the phase is significantly weak-
ened. It is difficult to utilize a small number of
iterations to acquire proper features involving
plentiful content. We can see that using more iterations is beneficial for synthesizing expected OOD
and augmented features, strengthening the discrimination ability of the object detector.

Table 5: Analysis of the iteration
number T in the reverse stage.

T FPR95 ↓ AUROC ↑ mAP↑
1 45.38% 89.31% 48.9%
2 43.94% 89.52% 49.1%
4 41.28% 90.54% 49.2%

Analysis of modulated operations. In equation 4, to synthe-
size augmented features effectively, we exploit the modulated
operation to perform a transformation for the output of the OOD
branch. Here, we use a newly-designed U-Net model to replace
the modulated operation. We observe that the performance de-
creases severely, e.g., the FPR95 value is increased by around
5.9%. The reason may be that using a new U-Net module increases
the parameters, leading to overfitting. More ablation experiments are shown in Appendix.

Visualization analysis. In Fig. 4, we show some visualization examples. Compared with the original
feature map F0, the enhanced feature map E contains stronger object-related information. This shows
that the object-related content in the averaged phase is weakened during the forward process. Besides,
the phase of OOD features is significantly different from that of original features and augmented
features, demonstrating that our MPD method could effectively synthesize expected features that
differ from the content of the original features and alleviate the impact of lacking OOD data.

5 CONCLUSION

For unsupervised OOD-OD, we focus on leveraging the phase information to perform content-oriented
feature synthesis and propose a new method, i.e., modulated phase diffusion. Specifically, the forward
process gradually performs Gaussian Average on the phase. Then, two different reverse processes are
separately designed to synthesize expected virtual OOD features and augmented features. Extensive
experimental results on three different tasks demonstrate the effectiveness of our method.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work is supported in part by the National Key R&D Program of China (No. 2023YFC3305600),
Joint Fund of Ministry of Education of China (8091B022149, 8091B02072404), National Natural
Science Foundation of China (62132016, 62171343, 62071361, and 62102293), and Fundamental
Research Funds for the Central Universities (ZDRC2102).

REFERENCES

Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In CVPR, pp. 1563–1572,
2016.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. ECCV, 2020.

Guangyao Chen, Peixi Peng, Li Ma, Jia Li, Lin Du, and Yonghong Tian. Amplitude-phase recombina-
tion: Rethinking robustness of convolutional neural networks in frequency domain. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 458–467, 2021.

William T Cochran, James W Cooley, David L Favin, Howard D Helms, Reginald A Kaenel,
William W Lang, George C Maling, David E Nelson, Charles M Rader, and Peter D Welch. What
is the fast fourier transform? Proceedings of the IEEE, 55(10):1664–1674, 1967.

Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and Sachin Vernekar.
Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance.
arXiv preprint arXiv:1812.02765, 2018.

Akshay Dhamija, Manuel Gunther, Jonathan Ventura, and Terrance Boult. The overlooked elephant
of object detection: Open set. In WACV, pp. 1021–1030, 2020.

Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for detecting
out-of-distribution objects. In NeurIPS, 2022a.

Xuefeng Du, Xin Wang, Gabriel Gozum, and Yixuan Li. Unknown-aware object detection: Learning
what you don’t know from videos in the wild. In CVPR, pp. 13678–13688, 2022b.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual
outlier synthesis. ICLR, 2022c.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In ICML, pp. 2151–2159, 2019.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
Guo. Vector quantized diffusion model for text-to-image synthesis. In CVPR, pp. 10696–10706,
2022.

Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Mubarak Shah.
Ow-detr: Open-world detection transformer. In CVPR, pp. 9235–9244, 2022.

Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, and Gui-Song Xia. Expanding low-
density latent regions for open-set object detection. In CVPR, pp. 9591–9600, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, pp. 2961–2969,
2017.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. ICLR, 2017.

10



Published as a conference paper at ICLR 2024

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. ICLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 33:
6840–6851, 2020.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In CVPR, pp. 10951–10960,
2020.

Minghui Hu, Yujie Wang, Tat-Jen Cham, Jianfei Yang, and Ponnuthurai N Suganthan. Global
context with discrete diffusion in vector quantised modelling for image generation. In CVPR, pp.
11502–11511, 2022.

Taewon Jeong and Heeyoung Kim. Ood-maml: Meta-learning for few-shot out-of-distribution
detection and classification. NeurIPS, 33:3907–3916, 2020.

KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasubramanian. Towards open
world object detection. In CVPR, pp. 5830–5840, 2021.

Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training ood detectors in their
natural habitats. In ICML, pp. 10848–10865, 2022.

Joseph Kj, Jathushan Rajasegaran, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasubrama-
nian. Incremental object detection via meta-learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, et al. The open images dataset v4.
International journal of computer vision, 128(7):1956–1981, 2020.

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. ICLR, 2018a.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. NeurIPS, 31, 2018b.

Sangrok Lee, Jongseong Bae, and Ha Young Kim. Decompose, adjust, compose: Effective normal-
ization by playing with frequency for domain generalization. CVPR, 2023.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. ICLR, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, pp.
740–755. Springer, 2014.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
NeurIPS, 33:21464–21475, 2020.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970,
2022.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. NeurIPS, 31,
2018.

Alexander Meinke and Matthias Hein. Towards neural networks that provably know when they don’t
know. ICLR, 2020.

Dimity Miller, Lachlan Nicholson, Feras Dayoub, and Niko Sünderhauf. Dropout sampling for robust
object detection in open-set conditions. In ICRA, pp. 3243–3249, 2018.

Alan V Oppenheim and Jae S Lim. The importance of phase in signals. Proceedings of the IEEE, 69
(5):529–541, 1981.

11



Published as a conference paper at ICLR 2024

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, volume 32, 2018.

Tal Reiss, Niv Cohen, Eliahu Horwitz, Ron Abutbul, and Yedid Hoshen. Anomaly detection requires
better representations. arXiv preprint arXiv:2210.10773, 2022.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NeurIPS, pp. 91–99, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI, pp. 234–241, 2015.

Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution examples with gram
matrices. In ICML, pp. 8491–8501. PMLR, 2020.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In ICML, pp. 20827–20840, 2022.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. NeurIPS, 33:11839–11852, 2020.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 30,
2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classification networks
know what they don’t know? NeurIPS, 34:29074–29087, 2021.

Renzhen Wang, Kaiqin Hu, Yanwen Zhu, Jun Shu, Qian Zhao, and Deyu Meng. Meta feature
modulator for long-tailed recognition. NeurIPS, 2020.

Aming Wu and Cheng Deng. Discriminating known from unknown objects via structure-enhanced
recurrent variational autoencoder. In CVPR, pp. 23956–23965, 2023a.

Aming Wu and Cheng Deng. Tib: Detecting unknown objects via two-stream information bottleneck.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023b.

Aming Wu, Da Chen, and Cheng Deng. Deep feature deblurring diffusion for detecting out-of-
distribution objects. In ICCV, pp. 13381–13391, 2023.

Binbin Yang, Xinchi Deng, Han Shi, Changlin Li, Gengwei Zhang, Hang Xu, Shen Zhao, Liang Lin,
and Xiaodan Liang. Continual object detection via prototypical task correlation guided gating
mechanism. In CVPR, pp. 9255–9264, 2022a.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. arXiv preprint arXiv:2209.00796, 2022b.

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan,
and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In
CVPR, pp. 2636–2645, 2020.

Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning placeholders for open-set recognition. In
CVPR, pp. 4401–4410, 2021.

Yibo Zhou. Rethinking reconstruction autoencoder-based out-of-distribution detection. CVPR, 2022.

