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ABSTRACT

Leveraging high-order structural semantics in knowledge graphs (KGs) is criti-
cal for modeling complex user preferences in recommendations. However, dur-
ing multi-hop propagation, semantic noise arising from heterogeneous relation
distributions obscures meaningful preferences, making it challenging to learn ro-
bust user-item representations. To address this challenge, we propose GAT++, a
novel graph convolutional network that integrates relation-aware attention mech-
anisms with contrastive denoising regularization to learn robust and expressive
user-item representations. At its core, GAT++ introduces an adaptive attention
module that captures multiple semantic relation spaces by projecting entities into
relation-specific subspaces and learning distinct relation weight distributions. To
further suppress noise from high-order message passing, we introduce a con-
trastive regularizer that leverages multi-relation subgraph variants to enforce con-
sistency across augmented views. Moreover, we develop a personalized denoising
encoder that dynamically refines user-item representations end-to-end, removing
the need for external data generation modules. We evaluate GAT++ on extensive
real-world datasets across music, literature, and food domains. GAT++ achieves
up to 34.81% improvement in Recall@N over strong baselines, demonstrating its
effectiveness and generalizability across diverse recommendation scenarios.

1 INTRODUCTION

Table 1: The performance comparison of GAT
and GAT++ shows a statistically substantial im-
provement in GAT++ (p < 0.01), with “RI” indi-
cating the average relative improvement.

Recall@20 Recall@50 RI
GAT Veličković et al. (2018) 0.0153 0.0457
GAT++ (Ours) 0.1100 0.1500 424.24%

AUC F1 RI
GAT Veličković et al. (2018) 0.7080 0.6341
GAT++ (Ours) 0.8086 0.7240 14.18%

Effectively modeling structured semantic re-
lationships in heterogeneous graphs is criti-
cal for tasks such as recommendation Wang
et al. (2020a); Liu et al. (2019); Gharibshah
& Zhu (2021), knowledge discovery, and re-
trieval. Heterogeneous graphs encode com-
plex interactions through diverse relation dis-
tributions. However, the diversity and interde-
pendence of these relations pose challenges for
learning transferable, interpretable, and task-
aware representations. Existing methods rely
on fixed or manually defined importance scores
to represent relation semantics, which limits their adaptability across datasets and tasks. We pro-
pose a unified framework that combines a flexible architectural design, a universal contrastive loss,
and adaptable data generation to dynamically model the varying importance of high-order semantic
patterns (e.g., meta-paths) in an end-to-end manner. In recommendation tasks, our approach im-
proves the expressiveness and robustness of user–item representations. While our primary focus is
on recommendation, the framework effectively generalizes to a wide range of graph-based learning
applications beyond user–item modeling.

Knowledge-enhanced recommendation has gained increasing interest for leveraging structured se-
mantics from knowledge graphs (KGs) to improve representation learning and recommendation
accuracy. Recent methods incorporate graph neural networks (GNNs) and attention mechanisms to
enable high-order propagation and user preferences reasoning over multi-hop KG paths. Despite
notable performance gains, they still face key challenges. A key issue is the semantic heterogeneity
inherent in KGs: entities often engage in diverse, overlapping relation distributions, which render
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typical aggregation schemes insufficient. Many models treat relations equally, ignoring their varying
informativeness across latent semantic spaces. This neglect of relation spaces leads to indiscriminate
message propagation, causing semantic dilution and noise accumulation in higher-order neighbor-
hoods.

Moreover, mainstream methods apply entity-centric attention, overlooking relational semantics.
This negligence results in coarse or relation-agnostic message propagation that fails to capture het-
erogeneous relational dependencies. For instance, Graph Attention Networks (GAT) Veličković
et al. (2018) compute attention over neighboring entities without accounting for relation distribu-
tions, an oversimplification limiting the use of complex multi-relational graphs. Although self-
attention-based models aim to capture dependencies and suppress irrelevant nodes Zhou et al. (2018;
2019); Sun et al. (2019), they often conflate multiple relation distributions within a shared embed-
ding space, leading to degraded recommendation performance. A key underlying issue is the over-
simplified assumption that all entities and their neighbors lie in a shared latent space, an assumption
that overlooks the relational heterogeneity intrinsic to real-world knowledge graphs.

Second, existing methods are susceptible to semantic noise during higher-order propagation, where
weakly related or irrelevant entities dilute meaningful preference and compromise model robustness.
In recommendation systems, user preferences are influenced by both local interactions (with direct
neighbors) and global structures (capturing multi-hop semantics). Effectively modeling the dynamic
interplay between user interests and knowledge semantics is challenging, as user preferences are
often entangled with evolving, context-dependent, and domain-specific knowledge along relation
paths. It is a challenge to selectively amplify relevant semantics while suppressing spurious signals,
which demands both theoretical complexity and computational demands.

Third, data sparsity in real-world user-item interaction graphs makes it hard to predict user interests.
The absence of potential edges often causes attention mechanisms to overfit to noisy, distorting
learned user and item representations and degrade recommendation quality. Moreover, the lack of
reliable supervision in implicit feedback settings hinders effective training of KG-based models,
as noisy or incomplete interactions can bias learning and impair generalization. These challenges
underscore the need for a unified framework that enables fine-grained semantic reasoning, robust
representation learning, and scalable optimization to enable knowledge-enhanced recommendations.

Input Output
Adaptive Saliency Across 

Relationship Spaces

Concat

Relation-Aware Projection 
of the Semantic Space

𝑀𝑟1

𝑀𝑟n

Figure 1: Overview of the adaptive attention mecha-
nism in GAT++ for multi-relational representation learn-
ing: Given a graph with heterogeneous relations, node fea-
tures are projected into relation-specific semantic spaces,
where an adaptive saliency mechanism selects contextu-
ally relevant nodes.

Our key insight is that an entity’s con-
tribution should vary across relational
contexts. As user preferences propa-
gate through multiple hops in a KG, the
influence of each entity on the target
depends on a combination of relation
distributions, which jointly determine
its overall contribution score. Building
on this observation, our GAT++ explic-
itly models relation-specific semantic
spaces and adaptively suppresses noise.
In contrast to conventional GAT-based
models that compute attention weights
solely based on neighboring entities,
GAT++ captures heterogeneous rela-
tional semantics by projecting entities
into relation-specific subspaces using
learnable projection matrices. Relation attention distributions calculated by jointly considering
head–tail entity interactions and their associated relational context, enabling fine-grained semantic
discrimination across multiple relation spaces. As shown in Figure 1, GAT++ computes entity con-
tribution scores across distinct relational semantic spaces, ensuring effective discrimination among
relation distributions and reducing noise in high-order propagation. Empirical results on the Book-
Crossing dataset (Table 1) demonstrate that GAT++ substantially outperforms GAT, with an average
improvement of 424.24% in Recall@N across multiple recommendation metrics.

To reduce noise from irrelevant or weakly informative connections, GAT++ integrates a contrastive
denoising regularization mechanism that leverages subgraph variants constructed from the most
salient relation distributions. This regularizer enhances the robustness of learned embeddings by
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maximizing agreement between semantically consistent views and filtering out noisy high-order
signals through self-supervised subgraph alignment. Third, GAT++ introduces a personalized de-
noising encoder that dynamically generates user-item representations based on task relevance and
jointly optimizes model parameters end-to-end. Unlike DR4SR+ Yin et al. (2024), which requires a
three-stage training pipeline, our approach eliminates the need for external data generators or selec-
tors, enabling automated dataset denoising and regeneration within a unified training process. Our
contributions are as follows:

• We introduce GAT++, a graph attention network that models multiple semantic relation
spaces through relation-specific attention and saliency-aware aggregation, improving ro-
bustness to high-order noise in knowledge graphs. To our knowledge, GAT++ is the first to
introduce relation attention weight distributions.

• We propose a contrastive denoising regularization that addresses semantic noise from high-
order propagation by generating subgraph variants from the most influential relation spaces
to enhance representation consistency and suppress irrelevant paths.

• We propose a personalized denoising encoder that refines user-item representations end-
to-end in a task-specific manner. This component enhances robustness and generalization
under sparse supervision while eliminating the need for external data augmentation mod-
ules.

• We conduct extensive experiments on multiple public benchmarks, demonstrating that
GAT++ consistently outperforms state-of-the-art recommendation models in both accuracy
and robustness, especially under cold-start and sparse scenarios.

