
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW TO SQUARE TENSOR NETWORKS
AND CIRCUITS WITHOUT SQUARING THEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Squared tensor networks (TNs) and their extension as computational graphs—
squared circuits—have been used as expressive distribution estimators, yet sup-
porting closed-form marginalization. However, the squaring operation introduces
additional complexity when computing the partition function or marginalizing
variables, which hinders their applicability in ML. To solve this issue, canonical
forms of TNs are parameterized via unitary matrices to simplify the computation of
marginals. However, these canonical forms do not apply to circuits, as they can rep-
resent factorizations that do not directly map to a known TN. Inspired by the ideas
of orthogonality in canonical forms and determinism in circuits enabling tractable
maximization, we show how to parameterize squared circuits to overcome their
marginalization overhead. Our parameterizations unlock efficient marginalization
even in factorizations different from TNs, but encoded as circuits, whose structure
would otherwise make marginalization computationally hard. Finally, our exper-
iments on distribution estimation show how our proposed conditions in squared
circuits come with no expressiveness loss, while enabling more efficient learning.

1 INTRODUCTION

Tensor networks (TNs) are low-rank factorizations of tensors with applications in machine learning
(Stoudenmire and Schwab, 2016; Han et al., 2018; Cheng et al., 2019; Novikov et al., 2021; Tomut
et al., 2024), quantum physics (Schollwoeck, 2010; Biamonte and Bergholm, 2017) and quantum
computing (Markov and Shi, 2008). A TN factorizes a complex function ψ over a set of variables
X = {Xi}di=1 having domain dom(X), which can be then used to model a probability distribution
via modulus squaring, i.e., p(X) = Z−1|ψ(X)|2, where Z =

∫
dom(X)

|ψ(x)|2 dx is the partition
function. Recently, Loconte et al. (2025b;a) have shown that the computations done with a TN can
be generalized into computational graphs akin to neural networks, called circuits (Darwiche and
Marquis, 2002; Choi et al., 2020; Vergari et al., 2021). This is done by casting contractions between
tensors in a TN into a hierarchical composition of sum and product computational units.

The language of circuits offers the opportunity to flexibly build novel TN factorizations by stacking
layers of sums and products as “Lego blocks” (Loconte et al., 2025a), including different basis input
functions, and providing a seamless integration with deep learning architectures (Shao et al., 2022;
Gala et al., 2024a;b). Moreover, viewing TNs as circuits allows one to exploit a rich framework
of structural properties, defined over their computational graph and parameterization, to compose
circuits and compute several probabilistic reasoning tasks in closed-form. These include the evaluation
of information-theoretic measures and expectations (Vergari et al., 2021), which is crucial for example
in reliable neurosymbolic AI (Ahmed et al., 2022; Kurscheidt et al., 2025; Marconato et al., 2024;
2023) and causal inference (Choi et al., 2021; Wang et al., 2024). This is done with probabilistic
circuits (PCs)—circuits encoding probability distributions, that are traditionally restricted to have
positive parameters only, i.e., monotonic PCs (Shpilka and Yehudayoff, 2010).

To increase the expressiveness of PCs for representing complicated distributions, one can equip them
with real parameters and square them (Loconte et al., 2024), similar to TNs. Mixing squared PCs
together also provides further expressiveness gains (Loconte et al., 2025b). However, differently from
monotonic PCs that are not squared, squared PCs require additional overhead to be normalized, i.e.,
to compute Z. That is, under particular structural properties, squaring circuits and computing Z has
quadratic complexity w.r.t. the circuit size (Vergari et al., 2021). This quadratic complexity overhead

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

carries over the computation of marginals that are simpler than the partition function, i.e., where only
a proper subset of variables are integrated out. This overhead limits the application of squared PCs in
settings where performing exact yet efficient conditioning is crucial, e.g., as for sampling (Loconte
et al., 2024) and in lossless data compression (Yang et al., 2022; Liu et al., 2022).

One possible solution might come from the TN literature, where canonical forms are used to simplify
the computation of marginals (Schollwoeck, 2010; Bonnevie and Schmidt, 2021). E.g., instead of
computing the partition function Z explicitly in a TN, a canonical form ensures |ψ(X)|2 is an already-
normalized distribution, i.e., Z = 1. In practice, canonical forms are obtained by parameterizing a
TN by means of (semi-)unitary matrices. However, different TNs need different canonical forms, and
each of them is tailored for specific marginals only, yielding left/right/mixed/upper canonical forms
in matrix-product states (MPS) (Orús and Vidal, 2008) and tree TNs (TTNs) (Shi et al., 2006; Cheng
et al., 2019). These canonical forms cannot be applied to circuits, as they might not correspond to a
known factorization method or TN (Loconte et al., 2025a). Here, we extract the core principle behind
canonical forms and reformulate it in terms of new structural properties of circuits. Our conditions
revolve around the idea of orthogonality between units of the circuit computational graph, which we
find to be surprisingly related with a classical circuit property, called determinism, which so far has
been mostly exploited in the context of tractable maximization (Darwiche and Marquis, 2002) with
PCs and never linked to TNs before.

Our main contributions are the following: (i) We derive properties based on orthogonality to enable
linear-time marginalization in squared PCs, thus improving over its usual quadratic complexity w.r.t.
their size (§3). (ii) Since PCs often consist of densely-connected layers of sums and products, we relax
our orthogonality properties over scalar units in favor of a parameterization over layers, exploiting
(semi-)unitary matrices instead. While this parameterization is similar to canonical forms in TTNs,
we show it generalizes to a strictly larger set of factorizations when represented as circuits (§4).
(iii) Under this parameterization, we derive an algorithm to marginalize any variable subset whose
best-case complexity scales linearly w.r.t. the number of layers and their size, thus finding a better
complexity bound than a previous known one that squared all layer sizes (§5). (iv) Our experiments
on distribution estimation show no performance loss under the proposed circuit properties, while
enabling more efficient training and the use of previously unavailable circuit architectures (§6).

2 FROM TENSOR NETWORKS TO SQUARED PROBABILISTIC CIRCUITS

We introduce the close relationship between TNs and circuits (Loconte et al., 2024; 2025a), and
show how they can encode probability distributions via modulus squaring. TNs encode hierarchical
factorizations of high dimensional tensors (or functions). Perhaps the most popular TN factorization
is the matrix-product state (MPS) (Pérez-García et al., 2007), also called tensor-train (Oseledets,
2011). A rank-R MPS factorization encodes a function ψ over variables X = {Xj}dj=1 as

ψ(x) =
∑R

i1=1

∑R

i2=1
· · ·
∑R

id−1=1
ψi1
1 (x1)ψ

i1,i2
2 (x2) · · ·ψid−2,id−1

d−1 (xd−1)ψ
id−1

d (xd), (1)

where ψ1 : dom(X1) → CR, ψd : dom(Xd) → CR, and ψk : dom(Xk) → CR×R with 1 < k < d
are the factors. The superscript indices in Eq. (1) select scalar entries from the factors. Note that in the
case of X being discrete with finite domain, Eq. (1) can be seen as a factorization of a d-dimensional
tensor (Kolda, 2006; Kolda and Bader, 2009). Given an assignment x = ⟨x1, . . . , xd⟩ ∈ dom(X),
computing the value of ψ(x) translates to evaluating the univariate factors, products and sums in
Eq. (1), i.e., a complete contraction of the TN (Orús, 2013). While the naive way of contracting the
TN in Eq. (1) requires time O(Rd), one can do it in time O(R2d) by computing products and sums
in a precise left-to-right ordering, i.e., as d− 1 matrix-vector products. The computational graph of
sums and products resulting from the TN contraction in a particular ordering is a circuit.
Definition 1 (Circuit (Choi et al., 2020; Vergari et al., 2021)). A circuit c is a parameterized
computational graph over variables X encoding a function c : dom(X) → C, and comprising three
kinds of units: input, product and sum. Each product or sum unit n receives the outputs of other
units as inputs, denoted with the set in(n). Each unit n encodes a function cn defined as: (i)
fn(X) if n is an input unit, where fn is a function over the variable sc(n) = {X} ⊆ X, called its
scope, (ii)

∏
i∈in(n) ci(sc(i)) if n is a product, and (iii)

∑
i∈in(n) wn,ici(sc(i)) if n is a sum, where

{wn,i ∈ C \ {0}}i∈in(n) are the parameters of the sum unit. The scope of a product or sum unit n is
the union of the scopes of its inputs, i.e., sc(n) =

⋃
i∈in(n) sc(i).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Matrix-product states (MPSs) are circuits. A
MPS TN of rank R = 2, here in Penrose graphical notation
(bottom right), models a function ψ over X = {X1, X2, X3}
as ψ(X) =

∑R
i1=1

∑R
i2=1 ψ

i1
1 (X1)ψ

i1,i2
2 (X2)ψ

i2
3 (X3).

Given an assignment x = ⟨x1, x2, x3⟩, the circuit computes
the complete contraction of the MPS, i.e., ψ(x) (above left).
The circuit input units () compute the factors ψi1

1 , ψi1,i2
2 ,

ψi2
3 over X1, X2, X3, highlighted in their respective colors.

The composition of product () and sum () units encode
the contraction of the factors following a left-to-right order-
ing, i.e., multiplying and summing the violet (ψ1) and orange
(ψ2) factors before the green one (ψ3). Here, sum weights
are fixed to 1, but can generally be any complex number.

i1 i2

ψ1
1(x1)

ψ2
1(x1)

ψ1,1
2 (x2)

ψ2,1
2 (x2)

ψ1,2
2 (x2)

ψ2,2
2 (x2)

ψ1
3(x3)

ψ2
3(x3)

ψ(x1, x2, x3)

X1 X2 X3

ψ1 ψ2 ψ3

The circuit size, denoted as |c|, is the number of edges between the units. Evaluating a circuit c on an
variables assignment x, i.e., computing c(x), is done by evaluating the input functions, products and
sums, by following the computational graph, thus requiring time O(|c|). Fig. 1 shows an example
of an MPS approximation of ψ represented in Penrose graphical notation (Penrose, 1971), and the
circuit c encoding its left-to-right contraction, i.e., ψ(x) = c(x) as in Eq. (1). The circuit language
allows us to build factorizations by directly connecting sums and products, which in the end might not
correspond to any known TN structure or other tensor factorization method (Loconte et al., 2025a).

Structural properties specified over a circuit graph structure provide sufficient conditions to guaran-
tee the tractable computation of quantities useful in a number of scenarios (Darwiche and Marquis,
2002; Vergari et al., 2021; Wang et al., 2024). For example, a circuit c supports the exact integration
of any variable subset in time O(|c|) if (i) its input functions can be integrated efficiently and (ii) it is
smooth and decomposable (Choi et al., 2020), as formalized next.
Definition 2 (Smoothness and decomposability (Darwiche and Marquis, 2002)). A circuit is smooth if
for every sum unit n, all its input units depend on the same variables, i.e., ∀i, j ∈ in(n) : sc(i) = sc(j).
A circuit is decomposable if the distinct inputs of every product unit n depend on disjoint sets of
variables, i.e., ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.

Smoothness and decomposability are related to multilinearity, a classical property of tensor factor-
izations (Kolda and Bader, 2009), as a smooth and decomposable circuit is guaranteed to encode
a multilinear function (or polynomial) w.r.t. its input functions (Martens and Medabalimi, 2014;
Oliver Broadrick, 2024). We will make use of another property known as determinism, which instead
ensures tractable maximum-a-posteriori inference in circuits (Darwiche, 2009; Choi et al., 2020).
Definition 3 (Determinism (or support-decomposability) (Darwiche and Marquis, 2002; Choi et al.,
2020)). A sum unit n is deterministic (or support-decomposable) if all its inputs have pairwise disjoint
supports, i.e., ∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅, where supp(n) = {x ∈ dom(sc(n)) |
cn(x) ̸= 0}. A circuit is deterministic if every sum unit in it is deterministic.

Unlike the relationship between smoothness, decomposability and multilinearity, a property similar
to determinism has not been explored in tensor factorization techniques. The relationship between
determinism and orthogonality will be crucial in §3 to devise canonical forms for circuits.

A probabilistic circuit (PC) is a circuit c encoding a non-negative function, thus modeling a possibly
unnormalized probability distribution p(x) = Z−1c(x), where Z is the partition function (Choi et al.,
2020; Vergari et al., 2021). To construct and learn a circuit that is a PC, its parameters and input
functions can be enforced to be non-negative, i.e., they are monotonic PCs (Shpilka and Yehudayoff,
2010). This in fact ensures the circuit outputs are also non-negative. However, PCs whose parameters
can be negative, i.e., non-monotonic PCs, have been shown to be strictly more expressive models than
monotonic ones (Valiant, 1979). Building and learning non-monotonic PCs flexibly while ensuring
they compute a non-negative function is in general a challenging problem (Dennis, 2016). However,
a family of non-monotonic PCs can be constructed via squaring, as we detail next.

Born machines and squared PCs. As mentioned above, to model a distribution p(X) we can take
the modulus square of a complex-valued TN, resulting in a model often called Born machine (Dirac,
1930; Glasser et al., 2018). One can similarly build non-monotonic PCs by squaring circuits with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

real or complex parameters, which comes with theoretically guarantees regarding their increased
expressiveness over monotonic ones (Loconte et al., 2024; 2025b). The property-driven framework of
circuits precisely tells us how to build a circuit such that its squaring can be marginalized efficiently.
This problem is analogous to the one of representing the multiplication of two TNs as yet another
TN (Michailidis et al., 2024). Formally, given a circuit c, a squared PC c2 encodes a distribution
p(x) = Z−1|c(x)|2, where Z =

∫
dom(X)

|c(x)|2 dx. Computing Z or any marginal tractably requires
representing c2 as yet another decomposable circuit (Def. 2), which can be obtained by multiplying c
with its conjugate c∗. While the conjugate circuit c∗ can be efficiently obtained from c by simply
taking the conjugate of the sum parameters and input functions (Yu et al., 2023), realizing the product
of any two decomposable circuits as a decomposable circuit is in general a #P-hard problem (Vergari
et al., 2021). However, it can be done efficiently if these circuits are compatible.
Definition 4 (Compatibility (Vergari et al., 2021)). Two smooth and decomposable circuits c1, c2
over variables X are compatible if (i) the product of any pair fn, fm of input functions respectively
in c1, c2 over the same variable can be efficiently integrated, and (ii) any pair n, m of product units
respectively in c1, c2 having the same scope decompose their scope over their inputs in the same way.

We say that a circuit is structured-decomposable if it is compatible with itself (Pipatsrisawat and
Darwiche, 2008), i.e., all products having the same scope decompose it towards their inputs in the
same way. As detailed in App. C, circuits corresponding to MPS and TTN TNs are structured-
decomposable. If a circuit c is structured-decomposable, then its products implicitly encode a tree-
like partitioning of variables (Kisa et al., 2014), which ensures that the product between c and c∗ can
be encoded by a decomposable circuit of size O(|c|2). This can be done via a circuit multiplication
algorithm as shown in Vergari et al. (2021). The quadratic increase in circuit size is why computing
the partition function or any marginal ultimately requires time O(|c|2). In the next section, we address
this quadratic complexity overhead in squared PCs by deriving novel structural properties.

3 RELAXING DETERMINISM VIA ORTHOGONALITY

By showing how both TN canonical forms and determinism in circuits bring simplifications when
computing marginals, we translate the key idea of orthogonality to the language of circuits. Consider
an MPS encoding ψ over variables X = {X1, X2}, i.e., ψ(x1, x2) =

∑R
i=1 ψ

i
1(x1)ψ

i
2(x2). As an

example, consider a left canonical form requiring the factors {ψi
1}Ri=1 over X1 to satisfy the orthonor-

mality condition
∫
dom(X1)

ψi
1(x1)ψ

j
1(x1)

∗ dx1 = ⟨ψi
1 | ψj

1⟩ = δij , where δij is the Kronecker delta.
Under this condition, we can simplify the marginal p(x2) =

∫
dom(X1)

|ψ(x1, x2)|2 dx1 as∑R

i=1

∑R

j=1
⟨ψi

1 | ψj
1⟩ ψi

2(x2)ψ
j
2(x2)

∗ =
∑R

i=1
|ψi

2(x2)|2, (2)

because the inner product ⟨ψi
1 | ψj

1⟩ is zero whenever i ̸= j. We observe that the same simplification
from O(R2) to O(R) sums would occur also if the factors {ψi

1}Ri=1 were instead defined over non-
overlapping supports, i.e., ∀i, j ∈ [R], i ̸= j, at least one between ψi

1 and ψj
1 is zero. Exploiting

factors having non-overlapping supports rather than being orthogonal suggests us we could use
determinism in order to simplify marginalization in squared PCs. Formally, given n a deterministic
sum unit computing cn(x1, x2) =

∑
i∈in(n) wici(x1, x2), we can write |cn(x1, x2)|2 as∑

i∈in(n)

∑
j∈in(n)

wiw
∗
j ci(x1, x2)cj(x1, x2)

∗ =
∑

i∈in(n)
|wi|2 |ci(x1, x2)|2, (3)

since due to determinism at least one between ci and cj is zero whenever i ̸= j. From Eq. (3)
we recover that the number of input connections to a deterministic sum unit does not quadratically
increases when taking its modulus square. Therefore, by recursively applying Eq. (3) for all sum
units in a deterministic circuit c, it turns out that a decomposable squared PC can be obtained from c
of the same size. For this reason, the satisfaction of determinism allows us to compute any marginal
in the squared PC in time O(|c|) rather than O(|c|2). However, the caveat is that taking the modulus
square of a deterministic circuit can be done by simply replacing each weight and input function
with their modulus square, resulting in a PC with non-negative activations only (e.g., see the |wi|2
in Eq. (3)). As such, real or complex parameters would not bring any expressiveness advantage
over monotonic PCs, as also noticed in Loconte et al. (2024, Prop. 4). This begs the question: How

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

can we parameterize squared PCs to overcome their computational overhead without requiring
determinism? Inspired by the simplification in Eq. (2), we introduce a relaxation of determinism
called orthogonality, requiring sum units to receive input from units computing orthogonal functions.
Definition 5 (Orthogonality (or ortho-decomposability)). A smooth sum unit n with sc(n) = Z is
orthogonal if all pairs of distinct inputs encode orthogonal functions, i.e., ∀i, j ∈ in(n), i ̸= j :∫
dom(Z)

ci(z)cj(z)
∗ dz = 0. A circuit is orthogonal if all sum units in it are orthogonal.

Unlike determinism, orthogonality does not necessarily require the inputs to sum units to have disjoint
support. As we formalize in App. A.2, orthogonality strictly generalizes determinism in the case of
non-monotonic circuits. Similar to our discussion above leveraging determinism, given a circuit c
that is orthogonal we have that computing the partition function of its modulus square can be done in
time O(|c|) rather than O(|c|2). We formalize this result in the following theorem.
Theorem 1. Let c be a smooth, decomposable and orthogonal circuit over X. Then computing the
partition function Z =

∫
dom(X)

|c(x)|2 dx can be done in time O(|c|).

We prove it in App. A.1 where we also observe that, unlike determinism, orthogonality allows us to
retain real or complex parameters in the modeled distribution representation. To prove Thm. 1 we
actually introduce a generalization of orthogonality—called Z-orthogonality—that considers sum
units having scope overlapping with Z ⊆ X and allows us to compute the more general quantity∫
dom(Z)

|c(y, z)|2 dz in time O(|c|), where y ∈ dom(X \ Z). Moreover, as detailed in App. A.4, if
a circuit is {X}-orthogonal for all X ∈ X, then it is Z-orthogonal for any Z ⊆ X. Therefore, this
other result also shows a condition to marginalize any subset Z of variables in time O(|c|).
Unlocking non-structured-decomposable squared PCs. One aspect of Thm. 1 is that, under
orthogonality, computing the partition function requires linear time even for squared PCs that are
not structured-decomposable. This is perhaps surprising, because integrating the power of a non-
deterministic and non-structured-decomposable circuit is in general #P-hard, see Vergari et al. (2021,
Thm. 3.3). The key ingredient to overcome marginalization being #P-hard is exploiting cancellations
provided by orthogonality to avoid integrating the product of non-compatible circuits, which would be
otherwise intractable. To the best of our knowledge, TN structures corresponding to non-structured-
decomposable circuits have not been previously investigated. E.g., MPS and TTNs implicitly
encode a single hierarchical partitioning of the variables (Grasedyck, 2010), thus being structured-
decomposable circuits (see App. C). Furthermore, theoretical results link structured-decomposability
to a decrease of expressiveness in circuits and squared PCs (Pipatsrisawat and Darwiche, 2008; 2010;
de Colnet and Mengel, 2021; Loconte et al., 2025b). Although our experiments on a particular class
of non-structured-decomposable squared PCs do not show an expressiveness increase (§6), these
works motivate future research to develop novel expressive factorizations that are not structured-
decomposable, yet their modulus squaring enable efficient marginalization via orthogonality.

3.1 HOW TO BUILD ORTHOGONAL CIRCUITS

Peharz et al. (2014) showed one can build a deterministic circuit by (i) choosing the input functions
over the same variable such that they have disjoint supports, and (ii) ensuring each sum has inputs that
are connected to different input functions in the circuit graph. Each sum unit in a deterministic circuit
built in this way—also called regular selective—acts like a decision node for the input functions it
depends on w.r.t. a variable. This construction can be done recursively (Lowd and Rooshenas, 2013;
Shih and Ermon, 2020). To construct circuits that are orthogonal we can use a similar approach,
where each sum unit implicitly selects a subset of input functions that are however orthogonal rather
than have non-overlapping supports. We start by formalizing the concept of a sum unit acting like a
decision node for the input functions it depends on, which we call basis decomposability.
Definition 6 (Basis decomposability). A smooth sum unit n is basis decomposable if the inputs
to n depend on non-overlapping input functions for a variable, i.e., ∃X ∈ sc(n),∀i, j ∈ in(n), i ̸=
j : BX(i) ∩ BX(j) = ∅, where BX(i) denotes the set of input functions over X in the sub-circuit
rooted in the unit i. A circuit is basis decomposable if every sum unit in it is basis decomposable.

By requiring basis decomposability and that the input functions over the same variable are orthogonal
with each other, we recover the class of regular orthogonal circuits that are guaranteed to be
orthogonal. We formally show this in App. A.3 and define regular orthogonality below.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 7 (Regular orthogonality). A smooth and decomposable circuit c over X is regular orthog-
onal if (i) it is basis decomposable, and (ii) if all input units over the same variable X ∈ X encode
orthogonal functions, i.e., ∀i, j input units over X , i ̸= j, we have that

∫
dom(X)

ci(x)cj(x)
∗ dx = 0.

Fig. A.1 illustrates examples of regular selective and regular orthogonal circuits as basis decomposable
circuits having the same computational graph but differing by their input functions. Furthermore,
Apps. A.3 and A.4 also generalize regular orthogonality and present sufficient conditions for Z-
orthogonality (§3) enabling linear-time marginalization.

(a) (b)
Figure 2

However, regular orthogonality is rather restrictive as it requires
each input to a sum unit to depend on different input functions.
Fig. 2a depicts this, where we assume that differently colored
inner units depend on different input functions. Instead, circuits
made of densely-connected layers of sums and products can have
inputs to a sum that share the same sets of input functions (see
Fig. 2b), thus not being basis decomposable. This kind of circuits
include popular TN structures such as TTNs (Shi et al., 2006; Cheng et al., 2019) (see Fig. C.1), as
well as circuit architectures that benefit from GPU parallelism (Vergari et al., 2019; Peharz et al.,
2019; 2020; Liu and den Broeck, 2021; Mari et al., 2023; Loconte et al., 2025a; Zhang et al., 2025a).
These circuits—called tensorized circuits—motivates us in finding different conditions relaxing basis
decomposability, yet still useful to simplify the computation of marginals. We show how grouping
computational units into layers enables us to define such conditions. Similarly to a canonical form,
these conditions are based on orthonormal input functions and (semi-)unitary matrices, and ensure
squared PCs encode already-normalized distributions. However, our construction can be applied to
circuits, even those that do not map to any known tensor factorization method.

4 FROM REGULAR ORTHOGONALITY TO UNITARITY

We introduce properties similar to regular orthogonality but instead defined over layers in order to fit
tensorized circuit architectures that would otherwise not be basis decomposable due to their densely-
connected structure. These properties guarantee that a tensorized circuit is orthogonal and that the
squared PC obtained from it encodes an already-normalized distribution, while also providing speed-
ups for the computation of any marginal (§5). These perks generalize to tensorized circuit architectures
that are not structured-decomposable, thus representing a strictly larger set of factorizations when
compared to TTNs (as noticed for orthogonality in §3). We formalize tensorized circuits below.
Definition 8 (Tensorized circuit (Loconte et al., 2025a)). A tensorized circuit c is a parameterized
computational graph encoding a function c(X) and comprising of three kinds of layers: input, product
and sum. A layer ℓ is a vector-valued function defined over variables sc(ℓ) ⊆ X, called scope, and
every non-input layer receives the outputs of other layers as input, denoted as in(ℓ). The scope of
each non-input layer is the union of the scope of its inputs. The three kinds of layers are defined as:

• Each input layer ℓ has scope X ∈ X and computes a collection of K input functions
{fi : dom(X) → C}Ki=1, i.e., ℓ outputs a K-dimensional vector.

• Each product layer ℓ computes either an element-wise (or Hadamard) or Kronecker product
of its N inputs, i.e., ⊙N

i=1ℓi(sc(ℓi)) or ⊗N
i=1ℓi(sc(ℓi)), respectively.

• A sum layer ℓ receiving input from {ℓi}Ni=1 computes the matrix-vector product W·
[ℓ1(sc(ℓ1)) · · · ℓN (sc(ℓN))], where W ∈ CK1×K2 and [·] is the concatenation operation.

As we illustrate in Figs. 3 and C.1, tensorized circuits can be seen as “syntactic sugar” for circuits
(Def. 1) having dense connections between sparse groups of units. That is, a sum layer parameterized
by W ∈ CK1×K2 consists of K1 sum units each receiving K2 inputs and parameterized by a row
in W. Similarly, a product layer consists of scalar product units. Furthermore, we refer to the size
of a layer ℓ as the total number of input connections to the units inside ℓ. As detailed in App. A.5,
there exists a squaring algorithm for tensorized circuits operating on layers and using linear algebra
operations. This squaring algorithm extends another one described in Loconte et al. (2024) to support
circuits whose sum layers can receive input from more than one layer (as in Def. 8).

Similar to regular orthogonality, we start by requiring that the input units over the same variable
encode a collection of orthonormal functions, as we formalize below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Tensorized circuits can encode custom hi-
erarchical factorizations with no corresponding TTN.
The shown circuit encodes a factorization over X using
a mix of Hadamard and Kronecker product layers and
two input layers per variable in X = {X1,X2,X3},
Unlike the TTN in Fig. C.1, this circuit is not structured-
decomposable since there are product units that fac-
torize their scope X differently (pointed by arrows):
{{X3}, {X1,X2}} and {{X1,X3}, {X2}}, as indi-
cated with the color stripes, each corresponding to a
dependency w.r.t. a particular variable. Remarkably,
this circuit does satisfy properties (U2) and (U4), as the
pointed product layers that are input to the root sum layer
do not share input layers.

⇒ ⇐

ψ1(x1) ψ2(x2) ψ3(x1) ψ4(x3)

ψ5(x3) ψ6(x2)

(U1) Each input layer ℓ over a variable X encodes K orthonormal functions, i.e., ℓ(X) =
[f1(X) · · · fK(X)]⊤ such that ∀i, j ∈ [K] :

∫
dom(X)

fi(x)fj(x)
∗ dx = δij . For any pair of

input layers ℓi, ℓj over X and with ℓi ̸= ℓj , we have that
∫
dom(X)

ℓi(x)⊗ ℓj(x)
∗ dx = 0.

App. D reviews possible choices for flexible orthonormal input functions. To relax basis decom-
posability, the following property requires that sum layers receive input from layers depending on
different input layers for at least one variable. E.g., the sum layer in Fig. 2b receives input from two
other layers (with red and violet units), each depending on different input functions. Still, the sums in
a sum layer receive input from units that share the input functions, thus not being basis decomposable
in general (e.g., in Fig. 2b each sum receives input from two red/violet units).
(U2) Each sum layer ℓ receives inputs from layers {ℓi}Ni=1 such that ∃X ∈ sc(ℓ), ∀i, j ∈ [N],

i ̸= j : the sub-circuits rooted in ℓi and ℓj dot not share input layers over the variable X .
In the particular case of a circuit where each layer consists of exactly one unit, (U2) is equivalent to
basis decomposability. Finally, each sum layer has to be parameterized by a (semi-)unitary matrix.
(U3) Each sum layer is parameterized by a (semi-)unitary matrix W ∈ CK1×K2 , K1 ≤ K2, i.e.,

WW† = IK1 or, equivalently, the rows of W are orthonormal.
If a tensorized circuit satisfies (U1-3) above, we say it is unitary. As formalized below and as we
prove in App. A.6, by exploiting cancellations provided by the orthonormality of input functions and
weights, the modulus squaring of a unitarity circuit encodes a normalized distribution.

Theorem 2. Let c be smooth and decomposable circuit over variables X. If c is unitary, i.e., if it
satisfies conditions (U1-3), then we have that c is orthogonal and Z =

∫
dom(X)

|c(x)|2 dx = 1.

This is similar in spirit to Born machines obtained as the modulus square of a TTN in a convenient
canonical form—also called upper-canonical form (Cheng et al., 2019)—ensuring normalization by
exploiting (semi-)unitary matrices. As detailed in App. C.1, our unitarity conditions strictly generalize
such canonical form to more general tensorized circuits. This is because we can build unitary circuits
that are not structured-decomposable, i.e., whose structure encodes multiple hierarchical variables
partitionings (see Fig. 3), yet their squaring encode a normalized distribution as for Thm. 2.

Expressiveness analysis. Since we introduced new families of circuits based on orthogonality
and unitarity properties, in App. B we provide a preliminary analysis regarding their expressive
efficiency, i.e., the ability of a circuit class to encode a function in a polysize computational graph.
This contributes to a number of works investigating the expressiveness of circuits and squared PCs
(Darwiche and Marquis, 2002; Martens and Medabalimi, 2014; de Colnet and Mengel, 2021; Glasser
et al., 2019; Loconte et al., 2025b). In App. B.1 we firstly show that enforcing orthogonality in a
smooth and decomposable circuit is #P-hard, thus suggesting future work looking at whether some
functions encoded by smooth and decomposable circuits cannot be encoded by polysize orthogonal
ones. We conjecture this to hold similarly to the case of deterministic circuits (Bova et al., 2016).
Instead, in App. B.2 we show that enforcing (semi-)unitary weights in sum layers can be done in
polytime, thus guaranteeing no loss in terms of expressive efficiency. Our experiments in §6 confirm
this, showing one can learn unitary squared PCs that perform similarly to non-unitary ones, while
App. E.1 shows that Fourier input functions are competitive w.r.t. Gaussians for density estimation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 A TIGHTER COMPLEXITY FOR VARIABLE MARGINALIZATION

As shown in Loconte et al. (2024) and discussed in App. A.5, computing any marginal probability in
a PC obtained by taking the modulus square of a structured-decomposable and tensorized circuit c
requires time O(L2S2

max), where L is the number of layers and Smax is an upper-bound to the size of
each layer in c. In fact, the marginalization algorithm would (i) represent the modulus squaring of c
as another decomposable circuit, thus quadratically increasing its size O(LSmax), and (ii) compute a
marginal with a single forward-pass over the squared PC. Here, we not only present an algorithm
to compute any marginal that can be much more efficient, but we also show it generalizes to non-
structured-decomposable squared PCs as well. We do so by exploiting the unitarity conditions (U1-3).

Our idea is that, when computing marginal probabilities we do not need to evaluate the layers whose
scope depends on only the variables being integrated out, because they simplify to identity matrices
(see proof of Thm. 2). We also observe that we do not need to square the whole tensorized circuit c,
but only a fraction of the layers depending on both the marginalized variables and the ones being left
over. By doing so, a part of the complexity will ultimately depend on Smax rather than S2

max. However,
in order to be able to marginalize any variable subset, we need to specialize (U2) in unitarity by
requiring that the layers that are input to a sum layer have disjoint input functions dependencies w.r.t.
all variables. As formalized below, we simply need to change “∃X” to “∀X” in (U2).
(U4) Each sum layer ℓ receives inputs from layers {ℓi}Ni=1 such that ∀X ∈ sc(ℓ), ∀i, j ∈ [N],

i ̸= j : the sub-circuits rooted in ℓi and ℓj dot not share input layers over the variable X .
For instance, the non-structured-decomposable circuit in Fig. 3 satisfies (U4). Thanks to (U4), we
can ignore the integration of all pairwise products between multiple inputs to a sum layer, as they
annihilate thanks to orthogonality. This makes our complexity ultimately depend on O(L) rather than
O(L2). Alg. A.3 presents our marginalization algorithm and, as we show in App. A.7, the following
theorem guarantees it is correct also in the case of non-structured tensorized circuits.
Theorem 3. Let c be a smooth and decomposable circuit over X that satisfies (U1-4), and let Z ⊆ X,
Y = X \Z. Computing the marginal p(y) =

∫
dom(Z)

|c(y, z)|2 dz requires time O(|ϕY \ϕZ|Smax +

|ϕY ∩ ϕZ|S2
max), where ϕ⋆ is the set of layers whose scope depends on at least one variable in ⋆.

Moreover, App. A.7 details why our algorithm has complexity O(|ϕY \ ϕZ|Smax) in the best case.
The relationship with TN canonical forms. To speed-up the computation of a certain marginal with
a Born machine, we firstly need to adapt the TN parameters into a canonical form that is specific for
the chosen marginal (Vidal, 2003; Bonnevie and Schmidt, 2021). This comes with additional overhead
depending on the number of variables and the TN shape. Instead, our marginalization algorithm does
not require us to change the parameters depending on the marginal being computed, yet it provides a
speed-up when compared to the naive approach that materializes a squared PC as a decomposable
one. Moreover, our algorithm generalizes over non-structured-decomposable factorizations when
represented as unitary circuits, which otherwise would not support tractable marginalization (§2).

6 EMPIRICAL EVALUATION

We now assess the practical benefits of using unitary circuits. Namely, we investigate whether
unitary circuits result in faster and lighter squared PCs (RQ1), if we can train unitary circuits without
sacrificing model performance (RQ2), and whether we can, for the first time, efficiently train squared
non-structured-decomposable PCs (RQ3). Additional details and results can be found in App. E.

Experimental setting. Given a training dataset D on variables X, we aim at finding the parameters
of a given squared PC that maximize the data likelihood. We follow Loconte et al. (2024) and, given
a batch B ⊂ D, write its negative log-likelihood as L := |B| logZ −∑x∈B 2 log |c(x)|, such that
we just need to materialize the squared PC once per batch to compute the log-partition function,
significantly speeding up computations. For every circuit we use complex-valued parameters, identical
architectures and batch sizes, and report results on a test dataset of the model with best validation
performance during training. Similar to Loconte et al. (2024), we employ Hadamard product layers
for the baseline squared PCs, denoted as ±2

C, while we use Kronecker product layers for the squared
unitary PCs, ⊥2

C, as we found them to perform significantly better in practice (see Apps. E.1 and E.2).

RQ1: Improved throughput. First, we measure to which extent squared unitary PCs improve
the time and memory overhead of squared PCs that instead require computing Z explicitly during

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

106 107 108# parameters

0

5

10

15

20

G
PU

m
em

or
y

(G
iB

)

time per iteration (ms)
0.1 0.2 0.3 0.4 0.5

±2
C SGD

±2
C Adam

⊥2
C Hadamard

⊥2
C Kronecker

(a) Memory and time per training step.

107 108

1.20

1.25

1.30

te
st

b
p

d

MNIST

⊥2
C
±2
C

107 108

3.5

3.6

FashionMNIST

non-str-dec

⊥2
C

parameters

(b) Distribution estimation performances.

Figure 4: Squared unitary PCs scale better than squared PCs while retaining performance. By
virtue of not materializing their squares, unitary circuits result in faster and lighter models, even when
using Kronecker product layers (a). This is, in practice, without any sacrifice in model performance,
as we observe on the bits-per-dimension (bpd, lower is better) on image datasets (b). Remarkably, our
parametrization allows efficiently training squared non-structured-decomposable PCs (gray lines).

training. To this end, we build circuits with increasing number of units per layer and measure the
time and memory required to perform one optimization step. Fig. 4a and Tab. E.3 show that squared
unitary PCs are consistently faster to evaluate and use less memory. This becomes especially clear at
large scales where a squared unitary PC with Kronecker product layers and 357M parameters takes
12GiB of GPU memory and 0.29ms per iteration, against the 18GiB and 0.52ms of its counterpart
with Hadamard layers. Hence, unitary circuits enable learning squared PCs with Kronecker layers
at scale, which is remarkable given that materializing the squared PCs as a decomposable one to
compute Z would further increase the Kronecker layer sizes dramatically (details in App. A.5).

RQ2: Learning unitary circuits. Next, we train squared PCs for distribution estimation on
MNIST (LeCun et al., 2010) and FashionMNIST (Xiao et al., 2017) images. Fig. 4b shows the bits-
per-dimension of squared PCs of increasing sizes on both datasets, where we can observe that squared
unitary PCs gracefully scale, matching the performance of their baseline counterparts. To this end,
we adapted the LandingSGD optimizer (Ablin and Peyré, 2022; Ablin et al., 2024) to our setting,
which we describe in App. F and can be of independent interest to the community. This is remarkable
since orthogonally-constrained optimization is notoriously challenging and in active development
(Ablin et al., 2024; Kochurov et al., 2020; Casado, 2019) and therefore, further advancements in the
field can only benefit squared unitary PCs.

RQ3: Non-structured-decomposable squared unitary PCs. Lastly, we reuse the previous setup
and train a squared unitary PC whose architecture is not structured-decomposable (see App. E.2),
and hence materializing its square as a decomposable circuit to compute Z explicitly is generally not
tractable (Vergari et al., 2021; Zhang et al., 2025b). Fig. 4b shows that such PCs can be competitive
with their structured-decomposable counterparts, especially at large scales, but might be harder to
train. Thus, our theory and preliminary experiments open future interesting venues to design and
train better non-structured-decomposable PCs and TNs, which can be exponentially more expressive
than structured ones (Pipatsrisawat and Darwiche, 2008; 2010; de Colnet and Mengel, 2021).

7 CONCLUSION AND FUTURE WORK

Inspired by determinism in circuits and canonical forms in TNs, we introduced novel conditions
described in the circuit framework to simplify the computation of marginals in squared PCs and ensure
they encode already-normalized distributions. As for the close connection between circuits and TNs,
our conditions motivate research aimed at exploring new factorization structures that can be more
expressive, yet enabling exact and efficient marginalization and sampling. Recently, determinism
has been generalized as a property between two circuits in Wang et al. (2024) to bring complexity
simplifications for exact causal inference and weighted model counting (Chavira and Darwiche, 2008).
We believe one can extend our orthogonality (§3) as a property between two circuits similarly, thus
possibly simplifying the computation of compositional operations while being less restrictive than
determinism. Finally, as we detail in App. D, there are a number of directions aimed at understanding
the relative expressiveness of the proposed circuit families w.r.t. other classes of PCs, e.g., the recent
positive unital circuits generalizing squared PCs shown in Zuidberg Dos Martires (2025).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included our complete source code as supple-
mentary material. Our code submission contains the model implementation, training scripts for exper-
iments, and instructions for setting up the required environment. Furthermore, a detailed description
of all experimental settings is included in App. E.

REFERENCES

Pierre Ablin and Gabriel Peyré. Fast and accurate optimization on the orthogonal manifold without
retraction. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, International
Conference on Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual
Event, volume 151 of Proceedings of Machine Learning Research, pages 5636–5657. PMLR, 2022.
URL https://proceedings.mlr.press/v151/ablin22a.html.

Pierre Ablin, Simon Vary, Bin Gao, and Pierre-Antoine Absil. Infeasible deterministic, stochastic,
and variance-reduction algorithms for optimization under orthogonality constraints. Journal of
Machine Learning Research, 25(389):1–38, 2024.

Milton Abramowitz, Irene A. Stegun, and David Miller. Handbook of Mathematical Functions With
Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics
Series No. 55). Journal of Applied Mechanics, 32:239–239, 1965.

Pierre-Antoine Absil, Robert E. Mahony, and Rodolphe Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2007.

Sanyam Agarwal and Markus Bläser. Probabilistic Generating Circuits - Demystified. In Forty-first
International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=EqFxIbGWRU.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari.
Semantic Probabilistic Layers for Neuro-Symbolic Learning. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html.

Martín Arjovsky, Amar Shah, and Yoshua Bengio. Unitary Evolution Recurrent Neural Networks. In
Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 1120–1128. JMLR.org, 2016.
URL http://proceedings.mlr.press/v48/arjovsky16.html.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can We Gain More from Orthogonal-
ity Regularizations in Training Deep Networks? In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
4266–4276, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
bf424cb7b0dea050a42b9739eb261a3a-Abstract.html.

Jacob D. Biamonte and Ville Bergholm. Tensor Networks in a Nutshell. arXiv: Quantum Physics,
2017.

Rasmus Bonnevie and Mikkel N. Schmidt. Matrix Product States for Inference in Discrete Prob-
abilistic Models. J. Mach. Learn. Res., 22:187:1–187:48, 2021. URL http://jmlr.org/
papers/v22/18-431.html.

10

https://proceedings.mlr.press/v151/ablin22a.html
https://openreview.net/forum?id=EqFxIbGWRU
http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c182ec594f38926b7fcb827635b9a8f4-Abstract-Conference.html
http://proceedings.mlr.press/v48/arjovsky16.html
https://proceedings.neurips.cc/paper/2018/hash/bf424cb7b0dea050a42b9739eb261a3a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/bf424cb7b0dea050a42b9739eb261a3a-Abstract.html
http://jmlr.org/papers/v22/18-431.html
http://jmlr.org/papers/v22/18-431.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Knowledge Compilation
Meets Communication Complexity. In Subbarao Kambhampati, editor, Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 1008–1014. IJCAI/AAAI Press, 2016. URL http://www.ijcai.org/
Abstract/16/147.

Diana Cai, Chirag Modi, Charles Margossian, Robert M. Gower, David M. Blei, and Lawrence K.
Saul. EigenVI: score-based variational inference with orthogonal function expansions. In Amir
Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
Cheng Zhang, editors, Advances in Neural Information Processing Systems 38: Annual Conference
on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
ber 10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/ef72fa6579401ffff9da246a5014f055-Abstract-Conference.html.

J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35:283–319, 1970.

Mario Lezcano Casado. Trivializations for Gradient-Based Optimization on Manifolds. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 9154–9164, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/1b33d16fc562464579b7199ca3114982-Abstract.html.

Mario Lezcano Casado and David Martínez-Rubio. Cheap Orthogonal Constraints in Neural Net-
works: A Simple Parametrization of the Orthogonal and Unitary Group. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 3794–3803. PMLR, 2019. URL http://proceedings.
mlr.press/v97/lezcano-casado19a.html.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence., 172(6-7):772–799, 2008.

Song Cheng, Lei Wang, Tao Xiang, and Pan Zhang. Tree tensor networks for generative modeling.
Physical Review B, 99(15):155131, 2019.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic Circuits: A Unifying
Framework for Tractable Probabilistic Modeling. Technical report, University of California, Los
Angeles (UCLA), 2020.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group Fairness by Probabilistic Modeling
with Latent Fair Decisions. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event,
February 2-9, 2021, pages 12051–12059. AAAI Press, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17431.

Adnan Darwiche. A differential approach to inference in Bayesian networks. Journal of the ACM
(JACM), 50:280–305, 2003.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,
2009.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research (JAIR), 17:229–264, 2002.

Adnan Darwiche and Gregory M. Provan. Query DAGs: A practical paradigm for implementing
belief-network inference. In UAI, pages 203–210. Morgan Kaufmann, 1996.

Alexis de Colnet and Stefan Mengel. A Compilation of Succinctness Results for Arithmetic Circuits.
In 18th International Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 205–215, 2021.

11

http://www.ijcai.org/Abstract/16/147
http://www.ijcai.org/Abstract/16/147
http://papers.nips.cc/paper_files/paper/2024/hash/ef72fa6579401ffff9da246a5014f055-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ef72fa6579401ffff9da246a5014f055-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/1b33d16fc562464579b7199ca3114982-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1b33d16fc562464579b7199ca3114982-Abstract.html
http://proceedings.mlr.press/v97/lezcano-casado19a.html
http://proceedings.mlr.press/v97/lezcano-casado19a.html
https://ojs.aaai.org/index.php/AAAI/article/view/17431
https://ojs.aaai.org/index.php/AAAI/article/view/17431

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron W. Dennis. Algorithms for Learning the Structure of Monotone and Nonmonotone Sum-
Product Networks. PhD thesis, Brigham Young University, 2016.

Aaron W. Dennis and Dan Ventura. Learning the Architecture of Sum-Product Networks Using
Clustering on Variables. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges,
Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Pro-
ceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States, pages
2042–2050, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
f33ba15effa5c10e873bf3842afb46a6-Abstract.html.

Paul Adrien Maurice Dirac. The Principles of Quantum Mechanics. Clarendon Press, Oxford„ 1930.

Johannes Exenberger, