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Abstract

The discovery of new materials is essential for
enabling technological advancements. Computa-
tional approaches for predicting novel materials
must effectively learn the manifold of stable crys-
tal structures within an infinite design space. We
introduce Open Materials Generation (OMatG),
a unifying framework for the generative design
and discovery of inorganic crystalline materials.
OMatG employs stochastic interpolants (SI) to
bridge an arbitrary base distribution to the tar-
get distribution of inorganic crystals via a broad
class of tunable stochastic processes, encompass-
ing both diffusion models and flow matching as
special cases. In this work, we adapt the SI frame-
work by integrating an equivariant graph repre-
sentation of crystal structures and extending it
to account for periodic boundary conditions in
unit cell representations. Additionally, we couple
the SI flow over spatial coordinates and lattice
vectors with discrete flow matching for atomic
species. We benchmark OMatG’s performance on
two tasks: Crystal Structure Prediction (CSP) for
specified compositions, and de novo generation
(DNG) aimed at discovering stable, novel, and
unique structures. In our ground-up implementa-
tion of OMatG, we refine and extend both CSP
and DNG metrics compared to previous works.
OMatG establishes a new state of the art in gen-
erative modeling for materials discovery, outper-
forming purely flow-based and diffusion-based
implementations. These results underscore the
importance of designing flexible deep learning
frameworks to accelerate progress in materials
science. The OMatG code is available at https:
//github.com/FERMat-ML/OMatG.
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1. Introduction

A core objective of materials science is the discovery of
new synthesizable structures and compounds with the po-
tential to meet critical societal demands. The development
of new materials such as room-temperature superconductors
(Boeri et al., 2022), high-performance alloys with excep-
tional mechanical properties (Gludovatz et al., 2014; 2016;
George et al., 2019), advanced catalysts (Strmcnik et al.,
2016; Nakaya & Furukawa, 2023), and materials for energy
storage and generation (Liu et al., 2010; Snyder & Toberer,
2008) holds the potential to drive technological revolutions.

Exploring the vast compositional and structural landscape
of multicomponent materials with novel properties is
essential, yet exhaustive experimental screening is infea-
sible (Cantor, 2021). Quantum and classical molecular
simulation offer a powerful alternative, enabling a more
targeted and efficient exploration. In recent decades, both
experimental (Potyrailo et al., 2011; Maier, 2019) and
computational (Jain et al., 2011; Curtarolo et al., 2013)
high-throughput pipelines have led to a proliferation of
materials databases for crystal structures (Bergerhoff et al.,
1983; Mehl et al., 2017) and simulations (Blaiszik et al.,
2016; Vita et al., 2023; Fuemmeler et al., 2024). These
advances have already facilitated the development of more
accurate machine-learned interatomic potentials (Batzner
et al., 2022; Batatia et al., 2022; Chen & Ong, 2022).

Still, efficiently sampling the manifold of stable materi-
als structures under diverse constraints—such as compo-
sition and target properties—remains a major challenge.
Traditional approaches to materials discovery have relied on
first-principles electronic structure methods such as density
functional theory (DFT)'—or more sophisticated theory,
depending on the property (Booth et al., 2013; Zaki et al.,
2014; Isaacs & Marianetti, 2020)—which, while power-
ful and fairly accurate, are very computationally expensive.
These methods include ab initio random structure searching
(AIRSS) (Pickard & Needs, 2011) or genetic algorithms
for structure and phase prediction (Tipton & Hennig, 2013),
both of which have successfully predicted new crystal struc-

'See Appendix A for a list of acronyms used throughout this
paper.
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tures and some of which have even been experimentally
realized (Oganov et al., 2019). However, the high com-
putational cost of these approaches has limited the scope
and speed of material exploration, highlighting the need for
cutting-edge ML techniques to significantly accelerate the
discovery of stable inorganic crystalline materials.

1.1. Related Works

Recent advances in machine learning techniques have gener-
ated significant interest in applying data-driven approaches
for inorganic materials discovery. Among these, Graph
Networks for Materials Exploration (GNoME) has demon-
strated remarkable success by coupling coarse sampling
strategies for structure and composition with AIRSS that
leverages a highly accurate machine-learned interatomic
potential (MLIP) to predict material stability, leading to
the identification of millions of new candidate crystal struc-
tures (Merchant et al., 2023). Other frameworks have ap-
proached the generation of composition and structure jointly
through fully ML-based methods. Crystal Diffusion Varia-
tional Autoencoder (CDVAE) leverages variational autoen-
coders and a graph neural network representation to sample
new crystal structures from a learned latent space (Xie et al.,
2022). To date, state-of-the-art performance in both crystal
structure prediction for given compositions and de novo
generation of novel stable materials has been achieved by
diffusion models such as DiffCSP (Jiao et al., 2023) and
MatterGen (Zeni et al., 2025), as well as conditional flow-
matching frameworks such as FlowMM (Miller et al., 2024).

While these approaches have demonstrated that ML can
push the boundaries of computational materials discovery,
it remains uncertain whether score-based diffusion or flow-
matching represents the definitive methodological frame-
works for this problem. Furthermore, the extent to which
the optimal approach depends on the training data remains
an open question. Thus far, each new method has typically
outperformed its predecessors across datasets.

1.2. Our Contribution

The work we present in this paper is the first implementation
and extension of the stochastic interpolants (SIs) framework
(Albergo et al., 2023) for the modeling and generation of in-
organic crystalline materials. SIs are a unifying framework
that encompasses both flow-matching and diffusion-based
methods as specific instances, while offering a more gen-
eral and flexible framework for generative modeling. In
this context, SIs define a stochastic process that interpolates
between pairs of samples from a known base distribution
and a target distribution of inorganic crystals. By learning
the velocity term of an ordinary differential equation (ODE)
or the drift term of a stochastic differential equations (SDE),
new samples can be generated by numerically integrating

these equations. The flexibility of the SI framework stems
from the ability to tailor the choice of interpolants, and
the incorporation of an additional random latent variable,
further enhancing its expressivity. With their rich parameter-
ization, SIs thus provide an ideal framework for optimizing
generative models for materials design.

We implement the SI framework in the open-source Open
Materials Generation (OMatG) package, released alongside
this paper. OMatG allows to train and benchmark models
for two materials generation tasks: Crystal structure predic-
tion (CSP) which only learns to generate atomic positions
and lattice vectors for a given composition, and de novo
generation (DNG) which learns to generate both crystal
structure and composition to predict novel materials. We
discover that optimizing interpolation schemes for different
degrees of freedom of the crystal unit cell substantially im-
proves performance across diverse datasets. As a result, our
approach achieves a new state of the art—outperforming
both DiffCSP (Jiao et al., 2023) and FlowMM (Miller et al.,
2024) in CSP and DNG, as well as MatterGen (Zeni et al.,
2025) in DNG—across all evaluated datasets under existing,
revised, and new performance measures.

2. Background
2.1. Diffusion Models

A widely used approach in generative modeling uses diffu-
sion models (Sohl-Dickstein et al., 2015), which define a
stochastic process that progressively transforms structured
data into noise via a predefined diffusion dynamic. A model
is then trained to approximate the reverse process, enabling
the generation of new samples, typically by integrating a
corresponding SDE.

Score-based diffusion models (SBDMs) are an instantiation
of diffusion models that learn a score function—the gradi-
ent of the log probability density—to guide the reversal of
the diffusion process via numerical integration (Song et al.,
2021). SBDMs have demonstrated remarkable success in
generating high-quality and novel samples across a wide
range of applications where the target distribution is com-
plex and intractable, such as photorealistic image generation
(Saharia et al., 2022) and molecular conformation prediction
(Corso et al., 2023).

2.2. Conditional Flow Matching

Conditional flow matching (CFM) (Liu, 2022; Lipman et al.,
2023; Albergo & Vanden-Eijnden, 2023) is a generative
modeling technique that learns a flow which transports sam-
ples from a base distribution at time ¢ = 0 to a target dis-
tribution at time ¢ = 1. This process defines a probability
path that describes how samples are distributed at any inter-
mediate time ¢ € [0, 1]. The velocity field associated with
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this flow governs how individual samples evolve over time.
CFM learns the velocity indirectly by constructing condi-
tional vector fields that are known a priori. Once trained,
samples drawn from the base distribution can be evolved
numerically to generate new samples from the target dis-
tribution. Originally, CFM was formulated using Gaussian
conditional probability paths, but Tong et al. (2024) later
extended this framework to allow for arbitrary probability
paths and couplings between base and target distributions.
A further extension, particularly relevant to physics and
chemistry, is Riemannian flow matching (RFM), which gen-
eralizes CFM to Riemannian manifolds (Chen & Lipman,
2024). This allows in particular to use the flow-matching
framework for systems with periodic boundary conditions as
they appear in unit cell representations of inorganic crystals
(Miller et al., 2024).

3. Open Materials Generation
3.1. Stochastic Interpolants

SIs provide a unifying mathematical framework for gener-
ative modeling, generalizing both SBDMs and CFM (Al-
bergo et al., 2023). The SI z(t, z¢, 21, z) bridges the base
distribution py with a target distribution p; by learning a
time-dependent map. In this work, we focus on stochastic
interpolants of the form:

xy = x(t, ko, 21, 2) = a(t)zo + Bt)x1 +y(t)z. (1)

Here, t € [0,1] represents time and (xo, 1) are paired
samples drawn from pg and p;, respectively. The random
variable z is drawn from a standard Gaussian A/ (0, I) in-
dependently of zy and z;. The functional forms of «,
0, and ~y are flexible, subject to few constraints (see Ap-
pendix B.2). The inclusion of the latent variable ~(t)z
allows sampling of an ensemble of paths around the mean
interpolant I(t,x) = a(t)zo + 5(t)x1, and is theorized to
improve generative modeling by promoting smoother and
more regular learned flows (Albergo et al., 2023).

The time-dependent density p; of the stochastic process
z; in Eq. (1) can be realized either via deterministic sam-
pling through an ODE (derived from a transport equation)
or stochastic sampling through an SDE (derived from a
Fokker—Planck equation) only requiring zg ~ pg (see Ap-
pendix B.1). This enables generative modeling by evolving
samples from a known base distribution pg to the target
distribution p;. For both ODE- and SDE-based sampling,
the required velocity term b% (¢, x) is learned by minimizing

the loss function
‘Cb(o) = Et,Z,?EUKEl [|b0(tv‘rt)|2 )
—20wx(t, o, 21, 2) - be(t,xt)],

where the expectation is taken independently over ¢ ~
U(0,1), the uniform distribution between 0 and 1, z ~

N(0,I), xg ~ pg, and 1 ~ p;. For SDE-based sam-
pling, an additional denoiser 2?(¢, z) must be learned by
minimizing an additional loss

LY0) =tz g [|ze(t,zt)|2 —229(t,zy) zl. ()

The velocity term, along with the denoiser in the case of
SDE-based sampling, enables the generation of samples
from the target distribution (Albergo et al., 2023). Note that
minimizing with respect to these loss functions amounts
to minimizing with respect to a mean-squared error loss
function (see Appendix C.2). For ODE-based sampling,
~(t) = 0 in the interpolant z(¢,x, 1, ) is a possible
choice. However, for SDE-based sampling, v(t) > 0 is
required for all ¢ € (0, 1) (see Appendix B.1).

By appropriately selecting interpolation functions «, 3, 7y
and choosing between deterministic (ODE) and stochastic
(SDE) sampling schemes (see Appendix B.2), the SI frame-
work not only recovers CFM and SBDM as special cases
(see Appendix B.9) but also enables the design of a broad
class of novel generative models. The strength of OMatG’s
SI implementation for materials discovery lies in its ability
to tune both the interpolation and sampling schemes, as
illustrated in Fig. 1 for a pair of structures sampled from pg
and p;. By systematically optimizing over this large design
space, we achieve superior performance for CSP and DNG
tasks across datasets, as discussed in Section 5.

3.2. Crystal Representation and Generation

A crystalline material is defined by its idealized repeat unit,
or unit cell, which encodes its periodicity. In the OMatG
representation, a unit cell is described by separating the
material’s chemical composition—given by its atomic
species A € Zgo, where NV is the number of atoms in the
unit cell—from its structural representation—its fractional
coordinates X € [0,1)3*" with periodic boundaries
and lattice vectors L € R3*3. During training, all three
components { A, X, L} are considered simultaneously. We
apply the SI framework only to the continuous structural
representations {X, L} with loss functions defined in
Egs (2) and (3), and use discrete flow matching (DFM)
on the chemical species A (see Section 3.2.3) (Gat et al.,
2024). The number of atoms [V in the structure xo sampled
from the base distribution p is determined by the number
of atoms in the corresponding structure 1 sampled from
the target distribution p; .

3.2.1. AtoMIC COORDINATES

For treating fractional coordinates, we implement a variety
of periodic interpolants that connect the base and target data
distributions (see Section 4.1). We specify the base distribu-
tion for the fractional coordinates € [0,1) forall x € X
via a uniform distribution (except for the score-based dif-
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Figure 1. Visualization of the tunable components of the SI frame-
work for bridging samples xo (gray particles) and x1 (purple parti-
cles). Interpolation paths are shown only for one pair of highlighted
particles. (a) The choice of the interpolant changes the path of the
time-dependent interpolation trajectory. (b) During inference, the
learned velocity term b (¢, z) and denoiser 2 (¢, =) generate new
samples via ODE or SDE integration, here for a linear interpolant

with v = 4/0.07¢(1 — t). (¢) The inclusion of a latent variable
~(t)z changes the interpolation path. For SDE-based sampling,

~(t) > 0 is required. (d) The function v(¢,a) = \/at(1 —t)
depends on a that also influences the interpolation path.

fusion interpolant that, following the approach of Jiao et al.
(2023), uses a wrapped normal distribution po () which be-
comes a uniform distribution in the limit of large variance).
To satisfy periodic boundary conditions on the paths defined
by the interpolants, we extend the SI framework to the sur-
face of a four-dimensional torus in this paper. Reminiscent
of RFM (Chen & Lipman, 2024), the linear interpolant on
the torus traverses a path equivalent to the shortest-path
geodesic which is always well-defined.” Other interpolants,
however, are more complex. In order to uniquely define
them, we always define the interpolation with respect to the
shortest-path geodesic. That is, for interpolation between x(
and x; with a periodic boundary at 0 and 1, we first unwrap
@1 to the periodic image @) which has the shortest possible
distance from x(. Following this, the interpolation between
x( and @} is computed given a choice of interpolant, and
the traversed path is wrapped back into the boundary from
0 to 1. This approach is illustrated in Appendix B.5.

The only exception being when two points are precisely half
the box length apart. However, this case is not relevant for the
given base distribution.

3.2.2. LATTICE VECTORS

Lattice vectors L are treated with a wide range of (non-
periodic) stochastic interpolants (see Section 4.1 again).
To construct the base distribution, we follow Miller et al.
(2024) and construct an informative base distribution
po(L) by combining a uniform distribution over the lattice
angles with a log-normal distribution fitted to the empirical
distribution of the lattice lengths in each target dataset.
This choice brings the base distribution closer to the target
distribution. Unlike SBDM, which requires a Gaussian
base distribution, the SI framework allows such flexibility.
Importantly, the model still has to learn to generate a
joint, correlated distribution of lattice vectors, fractional
coordinates, and atomic species.

3.2.3. ATOMIC SPECIES

The discrete nature of chemical compositions A in atomic
crystals requires a specialized approach for generative mod-
eling. To address this, we implement discrete flow matching
(DFM) (Campbell et al., 2024). In our implementation
of the DFM framework, each atomic species a € A can
take values in {1,2,...,100} U {M}; where {1 — 100}
are atomic element numbers and M is a masking token
used during training. The base distribution is defined as
po(a) = [M]", meaning that initially all N atoms are
masked. As sampling progresses, the identities of the atoms
evolve via a continuous-time Markov Chain (CTMC), and
are progressively unmasked to reveal valid atomic species.
At t = 1, all masked tokens are replaced. To learn this
process, we define a conditional flow py|; (a¢|a,) that lin-
early interpolates in time from the fully masked state ag
toward a; and thus yields the composition a; of the inter-
polated structure ;. Based on these conditional flows, a
neural network is trained to approximate the denoising dis-
tribution pflt(al |¢+), which yields the probability for the
composition @ given the entire structure z;, by minimizing
a cross-entropy loss

Lorm(0) = Et 2y 2, [logp(f‘t(aﬂxt) ~ “

In doing this, we are able to directly construct the marginal
rate matrix RY(a;, 1) for the CTMC that dictates the rate of
a; at time ¢ jumping to a different state ¢ during generation
(see Appendix B.6). It is important to note that the learned
probability path is a function of the entire atomic configu-
ration { A, X, L} which is necessary for the prediction of
chemical composition from structure.

3.3. Joint Generation with Stochastic Interpolants

For both CSP and DNG tasks, we seek to generate samples
from a joint distribution over multiple coordinates. For
DNG, this joint distribution p; encompasses all elements
of a crystal unit cell. For CSP we similarly model the joint
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distribution, p;, but with atom types fixed to compositions
sampled from the target dataset. For both tasks, the total loss
function is formulated as a weighted sum of the individual
loss functions for each variable (see Appendix C.2), and
their relative weights are optimized (see Appendix C.3). We
illustrate both types of models and their structure generation
process in Fig. 2a.

Additionally, for DNG, we consider a two-step process in
which composition is learned separately from structure, as
seen in Fig. 2b. In this approach, we first train a chem-
ical formula prediction (CFP) model (see Appendix C.1)
to generate compositions optimized for SMACT stability
(Davies et al., 2019), similarity in the distribution of N-
arity of known structures, as well as uniqueness and novelty.
The predicted compositions are then used as input for a
pretrained CSP model, which generates the corresponding
atomic configurations.

4. Methodology

4.1. Choice of Interpolant

In training OMatG, we optimize the choice of the interpo-
lating function that is used during training for the lattice
vectors (without periodic boundary conditions) and the frac-
tional coordinates (with periodic boundary conditions). We
consider four interpolants of the form defined in Eq. (1),
each shaping the interpolation trajectory differently (see
also Appendices B.2 and B.9 for further details).

The linear interpolant defines a constant velocity trajectory
from zy to ;. When combined with an ODE sampling
scheme and v = 0, this reproduces the specific instantia-
tion of CFM implemented in FlowMM (see Appendix B.9).
However, combining the linear interpolant with an SDE
sampling scheme or nonzero ~y already introduces key dif-
ferences. The inclusion of the latent variable can promote
smoother learned flows (Albergo et al., 2023), while stochas-
tic sampling alters the generative dynamics compared to the
deterministic formulation in FlowMM. The trigonometric
interpolant prescribes trajectories with more curvature than
the linear interpolant. The encoder-decoder interpolant
first evolves samples from pg at ¢ = 0 to follow an interme-
diate Gaussian distribution at a switch time Tiyich, before
mapping them to samples from the target distribution p;
at t = 1. This approach has been found to interpolate
more smoothly between distributions, potentially mitigating
the formation of spurious features in the probability path
at intermediate times (Albergo et al., 2023). Lastly, we
consider variance-preserving score-based diffusion (VP
SBD) and variance-exploding score-based diffusion (VE
SBD) interpolants. When paired with an SDE sampling
scheme, these interpolants are mathematically equivalent
to the corresponding SBDM, but on the continuous time

interval [0, 1]. Different noise schedules of the variance-
preserving and variance-exploding SBDMs can likewise be
encoded in different variants of the VP and VE SBD inter-
polants (see Appendix B.9). For the results presented in
this paper, we only consider a constant noise schedule for
the VP SBD interpolant, and a geometric noise schedule
for the VE SBD interpolant. The SBD interpolants assume
that pg is a Gaussian distribution, and unlike the previous
interpolants it involves no explicit latent variable; instead
the a(t)xz( term takes on this role. The incorporation of
VP and VE SBD interpolants enables OMatG to reproduce
similar conditions to those in Diff CSP and MatterGen.

The trajectory of the encoder-decoder interpolant between
times t = Tywiteh and ¢ = 1 resembles that of the SBD
interpolants between times ¢t = 0 and ¢t = 1. For the ex-
ample of using the encoder-decoder interpolant only for
the coordinates, however, we emphasize that the Gaussian-
distributed coordinates at ¢ = Tiyiwch are conditioned on
other coordinates that are partially interpolated at this point.
Conversely, for SBD interpolation, the Gaussian distributed
coordinates at t = 0 are only conditioned on other random
variables since, at this point, all elements of x( are randomly
distributed.

To investigate how different interpolants affect generative
performance, we consider all interpolants outlined above
for both the atomic positions X and the lattice vectors L.
We noted that learning accurate velocities and denoisers
for the atomic positions, X is more challenging than for
the other degrees of freedom. Accordingly, we optimize
all hyperparameters—including the choice of interpolant
for L—separately for each interpolant applied to X. This
results in a set of experiments specific to the positional
interpolants, where the best performing lattice interpolant
may vary.

4.2. Equivariant Representation of Crystal Structures

Imposing inductive biases on the latent representation of the
crystal structure can promote data efficiency and improve
learning. The CSPNet architecture (Jiao et al., 2023), orig-
inally adopted in DiffCSP, is an equivariant graph neural
network (EGNN) (Satorras et al., 2021) that produces a
permutation- and rotation-equivariant, as well as translation-
invariant representation of the crystal structures.

In the current OMatG implementation, we employ CSPNet
as an encoder that is trained from scratch. The CSPNet ar-
chitecture encodes atomic types using learnable atomic em-
beddings and represents fractional coordinates through sinu-
soidal positional encodings (see Appendix C.1). These fea-
tures are processed through six layers of message-passing,
after which the encoder produces the velocity b (¢, z) of
both the lattice and the fractional coordinates, as well as
potentially predicting the denoiser 2% (¢, ). For DNG, the
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Figure 2. lustration of crystal structure prediction (CSP) and de novo generation (DNG) tasks. (a) For CSP, the species A are fixed with
known compositions from ¢t = 0. From this, we predict X and L from randomly sampled initial values. For DNG, we predict (A, X, L)
jointly. Our implementation of discrete flow matching (DFM) initializes A as a sequence of masked particles that are unmasked through a
series of discrete jumps to reveal a physically reasonable composition. (b) Two avenues for performing DNG of materials. The first uses
two steps: a chemical formula prediction (CFP) model predicts compositions and then uses a CSP model to find accompanying stable
structures. The second trains a DNG model over cell, species, and fractional coordinates jointly as shown in (a).

network must also predict log pf‘ (ai|zy). The resulting
outputs inherently preserve the permutation, rotational, and
translational symmetries embedded in CSPNet.

The output of CSPNet is invariant with respect to transla-
tions of the fractional coordinates in the input. Thus, one
should, in principle, use a representation of the fractional
coordinates that does not contain any information about
translations. While this is straightforward in Euclidean
space by removing the mean of the coordinates of the given
structure, this cannot be done with periodic boundary con-
ditions where the mean is not uniquely defined. We follow
Miller et al. (2024) and instead remove the well-defined
center-of-mass motion when computing the ground-truth
velocity 0:x(t, zg, x1, 2) in Eq. (2).

Alternative EGNNs such as NequlP (Batzner et al., 2022),
M3GNet (Chen & Ong, 2022), or MACE (Batatia et al.,
2022) which have been widely used for the development
of MLIPs can also serve as plug-and-play encoders within
OMatG’s SI framework. Integrating different architectures
is a direction that we plan to explore in future iterations of
the framework.

4.3. Comparison to other Frameworks

We compare our results to DiffCSP and FlowMM models
for both CSP and DNG. For DNG, we additionally consider
the MatterGen-MP model that was trained on the same MP-
20 dataset as OMatG’s DNG models. We detail in Section 5
how we improve the extant benchmarks used in the field
and therefore recompute all CSP and DNG benchmarks for

these models. In nearly all cases, we were able to gener-
ate structures using the DiffCSP, FlowMM, and MatterGen
source codes whose metrics closely matched the previously
reported metrics in their respective manuscripts. For Diff-
CSP and MatterGen, we relied on published checkpoints
while we retrained FlowMM from scratch. The observed
differences can be attributed to the use of a newer version
of SMACT composition rules® (Davies et al., 2019) and to
natural fluctuations during generation and model retraining.

Since the focus of this work is to assess our model’s ability
to learn unconstrained and unconditioned flows, we do not
compare against symmetry-constrained generation meth-
ods (Al4Science et al., 2023; Cao et al., 2024; Zhu et al.,
2024; Kazeev et al., 2024; Jiao et al., 2024). Symmetry
constraints can be incorporated in future extensions of the
flexible OMatG framework.

5. Experiments
5.1. Performance Metrics

Crystal structure prediction. We assess the performance
of OMatG’s and competing models using a variety of stan-
dard (introduced in (Xie et al., 2022; Zeni et al., 2025)),
refined, and contributed benchmarks. For the CSP task,
we generate a structure for every composition in the test
dataset. We then attempt to match every generated struc-
ture with the corresponding test structure using Pymatgen’s

3The SMACT Python library updated its default oxidation
states with the release of version 3.0.
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Table 1. Results from crystal structure prediction. Match rate and RMSE of matched structures without (left) and with (right) filtering for
structural and compositional validity are reported for all models. For OMatG’s models, the choice of positional interpolant, latent variable
component v, and sampling scheme are noted. For all SDE sampling schemes the inclusion of v is assumed and not noted; for SBD
interpolants + is not relevant. Further details and complete results for perov-5 and MP-20 can be found in Appendix C.3.

perov-5 MP-20 MPTS-52 Alex-MP-20
Method
Match (%) 1 RMSE | Match (%) 1 RMSE | Match (%) 1 RMSE | Match (%) 1 RMSE |

DiffCSP 53.08/51.94 0.0774/0.0775 57.82/52.51 0.0627/0.0600 15.79/14.29 0.1533/0.1489 -

FlowMM 53.63/51.86 0.1025/0.0994 66.22/59.98 0.0661/0.0629 22.29/20.28  0.1541/0.1486 -

OMatG

Linear (ODE) w/oy  51.86/50.62 0.0757/0.0760 69.83/63.75 0.0741/0.0720 27.38/25.15 0.1970/0.1931 72.02/64.23 0.0683/0.0671
Linear (SDE) w/ 74.16/72.87 0.3307/0.3315 68.20/61.88 0.1632/0.1611 23.95/21.70 0.2402/0.2353  61.07/54.45 0.1870/0.1860
Trig (SDE) w/ v 73.37/71.60 0.3610/0.3614 68.90/62.65 0.1249/0.1235 24.51/22.26 0.1867/0.1804 72.50/64.71 0.1261/0.1251
Enc-Dec (ODE) w/y  68.08/64.60 0.4005/0.4003 55.15/49.45 0.1306/0.1260 14.65/13.53  0.2543/0.2500 68.11/60.58 0.0957 /0.0938
VP SBD (ODE) 83.06/81.27 0.3753/0.3755 45.57/39.48 0.1880/0.1775  9.66/8.36 0.3088/0.3041  46.23/39.96 0.1718/0.1618
VE SBD (ODE) 60.18/52.97 0.2510/0.2337 63.79/57.82 0.0809/0.0780 21.42/19.57 0.1740/0.1702 67.79/60.25 0.0674 / 0.0649

Table 2. Results from de novo generation of 10 000 structures with models trained on the MP-20 dataset. The integration steps for OMatG
is chosen based on best overall performance. For OMatG’s model, the choice of positional interpolant, latent variable component ~y, and

sampling scheme are noted. Best scores in each category are bolded.*

Method Integration steps Validity (% 1) Coverage (% 1) Property ()
Structural Composition Combined Recall Precision wdist (p) wdist (Nary) wdist ((CN))

DiffCSP 1000 99.91 82.68 82.65 99.67 99.63 0.3133 0.3193 0.3053
FlowMM 1000 92.26 83.11 76.94 99.34 99.02 1.0712 0.1130 0.4405
MatterGen-MP 1000 99.93 83.89 83.89 96.62 99.90 0.2741 0.1632 0.4155
OMatG

Linear (SDE) w/ 710 99.04 83.40 83.40 99.47 98.81 0.2583 0.0418 0.4066
Trig (ODE) w/ ~y 630 95.05 82.84 82.84 99.33 94.75 0.0607 0.0172 0.1650
Enc-Dec (ODE) w/ ~y 840 97.25 86.35 84.19 99.62 99.61 0.1155 0.0553 0.0465
VP SBD (SDE) 870 93.38 80.66 80.66 98.95 92.76 0.1865 0.0768 0.1637
CFP + CSP [Linear (ODE) w/o 7] 130+210 97.95 79.68 78.21 99.67 99.50 0.5614 0.2008 0.6256

*We do not bold any values in the structural validity category as the CDVAE model reports the state of the art with 100% structural
validity. For the Wasserstein distances of the density and Nary distributions, we only bold values lower than 0.075 and 0.079 respectively,
as these were the values reported by FlowMM for their model with 500 integration steps (not included in this table).

StructureMatcher module (Ong et al., 2013) with tol-
erances (stol = 0.5, 1tol = 0.3, angletol = 10).
We finally report the match rate and the average root-mean
square displacement (RMSE) between the test structures
and matched generated structures. Here, the RMSEs com-
puted by Pymatgen are normalized by (V/N)'/3, where
V' is the (matched) volume and N is the number of atoms.
During hyperparameter optimization, we only attempt to
maximize the match rate (see Appendix C.3).

Previously reported match rates filtered the matched gener-
ated structures by their structural and compositional validity
(see Appendix D.2). We note, however, that the datasets
themselves contain invalid structures—for example, the MP-
20 test dataset has ~ 10% compositionally invalid structures.
Thus, we argue that the removal of these invalid structures
for computation of match rate and RMSE is not reasonable
for assessing learning performance; we do, however, pro-
vide both match rates (with and without validation filtering).

De novo generation. For the DNG task, metrics include
validity (structural and compositional), coverage (recall and
precision), and Wasserstein distances between distributions
of properties including density p, number of unique ele-
ments N (i.e., an Nary material), and average coordination
number by structure (C'N'). We newly introduce the average
coordination number benchmark due to the difficulty of gen-
erating symmetric structures; a structure’s average coordina-
tion number is a useful fingerprint, and higher-coordinated
structures tend to be more symmetric.

The previous DNG metrics are used in conjunction dur-
ing optimization of hyperparameters (see Appendix C.3).
For the best models, we then structurally relax the gener-
ated structures in order to calculate the stability and the
S.U.N. (stable, unique, and novel) rates using MatterGen’s
code base (MatterGen, 2025). The S.U.N. rate is defined as
the percentage of generated structures that are stable with
respect to a reference convex hull (within 0.1 eV/atom), are
not found within the reference set (novel), and are not dupli-
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cated within the generated set itself (unique). The machine-
learned interatomic potential MatterSim (Yang et al., 2024)
is utilized for initial structural relaxation, which is subse-
quently followed by a more computationally expensive DFT
relaxation. Full workflow details are given in Appendix D.4.
In addition to the stability-based metrics, we also report the
root mean squared displacement (RMSD) between the gen-
erated and relaxed structures (unnormalized, in units of A).

5.2. Benchmarks and Datasets

We use the following datasets to benchmark the models:
perov-5 (Castelli et al., 2012), a dataset of perovskites with
18 928 samples with five atoms per unit cell in which only
lattice lengths and atomic types change; MP-20 (Jain et al.,
2013; Xie et al., 2022) from the Materials Project that con-
tains 45 231 structures with a maximum of N = 20 atoms
per unit cell, and MPTS-52 (Baird et al., 2024) which is a
chronological data split of the Materials Project with 40 476
structures with up to N = 52 atoms per unit cell and is
typically the most difficult to learn. We use the same 60-
20-20 splits as Xie et al. (2022); Jiao et al. (2023); Miller
et al. (2024). Additionally, we consider the Alex-MP-20
dataset (Zeni et al., 2025), where we used an 80-10-10 split
constructed from MatterGen’s 90-10 split, in which we re-
moved 10% of the training data to create a test dataset. This
dataset contains 675 204 structures with 20 or fewer atoms
per unit cell from the Alexandria (Schmidt et al., 2022a;b)
and MP-20 datasets. We do not include the carbon-24
dataset (Pickard, 2020) in our results, as the current match
rate metric is ill-defined for this dataset; because all ele-
ments are carbon, it is not clear how many generated struc-
tures are unique and producing a structure that matches one
in the reference dataset is trivial.*

5.3. Results

Crystal structure prediction. We report the CSP perfor-
mance of DiffCSP, FlowMM, and six OMatG models on
the four benchmark datasets in Tab. 1. Further ablation re-
sults across OMatG variants can be found in Tables 6 and 8
in the Appendix. OMatG significantly outperforms previ-
ous approaches with respect to match rate on all datasets.
We highlight the strong match rates on the perov-5 dataset
achieved using the VP SBD and trigonometric positional
interpolants with ODE sampling schemes, as shown in Ta-
ble 1 and Table 6, that greatly surpass (by a factor of 1.6)
the match rates of previous models. We note that the relative
performance for ODE vs. SDE sampling schemes depends
on the positional interpolant. OMatG also outperforms pre-

*Previous papers (Xie et al., 2022; Jiao et al., 2023; Miller
et al., 2024) report match rate for carbon-24, but they do not
compare each generated structure to the entirety of the reference
dataset; their results suggest the match tolerance is larger than the
differences between the carbon-24 structures themselves.

Table 3. Stability (defined as < 0.1 eV/atom above hull), unique-
ness, and novelty results from de novo generation on the MP-20
dataset computed for the same models as in Tab. 2. All evalua-
tions are calculated with respect to 1000 relaxed structures (see
Appendix D.4), utilizing the MatterGen code base (MatterGen,
2025) and the included reference Alex-MP-20 dataset. The average
RMSD is between the generated and the relaxed structures, and
the average energy above hull is reported in units of eV/atom.

Method (E)/N (1) RMSD Novelty Stability S.UN.
abovehull (A, ]) Rate(%,7) Rate(%,?1) Rate(%,7)

DiffCSP 0.1751 0.3861 70.04 43.43 15.95
FlowMM 0.1917 0.6316 69.13 41.20 11.73
MatterGen-MP 0.1772 0.1038 72.40 44.79 20.30
OMatG

Linear (SDE) w/ y 0.1808 0.6357 73.31 46.18 2248
Trig (ODE) w/ 0.1670 0.6877 66.45 52.81 21.10
Enc-Dec (ODE) w/ y 0.1482 0.4187 55.21 60.04 18.77
VP SBD (SDE) 0.2120 0.7851 76.25 40.83 20.73
CFP + CSP 0.2302 0.5375 79.08 39.38 20.17

vious models’ match rate for CSP on the MP-20 and MPTS-
52 datasets with the linear (both ODE and SDE sampling
scheme) and the trigonometric positional interpolants. Fi-
nally, OMatG establishes the first performance baseline for
the CSP task on the Alex-MP-20 dataset.

De novo generation. For DNG models, we show the va-
lidity, coverage, and property metrics of the models in
Tab. 2 and the stability, uniqueness, and novelty results
in Tab. 3. Further ablation results across OMatG variants
can be found in Tab. 10 in the Appendix, and qualitative
plots of various distributions are compared in Appendix D.5.
OMatG achieves state-of-the-art performance over DiffCSP,
FlowMM, and MatterGen-MP for multiple positional in-
terpolants thanks to the broader design space brought by
the SIs. Figure 3 compares the distributions of the average
energies above the hull for generated structures, exhibit-
ing OMatG’s superior performance for the generation of
stable structures. OMatG consistently produces lower en-
ergy structures compared to previous models, and they are
also generated close to their relaxed configuration. This,
together with high novelty rates, begets improved S.U.N.
rates. OMatG also outperforms FlowMM in settings where
large language models are used as base distributions (Sriram
et al., 2024), with results shown in Appendix E.

5.4. Discussion

Crystal structure prediction. We generally observe during
hyperparameter optimization that the main learning chal-
lenge lies in the accurate prediction of the atomic coordi-
nates, which tended to have a higher relative weight in cal-
culating the full loss function in Eq. (32) (see Tabs 7 and 9
in the Appendix). However, the two best-performing mod-
els for the perov-5 dataset instead exhibited the opposite—
lending the most weight to learning of the cell vectors.



Open Materials Generation with Stochastic Interpolants

DiffCSP
101 FlowMM
MatterGen-MP
84 OMatG (Enc-Dec)
>
=
0 6
c l
3 |
[a)] I
4 | |
!
21 q
0 , ek . . H . "I Mk Ly
-0.2 0.0 0.2 0.4 0.6 0.8

Energy Above Hull (eV/Atom)

Figure 3. Histogram of the computed energies above the convex
hull for structures generated by FlowMM, DiffCSP, MatterGen-MP,
and OMatG (Enc-Dec interpolant). The OMatG model consistently
produces lower energy structures compared to competing models.
See Appendix D.4 for calculation details.

Our CSP results indicate a tradeoff between match rate and
RMSE—which is only computed if matched. We find that
as the number of generated structures matching known com-
positions in the test dataset increases, the structural fidelity—
quantified by the accompanying RMSE—also tends to in-
crease. This tradeoff most strongly influences our results
on the perov-5 dataset where all positional interpolants but
the linear one can beat the previous state-of-the-art match
rate. Here, particles generally find the correct local chem-
ical configurations to flow towards during generation, but
are not able to end up in the precise symmetric sites. The
ODE-based linear interpolant without a latent variable, in
contrast, has the lowest RMSE because the particles flow to
more symmetric positions, but the local environments are
not correct due to species mismatch. We quantify this effect
in Fig. 7 in the Appendix.

For the CSP task on the perov-5 dataset, we highlighted
the particularly strong performance of the VP SBD and
trigonometric interpolants in achieving a high match rate.
Unlike other datasets, perov-5 has a fixed number of N =5
atoms per unit cell and a fixed (cubic) cell with varying
side lengths and similar fractional positions—a combination
which should not expose the model to a large variety of unit
cell choices during interpolation or generation. By contrast,
in other datasets, no singular representation of the periodic
repeat unit is imposed on flows, meaning the model cannot
learn the invariance (or even equivariance) to the choice of
periodic repeat unit.> This likely contributes to the difficulty
of unconstrained flow-based models in generating highly
symmetric structures. Thus, the perov-5 dataset presents a
unique case where the invariance to unit cell choice does

>Using Niggli reduction during learning to enforce a unique
choice of unit cell on structures from our datasets is not sufficient
for enforcing this invariance during generation of structures.

not need to be learned, making this dataset a useful bench-
mark for evaluating positional interpolant performance. It is
possible that the superior performance of the VP SBD and
trigonometric interpolants arise from their ability to gener-
ate more circuitous flow trajectories compared to the strictly
geodesic paths imposed by the linear interpolant—akin to
the reasoning behind using latent variables to enhance learn-
ing in SIs (Albergo et al., 2023).

De novo generation. Thorough hyperparameter optimiza-
tion enables us to note trends among the best-performing
DNG models. In Tabs 10 and 11 in the Appendix, we
show the performance metrics and hyperparameters for each
model by choice of positional interpolant, sampling scheme,
and 7(t) in the latent variable. We observe that several of
our best performing models (with respect to S.U.N. and
RMSD) possess lower levels of ‘species noise’ 1 which
sets the probability that an atom will change its identity if
already in an unmasked state (see Appendix B.6). Addi-
tionally, we find that linear and trigonometric interpolants
favor an element-order permutation as a data-dependent cou-
pling during training (see Appendix B.8), while the encoder-
decoder and SBD interpolants prefer to not use this coupling.
Finally, we note that VP SBD models require a similar mag-
nitude of velocity annealing during generation for positions
and lattices (see Appendix B.7). This is in stark contrast
to all other models, where a significantly larger velocity
annealing parameter is required for generating the positions.

6. Conclusion

We adapt stochastic interpolants (SIs) for material genera-
tion tasks and propose Open Materials Generation (OMatG),
a material-generation framework that unifies score-based
diffusion and conditional flow-matching approaches under
the umbrella of SIs. By incorporating an equivariant graph
representation of crystal structures and explicitly handling
periodic boundary conditions, OMatG jointly models spatial
coordinates, lattice vectors, and discrete atomic species in
a cohesive flow-based pipeline. Our extensive experiments
on crystal structure prediction and de novo generation tasks
demonstrate that OMatG sets a new state of the art in gener-
ative modeling for inorganic materials discovery, yielding
more stable, novel, and unique structures than either pure
diffusion or pure conditional flow-matching counterparts.
We underscore the importance of flexible ML frameworks
like OMatG, which can adapt to different types of materials
datasets by optimizing the generative model accordingly.
Our work represents a key step forward in applications of
machine-learning methods to materials discovery. Look-
ing forward, we plan to extend the flexibility of OMatG to
additional interpolating functions, improve on the evalua-
tion metrics and datasets, and investigate how different SIs
influence the discovery of suitable materials.



Open Materials Generation with Stochastic Interpolants

Acknowledgements

The authors thank Shenglong Wang at NYU IT High Per-
formance Computing and Gregory Wolfe for their resource-
fulness and valuable support. The authors acknowledge
funding from NSF Grant OAC-2311632. P. H. and S. M.
also acknowledge support from the Simons Center for Com-
putational Physical Chemistry (Simons Foundation grant
839534, MT). The authors gratefully acknowledge use of
the research computing resources of the Empire AI Con-
sortium, Inc, with support from the State of New York,
the Simons Foundation, and the Secunda Family Founda-
tion. Moreover, the authors gratefully acknowledge the
additional computational resources and consultation sup-
port that have contributed to the research results reported
in this publication, provided by: IT High Performance
Computing at New York University; the Minnesota Su-
percomputing Institute (http://www.msi.umn.edu)
at the University of Minnesota; UFIT Research Computing
(http://www.rc.ufl.edu) and the NVIDIA Al Tech-
nology Center at the University of Florida in part through the
AT and Complex Computational Research Award; Drexel
University through NSF Grant OAC-2320600.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Al4Science, M., Hernandez-Garcia, A., Duval, A.,
Volokhova, A., Bengio, Y., Sharma, D., Carrier, P. L.,
Benabed, Y., Koziarski, M., and Schmidt, V. Crystal-
GFN: Sampling crystals with desirable properties and

constraints, December 2023. URL http://arxiv.

org/abs/2310.04925.

Albergo, M. S. and Vanden-Eijnden, E. Building Normal-
izing Flows with Stochastic Interpolants, March 2023.
URL http://arxiv.org/abs/2209.15571.

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.
Stochastic Interpolants: A Unifying Framework for Flows

and Diffusions, November 2023. URL http://arxiv.

org/abs/2303.08797.

Albergo, M. S., Goldstein, M., Boffi, N. M., Ranganath,
R., and Vanden-Eijnden, E. Stochastic interpolants with
data-dependent couplings, September 2024. URL http:
//arxiv.org/abs/2310.03725.

Aranguri, S., Biroli, G., Mezard, M., and Vanden-Eijnden,
E. Optimizing Noise Schedules of Generative Models in

10

High Dimensions, January 2025. URL http://arxiv.
org/abs/2501.00988.

Baird, S. G., Sayeed, H. M., Montoya, J., and Sparks, T. D.
Matbench-genmetrics: A Python library for benchmark-
ing crystal structure generative models using time-based
splits of Materials Project structures. Journal of Open
Source Software, 9(97):5618, May 2024. ISSN 2475-
9066. doi: 10.21105/joss.05618. URL https://joss.
theoj.org/papers/10.21105/joss.05618.

Batatia, 1., Kovacs, D. P.,, Simm, G., Ortner, C., and
Csanyi, G. MACE: Higher Order Equivariant Mes-
sage Passing Neural Networks for Fast and Accurate
Force Fields. Advances in Neural Information Process-
ing Systems, 35:11423—-11436, December 2022. URL
https://arxiv.org/abs/2206.07697.

Batzner, S., Musaelian, A., Sun, L., Geiger, M.,
Mailoa, J. P.,, Kornbluth, M., Molinari, N., Smidkt,
T. E., and Kozinsky, B.  E(3)-equivariant graph
neural networks for data-efficient and accurate inter-
atomic potentials.  Nature Communications, 13(1):
2453, May 2022. ISSN 2041-1723. doi: 10.1038/
s41467-022-29939-5. URL https://www.nature.
com/articles/s41467-022-29939-5.

Bergerhoff, G., Hundt, R., Sievers, R., and Brown, 1. D.
The inorganic crystal structure data base. J. Chem. Inf.
Comput. Sci., 23(2):66—-69, May 1983. ISSN 0095-2338.
doi: 10.1021/ci000382a003. URL https://doi.org/
10.1021/ci00038a003.

Bergstra, J., Yamins, D., and Cox, D. D. Making a Science
of Model Search: Hyperparameter Optimization in Hun-
dreds of Dimensions for Vision Architectures. TProc. of
the 30th International Conference on Machine Learning
(ICML 2013), pp. pp.- I-115 to 1-123, 2013.

Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R.,
Tuecke, S., and Foster, I. The Materials Data Facility:
Data Services to Advance Materials Science Research.
JOM, 68(8):2045-2052, August 2016. ISSN 1543-
1851. doi: 10.1007/s11837-016-2001-3. URL https:
//doi.org/10.1007/s11837-016-2001-3.

Boeri, L., Hennig, R., Hirschfeld, P., Profeta, G., Sanna, A.,
Zurek, E., Pickett, W. E., Amsler, M., Dias, R., Eremets,
M. I, Heil, C., Hemley, R. J., Liu, H., Ma, Y., Pier-
leoni, C., Kolmogorov, A. N., Rybin, N., Novoselov,
D., Anisimov, V., Oganov, A. R., Pickard, C. J., Bi, T,
Arita, R., Errea, 1., Pellegrini, C., Requist, R., Gross,
E. K. U., Margine, E. R., Xie, S. R., Quan, Y., Hire,
A., Fanfarillo, L., Stewart, G. R., Hamlin, J. J., Staneyv,
V., Gonnelli, R. S., Piatti, E., Romanin, D., Daghero,
D., and Valenti, R. The 2021 room-temperature su-
perconductivity roadmap. J. Phys.: Condens. Matter,


http://www.msi.umn.edu
http://www.rc.ufl.edu
http://arxiv.org/abs/2310.04925
http://arxiv.org/abs/2310.04925
http://arxiv.org/abs/2209.15571
http://arxiv.org/abs/2303.08797
http://arxiv.org/abs/2303.08797
http://arxiv.org/abs/2310.03725
http://arxiv.org/abs/2310.03725
http://arxiv.org/abs/2501.00988
http://arxiv.org/abs/2501.00988
https://joss.theoj.org/papers/10.21105/joss.05618
https://joss.theoj.org/papers/10.21105/joss.05618
https://arxiv.org/abs/2206.07697
https://www.nature.com/articles/s41467-022-29939-5
https://www.nature.com/articles/s41467-022-29939-5
https://doi.org/10.1021/ci00038a003
https://doi.org/10.1021/ci00038a003
https://doi.org/10.1007/s11837-016-2001-3
https://doi.org/10.1007/s11837-016-2001-3

Open Materials Generation with Stochastic Interpolants

34(18):183002, March 2022. ISSN 0953-8984. doi:
10.1088/1361-648X/ac2864. URL https://dx.doi.
org/10.1088/1361-648X/ac2864.

Booth, G. H., Griineis, A., Kresse, G., and Alavi, A. To-
wards an exact description of electronic wavefunctions in
real solids. Nature, 493(7432):365-370, 2013.

Bose, A. J., Akhound-Sadegh, T., Huguet, G., Fatras, K.,
Rector-Brooks, J., Liu, C.-H., Nica, A. C., Korablyov,
M., Bronstein, M., and Tong, A. SE(3)-Stochastic Flow
Matching for Protein Backbone Generation, April 2024.
URL http://arxiv.org/abs/2310.02391.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and
Jaakkola, T. Generative Flows on Discrete State-Spaces:
Enabling Multimodal Flows with Applications to Protein
Co-Design, June 2024. URL http://arxiv.org/
abs/2402.04997.

Cantor, B. Multicomponent high-entropy Cantor alloys.
Progress in Materials Science, 120:100754, July 2021.
ISSN 0079-6425. doi: 10.1016/j.pmatsci.2020.100754.
URL https://www.sciencedirect.com/
science/article/pii/S0079642520301183.

Cao, Z., Luo, X., Ly, J., and Wang, L. Space Group In-
formed Transformer for Crystalline Materials Genera-
tion, March 2024. URL https://arxiv.org/abs/
2403.15734v2.

Castelli, 1. E., Landis, D. D., Thygesen, K. S., Dahl,
S., Chorkendorff, I., Jaramillo, T. F.,, and Jacob-
sen, K. W. New cubic perovskites for one- and
two-photon water splitting using the computa-
tional materials repository. Energy & Environ-
mental Science, 5(10):9034-9043, September 2012.
ISSN 1754-5706. doi:  10.1039/C2EE22341D.
URL https://pubs.rsc.org/en/content/
articlelanding/2012/ee/c2ee22341d.

Chen, C. and Ong, S. P. A universal graph deep
learning interatomic potential for the periodic ta-
ble. Nature Computational Science, 2(11):718-728,
November 2022. ISSN 2662-8457. doi: 10.1038/
s43588-022-00349-3. URL https://www.nature.
com/articles/s43588-022-00349-3.

Chen, R. T. Q. and Lipman, Y. Flow Matching on Gen-
eral Geometries, February 2024. URL http://arxiv.
org/abs/2302.03660.

Corso, G., Stiark, H., Jing, B., Barzilay, R., and Jaakkola,
T. DiffDock: Diffusion Steps, Twists, and Turns for
Molecular Docking, February 2023.

11

Curtarolo, S., Hart, G. L. W., Nardelli, M. B., Mingo, N.,
Sanvito, S., and Levy, O. The high-throughput high-
way to computational materials design. Nat. Mater:,
12(3):191-201, March 2013. ISSN 1476-4660. doi:
10.1038/mmat3568. URL https://www.nature.
com/articles/nmat3568.

Davies, D. W., Butler, K. T., Jackson, A. J., Skelton, J. M.,
Morita, K., and Walsh, A. SMACT: Semiconducting Ma-
terials by Analogy and Chemical Theory. Journal of Open
Source Software, 4(38):1361, June 2019. ISSN 2475-
9066. doi: 10.21105/joss.01361. URL https://joss.
theoj.org/papers/10.21105/joss.01361.

Fuemmeler, E., Wolfe, G., Gupta, A., Vita, J. A., Tadmor,
E. B., and Martiniani, S. Advancing the colabfit exchange
towards a web-scale data source for machine learning
interatomic potentials. In Al for Accelerated Materials
Design-NeurIPS 2024, 2024.

Ganose, A. M., Sahasrabuddhe, H., Asta, M., Beck, K.,
Biswas, T., Bonkowski, A., Bustamante, J., Chen,
X., Chiang, Y., Chrzan, D., Clary, J.,, Cohen, O.,
Ertural, C., Gallant, M., George, J., Gerits, S., Goodall,
R., Guha, R., Hautier, G., Horton, M., Kaplan, A.,
Kingsbury, R., Kuner, M., Li, B., Linn, X., McDer-
mott, M., Mohanakrishnan, R. S., Naik, A., Neaton,
J., Persson, K., Petretto, G., Purcell, T., Ricci, F.,
Rich, B., Riebesell, J., Rignanese, G.-M., Rosen, A.,
Scheffler, M., Schmidt, J., Shen, J.-X., Sobolev, A.,
Sundararaman, R., Tezak, C., Trinquet, V., Varley,
J., Vigil-Fowler, D., Wang, D., Waroquiers, D., Wen,
M., Yang, H., Zheng, H., Zheng, J., Zhu, Z., and
Jain, A. Atomate2: Modular workflows for materials
science. ChemRxiv, 2025. URL https://chemrxiv.
org/engage/chemrxiv/article—details/
678e76al6dded3c9085c75e09.

Gat, 1., Remez, T., Shaul, N., Kreuk, F., Chen, R. T. Q.,
Synnaeve, G., Adi, Y., and Lipman, Y. Discrete Flow
Matching, July 2024. URL http://arxiv.org/
abs/2407.15595.

George, E. P, Raabe, D., and Ritchie, R. O. High-
entropy alloys. Nat. Rev. Mater., 4(8):515-534,
August 2019. ISSN 2058-8437. doi: 10.1038/
s41578-019-0121-4. URL https://www.nature.
com/articles/s41578-019-0121-4.

Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H.,
George, E. P, and Ritchie, R. O. A fracture-resistant
high-entropy alloy for cryogenic applications. Science,
345(6201):1153-1158, September 2014. doi: 10.1126/
science.1254581. URL https://www.science.
org/doi/10.1126/science.1254581.


https://dx.doi.org/10.1088/1361-648X/ac2864
https://dx.doi.org/10.1088/1361-648X/ac2864
http://arxiv.org/abs/2310.02391
http://arxiv.org/abs/2402.04997
http://arxiv.org/abs/2402.04997
https://www.sciencedirect.com/science/article/pii/S0079642520301183
https://www.sciencedirect.com/science/article/pii/S0079642520301183
https://arxiv.org/abs/2403.15734v2
https://arxiv.org/abs/2403.15734v2
https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22341d
https://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22341d
https://www.nature.com/articles/s43588-022-00349-3
https://www.nature.com/articles/s43588-022-00349-3
http://arxiv.org/abs/2302.03660
http://arxiv.org/abs/2302.03660
https://www.nature.com/articles/nmat3568
https://www.nature.com/articles/nmat3568
https://joss.theoj.org/papers/10.21105/joss.01361
https://joss.theoj.org/papers/10.21105/joss.01361
https://chemrxiv.org/engage/chemrxiv/article-details/678e76a16dde43c9085c75e9
https://chemrxiv.org/engage/chemrxiv/article-details/678e76a16dde43c9085c75e9
https://chemrxiv.org/engage/chemrxiv/article-details/678e76a16dde43c9085c75e9
http://arxiv.org/abs/2407.15595
http://arxiv.org/abs/2407.15595
https://www.nature.com/articles/s41578-019-0121-4
https://www.nature.com/articles/s41578-019-0121-4
https://www.science.org/doi/10.1126/science.1254581
https://www.science.org/doi/10.1126/science.1254581

Open Materials Generation with Stochastic Interpolants

Gludovatz, B., Hohenwarter, A., Thurston, K. V. S., Bei,
H., Wu, Z., George, E. P, and Ritchie, R. O. Excep-
tional damage-tolerance of a medium-entropy alloy Cr-
CoNi at cryogenic temperatures. Nat. Commun., 7(1):
10602, February 2016. ISSN 2041-1723. doi: 10.1038/
ncomms10602. URL https://www.nature.com/
articles/ncomms10602.

Gruver, N., Sriram, A., Madotto, A., Wilson, A. G., Zitnick,
C. L., and Ulissi, Z. Fine-Tuned Language Models Gen-
erate Stable Inorganic Materials as Text, February 2024.
URL http://arxiv.org/abs/2402.04379.

Ho, J., Jain, A., and Abbeel, P. Denoising Diffusion Proba-
bilistic Models, December 2020.

Isaacs, E. B. and Marianetti, C. A. Composi-
tional phase stability of correlated electron mate-
rials within DFT+DMFT. Phys. Rev. B, 102:
045146, Jul 2020. doi: 10.1103/PhysRevB.102.

045146. URL https://link.aps.org/doi/10.

1103/PhysRevB.102.045146.

Jain, A., Hautier, G., Moore, C., Ong, S., Fischer, C.,
Mueller, T., Persson, K., and Ceder, G. A high-throughput
infrastructure for density functional theory calculations.
Comput. Mater. Sci., 50:2295-2310, June 2011. doi:
10.1016/j.commatsci.2011.02.023.

Jain, A., Ong, S. P,, Hautier, G., Chen, W., Richards, W. D.,
Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder,
G., and Persson, K. A. Commentary: The Materials
Project: A materials genome approach to accelerating
materials innovation. APL Materials, 1(1):011002, July

2013. doi: 10.1063/1.4812323. URL https://aip.

scitation.org/doi/10.1063/1.4812323.

Jiao, R., Huang, W., Lin, P,, Han, J., Chen, P., Lu, Y., and
Liu, Y. Crystal Structure Prediction by Joint Equivariant
Diffusion, July 2023. URL https://arxiv.org/
abs/2309.04475v2.

Jiao, R., Huang, W., Liu, Y., Zhao, D., and Liu, Y. Space
Group Constrained Crystal Generation, April 2024. URL
http://arxiv.org/abs/2402.03992.

Kazeev, N., Zhu, R., Romanov, 1., Ustyuzhanin, A. E., Ya-
mazaki, S., Nong, W., and Hippalgaonkar, K. Wyckoff-
Transformer: Generation of Symmetric Crystals. In Al for
Accelerated Materials Design - NeurIlPS 2024, November
2024. URL https://openreview.net/forum?
id=JcylbPOgrY.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez,
J. E., and Stoica, I. Tune: A research platform for dis-
tributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

12

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow Matching for Generative Modeling, Febru-
ary 2023. URL http://arxiv.org/abs/2210.
02747.

Liu, C., Li, F, Ma, L.-P., and Cheng, H.-M. Ad-
vanced Materials for Energy Storage. Advanced
Materials, 22(8):E28-E62, 2010. ISSN 1521-
4095. doi:  10.1002/adma.200903328. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/adma.200903328.

Liu, Q. Rectified Flow: A Marginal Preserving Approach
to Optimal Transport, September 2022.

Maier, W. F. Early Years of High-Throughput Experi-
mentation and Combinatorial Approaches in Catalysis
and Materials Science. ACS Comb. Sci., 21(6):437—
444, June 2019. ISSN 2156-8952. doi: 10.1021/
acscombsci.8b00189. URL https://doi.org/10.
1021 /acscombsci.8b00189.

MatterGen. ~ Mattergen.  Microsoft, January 2025.
URL https://github.com/microsoft/
mattergen.

Mehl, M. J., Hicks, D., Toher, C., Levy, O., Han-
son, R. M., Hart, G., and Curtarolo, S. The
AFLOW Library of Crystallographic Prototypes: Part
1. Comput. Mater. Sci., 136:S1-S828, August 2017.
ISSN 0927-0256. doi: 10.1016/j.commatsci.2017.01.
017. URL https://www.sciencedirect.com/
science/article/pii/sS0927025617300241.

Merchant, A., Batzner, S., Schoenholz, S. S., Aykol,
M., Cheon, G., and Cubuk, E. D. Scaling deep
learning for materials discovery. Nature, 624:80-85,
November 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06735-9. URL https://www.nature.
com/articles/s41586-023-06735-09.

Miller, B. K., Chen, R. T. Q., Sriram, A., and Wood, B. M.
FlowMM: Generating Materials with Riemannian Flow
Matching, June 2024. URL http://arxiv.org/
abs/2406.04713.

Nakaya, Y. and Furukawa, S. Catalysis of Alloys: Clas-
sification, Principles, and Design for a Variety of Ma-
terials and Reactions. Chem. Rev., 123(9):5859-5947,
May 2023. ISSN 0009-2665. doi: 10.1021/acs.chemrev.
2¢00356. URL https://doi.org/10.1021/acs.
chemrev.2c00356.

Nichol, A. Q. and Dhariwal, P. Improved denoising dif-
fusion probabilistic models. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings


https://www.nature.com/articles/ncomms10602
https://www.nature.com/articles/ncomms10602
http://arxiv.org/abs/2402.04379
https://link.aps.org/doi/10.1103/PhysRevB.102.045146
https://link.aps.org/doi/10.1103/PhysRevB.102.045146
https://aip.scitation.org/doi/10.1063/1.4812323
https://aip.scitation.org/doi/10.1063/1.4812323
https://arxiv.org/abs/2309.04475v2
https://arxiv.org/abs/2309.04475v2
http://arxiv.org/abs/2402.03992
https://openreview.net/forum?id=Jcy1bPOqrY
https://openreview.net/forum?id=Jcy1bPOqrY
http://arxiv.org/abs/2210.02747
http://arxiv.org/abs/2210.02747
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200903328
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200903328
https://doi.org/10.1021/acscombsci.8b00189
https://doi.org/10.1021/acscombsci.8b00189
https://github.com/microsoft/mattergen
https://github.com/microsoft/mattergen
https://www.sciencedirect.com/science/article/pii/S0927025617300241
https://www.sciencedirect.com/science/article/pii/S0927025617300241
https://www.nature.com/articles/s41586-023-06735-9
https://www.nature.com/articles/s41586-023-06735-9
http://arxiv.org/abs/2406.04713
http://arxiv.org/abs/2406.04713
https://doi.org/10.1021/acs.chemrev.2c00356
https://doi.org/10.1021/acs.chemrev.2c00356

Open Materials Generation with Stochastic Interpolants

of Machine Learning Research, pp. 8162-8171. PMLR,
18-24 Jul 2021. URL https://proceedings.mlr.
press/v139/nichol2la.html.

Oganov, A. R., Pickard, C. J., Zhu, Q., and
Needs, R. J. Structure prediction drives mate-
rials discovery. Nat Rev Mater, 4(5):331-348,
May 2019. ISSN 2058-8437. doi:  10.1038/
s41578-019-0101-8. URL https://www.nature.
com/articles/s41578-019-0101-8.

Ong, S. P, Richards, W. D., Jain, A., Hautier, G.,
Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L.,
Persson, K. A., and Ceder, G. Python Materi-
als Genomics (pymatgen): A robust, open-source
python library for materials analysis. Computa-
tional Materials Science, 68:314-319, February 2013.
ISSN 0927-0256. doi: 10.1016/j.commatsci.2012.10.
028. URL https://www.sciencedirect.com/
science/article/pii/S0927025612006295.

Pickard, C. J. Airss data for carbon at 10gpa
and the c+n+h+o system at lgpa, 2020. URL
https://archive.materialscloud.org/
record/2020.0026/v1.

Pickard, C. J. and Needs, R. J. Ab Initio random
structure searching. J. Phys.: Condens. Matter, 23
(5):053201, February 2011. ISSN 0953-8984, 1361-
648X. doi: 10.1088/0953-8984/23/5/053201. URL
https://iopscience.iop.org/article/10.
1088/0953-8984/23/5/053201.

Potyrailo, R., Rajan, K., Stoewe, K., Takeuchi, I., Chisholm,
B., and Lam, H. Combinatorial and High-Throughput
Screening of Materials Libraries: Review of State of
the Art. ACS Comb. Sci., 13(6):579—-633, November
2011. ISSN 2156-8952. doi: 10.1021/c0200007w. URL
https://doi.org/10.1021/c0200007w.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Den-
ton, E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi,
S. S., Lopes, R. G., Salimans, T., Ho, J., Fleet, D. J.,
and Norouzi, M. Photorealistic Text-to-Image Diffusion
Models with Deep Language Understanding, May 2022.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equiv-
ariant graph neural networks. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 9323-9332. PMLR,

18-24 Jul 2021. URL https://proceedings.mlr.

press/v139/satorras2la.html.

Schmidt, J., Hoffmann, N., Wang, H.-C., Borlido, P,
Carrico, P. J. M. A., Cerqueira, T. F. T., Botti, S., and
Marques, M. A. L. Large-scale machine-learning-assisted

exploration of the whole materials space, October 2022a.
URL http://arxiv.org/abs/2210.00579.

Schmidt, J., Wang, H.-C., Cerqueira, T. F. T., Botti, S.,
and Marques, M. A. L. A dataset of 175k stable and
metastable materials calculated with the PBEsol and
SCAN functionals. Scientific Data, 9(1):64, March 2022b.
ISSN 2052-4463. doi: 10.1038/s41597-022-01177-w.

Snyder, G. J. and Toberer, E. S. Complex thermoelectric
materials. Nature Mater, 7(2):105-114, February 2008.
ISSN 1476-4660. doi: 10.1038/nmat2090. URL https:
//www.nature.com/articles/nmat2090.

Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N.,
and Ganguli, S. Deep Unsupervised Learning using
Nonequilibrium Thermodynamics, November 2015. URL
http://arxiv.org/abs/1503.03585.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,, Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
3001ef257407d5a371a96dcd947c7d93-Paper.
pdf.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-Based Generative Modeling
through Stochastic Differential Equations, February 2021.
URL http://arxiv.org/abs/2011.13456.

Sriram, A., Miller, B., Chen, R. T., and Wood, B. Flowllm:
Flow matching for material generation with large lan-
guage models as base distributions. Advances in Neural
Information Processing Systems, 37:46025-46046, 2024.

Strmcenik, D., Lopes, P. P., Genorio, B., Stamenkovic,
V. R., and Markovic, N. M. Design princi-
ples for hydrogen evolution reaction catalyst mate-
rials. Nano Energy, 29:29-36, November 2016.
ISSN 2211-2855. doi: 10.1016/j.nanoen.2016.04.
017. URL https://www.sciencedirect.com/
science/article/pii/S2211285516300738.

Tipton, W. W. and Hennig, R. G. A grand canonical genetic
algorithm for the prediction of multi-component phase
diagrams and testing of empirical potentials. Journal of
Physics: Condensed Matter, 25(49):495401, November
2013. ISSN 0953-8984. doi: 10.1088/0953-8984/25/49/
495401. URL https://dx.doi.org/10.1088/
0953-8984/25/49/495401.

Togo, A., Shinohara, K., and Tanaka, I. Spglib: A software
library for crystal symmetry search, March 2024. URL
http://arxiv.org/abs/1808.01590.

13


https://proceedings.mlr.press/v139/nichol21a.html
https://proceedings.mlr.press/v139/nichol21a.html
https://www.nature.com/articles/s41578-019-0101-8
https://www.nature.com/articles/s41578-019-0101-8
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://archive.materialscloud.org/record/2020.0026/v1
https://archive.materialscloud.org/record/2020.0026/v1
https://iopscience.iop.org/article/10.1088/0953-8984/23/5/053201
https://iopscience.iop.org/article/10.1088/0953-8984/23/5/053201
https://doi.org/10.1021/co200007w
https://proceedings.mlr.press/v139/satorras21a.html
https://proceedings.mlr.press/v139/satorras21a.html
http://arxiv.org/abs/2210.00579
https://www.nature.com/articles/nmat2090
https://www.nature.com/articles/nmat2090
http://arxiv.org/abs/1503.03585
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
http://arxiv.org/abs/2011.13456
https://www.sciencedirect.com/science/article/pii/S2211285516300738
https://www.sciencedirect.com/science/article/pii/S2211285516300738
https://dx.doi.org/10.1088/0953-8984/25/49/495401
https://dx.doi.org/10.1088/0953-8984/25/49/495401
http://arxiv.org/abs/1808.01590

Open Materials Generation with Stochastic Interpolants

Tong, A., Fatras, K., Malkin, N., Huguet, G., Zhang,
Y., Rector-Brooks, J., Wolf, G., and Bengio, Y. Im-
proving and generalizing flow-based generative models
with minibatch optimal transport, March 2024. URL
http://arxiv.org/abs/2302.00482.

Vita, J. A., Fuemmeler, E. G., Gupta, A., Wolfe, G. P,, Tao,
A. Q., Elliott, R. S., Martiniani, S., and Tadmor, E. B.
ColabFit exchange: Open-access datasets for data-driven
interatomic potentials. J. Chem. Phys., 159(15):154802,
October 2023. ISSN 0021-9606. doi: 10.1063/5.0163882.
URL https://doi.org/10.1063/5.0163882.

Xie, T., Fu, X., Ganea, O.-E., Barzilay, R., and Jaakkola, T.
Crystal Diffusion Variational Autoencoder for Periodic
Material Generation, March 2022.

Yang, H., Hu, C., Zhou, Y., Liu, X., Shi, Y., Li, J., Li,
G., Chen, Z., Chen, S., Zeni, C., Horton, M., Pinsler,
R., Fowler, A., Ziigner, D., Xie, T., Smith, J., Sun, L.,
Wang, Q., Kong, L., Liu, C., Hao, H., and Lu, Z. Mat-
terSim: A Deep Learning Atomistic Model Across El-
ements, Temperatures and Pressures, May 2024. URL
http://arxiv.org/abs/2405.04967.

Yim, J., Campbell, A., Foong, A. Y. K., Gastegger, M.,
Jiménez-Luna, J., Lewis, S., Satorras, V. G., Veeling,
B. S., Barzilay, R., Jaakkola, T., and Noé, F. Fast pro-
tein backbone generation with SE(3) flow matching, Oc-
tober 2023. URL http://arxiv.org/abs/2310.
05297.

Zaki, N., Park, H., Osgood, R. M., Millis, A. J., and Mar-
ianetti, C. A. Failure of dft-based computations for a
stepped-substrate-supported correlated co wire. Phys.
Rev. B, 89:205427, May 2014. doi: 10.1103/PhysRevB.
89.205427. URL https://link.aps.org/doi/
10.1103/PhysRevB.89.205427.

Zeni, C., Pinsler, R., Ziigner, D., Fowler, A., Horton, M.,
Fu, X., Wang, Z., Shysheya, A., Crabbé, J., Ueda, S.,
Sordillo, R., Sun, L., Smith, J., Nguyen, B., Schulz, H.,
Lewis, S., Huang, C.-W., Lu, Z., Zhou, Y., Yang, H.,
Hao, H., Li, J., Yang, C., Li, W., Tomioka, R., and Xie,
T. A generative model for inorganic materials design.
Nature, January 2025. ISSN 0028-0836, 1476-4687. doi:
10.1038/s41586-025-08628-5.

Zhu, R., Nong, W., Yamazaki, S., and Hippalgaonkar, K.
WyCryst: Wyckoff Inorganic Crystal Generator Frame-
work, March 2024. URL http://arxiv.org/abs/
2311.17916.

14


http://arxiv.org/abs/2302.00482
https://doi.org/10.1063/5.0163882
http://arxiv.org/abs/2405.04967
http://arxiv.org/abs/2310.05297
http://arxiv.org/abs/2310.05297
https://link.aps.org/doi/10.1103/PhysRevB.89.205427
https://link.aps.org/doi/10.1103/PhysRevB.89.205427
http://arxiv.org/abs/2311.17916
http://arxiv.org/abs/2311.17916

Open Materials Generation with Stochastic Interpolants

A. Acronyms

Table 4 provides a list of acronyms used throughout this paper for reference.

Table 4. Acronym definitions.

Acronym Full Name

AIRSS Ab initio Random Structure Searching
CDVAE Crystal Diffusion Variational Autoencoder

CFP Chemical Formula Prediction
CFM Conditional Flow Matching
CTMC Continuous-Time Markov Chain
CSP Crystal Structure Prediction
DFT Density Functional Theory
DFM Discrete Flow Matching

DNG De Novo Generation

EGNN Equivariant Graph Neural Network
GNoME  Graph Networks for Materials Exploration

MLIP Machine-Learned Interatomic Potential
NequlP Neural Equivariant Interatomic Potentials
ODE Ordinary Differential Equation

OMatG Open Materials Generation

RFM Riemannian Flow Matching

SBD Score-Based Diffusion

SBDM Score-Based Diffusion Model

SDE Stochastic Differential Equation

SI Stochastic Interpolant

SMACT  Semiconducting Materials from Analogy and Chemical Theory
SUN Stable, Unique, and Novel

B. Implementation Details of Stochastic Interpolants
B.1. OMatG Framework

Figures 4 and 5 summarize the training and the integration pipeline of the OMatG framework, respectively. Depending
on the specific task, there are several stochastic interpolants at once. For CSP, one stochastic interpolant considers lattice
vectors L, and another one considers fractional coordinates X . The model output of CSPNet (see Appendix C.1) depends on
the full structural representation { A, X, L} and time ¢, where A are the atomic species. For the DNG task, we additionally
use discrete flow matching for the atomic species A (Campbell et al., 2024).

During the numerical integration in the CSP task, X and L are integrated jointly while A is fixed. For DNG, A is evolved
according to discrete flow matching (Campbell et al., 2024) (see Appendix B.6). For the SDE sampling scheme in Fig. 5,
one chooses a time-dependent noise () that only appears during integration and not during training (see Appendix B.4).
Also, v(t) has to be unequal zero in order to prevent the divergence in 1/+(t). However, since y(t) necessarily vanishes at
times ¢ = 0 and ¢t = 1 (see Appendix B.2), one should choose a time-varying () that vanishes near these endpoints (see
Appendix B.4) (Albergo et al., 2023).

B.2. Interpolant Choice

In this work, we are concerned with spatially linear interpolants of the form specified in Eq. (1). The following conditions
must be met (Albergo et al., 2023):

a(0)=p1) =1, a(l)=p5(0) =7(0) =~v(1) =0, ~()>0Vte(0,1). Q)

Under these constraints, the form of the SI is relatively flexible, and many different interpolants can be defined. Also, the
base distribution can be arbitrary as in CFM (Liu, 2022; Albergo & Vanden-Eijnden, 2023; Tong et al., 2024). In this work,
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Update batch loss MSE Loss C between
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~—— @@
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x 0
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parameters

Figure 4. Training pipeline of the OMatG framework: A batch of structures is drawn from a dataset with target distribution p;. Every
structure 1 ~ p1 is connected with a structure x from the base distribution po with stochastic interpolants that yield the interpolated
structure z¢ = x(t, xo, z1, 2) and the drift b, = dyx+ at time ¢ ~ U(0, 1), possibly using a random variable z ~ A/ (0, I'). The model
CSPNet predicts b = be(t, x+) and 20 = z(t, z+) and its parameters are minimized based on the MSE losses in Egs (2) and (3) [see also

Eq. (32)].

Numerical integration
ODE: 4 X, = b°(¢, X,)

SDE: dX; = b(t, X;)dt — %zg(t, X;)dt + /2e(t)dW;

For time CSPNet:
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z?:ze(tvﬁt)

Initial structure xo ~ pg
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Figure 5. Numerical integration pipeline of the OMatG framework: An initial structure x from the base distribution pg is numerically
integrated following either an ODE or an SDE based on the model predictions b¢ and z¢. For an SDE, one can choose a noise (t) during

integration.
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Table 5. SI parameters from Albergo et al. (2023).

Stochastic Interpolant a(t) B(t) ~(¢)

linear 1—t¢ t at(l —t)
Arbitrary pg  trig cos (3t) sin (Zt) at(l —t)

enc-dec cos?(mt) 1 1)(t)  cos?(mt)1 (1 y)(t) sin?(t)
Gaussian py VP SBD V1—¢2 t 0

we mostly rely on interpolants originally defined in Albergo et al. (2023) and listed in Tab. 5. For the VP SBD interpolant,
we allow for different widths o of the Gaussian base distribution pg.

In Appendix B.9, we introduce additional VP and VE SBD interpolants beyond the one in Tab. 5 that are implemented in
OMatG. The encoder-decoder (enc-dec) interpolant as defined in Tab. 5 evolves samples from the base distribution pg to
follow an intermediate Gaussian distribution with variance 1 at the switch time T, = 0.5, before mapping them to a
sample from p;. This can be generalized to arbitrary variances a > 0 and switch times Tyyitch € (0,1):

7T(t - Tswitcht)p
Lo, Ty (1),
ﬂwitch - ﬂwilcht)p + (t - ﬂwitcht)p e
t— Tswi t)P
W( ich ) > ]'(Tswit'h 1] (t)v
(Tswilch - nwilcht)p + (t - Tswitcht)p o

. 7T<t - T;witcht)p )
t) = Vasin® ( ,
FY( ) (Tswitch - Tswitcht)p + (t - Tswitcht)p

a(t) = cos? ( (

B(t) = cos” ( (6)

where p > 1/2. We consider the cases p € {1/2,1} and note that the general interpolant in Eq. (6) reduces to the interpolant
in Tab. 5 fora = 1, p = 1, and Tyyieh = 0.5.

B.3. Antithetic Sampling

As shown by Albergo et al. (2023), the loss function can become unstable around ¢ = 0 and ¢ = 1 for certain choices of
~(t). To account for this, we implement antithetic sampling. This requires simultaneously computing the loss at both ™
and z~ where

x+(t,x0,x1,z) = Oé(t)x() +ﬁ(t)$1 +’Y(t)za (7)
(E_(t,xo,fﬂl,Z) :a(t)x0+ﬂ(t)x1 —’}/(t)Z ®)

Both losses are computed using the same value of z and subsequently averaged.

B.4. Diffusion Coefficient

An important inference-time parameter for models integrated with an SDE is the choice of €(t) > 0 which plays the role
of a diffusion coefficient. Albergo et al. (2023) note that the presence of y~1() in the drift term seen in Fig. 5 can pose
a numerical instability at the endpoints ¢ = 0 and ¢ = 1 during integration. For the choice e.onst(t) = ¢, they consider
integrating from some nonzero time ¢ > 0 to ¢ < 1 in order to avoid the singularity. Alternatively, one can design a form for
€(t) such that it vanishes at these endpoints. In OMatG, we opt for the latter approach and consider a diffusion coefficient,
€vanish (t), Which vanishes at the endpoints

C

Cranish(1) = (1 + e*%> (1 + eil_g_t) ' ®

Here, ¢ dictates the magnitude of the diffusion, x sets the times at which the midpoints between €(¢) = 0 and €(t) = c are
reached, and o controls the rate of this increase from ¢(¢) = 0 to €(¢) = c. The only constraints on these parameters are that
c >0, > 0,and o > 0. Importantly, these parameters should be chosen such that they are near zero at the endpoints.
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B.5. Interpolation with Periodic Boundary Conditions

We adopt a task-specific formulation for handling periodic boundary conditions with SIs tailored to flat tori, which are the
relevant manifolds for fractional coordinates in crystal generation. We do not attempt to generalize stochastic interpolants
(SIs) to arbitrary manifolds as in Riemannian flow matching (Chen & Lipman, 2024).

As in FlowMM (Miller et al., 2024), in order to uniquely define the interpolating paths, we rely on shortest geodesic
interpolation paths between pairs of fractional coordinates from xy and x, ensuring that interpolants are well-defined and
differentiable. As noted in Section 3.2.1, this shortest geodesic path is computed by first unwrapping one of the coordinates
(say 1) into its periodic image x}, such that it is the closest image to z5. We then compute, for example, the linear
interpolant x(t, zo, x}) = (1 — t)zo + tz], as if in Euclidean space and finally wrap the interpolated path back onto the
torus. (The geodesic is the same as the linear interpolant wrapped back into the box.)

We perform this procedure for all choices of interpolants. The reason for unwrapping according to the closest image
first—for all interpolants—is because there are multiple ways to connect two points on a torus (e.g., in a periodic box one
can connect two points with or without crossing the box boundaries). All periodic stochastic interpolants are then defined
this way, by computing x(t, zg, 2], 2) = a(t)xo + S(t)x} + v(t)z in the unwrapped (Euclidean) space and wrapping back
onto the torus. We emphasize that this procedure is important not only for the choice of interpolant, but also for the addition
of the latent variable +(¢)z which also moves the interpolation trajectory away from the geodesic. Our process yields exactly
the same shortest-path geodesic as in FlowMM if using the linear interpolant, and thus recovers its corresponding conditional
flow-matching loss. We depict our implementation of periodic stochastic interpolants in Fig. 6. We also demonstrate in
Fig. 6¢ that averaging over the latent variable ~(¢)z recovers the deterministic base interpolant path, as required by the ST
framework.

a. b.

Figure 6. Extending interpolants to incorporate periodic boundary conditions. (a—b) The path for a score based diffusion interpolant is
calculated by first computing the shortest-path geodesic (blue) between the initial (green dot) and final positions (red dot). Next, the path
of the interpolant moving the final position outside the bounding box is computed (green), and finally the path is wrapped back into the
bounding box to produce the interpolant trajectory (orange). (c¢) The effect of adding a latent variable to any interpolant must be handled
similarly to calculating the path of a non-linear interpolant. For a linear interpolant with a nonzero -, we show samples of possible paths
(blue) and their averaged path (orange) which collapses onto the path of the linear interpolant.

B.6. DFM Details

DEM allows for generative modeling of discrete sequences of tokens while respecting the discrete nature of the design space.
As discussed, a parameterized neural network p?‘ ,(x1]x¢) is learned, which attempts to predict the final sequence from the

sequence at time ¢. Borrowing from Campbell et al. (2024), we choose a conditional rate matrix Ry (x, ¢|z1)—giving the
rate of 2; jumping to a different state i given x;—which generates the conditional flow py|; (x¢|x1) of the form:

ReLU (9ypy1 (il@1) — Oupyj1 (we|21))
S 'pt|1(33t|$1)

Rt(wt,i|x1) = 5 (10)

where S is the number of possible tokens a sequence element can take on. This conditional rate matrix can be modified by
including a term that introduces stochasticity in the form of a detailed balance rate matrix RP? by writing R} = R;+nRPE.
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Here, (Campbell et al., 2024):
.. . . t . .
RPP (i, jla) = nd{i, o }o{j, M} + T 0{i, MYo{j. o}, (1n)

where M is the masking token. The parameter n € R™ represents the level of stochasticity that only appears during
generation.

During generation, our objective is to compute RY(x;,4) based on the learned distribution pfl ,(w1]x;). Formally, we have

Rf(l‘t,l) = Epf|,(T1‘TT) [R?(l‘t,l"fl)] (12)
In practice, Campbell et al. (2024) show that we need not compute a full expectation, but rather, simply draw z; ~
pf‘t (x1|m), evaluate the conditional rate matrix R} (x4, |z ), and perform an update of x; to 24, A; with discrete time step
At directly from this by sampling ;4 A; according to

Pesaet(@eradlr, ©) = 0{@e, e act + RY (24, 4] 21) At (13)

B.7. Velocity Annealing

Velocity annealing—rescaling the learned velocity field during generation to increase velocity over time as b? (¢, ) —
(1 + st) bY(t, z) with s as an hyperparameter during integration—has been empirically shown to improve performance
in a number of studies that apply CFM to physical systems (Yim et al., 2023; Bose et al., 2024; Miller et al., 2024). For
instance, Miller et al. (2024) demonstrated that applying velocity annealing significantly improves performance in CSP
and DNG benchmarks for materials. Motivated by these findings, we include velocity annealing in OMatG as a tunable
hyperparameter, while emphasizing that this technique lacks a formal theoretical justification within the mathematical
frameworks underlying flow models and stochastic interpolants.

B.8. Data-Dependent Coupling

SIs have been used with data-dependent couplings (Albergo et al., 2024), where a coupling function v(zg, z1) enables
biasing of x( based on the sampled ;. In OMatG, we incorporate an optional data-dependent coupling that enforces an
ordering (i.e., a permutation on the order of atomic elements within a structure) that produces the minimum fractional-
coordinate distance between each particle pair (z}, %) from structures xo € po and z1 € p;. We find that the inclusion
of this data-dependent coupling is optimal during hyperparameter tuning depending on the type of model: CSP models
typically performed better without this coupling, but DNG models (see Tab. 11) can benefit in certain cases from minimizing
traveled distance via permutation of elements.

Formally, our coupling is conditional on the sampled (x, x1) and is defined as
argngnzd(p(%),wi)- (14)

Here, d(-,-) is a distance metric which we define on a periodic manifold in fractional-coordinate space (i.e., a four-
dimensional torus) and p is some permutation function that permutes the discrete indices 7. Under this coupling, we still
sample (z, z1) independently but then bias the sampled z to travel the minimum permutational distance necessary to
reach the target structure.

B.9. SI unifies CFM and SBDM

The SI framework implemented in OMatG unifies the frameworks of CFM, as implemented in FlowMM (Miller et al.,
2024), and SBDM, as implemented in DiffCSP (Jiao et al., 2023) and MatterGen (Zeni et al., 2025). FlowMM is naturally
subsumed by OMatG. For the choice of ODE-based sampling, the velocity term b’(t, z) is learned by minimizing the
loss function in Eq. (2). By using v(¢) = 0 in the linear interpolant x(¢, z,z1) = (1 — t)zo + tx1 (see Appendix B.2),
Eq. (2) becomes identical to the FlowMM loss (see Eq. (15) in Miller et al. (2024)). Furthermore, the treatment of periodic
boundary conditions for the linear interpolant (see Appendix B.5) leads to the same geodesic paths as in FlowMM, and the
center-of-mass motion of the ground-truth velocity is removed similarly in both frameworks.
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The connection between SIs and SBDM requires the discussion of both variance-preserving (VP) and variance-exploding
(VE) cases. In the VP case (Sohl-Dickstein et al., 2015; Ho et al., 2020), a sequence of N noise increments with variance /3;
perturbs data yq as

Yi=V1-=Biyi-1+VBizi—1, i=1...,N, 15)
where z; ~ N(0,I). As N — oo, this converges to the SDE

ys = — 56}y dt + V/BTS) s, (16)

where wy is the standard Wiener process (Song et al., 2021). Under this stochastic process, the data distribution at time
s = 0 is transformed into a Gaussian base distribution as s — oo. This differs from the time convention in SI where samples
from the base distribution at time ¢ = 0 are transported to samples from the data distribution at £ = 1. With a corresponding

change of variables s(t) = — log(t), Aranguri et al. (2025) show within the SI framework that y; is equal in law to the
one-sided interpolant
w(t, xo,21) = /1 = 72(t) o + ()21, (17)
where
1 [ los(t)
7(t) = exp —3 / B(u)du | . (18)
0

In accordance with SBDM, the base distribution pq is Gaussian, that is, zo ~ N (0, U%I ). Here, we introduced the width o
of the base distribution as a tunable hyperparameter.

The SDE in Eq. (16) and the variance-schedule 3(s) are often considered on the time interval s € [0, 1], which implies
that 7(¢) from Eq. (18) is only used in ¢t € [1/e, 1] (Aranguri et al., 2025). OMatG implements three such schedules. The
linear schedule (Ho et al., 2020; Aranguri et al., 2025) is 8 (s) = Bumin + 5(Bmax — Bmin) Where Bmin and SBmax are chosen
empirically. This implies

- 1 1
() = exp §ﬁmm log(t) — Z(Bmax — Brin) logQ(t)} . (19)
This function is well-behaved for the entire time range ¢ € [0, 1] and implemented as such in OMatG.

For the cosine schedule, which is used in DiffCSP for the lattice vectors, the noise variance in Eq. (15) is given by
ﬁi =1- di/di,1 with

_ f() . o [mi/N +d
,L‘ p— B = —_——— 5 2()
a 0) f(@) = cos 5 114 (20)
where d is a small constant offset (Nichol & Dhariwal, 2021). As N — oo, one gets for s € [0, 1]
2 ( ms+d
d cos (§ 1+d> m Ts+d
COS — _71 — t — . 21
=g | gt (5559) e
Fort € [1/e, 1], this leads to
0 . [ 7+ mlog(t)
COS t — 22
T () csc[2+2d}sm[ 5+ 2d , (22)

and for t € [0,1/e), we use 7°(¢) = 0.

The schedule 7°°™'(¢) = ¢ on ¢ € [0, 1] corresponds to a constant schedule 5°°™!(s) = 2 and yields the SBD interpolant of
Appendix B.2 derived in Albergo et al. (2023). This is the VP SBD interpolant considered throughout this paper.

In the VE case (Song & Ermon, 2019), a sequence of N noise increments with variance o; perturbs data g as

Yi = Yi1+ /0l — 07 Zim1. (23)

As N — oo, this converges to the SDE (Song et al., 2021)

6],

dys = s
v ds

(24)
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The corresponding one-sided interpolant in the SI framework is given by

zy = \/02(1 —t) — 62(0) zo + 1, (25)

where again zg ~ N(0,031) (Aranguri et al., 2025). As in DiffCSP for the fractional coordinates, the schedule o(s) on
s € [0, 1] is typically given by 0(s) = Omin(Omax/Omin)° Which we implement in OMatG. The parameters oy, and o,y are
optimizeable hyperparameters. The reported match rate and RMSE of the CSP task for the VE SBD positional interpolant
for the MP-20 dataset in Tab. 1 are close to the ones of DiffCSP. This highlights that OMatG is able to reproduce similar
conditions to those in DiffCSP.

B.10. Comparison of OMatG-Linear to FlowMM

A subset of OMatG models, specifically those which use linear interpolants for both the fractional coordinates and lattice
vectors, map closely onto the conditional flow-matching model FlowMM (Miller et al., 2024). The notable differences
between OMatG-Linear models and FlowMM are as follows: (1) Discrete flow matching on species for OMatG vs. analog
bits for FlowMM. (2) Lattice matrix representation for OMatG vs. lattice parameter representation (lengths and angles) for
FlowMM. (3) Original CSPNet encoder for OMatG vs. slightly modified CSPNet for FlowMM.

OMatG’s CSP results improve upon FlowMM’s. Since the CSP task does not utilize any species learning, the different
handling of species is not sufficient to fully explain the differences in model performance for CSP. For DNG models, the
handling of species is also a relevant difference between OMatG-Linear and FlowMM.

C. Model Architecture
C.1. Graph Neural Network

We implement a message-passing graph neural network (GNN) with CSPNet as introduced in Jiao et al. (2023):

hio) = Png (@) (26)
mg )= Pm ( ., h?_, 1, SinusoidalEmbedding (@’ — wl)> 27
N ..
mi, = _m{, (28)
j=1
hés) = hfsq) +@n(hs—1), mfs)) (29)
ba’ = Pz < E'max 5)) (30)

1,
by = 2 (’I’L ;h(maxs)> GD
J

Here, node embeddings h(s) of node j at layer s are initialized as a function of the atom types, a. Embeddings are
then updated by a message passing scheme through a series of graph convolution layers. Messages are computed with
a parameterized neural network, ¢,,, from neighboring node embeddings as well as information about the lattice, I, and
distance between the fractional coordinates . All necessary drift and denoiser terms are computed from single layer MLPs
applied to the final node embeddings.