2 RELATED WORK

User Interest Modeling Traditional models like CF Sarwar et al. (2001) and FM Rendle (2012)
have evolved into more expressive variants, such as NFM He & Chua (2017) and DFM Guo et al.
(2017), which use deep neural networks (DNNs) to capture high-order feature interactions Sedhain
et al. (2015); Chen et al. (2017); Wang et al. (2020a); Liu et al. (2019); Gharibshah & Zhu (2021);
He et al. (2017); Rendle et al. (2020); Liang et al. (2018). Although these models enable deep
feature crossing, they often introduce feature redundancy by indiscriminately modeling high-order
interactions without accounting for contextual relevance. To address this, DIN Zhou et al. (2018)
introduces an attention mechanism to focus on relevant user behaviors. DIEN Zhou et al. (2019) fur-
ther extends this with an attention-enhanced GRU to model the temporal dynamics of user interests.
However, methods that rely solely on user–item interactions exhibit limited generalization to broader
application scenarios Togashi et al. (2021); Fan et al. (2019); Huang (2021). To enhance semantic
context, knowledge graphs (KGs) have been integrated to enhance user preference modeling Wang
et al. (2019c); Xian et al. (2019); Huang et al. (2021); He et al. (2020). However, propagating user
preferences along multi-hop KG paths can introduce noise under complex semantic relationships,
due to the lack of fine-grained modeling of relational semantics. Existing methods often fail to dif-
ferentiate the varying importance of relations, weakening collaborative signals and underutilizing
the rich structural semantics necessary for accurate preference modeling.

Learning Fine-Grained Semantics Incorporating knowledge graphs (KGs) into user and item
representations has become central to recommendation research Zhang et al. (2016); Wang et al.
(2018b); Xin et al. (2019); Tian et al. (2021). Recent methods use KG embeddings to capture se-
mantic relationships Zhang et al. (2016); Wang et al. (2018b). For example, DKN Wang et al.
(2018b) integrates knowledge into news content using TransD Ji et al. (2015), while DKFM Tian
et al. (2023) applies TransE Bordes et al. (2013) to embed city-level information for destination rec-
ommendation. Other methods jointly learn entity and relation embeddings via propagation frame-
works Wang et al. (2019c;b; 2018a); Xia et al. (2021); Hu et al. (2018); Wang et al. (2019a; 2020b).
Additionally, contrastive learning Verma et al. (2021); Ruiter et al. (2019) has emerged as an ef-
fective way for enhancing semantic relationship embeddings Wu et al. (2021); Liu et al. (2021);
Wei et al. (2022); Long et al. (2021). Existing methods emphasize collaborative signals but often
overlook the complex semantic relationships in KGs, limiting their ability to capture fine-grained re-
lational distinctions critical for accurate recommendations. Moreover, current attention mechanisms
misalign with the KG’s topology and semantic features, such as multi-hop paths and relation-specific
contributions, hindering effective knowledge integration. To address these challenges, we propose
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Figure 2: Overview of GAT++. User–item interactions are first encoded by a Personalized Denoise
Encoder to obtain initial embeddings eu and ev . These are refined through high-order propagation
with Adaptive Relation-Aware Attention. Relation-specific subgraphs are used to generate diverse
representations. The final embeddings are optimized via a multi-task objective, collaborative filter-
ing loss LCF , knowledge graph loss LKG, and contrastive denoising loss LNoise.

an adaptive neural architecture that explicitly models the semantics of the KG, enabling accurate
and interpretable recommendations.

3 PROBLEM DEFINITION

In recommendation systems, we define a user set U = {u1, u2, . . . , uM} and an item set V =
{v1, v2, . . . , vN}. Based on implicit feedback (e.g., clicks, views, purchases), we construct a
user–item interaction matrix Y ∈ RM×N , where yuv = 1 indicates interaction and yuv = 0 oth-
erwise. Note that yuv = 0 does not imply negative preference; it may simply indicate the item
was unseen. To enrich user and item representations, we incorporate auxiliary knowledge from a
knowledge graph G = {(h, r, t) | h, t ∈ E , r ∈ R}, where h and t are head and tail entities, and
r is a relation type. E and R denote the sets of entities and relations, respectively. To align items
with semantic entities, we define an alignment set A = {(v, e) | v ∈ V, e ∈ E}, where each pair
(v, e) links item v to entity e. The objective is to predict the likelihood that a user u will interact
with an unseen item v, formalized as ŷuv = F (u, v | θ,G), where F is the model, θ the learnable
parameters, and ŷuv the predicted interaction score.

4 METHODOLOGY

In this paper, we propose GAT++, a graph neural network that integrates a relation-aware atten-
tion mechanism, contrastive denoising regularization, and a personalized denoising encoder to learn
robust and fine-grained user–item representations in multi-relational knowledge graphs (Figure 2).

4.1 ADAPTIVE RELATION-AWARE ATTENTION OF GAN++

The primary source of noise in knowledge graphs (KGs) arises from the complex semantics of rela-
tional spaces. To address this, GAT++ projects head and tail entities into relation-specific subspaces
via a learnable projection matrix during attention computation. Our approach effectively represents
entities’ multi-faceted information and emphasizes distinct semantic dimensions. The influence of
a tail entity et on a head entity eh within the r space is calculated as:

Att(h, r, t) =
[
(ehMr)r

⊤
√
d

]
(etMr). (1)

where Mr is the projection matrix for relation r, and d is the embedding dimension. GAT++ ex-
tracts features from all relation-specific subspaces in parallel and aggregates them via concatenation
followed by a linear transformation:

S = Concat [Att(h, r1, t), . . . ,Att(h, rn, t)]WH . (2)
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where n is the number of relation spaces and WH is a learnable weight matrix. To normalize
contributions and facilitate effective gradient flow, we apply a softmax function over the attention
scores:

S′ =
exp(S)∑n
i=1 exp(S)

. (3)

This formulation enables GAT++ to prioritize semantically informative relations and entities while
suppressing noise. During multi-hop propagation, user preferences are iteratively aggregated from
neighbors across relation spaces:

ern(l)o = S′ern(l−1)
o . (4)

where rn indexes the n relation spaces, o denotes a user or item, and l is the propagation layer. This
adaptive weighting mechanism enables GAT++ to effectively differentiate heterogeneous relational
features, enhancing robustness and expressiveness in user preference modeling.

4.2 RELATION-AWARE DENOSING REGULARIZATION

To mitigate noise introduced during higher-order propagation in KGs, we incorporate a contrastive
learning regularization that employs auxiliary self-supervised signals to denoise KG embeddings.
By maximizing mutual information between augmented views, this mechanism preserves salient
features of user and item representations and alleviates supervision sparsity. Existing approaches
such as SGL Wu et al. (2021) and KGCL Yang et al. (2022) apply data augmentation to user–item
interaction graphs, but they have notable limitations. SGL relies on random dropout, which may dis-
card informative interactions critical for contrastive learning. KGCL, constrained to single-hop sub-
graphs, struggles to capture multi-hop relational semantics, limiting its ability to encode high-order
user preferences and intent. In contrast, GAT++ utilizes subgraph variants across different relational
spaces to construct contrastive views, improving the robustness and precision of graph-based collab-
orative filtering. At each propagation layer, GAT++ samples multiple subgraphs and selects the top
two relation-specific variants to form augmented views of user–item interactions. This approach in-
tegrates external knowledge effectively by constructing two contrastive representations per node and
applying a denoising regularizer that filters out noisy or irrelevant edges, eliminating the need for
additional augmentation modules and reducing computational overhead. These subgraph-derived
representations are concatenated to generate diverse user and item embeddings. Positive pairs are
constructed from different relation views of the same node, while negative pairs are drawn from
other nodes across the graph. Given two augmented representations of a user or item, (eu1, ei1) and
(eu2, ei2), the contrastive loss is defined as:

Lnoize = −
∑
o∈G

log
exp(s(eo1, eo2)/τ)∑

o′∈G,o′ ̸=o exp(s(eo1, eo′2)/τ)
. (5)

where τ is a temperature hyperparameter and s(·) denotes cosine similarity. Minimizing Lnoize en-
courages consistency between positive pairs while discriminating against negative samples, guiding
the model to learn clear, task-relevant user–item representations.

4.3 PERSONALIZED DENOISING ENCODER

To improve the robustness and task alignment of user and item embeddings, GAT++ incorporates
a Transformer-based personalized denoising encoder that adaptively refines interaction sequences
by capturing individualized behavior patterns and suppressing irrelevant signals. Unlike generative
augmentation methods, this encoder functions as an attention-driven generator, selecting informative
interactions while downweighting noisy or spurious inputs. Integrated into the end-to-end training
pipeline, it enables joint optimization of input refinement and model learning, effectively address-
ing sparsity and noise by aligning learned representations with recommendation objectives. The
encoder processes the raw interaction sequence of a user u (or item i) as input tokens. Each token is
constructed by concatenating the corresponding embedding eu (or ei) with a timestamp embedding.

eo = Transformer
(
[eo,1, . . . , eo,T ]

)
. (6)

where T denotes the sequence length and o ∈ {u, i}. The output of the [CLS] token, eo, serves as
the denoised representation and is subsequently used in GAT++ propagation. This module is trained
jointly with the main model in an end-to-end manner. User–item interactions in the sequence are
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Table 2: The Recall@K results in top-K recommendations are presented, with ”RI” representing the
average relative improvements of GAT++. The improvement of GAT++ is statistically significant,
with a p-value < 0.01.

Last.FM Book-Crossing Dianping-Food
Models

Recall@10 Recall@20 Recall@50 RI Recall@10 Recall@20 Recall@50 RI Recall@10 Recall@20 Recall@50 RI

BPRMF Rendle et al. (2012) 0.0723 0.1002 0.1832 195.39% 0.0518 0.0589 0.0809 69.18% 0.1397 0.1746 0.3072 86.26%

CKE Zhang et al. (2016) 0.0721 0.0987 0.1823 197.60% 0.0524 0.0597 0.0812 67.63% 0.1396 0.1742 0.3068 86.53%

KGCN Wang et al. (2019b) 0.1493 0.1988 0.2927 57.13% 0.0519 0.0562 0.1093 55.18% 0.1680 0.2265 0.3218 58.04%

KGNN-LS Wang et al. (2019a) 0.1196 0.1696 0.2799 81.52% 0.0432 0.0547 0.1174 62.05% 0.1712 0.2401 0.3590 48.38%

KGAT Wang et al. (2019c) 0.1647 0.2517 0.3567 32.09% 0.0506 0.0649 0.1191 43.54% 0.1786 0.2721 0.3879 36.87%

JNSKR Chen et al. (2020) 0.1512 0.2311 0.3274 43.89% 0.0472 0.0608 0.1103 53.96% 0.1834 0.2807 0.4003 32.88%

CKAN Wang et al. (2020b) 0.2106 0.2618 0.3699 18.30% 0.0505 0.0688 0.1364 34.81% 0.2080 0.3063 0.4489 19.05%

GAT++ (Ours) 0.2430 0.2930 0.4720 – 0.0650 0.1100 0.1580 – 0.2550 0.3500 0.5400 –

weighted differently according to the objective of the current scenario. To enhance item exposure, a
key objective in industrial applications, we can pass all item embeddings through the personalized
denoising encoder.

4.4 USER-ITEM PREFERENCE HIGH-ORDER MODELING

To enhance semantic representation quality in KGs, GAT++ refines entity and relation embeddings
to better capture their structural dependencies. For each triple (h, r, t), we adopt the scoring function
from TransR Lin et al. (2015):

g(h, r, t) = ∥erhWr + er − ertWr∥22. (7)

where erh and ert denote the head and tail entity embeddings projected into the relation-specific space
via the transformation matrix Wr. The knowledge graph embedding loss is formulated as:

LKG =
∑

(h,r,t,t′)∈T

− lnσ (g(h, r, t′)− g(h, r, t)) . (8)

where T denotes the set of training quadruples and σ(·) is the sigmoid activation.

For recommendation learning, we compute the likelihood of a user interacting with an item via an
inner product:

ŷui = hT (ernu ⊙ erni ) . (9)
where ⊙ denotes element-wise multiplication and h ∈ Rd is a trainable prediction vector. The fi-
nal user embeddings ernu and item embeddings erni are obtained via multi-layer aggregation over
relation-specific spaces, originating from their base embeddings eu and ei. We further define the
training set R = {(u, i, j) | (u, i) ∈ P+, (u, j) ∈ P−}, where P+ and P− represent observed
(positive) and sampled unobserved (negative) user–item interactions, respectively. The recommen-
dation loss is represented as:

LCF = −
∑

(u,i,j)∈R

lnσ (ŷui − ŷuj) . (10)

We jointly optimize the recommendation, KG embedding, and denoising objectives using a unified
multi-task loss:

LRec
GAT++ = LCF + λ1LKG + λ2LNoise + λ3∥Θ∥22. (11)

where λ1, λ2, and λ3 are hyperparameters controlling the contributions of each task and the L2 reg-
ularization term, and Θ represents the model parameters. GAT++ is optimized using Adam Kingma
(2014) due to its efficiency and low memory footprint in large-scale settings.

5 EXPERIMENTS

We perform extensive experiments to evaluate the performance of our GAT++, focusing on the
following research questions:

6
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(a) Last.FM (b) Book-Crossing (c) Dianping-Food

Figure 3: Comparison of NDCG@K performance across three real-world datasets. GAT++ achieves
statistically significant improvements over baselines, with p < 0.01.

Table 3: Performance comparison of GAT++ and leading methods on Last.FM, Book-Crossing, and
Dianping-Food. The improvement of GAT++ is statistically significant where p-value < 0.01 level.

Models
Last.FM Book-Crossing Dianping-Food

AUC F1 AUC F1 AUC F1
BPRMF Rendle et al. (2012) 0.7596 0.6762 0.6591 0.6341 0.8326 0.7644

CKE Zhang et al. (2016) 0.7492 0.6743 0.6873 0.6254 0.8136 0.7416
KGCN Wang et al. (2019b) 0.8036 0.7098 0.6843 0.6321 0.8453 0.7753

KGNN-LS Wang et al. (2019a) 0.8098 0.7241 0.6782 0.6401 0.8521 0.7782
KGAT Wang et al. (2019c) 0.8329 0.7481 0.7352 0.6587 0.8462 0.7854
JNSKR Chen et al. (2020) 0.8014 0.7124 0.7332 0.6521 0.8701 0.7977
CKAN Wang et al. (2020b) 0.8441 0.7711 0.7471 0.6685 0.8778 0.8016

GAT++ (Ours) 0.8823 0.7984 0.8086 0.7240 0.8961 0.8180

• RQ1: How does GAT++ perform relative to other recommendation methods?
• RQ2: How effective is GAT++ in addressing the cold start problem?
• RQ3: What is the contribution of each key module in the GAT++ framework to its overall perfor-

mance?

5.1 EXPERIMENTAL SETUP

5.1.1 DATASETS

Table 4: Statistics of the three datasets.

Last.FM Book-Crossing Dianping-Food

#Users 1,872 17,860 2,298,698
#Items 3,846 14,967 1,362
#Interactions 42,346 139,746 23,416,418
#Entities 9,366 77,903 28,115
#Relations 60 25 7
#KG Triples 15,518 151,500 160,519

GAT++ is evaluated on three widely used
benchmark datasets: Last.FM, Book-Crossing,
and Dianping-Food Wang et al. (2019a). For
Last.FM and Book-Crossing, item-level knowl-
edge is obtained by aligning items with enti-
ties in the Satori knowledge graph, whereas
Dianping-Food leverages structured business
metadata such as ratings, categories, and geo-
graphic locations. These datasets differ in do-
main, scale, and interaction sparsity, with de-
tailed statistics summarized in Table 4. Specifi-
cally, Last.FM comprises music listening records enriched with album and artist information; Book-
Crossing provides explicit user ratings (ranging from 0 to 10) for books; and Dianping-Food contains
over 10 million user—item interactions centered on restaurant reviews and ratings.

5.1.2 BASELINES

To assess the effectiveness of GAT++, we compare it with representative methods across four cat-
egories: collaborative filtering (CF), embedding-based models, non-sampling methods, and GNN-
based frameworks. BPRMF Rendle et al. (2012) is a CF baseline using the Bayesian personal-
ized ranking pairwise loss. CKE Zhang et al. (2016) jointly embeds structured, textual, and visual
knowledge. JNSKR Chen et al. (2020) optimizes a non-sampling loss over all knowledge triples.
GNN-based baselines include KGCN Wang et al. (2019b), which generates semantically enriched
entity representations via high-order neighbor aggregation; KGNN-LS Wang et al. (2019a), which
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Table 6: Performance comparison under cold-start setting.