12



Published as a conference paper at ICLR 2024

A APPENDIX

For unsupervised OOD-OD, to overcome the limitation of lacking OOD data for supervision and
improve the discrimination ability of the object detector, this paper proposes a new feature-level
generator, i.e., Modulated Phase Diffusion, aiming to exploit the phase information to perform
content-oriented feature synthesis. In the appendix, we provide implementation details, additional
analyses, various ablation studies, and more visualization results.

A.1 EXPERIMENTAL SETUP

Implementation Details. We utilize Faster R-CNN (Ren et al., 2015) with RoI-Alignment layer (He
et al., 2017) as the basic detection model. ResNet-50 (He et al., 2016) is taken as the backbone. For
the forward process, we perform four Gaussian Average operations. σ in equation 1 is set to 0.8. For
the reverse stage, the encoder and decoder in the U-Net model ϵθ all consist of three convolutional
layers. All the experiments are trained using the standard SGD optimizer with a learning rate of 0.02.

Datasets. For unsupervised OOD-OD, we adopt PASCAL VOC (Everingham et al., 2010) and
Berkeley DeepDrive (BDD-100k) (Yu et al., 2020) as the ID data for training. Meanwhile, MS-
COCO (Lin et al., 2014) and OpenImages (Kuznetsova et al., 2020) are taken as the OOD datasets
to evaluate the trained model. And the OOD datasets are manually examined to guarantee they do
not contain ID categories. Besides, PASCAL-VOC includes the following categories: Person, Car,
Bicycle, Boat, Bus, Motorbike, Train, Airplane, Chair, Bottle, Dining Table, Potted Plant, TV, Sofa,
Bird, Cat, Cow, Dog, Horse, Sheep. BDD-100k contains the following classes: Pedestrian, Rider,
Car, Truck, Bus, Train, Motorcycle, Bicycle, Traffic light, Traffic sign.

For IOD, we follow the standard evaluation protocol (Kj et al., 2021) and evaluate our method on
PASCAL VOC (Everingham et al., 2010). We initially learn 10, 15, or 19 base classes, and then
introduce 10, 5, or 1 new classes as the second task. Finally, for OSOD, we follow the work (Han
et al., 2022) and utilize 20 VOC classes and 60 non-VOC classes in COCO to evaluate our method
under different open-set conditions.

Metrics. For OOD-OD, we report: (1) the false positive rate (FPR95) of OOD objects when the true
positive rate of ID objects is at 95%; (2) the area under the receiver operating characteristic curve
(AUROC); (3) mean average precision (mAP). For OSOD, we use Wilderness Impact (WI) (Dhamija
et al., 2020) to measure the degree of unknown objects misclassified to known classes. And we
also use Absolute Open-Set Error (AOSE) (Miller et al., 2018) to count the number of misclassified
unknown objects.

A.2 MORE EXPERIMENTAL DETAILS OF IOD AND OSOD

To further demonstrate the effectiveness of our method, we verify our method on IOD and OSOD.
Here, we directly plug our method into two baseline methods and do not calculate the uncertainty
loss. The training details are the same as the baselines.

To effectively exploit the synthesized virtual OOD features, we train a binarized classifier, i.e., the
output of the known category is 1, and the output of the virtual OOD features is 0. Meanwhile, we
still utilize a KL-divergence to constrain the prediction consistency between the original features
and augmented ones. By these operations and minimizing the cross-entropy loss, the discrimination
ability of the object classifier could be further strengthened.