For the CFP model that should only predict compositions, we simply remove the input of the lattice [ and the fractional
coordinates « from the computation of the message in Eq. (27). This ensures that the output pflt (aq|z:) of CSPNet for the
composition does not depend on lattice vectors or fractional coordinates, while preserving permutational equivariance.
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C.2. Loss Function

With Egs (2), (3), and (4), we can construct a loss function for the modeling of our joint distribution of interest for the DNG
task,

E(Q) :Et721$07371 [
Azb [|bi(t,:1:t)|2 — 20x(t, g, 1, 2) ~b§3(t, :Et)] + Az.z Uzg(t,xtﬂz — 2zz(t,xt) . z]
+ Aip Ubl@(t, x,5)|2 —20yx(t, g, 21, 2) - bf(t,:ct)] + Az [|zl9(t, xt)\2 - QZf(t,xt) . z}

e [logp(;‘t(aﬂxt)] ).

(32)

For the CSP task, the last line is left out. The A terms correspond to the relative weights of each term in the loss function.
These weighting factors are hyperparameters that are included in our hyperparameter sweep. The respective terms for the
fractional coordinates and lattice vectors corresponding to Eqgs (2) and (3) are equivalent to a mean-squared error (MSE) loss
function as, for instance,

LYSE(0) = By zmg,on |07 (8, 20) — Op(t, w0, 21, 2) ] (33)

for the velocity term. They only differ by a constant term that does not influence gradients. We do not include that constant
term because the possible divergence of 9,y (t) near t = 0 and ¢ = 1 can artificially inflate the absolute value of the loss,
even when antithetic sampling is applied (see Section B.3).

C.3. Hyperparameter Optimization

For every choice of the positional interpolant, sampling scheme, and latent variable ~, an independent hyperparameter
optimization was performed using the Ray Tune package (Liaw et al., 2018) in conjunction with the HyperOpt Python
library (Bergstra et al., 2013) for Bayesian optimization. The tuned hyperparameters include both those relevant during
training—the relative loss weights ), the choice of stochastic interpolant for the lattice vectors, the parameters for chosen
~(t) (if necessary), the sampling scheme, the usage of data-dependent coupling, the batch size, and the learning rate—and
during inference—the number of integration steps, the choice of the noises €(¢) and 7, and the magnitude of the velocity
annealing parameter s for both lattice vectors and atomic coordinates. Hyperparameters are sampled according to the
distributions below®:

» Number of integration timesteps ~ Uniform(100, 1000).

* Batch size ~ Choice(32, 64, 128,256,512, 1024).

* Min. permutational distance data coupling ~ Choice(True, False).

* Relative weigths S\X,b, Xx,z, Ao ~ LogUniform(0.1,2000.0).

* Relative weight :\172 ~ LogUniform(0.1, 100.0).

* Niggli reduction of cell during training ~ Choice(True, False).

* DFM Stochastictity ~ Uniform(0, 50.0).

* Learning rate ~ LogUniform(1075,1072).

» Weight decay ~ LogUniform(10=5,1073).

* Velocity annealing coefficient (both for x and 1) ~ Uniform(0.0, 15.0).

« Diffusion coefficient parameter ¢ (both for x and 1) ~ Uniform(0.1, 10.0).
* Diffusion coefficient parameter y (both for x and 1) ~ Uniform(0.05, 0.3).
« Diffusion coefficient parameter o (both for x and 1) ~ Uniform(0.005, 0.05).

SRelative loss weights for a are only swept over for DNG. Otherwise only weight parameters for x and 1 are optimized. Relative loss
weights for the denoiser are only included when SDE integration is used.
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* Parameter Tyyi.ch Of encoder-decoder interpolant ~ Uniform(0.1,0.9).

* Parameter p of encoder-decoder interpolant ~ Choice(0.5, 1.0).

e Parameter a of (t) functions ~ LogUniform(0.01, 10.0).

« Standard deviation o of Gaussian pg for SBD interpolants ~ LogUniform(0.01, 10.0).
¢ Parameter o, of the o(s) schedule of the VE SBD interpolant ~ Uniform(0.001,0.01).
o Parameter o,y Of the o(s) schedule of the VE SBD interpolant ~ Uniform(0.1,1.0).

The relative loss weight for the velocity of the lattice vectors is fixed: :\Lb = 1. By ensuring that the sum of all relevant loss
weights ) is one, one can transform the relative weights A to the weights A in Eq. (32).

For the CSP models, the hyperparameter optimization attempts to maximize the match rate. For the DNG models, we
combine the metrics in Tab. 2 to a single evaluation metric evalpng that is supposed to be minimized by the hyperparameter
optimization:

evalpng = avg lcombined validity,
avg [wdist(p)7 wdist(Nary), wdist((C’N})} : (34)

avg [1 — coverage recall, 1 — coverage precision” .

Here, the function avg returns the average of its arguments.

We perform hyperparameter optimization for the DNG task only for the MP-20 dataset. For the CSP task, we optimize
hyperparameters for the perov-5 and MP-20 datasets. For the CSP task on the MPTS-52 and Alex-MP-20 datasets, we simply
transfer the hyperparameters of the optimized MP-20 models. We provide hyperparameter-tuned models with the relevant
performance metrics and hyperparameters for perov-5 CSP in Tabs 6 and 7, MP-20 CSP in Tabs 8 and 9, and MP-20 DNG
in Tabs 10 and 11.

Many models were partially trained and compared in the process of hyperparameter tuning: on average 27 models (perov-5)
and 32 models (MP-20) for each choice of positional interpolant, sample scheme, and latent variable.
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Table 6. Study for the perov-5 dataset comparing CSP performance metrics for choice of positional interpolant, sample scheme, and ()
in the latent variable (or width o of the Gaussian base distribution po for the SBD interpolants, and parameters omin and omax Of the o(s)

schedule of the VE SBD interpolant).

Positional Positional Positional Match rate RMSE
interpolant sampling scheme () (%, Full / Valid)  (Full / Valid)
Linear ODE None: v =0 51.86% / 50.62%  0.0757 / 0.0760
Linear ODE LatentSqrt: v = 1/0.034¢ (1 — t) 72.21% / 62.54% 0.3510/0.3444
Linear SDE LatentSqrt: v = /0.028¢ (1 — t) 74.16% 172.87% 0.3307/0.3315
Trigonometric ODE None: v =0 81.51% /52.36% 0.3674/0.3628
Trigonometric ODE LatentSqrt: v = 1/0.011¢ (1 —t) 80.85% /79.55% 0.3864 /0.3873
Trigonometric SDE LatentSqrt: v = 1/0.063¢ (1 —t) 73.37% 171.60 % 0.3610/0.3614
Encoder-Decoder ODE Enc-Dec: v = v/0.66 sin’ <(0‘807’5F§0*f)f?30'80t)) 68.08% / 64.60%  0.4005 / 0.4003
Encoder-Decoder SDE Enc-Dec: 7 = V845 sin® ((garbbisfoirioom ) 7528%/7680% 0.3616/0.3620
VP Score-Based Diffusion ODE o9 = 0.28 83.06% /81.27% 0.3753/0.3755
VP Score-Based Diffusion SDE 00 =0.13 76.54% | 64.46%  0.3529 / 0.3402
VE Score-Based Diffusion ODE 00 = 8.96; Tin = 0.0078, Opax = 0.5165 60.18% /52.97% 0.2510/0.2337

Table 7. Study for the perov-5 dataset CSP comparing hyperparameters for each choice of positional interpolant, sample scheme, and ~(¢)
(as reported in Tab. 6).

Pos. interpolant, Cell interpolant Annealing param. s Integration  Min. dist.

Niggli Azp/Mp/ w2/ Nz

Sampling scheme, v Sampling scheme, () (Pos. / Cell) steps permutation

Linear, ODE, None Linear, ODE, v = 0 14.11/2.90 820 False False 0.9729/0.0271/-/-

Linear, ODE, LatentSqrt Linear, ODE, v = 0 0.008/12.19 820 True True 0.9724/0.0276/-/-

Linear, SDE, LatentSqrt  Linear, ODE, 8.20/1.46 910 True True 0.0024 /0.0051/0.9925 /-
5= /o0t

Trig, ODE, None Linear, ODE, 14.99/14.97 880 True False 0.9983/0.0017/-/-
v =4/0.021¢(1 —1t)

Trig, ODE, LatentSqrt Linear, ODE, v =0 9.68/2.42 110 False False 0.1130/0.8870/-/-

Trig, SDE, LatentSqrt Linear, ODE, 3.43/0.03 900 True True 0.6868/0.0643/0.2489 /-
v =+/0.051¢(1 —1t)

Enc-Dec, ODE, Enc-Dec Linear, ODE, v = 0 14.94/0.318 460 True True 0.8563/0.1437/-/-

Enc-Dec, SDE, Enc-Dec Linear, ODE, 14.55/0.075 930 True False 0.2828/0.0004 /0.7168 / -
S = OTBIE -0

VP SBD, ODE SBD, SDE, ¢ = 0.61 12.79/2.69 130 True True 0.0035/0.0121/-/0.9844

VP SBD, SDE Trig, SDE, 11.54/11.53 350 True False 0.2898/0.1960/0.3259/0.1883
5= /ot

VE SBD, ODE Trig, SDE, 0.003/14.93 380 False False 0.9800/0.0187/-/0.0014
v =4/0.024¢ (1 —1t)
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Table 8. Study for the MP-20 dataset comparing CSP performance metrics for choice of positional interpolant, sample scheme, and (¢)
in the latent variable (or width o of the Gaussian base distribution po for the SBD interpolants, and parameters omin and omax of the o(s)
schedule of the VE SBD interpolant).

Positional Positional Positional Match rate RMSE
interpolant sampling scheme (t) (%, Full / Valid)  (Full / Valid)
Linear ODE None: v =0 69.83% / 63.75% 0.0741/0.0720
Linear ODE LatentSqrt: v = 1/0.258¢ (1 — ¢t) 55.60% / 50.04% 0.1531/0.1494
Linear SDE LatentSqrt: v = 1/0.063¢ (1 — ¢t) 68.20% / 61.88% 0.1632/0.1611
Trigonometric ODE None: v =0 65.30% /58.94% 0.1184/0.1149
Trigonometric ODE LatentSqrt: v = 1/0.033¢ (1 — ¢t) 66.19% /59.81% 0.1002 / 0.0968
Trigonometric SDE LatentSqrt: v = 1/0.049¢ (1 — ¢t) 68.90% / 62.65% 0.1249/0.1235
Encoder-Decoder ODE Enc-Dec: v = v/1.99 sin” (Wg%;%) 55.15% /49.45% 0.1306 /0.1260
Encoder-Decoder SDE Enc-Dec: v = v/0.04 sin? ((0_42701(;_)3';?&[12_4%)Ovs) 57.69% /52.44% 0.1160/0.1125
VP Score-Based Diffusion ODE oo = 0.22 45.57% /1 39.48% 0.1880/0.1775
VP Score-Based Diffusion SDE oo = 2.29 42.29% / 38.08% 0.2124/0.2088
VE Score-Based Diffusion ODE 00 = 9.77; Omin = 0.0047, opnax = 0.9967 63.79% / 57.82% 0.0809 / 0.0780

Table 9. Study for the MP-20 dataset comparing CSP hyperparameters for choice of positional interpolant, sample scheme, and () (as
reported in Tab. 8).

Pos. interpolant, Cell interpolant Annealing param. s Integration ~ Min. dist. L

Sampling scheme, ~y Sampling scheme, () (Pos. / Cell) steps permutation Mgl dap/MealNaslMs

Linear, ODE, None Linear, ODE, v = 0 10.18/1.82 210 False False 0.9994/0.0006/ -/ -

Linear, ODE, LatentSqrt Trig, ODE, 7.76/4.12 690 False True 0.9976/0.0024/-/ -
) = V26— D)

Linear, SDE, LatentSqrt  Linear, SDE, 11.58/5.08 310 False False 0.0073/0.0642/0.9154/0.0131
v =+/0.132¢ (1 —t)

Trig, ODE, None Enc-Dec, SDE, 12.34/3.61 170 False False 0.9967/0.0023/-/0.0010
7 = V5.2Tsin® ((0.41701(558.fii)tt2,41t)0 5)

Trig, ODE, LatentSqrt Linear, SDE, 13.54/2.38 780 False True 0.9830/0.0167 /-/0.0003
3 = OOTTE(— 1)

Trig, SDE, LatentSqrt Trig, ODE, v =0 11.48/0.43 740 True True 0.2468/0.0301/0.7231/-

Enc-Dec, ODE, Enc-Dec  Trig, SDE, 12.29/4.30 820 False True 0.6892/0.1235/-/0.1873
) = O]

Enc-Dec, SDE, Enc-Dec  Linear, ODE, 3.78/1.14 710 False True 0.6143/0.0063 /0.3794 / -
)= VIS0

VP SBD, ODE Linear, ODE, v = 0 6.61/2.45 890 True True 0.9598/0.0402/-/-

VP SBD, SDE Linear, ODE, 6.46/0.67 600 True True 0.6060/0.0112/0.3828 /-
v =/3684t(1-1)

VE SBD, ODE Linear, SDE, 8.28/0.43 660 False False 0.9813/0.0005/-/0.0182

v =+/0017t(1—1)
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Table 10. Study for the MP-20 dataset comparing DNG performance metrics for choice of positional interpolant, sample scheme, and ~(¢)
in the latent variable (or width o of the Gaussian base distribution po for the SBD interpolants, and parameters omin and omax Of the o(s)
schedule of the VE SBD interpolant). S.U.N. rates are computed according to the MatterSim potential.

Positional Positional Positional S.UN. RMSD
interpolant sampling scheme ~y(t) Rate

Linear ODE None: v =0 18.59% 0.2939
Linear ODE LatentSqrt: v = /1.450¢ (1 — t) 9.95%  1.6660
Linear SDE LatentSqrt: v = /0.018¢ (1 — t) 22.07% 0.6148
Trigonometric ODE None: v =0 19.63% 0.8289
Trigonometric ODE LatentSqrt: v = \/m 19.96% 0.6570
Trigonometric SDE LatentSqrt: v = \/m 17.60% 0.7763
Encoder-Decoder ODE Enc-Dec: v = sin?(rt) 17.59% 0.3899
Encoder-Decoder SDE Enc-Dec: v = v/0.10 sin? ( (0_73_0#7(558'57120_:_73 t)‘)‘5> 16.27% 1.1795
VP Score-Based Diffusion ODE oo =10.23 17.30% 1.1376
VP Score-Based Diffusion SDE o9 =1"7.14 22.10% 0.7631
VE Score-Based Diffusion ODE oo = 0.45; omin = 0.0021, opax = 0.8319 20.38% 0.6644

Table 11. Study for the MP-20 dataset comparing DNG hyperparameters for choice of positional interpolant, sample scheme, and ~(t) (as
reported in Tab. 10).

Pos. interpolant, Cell interpolant Annealing param. s Integration  Min. dist. Species

Sampling scheme, Sampling scheme, ~(t) (Pos. / Cell) steps permutation Mgl noise 7 Kb/ X/ Dae/ XA

Linear, ODE, None Linear, ODE, v = 0 13.62/1.07 150 True False  7.08 0.9775/0.0006/-/-/0.0218

Linear, ODE, LatentSqrt Enc-Dec, SDE, 14.83/5.91 130 True False 23.87 0.7683/0.0089/-/0.0012/0.2216
~ = /7.88sin? (%)

Linear, SDE, LatentSqrt ~ Linear, ODE, v = 0 6.33/1.07 710 True False  0.19  0.1309/0.0065/0.2708 / -/ 0.5918

Trig, ODE, None Trig, ODE, 8.59/0.29 860 True False  32.69 0.3302/0.0023/-/-/0.6675
v = /TI83E(1—1)

Trig, ODE, LatentSqrt ~ Linear, SDE, 7.79/0.30 680 True True 2725 0.2322/0.0035/-/0.3338/0.4306
+ = JOSIII=1)

Trig, SDE, LatentSqrt Trig, ODE, 12.80/4.36 760 True False 13.15 0.6304/0.1582/0.0753/-/0.1360
v = OBIGEI 1)

Enc-Dec, ODE, Enc-Dec Linear, ODE, v = 0 10.27/0.08 840 False False  0.85 0.7268/0.0084/-/-/0.2648

Enc-Dec, SDE, Enc-Dec  Linear, ODE, 7.87/3.92 610 False False 19.78 0.2143/0.1547/0.1968 / - / 0.4341
v =/1.651¢(1—t)

VP SBD, ODE Trig, ODE, 2.30/2.74 710 False False 2027 0.4053/0.0447/-/-/0.5500
v =/7.797t(1—1t)

VP SBD, SDE Trig, SDE, 9.06/11.77 870 False False 852  0.5184/0.0044/0.0008 /0.1180/0.3584
5 =+/3.100% (1 — 1)

VE SBD, ODE Linear, SDE, 12.72/0.98 330 False True  5.87  0.2209/0.0430/-/0.6371/0.0990

v =/0.913¢(1 —1t)
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D. Evaluation Metrics

In this section, we provide details and discussion of the various metrics we use to evaluate CSP and DNG models (see
Section 5.1).

D.1. Match Rate and RMSE

The tradeoff between match rate and RMSE most strongly influences the perov-5 dataset. We show in Fig. 7 how different
positional interpolants for the atomic coordinates (trigonometric vs. linear with ODE sampling schemes) learn to generate
matched structures differently. For the linear case, the change in matching tolerance (via the 1t ol parameter of Pymatgen’s
StructureMatcher) makes little difference. For the trigonometric interpolant, it makes a far more significant difference
and leads to a much higher match rate, suggesting that the trigonometric interpolant learns structures more reliably but less

accurately.

Itol=0.2 Itol=0.3
—All T— Al
*1—Valid only *1— Valid only
2 2.
OMatG £ £
. ‘: 10 S5 3
(Trig) 2 g
RMSE (dimensionless) RMSE (dimensionless
mr all =20.73 mr_all = 80.85
mr_valid = 20.13 mr_valid = 79.55
- —All . —All
— Valid only . — Valid only
) >, 10
OMatG £ . e
. = =]
(Linear) g2 8
RMSE (dimensionless) RMSE (dimensionless)
mr_all = 46.58 mr_all = 51.86
rnr:valid =45.60 mr_valid = 50.75

Figure 7. We show here the effect of making matching more difficult by decreasing the length tolerance used by Pymatgen’s
StructureMatcher. We plot the density of the normalized RMSE distributions from CSP models trained on the perov-5 dataset
(Linear and Trigonometric positional interpolants with ODE sampling schemes). We note that the curves for all generated structures and
only valid generated structures overlap significantly.

D.2. Validity Metrics

The structural validity of generated structures is defined according to the bond lengths present in the structure—all lengths
must be >0.5 A to be considered valid. The compositional validity is defined according to the SMACT software package
(Davies et al., 2019). We note that the default oxidation states have been updated with the release of SMACT version 3.0
which changed the DNG compositional validity rates by several percent. This also impacts the CSP match rate when filtered
by valid structures. As such, all values for all models were recomputed with the most up-to-date version (3.0) of the SMACT

software.
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D.3. Coverage and Property Statistics

As in (Xie et al., 2022), we evaluate coverage recall and precision (reported as rates) by measuring the percentage of
crystals in the test set and in the generated samples that match each other within a defined fingerprint distance threshold.
For structural matching, we use CrystalNN, and for compositional matching, we use Magpie fingerprints. Additionally,
we report Wasserstein distances between property distributions of the generated and reference datasets. The considered
properties are the mass density (p), the number of unique elements (/Nary), and the average coordination number for each
element in the unit cell ((C'N)).

D.4. Calculation of S.U.N. Rates

Evaluation of DNG structures was performed using scripts provided by the developers of MatterGen (MatterGen, 2025). A
total of 10,000 structures were generated from each of OMatG, DiffCSP, FlowMM, and MatterGen-MP. These struc-
tures were then filtered to remove any that contained elements not supported by the MatterSim potential (version
MatterSim-v1.0.0-1M) (Yang et al., 2024) or the reference convex hull. These included heavy elements with
atomic numbers >89, radioactive elements, and the noble gases (specifically: ‘Ac’, ‘U’, ‘Th’, ‘Ne’, ‘Tc’, ‘Kr’, ‘Pu’, ‘Np’,
‘Xe’, ‘Pm’, ‘He’, ‘Pa’).” Stability and novelty were computed with respect to the default dataset provided by MatterGen
which contains 845 997 structures from the MP-20 (Jain et al., 2013; Xie et al., 2022) and Alexandria (Schmidt et al.,
2022b;a) datasets. This provides a more challenging reference for computing novelty as each model was trained only on the
~ 27000 structures from the MP-20 training set.

The MatterSim potential was utilized for the first structural relaxation, requiring far less compute resources compared to full
DFT. Results derived from the MatterSim-relaxed structures are shown in Tab. 12. Following the MatterSim relaxtions, 1000
structures were relaxed with DFT. All DFT relaxations utilized MPGGADoubleRelaxStatic flows from the Atomate2
(Ganose et al., 2025) package to produce MP20-compatible data.

Comparing the results from Tab. 12 to Tab. 3, we find that overall there is reasonable agreement between the metrics
computed at the machine learning potential and DFT level. Relative performance ordering between methods remains fairly
consistent, allowing for qualitative trends to be made at the much cheaper ML potential level. Nevertheless, for a full
quantitative understanding, DFT is essential.

Table 12. Stability (defined as < 0.1 eV/atom above hull), uniqueness, and novelty results from de novo generation on the MP-20 dataset
computed for the same models as in Tab. 2. All evaluations are performed with the MatterGen code base (MatterGen, 2025) with respect
to the included reference Alex-MP-20 dataset. The average RMSD is between the generated and the relaxed structures, and the average
energy above hull is reported in units of eV/atom. All structures were relaxed with the MatterSim potential. Note that the results in Tab. 3
relied on a subsequent DFT relaxation.

Method (E)/N (l) RMSD  Novelty Stability S.UN.
abovehull (A,]) Rate(%,1) Rate(%,1) Rate(%,7)

DiffCSP 0.1984 0.367 72.73 43.04 19.00
FlowMM 0.2509 0.651 72.76 37.47 13.86
MatterGen-MP  0.1724 0.142 72.17 47.07 22.66
OMatG

Linear 0.1823 0.615 72.00 45.00 22.07
Trig 0.1857 0.657 65.35 51.40 19.96
Enc-Dec 0.1699 0.390 54.97 58.56 17.59
SBD 0.2189 0.763 75.80 42.60 22.10
CFP + CSP 0.2340 0.488 75.85 4221 20.50

D.5. Stability and Structural Analysis of Generated Structures

In Fig. 8, we show the distribution of computed energies above the convex hull across various OMatG models, showing best
stability of generated structures for linear, encoder-decoder, trigonometric, and VP SBD positional interpolants.

"These elements were not removed from any datasets during training.
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Figure 8. Histogram of the computed energies above the convex hull for structures generated by the five OMatG DNG models highlighted
in the main text (see Table 3). We show that all positional interpolants are effective at generating structures close to the convex hull, with
the VP SBD interpolant and CFP + CSP method performing slightly worse than other interpolants.

By evaluating the distribution of Nary structures (Fig. 9), the distribution of average coordination numbers (both by structure
in Fig. 10 and by species in Fig. 11), as well as distribution of crystal systems (Fig. 12) which are related to a structure’s Bra-
vais lattice, we provide qualitative analysis for model performance. Space groups (and thus crystal systems) were determined
using the spglib software (Togo et al., 2024) and choosing the most common space group identification with exponentially
(geometrically) decreasing tolerance. We find that OMatG models have superior performance on the Nary metric across the
board, with DiffCSP performing the most poorly. Specific OMatG models (with positional Encoder-Decoder interpolant and
CFP+CSP with Linear interpolant) and DiffCSP showed the best performance in matching the distribution of average coordi-
nation number for each structure, particularly for high-coordinated structures. The average coordination number for species
were best-matched by OMatG models across the board (with the exception of the OMatG-VPSBD model which tended to
overpredict the coordination environments), and broadly underpredicted by DiffCSP, FlowMM, and MatterGen-MP. Finally,
the best matching results for distribution across crystal systems was for the OMatG CFP+CSP model, with all other inter-
polants (and DiffCSP and FlowMM) showing a propensity for generating low-symmetry (triclinic and monoclinic) crystal
structures. Overall, we find that OMatG models closely reproduce the elemental and structural diversity present in the data.
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Figure 9. Qualitative performance of the distribution of Vary crystals for (a) Non-OMatG models and (b) OMatG models across structural
benchmarks computed on generated structures and test set structures from the MP-20 dataset. Atomic elements are listed in increasing

atomic number from left to right.

0.6

Density

Density

Density

FlowMM

= Generated
— Test

1 2 3 4 5 6 7
Unique element count

OMatG-Trig

0.6
0.5

= Generated
— Test

0.4
0.3
0.2
0.1

0.0

1 2 3 4 5 6
Unique element count

OMatG-VESBD

0.6

mmm Generated
- Test

1 2 3 4 5 6 7
Unique element count

30

MatterGen-MP

0.6

Density

mm Generated
— Test

1 2 38 4 5 6
Unique element count

OMatG-EncDec

0.6
0.5
0.4
0.3

Density

0.2

0.1

0.0-

mmm Generated
o Test

1 2 3 4 5 6
Unique element count

OMatG-CFP+CSP

0.6
0.5
0.4
0.3

Density

0.2

0.1

W Generated
o Test

0.0-

1 2 3 4 5 6
Unique element count




Open Materials Generation with Stochastic Interpolants

Density

Density

Density

Figure 10. Qualitative performance of the distribution of average coordination number by structure for (a) Non-OMatG models and (b)
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Figure 12. Qualitative performance of the distribution of crystal system by structure for (a) Non-OMatG models and (b) OMatG models
across structural benchmarks computed on generated structures and test set structures from the MP-20 dataset.
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E. Large Language Models as Base Distributions

FlowLLM (Sriram et al., 2024) combines large language models (LLMs) with the conditional flow-matching framework
FlowMM (Miller et al., 2024) to design novel crystalline materials in the DNG task. A fine-tuned LLM serves as the base
distribution and samples initial structures; FlowMM then refines the fractional coordinates and lattice parameters as in the
CSP task. This idea can be similarly applied to OMatG, which allows the use of LLMs within the general SI framework for
materials generation.

We extend OMatG to OMatG-LLM by allowing for LLM-generated structures as the initial structures. We evaluate both
FlowLLM and OMatG-LLM on the LLM dataset released by FlowLLM. Specifically, we use the training (containing
40 000 structures) and validation sets (6000 structures) from https://github.com/facebookresearch/flowmm
and the LLM-generated initial structures (10 000 structures) from https://github.com/facebookresearch/
crystal-text—11m as the test set. These initial structures are generated by a fine-tuned Llama-70B model (Gruver
et al., 2024). As shown in Tab. 13, OMatG-LLM’s linear and trigonometric interpolants outperform FlowLLM in almost
all DNG metrics. Since the Wasserstein distance with respect to the Narity distributions and the compositional validity
only depend on the atomic species generated by the LLM, these two metrics are necessarily equal for FlowLLM and
OMatG-LLM. Note that the original FlowLLM (Sriram et al., 2024) is trained on 3M LLM-generated structures while
our experiments are conducted on the 40K structures open-sourced by the authors. The performance of FlowLLM in our
experiments thus differs from the scores reported in (Sriram et al., 2024).

Table 13. FlowLLM’s and OMatG-LLM’s performance (with linear and the trigonometric interpolants) when using the same fine-tuned
LLM (Gruver et al., 2024) as the base distribution. The best performance for each metric is in bold.

Method Validity (% 1) Coverage (% T) Property () S.U.N. Rate (% 1)
Structural  Composition Combined Recall Precision wdist (p) wdist (Nary) wdist ((CN))

FlowLLM 96.27 86.40 83.55 97.98 96.55 0.9922 0.5427 0.5936 10.28

OMatG-LLM

Linear 97.86 86.40 84.85 99.16 98.40 0.9100 0.5427 0.8600 12.61

Trigonometric (ODE) 95.70 86.40 83.25 98.57 98.24 0.7410 0.5427 0.6165 11.14

Trigonometric (SDE) 97.78 86.40 84.72 97.41 99.12 3.6214 0.5427 0.4448 11.86

F. Computational Costs

In Tabs 14 and 15, we present the computational costs for both the CSP and DNG tasks. We compare the cost of training
and integrating OMatG on the MP-20 dataset and show low computational costs for OMatG’s ODE scheme for both training
and inference. The SDE scheme is more expensive but competitive. For these experiments, we use an Nvidia RTX8000
GPU with a batch size of 512 and 1000 integration steps.

Table 14. Computational costs for Diff CSP, FlowMM, OMatG (ODE) and OMatG (SDE) models trained on the CSP task.

Task OMatG (ODE) FlowMM OMatG (SDE) DiffCSP

Training (s / epoch) 56.8 £0.75 70.35 +£1.38 89.0+1.41 21.89+0.31
Sampling (s / batch) 313.67 £9.29 424.1254+11.78 479.5+£13.5 338.11 +£11.93

Table 15. Computational costs for Diff CSP, FlowMM, OMatG (ODE) and OMatG (SDE) models trained on the DNG task.

Task OMatG (ODE) FlowMM OMatG (SDE) DiffCSP

Training (s / epoch) 75.26 £ 2.08 73.32£047 102.65+1.87 21.85+0.36
Sampling (s / batch) 473.14 £13.20 469.93 £6.12 617.2+18.2 322.63 +10.28
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