Models Recall@20 Recall@50 NDCG@20 NDCG@50

KGCN Wang et al. (2019b) 0.0444 0.0996 0.0524 0.0697
KGNN-LS Wang et al. (2019a) 0.0463 0.0998 0.0543 0.0702
KGAT Wang et al. (2019c) 0.0499 0.1021 0.0562 0.0743
JNSKR Chen et al. (2020) 0.0403 0.0802 0.0347 0.0372
CKAN Wang et al. (2020b) 0.0514 0.1032 0.0578 0.0747
GAT++ (Ours) 0.0650 0.1200 0.0710 0.0940

introduces label smoothing regularization to improve robustness and generalization; KGAT Wang
et al. (2019c), which introduces attention over multi-hop neighbors in a collaborative KG; and
CKAN Wang et al. (2020b), which initializes entities with user-interacted items and similar users to
explicitly encode collaborative signals.

5.1.3 IMPLEMENTATION DETAILS

We tune each baseline for optimal performance. The learning rate is searched over {10−3, 2 ×
10−3, 5× 10−3, 10−2, 2× 10−2, 5× 10−2}, embedding dimensions over {16, 32, 64}, and L2 reg-
ularization over {10−5, . . . , 10−1, 1}. Dropout rates are selected from {0.0, 0.1, . . . , 0.9}, and task
weights from {0.01, 0.02, . . . , 0.9}. The number of GCN layers and optimal user/item subset sizes
are dataset-specific: {3, 16, 64} for Last.FM, {2, 32, 64} for Book-Crossing, and {1, 16, 64} for
Dianping-Food. All datasets are split into training, validation, and test sets using a 6:2:2 ratio. We
report AUC and F1 for CTR tasks, and RecallK and NDCGK for top-K recommendation.

5.2 OVERALL PERFORMANCE (RQ1)

Table 5: Ablation study on the contributions of
key components in GAT++ across three datasets.

Last.FM Book-Crossing Dianping-Food
AUC F1 AUC F1 AUC F1

GAT++w/oAtt 0.8360 0.7620 0.7600 0.6880 0.8690 0.7920
GAT++w/oNoise 0.8640 0.7860 0.7830 0.7050 0.8820 0.8070
GAT++w/oData 0.8705 0.7915 0.7720 0.6950 0.8880 0.8120

GAT++ 0.8823 0.7984 0.8086 0.7240 0.8961 0.8180

We compare GAT++ with baseline models us-
ing results from Table 2, Table 3, and Fig-
ure 3, and highlight several key findings. First,
GAT++ achieves a Recall@50 of 0.4720 on
Last.FM, substantially outperforming the best
baseline. On Book-Crossing, it reaches 0.1580,
nearly double that of classical methods like
BPRMF and CKE. On the complex Dianping-
Food dataset, GAT++ attains the highest Re-
call@50 of 0.5400, clearly surpassing other graph-based models. Second, GAT++ consistently out-
performs the strongest baseline in both AUC and F1 across all datasets, with gains exceeding 8% on
Book-Crossing. Third, it achieves the highest NDCG at all evaluated K, with strong improvements at
lower K (e.g., K = 10, 20), where ranking precision is most critical. On Dianping-Food, GAT++ ex-
cels at top-K positions and maintains robust performance as K increases, demonstrating resilience to
long-tail preferences. These consistent gains across metrics and datasets underscore GAT++’s effec-
tiveness in modeling fine-grained user–item interactions over multi-relational, multi-hop knowledge
graphs, resulting in relevant and semantically aligned recommendations.

5.3 ADDRESSING THE COLD START PROBLEM (RQ2)

The cold-start problem challenges recommender systems to make accurate predictions with lim-
ited interaction data. To assess model robustness under sparsity, we evaluate performance using
only 20% of the training data on the Book-Crossing dataset (Table 4). GAT++ outperforms all
baselines across four metrics, demonstrating its ability to learn meaningful representations despite
data scarcity. Notably, it achieves a Recall@20 of 0.0650, 26.46% higher than the best baseline,
and shows even greater gains in ranking metrics, with an NDCG@20 of 0.0710 and a 25.84% im-
provement in NDCG@50. These results highlight GAT++’s effectiveness in capturing fine-grained
semantics and its resilience to the cold-start problem.
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5.4 ABLATION STUDY (RQ3)

Table 7: Comparison between GAT++ and
DR4SR+.

Model Recall@10 Recall@20 Recall@50 RI
DR4SR+ 0.0462 0.0782 0.0906
GAT++ 0.0650 0.1100 0.1580 61.24%

Effect of Key Components To assess the
contribution of each GAT++ component, we
conduct ablation studies using three variants:
GAT++w/oAtt excludes the adaptive relation-
aware attention module, GAT++w/oNoise re-
moves the contrastive learning component, and
GAT++w/oData omits task-specific regener-
ated data from the personalized denoising encoder. As shown in Table 5, removing the attention
module causes substantial performance drops on Last.FM, AUC falls from 0.8823 to 0.8360 and
F1 from 0.7984 to 0.7620. Similar trends appear on Book-Crossing, where GAT++ outperforms
GAT++w/oAtt by 4.9 points in AUC and 3.6 in F1, highlighting the importance of relation-specific
semantic modeling, especially in sparse settings. Eliminating contrastive learning consistently de-
grades performance across datasets, underscoring its role in filtering noisy or irrelevant interactions
during representation learning. Excluding the personalized denoising encoder also leads to notice-
able drops in AUC and F1, demonstrating its effectiveness in filtering noise and generating context-
aware embeddings. Experimental results confirm that all three key modules in GAT++ contribute to
performance gains, enabling robust and semantically enriched user–item representations.

Figure 4: Performance comparison of learning
strategies.

Effect of Dataset Regeneration Table 7
compares GAT++ with the strong data gener-
ator DR4SR+ on the Book-Crossing dataset us-
ing Recall@K metrics. GAT++ consistently
outperforms DR4SR+, with especially strong
gains in short-list recommendations. It achieves
a Recall@10 of 0.0650, surpassing DR4SR+’s
0.0462, a 40.7% improvement. This advan-
tage extends to Recall@20 and Recall@50,
where GAT++ scores 0.1100 and 0.1580 versus
0.0782 and 0.0906, yielding an overall relative
gain of 61.24%. Experimental results demonstrate GAT++’s effectiveness in capturing semanti-
cally relevant item relationships and improving retrieval across ranking depths. Unlike multi-stage
methods like DR4SR+, GAT++ achieves superior performance in a unified, end-to-end framework.

Effect of Learning Strategy Figure 4 compares two multi-task learning strategies within the
GAT++ framework: alternating optimization, which switches between contrastive and recommen-
dation objectives by freezing one while training the other, and joint learning, which integrates both
via a unified loss for simultaneous updates and tighter task coupling. Across all three datasets,
joint learning consistently outperforms alternating optimization. On Last.FM, AUC improves from
0.8665 to 0.8823 and F1 from 0.7873 to 0.7984; on Book-Crossing, AUC rises from 0.7826 to
0.8086 and F1 from 0.7030 to 0.7240. GAT++ also leads on Dianping-Food. These gains show that
joint learning enables more effective knowledge transfer between contrastive regularization and rec-
ommendation, promoting transferable user and item representations while reducing semantic noise
during training.

6 CONCLUSION

This work addresses the challenges of high-order semantic noise due to the oversimplified rela-
tion modeling in heterogeneous graphs. We present GAT++, a unified graph attention network that
captures fine-grained relational semantics by projecting entities into relation-specific subspaces and
adaptively adjusting attention weights across multiple semantic spaces. To improve robustness,
it introduces contrastive learning to enforce embedding consistency across subgraph views, effec-
tively suppressing noise from high-order propagation. The personalized denoising encoder further
refines user–item representations in a task-specific manner without external augmentation. Evalu-
ated on extensive public benchmarks, GAT++ consistently outperforms state-of-the-art baselines in
both sparse and cold-start settings. It offers a scalable and extensible solution for knowledge-aware
recommendation and graph-based representation learning under semantic heterogeneity and sparse
input data.
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