A.3 FURTHER DISCUSSION OF VISUALIZATION RESULTS

To alleviate the impact of lacking OOD data, we focus on phase-based content-oriented feature
synthesis. Fig. 5 shows more visualization examples. We can see that compared with the original
feature map F0, the enhanced feature map E contains stronger object-related information and weaker
background-relevant information. This shows that after the multiple averaging operations, the object-
related content of the forward output is gradually damaged, meeting the purpose of the forward
diffusion. Besides, we can observe that the OOD phase information is significantly different from the
phase of the augmented features. This further indicates that the content of the synthesized virtual
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(a) Input Image (b) Source Map (c) Enhance (d) Source Phase (e) Aug Phase (f) OOD Phase

Figure 5: Visualization of the Source map F0, Enhanced map E (i.e., E = Ψ([F0, F0−FT ])), Source
phase P0, Augmented phase P̃0, and OOD phase P̂0 based on the OOD data (MS-COCO).

OOD features differs from that of the input features, which attains the motivation of this paper and
demonstrates the effectiveness of our method.

A.4 MORE ABLATION EXPERIMENTS OF HYPER-PARAMETERS AND MPD METHOD

For our method, we utilize the hyper-parameter λ for the KL-divergence loss (equation 7), the
hyper-parameter α for the loss LMPD (equation 9), and the hyper-parameter τ for the loss Luncerty

(equation 9). Since the uncertainty loss Luncerty is directly related to the current task, the value of τ
should be set larger than λ and α. Meanwhile, if λ and α are set to a small value, the role of the two
corresponding losses will be weakened in optimization. Thus, it is meaningful to set proper values for
these hyper-parameters. Here, we take PASCAL VOC as the ID data and MS-COCO as the OOD data
to perform an ablation analysis of hyper-parameters. And we only change these hyper-parameters
and keep other modules unchanged.

Analysis of λ. The hyper-parameter λ in equation 7 is to balance the detection loss and the loss that
aims to minimize the KL-divergence between the prediction probabilities from Oin and Oaug. In the
experiments, we observe that when λ is set to 0.01, 0.001, and 0.0001, the performance of FPR95 is
42.94%, 41.28%, and 42.16%.

Analysis of α. The goal of the hyper-parameter α in equation 9 is to weigh the importance of the
module of MPD. In the experiments, we find that when α is set to 0.01, 0.001, and 0.0001, the
corresponding FPR95 performance is 43.25%, 41.28%, and 41.92%.

Analysis of τ . In this paper, the hyper-parameter τ in equation 9 is to constrain the uncertainty loss
Luncerty. In the experiments, we observe that when τ is set to 0.5, 0.1, and 0.01, the corresponding
performance of FPR95 is 43.89%, 41.28%, and 43.13%.
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Figure 6: OOD detection examples based on our method. Here, we use BDD-100k as the in-
distribution data and MS-COCO as the OOD data. We can see that our method accurately distinguishes
OOD objects, which shows the effectiveness of our method.

15



Published as a conference paper at ICLR 2024

Figure 7: Detection results based on PASCAL VOC. We can see that our method accurately localizes
and recognizes objects in these images, e.g., the dog, car, cow, and person, which shows that our
method is effective for in-distribution data.
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Table 6: Definitions of notations used in our method.
Notations Definition
F0 The feature map extracted by the backbone network.
A, P0 The corresponding amplitude and phase of F0.
G(σ) Gaussian Kernel with the variance σ.
Pt The convolutional output of the t-th Gaussian Average operation.
ϵθ(·, ·) The learned U-Net model.
D̂t−1 The predicted result of the U-Net model.
P̂t−1 The decomposed phase based on D̂t−1.
F̂t−1 The IFFT output of P̂t−1 and A.
F̂0 The synthesized virtual OOD map.
Dt−1 The output of the modulation mechanism.
Pt−1 The decomposed phase based on Dt−1.
F̃0 The augmented feature map.

Analysis of the Kernel Size. In equation 1, during the forward process, we exploit the Gaussian
Kernel to perform the average operation. Here, we make an ablation analysis of the kernel size. And
other modules are kept unchanged. Taking PASCAL VOC as ID data for training and MS-COCO
as OOD data for evaluation, when the kernel size is separately set to 3 × 3, 5 × 5, and 7 × 7, the
corresponding performance is 41.76%, 41.28%, and 42.84%.

In Fig. 6 and 7, we show more detection results from our method. We can see that our method could
distinguish ID objects and OOD objects accurately, which further demonstrates the effectiveness of
our phase-based diffusion method.

A.5 DEFINITIONS OF NOTATIONS

Table 6 gives the definitions of notations used in our method.

A.6 FURTHER DISCUSSION OF OUR METHOD

For unsupervised OOD-OD, since there is no OOD data available, one feasible solution is to leverage
the known ID data to synthesize expected OOD features that differ from the content of ID features.
To this end, in this paper, we explore leveraging the phase component to generate expected OOD
features, which is instrumental in improving the ability of discriminating OOD from ID objects. In
the following, we will give more discussions about our method.

On performing Gaussian Average. During the forward process, existing diffusion methods (Ho
et al., 2020; Luo, 2022) are fixed to a Markov chain that gradually adds Gaussian noise to the input.
And a notable property of the forward process is that it admits sampling the diffusion results at an
arbitrary timestep t due to the characteristic of Gaussian noise (Ho et al., 2020).

Since our method is to leverage the phase components to generate expected features, directly adding
noise to the phase may rapidly destroy the content in the phase, affecting the performance of the
diffusion model. To this end, we replace adding noise with gradually performing Gaussian Average.
Compared with globally adding noise, Gaussian Average is a local operation and could reduce the
damage to the content. The overall forward process can be described as follows:

q(Pt|Pt−1) = Pt−1 ∗ G(σ), (11)

where Pt represents the t-th output phase of the forward diffusion process.

Meanwhile, the forward process owns a notable property that it admits averaging the phase Pt at an
arbitrary timestep t:

Pt = Pt−1 ∗ G(σ) = (Pt−2 ∗ G(σ)) ∗ G(σ) = P0 ∗ G(σ) ∗ · · · ∗ G(σ) = P0 ∗ G(σs), (12)

where σs =
∑t

k=1 σ. Like traditional diffusion methods (Ho et al., 2020; Luo, 2022), this property
admits acquiring the diffusion results at an arbitrary timestep t. Experimental results on multiple
datasets demonstrate the effectiveness of this operation.
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Figure 8: The training loss of the baseline (Du et al., 2022c) and our method.

On the reverse process. The reverse process aims to generate virtual OOD feature F̂0 from an
averaged result FT :

pθ(F̂T :0) := p(F̂T )

1∏
t=T

pθ(F̂t−1|F̂t), (13)

where F̂T = FT . An U-Net network is taken as the decoder to predict the output F̂t involving
OOD-related information.

The reverse loss Lreverse can be represented as follows:

Lreverse = Eq[DKL(q(FT |F0)||p(F̂T ))−
∑
t>1

DKL(q(Ft−1|Ft)||pθ(F̂t−1|F̂t))− log pθ(F̂0|F̂1)],

(14)
where the first term is a constant during training and can be ignored. By minimizing the last two
terms, the gap between the synthesized OOD features and ID features could be enlarged, promoting
the synthesized OOD features to contain plentiful content that differs from the ID input. Concretely,
for the second loss term, we explore making the output of the decoder gradually contain less ID-
relevant content to promote the decoder to own the ability of generating OOD samples (as shown
in equation 3). Meanwhile, for the last loss term, we maximize the loss Ldis to further enlarge the
gap between the OOD and ID features. Extensive experimental results and visualization analysis
demonstrate that our method could synthesize expected features effectively, improving the ability of
discriminating OOD objects.

A.7 VISUALIZATION OF THE TRAINING LOSS CURVE

In Fig. 8, we show the training loss curves of the baseline (Du et al., 2022c) and our method. The
decreasing speed of the loss value is around consistent with the baseline method. We can see that the
loss curve of our method is significantly lower than that of the baseline, which further demonstrates
the effectiveness of our method.
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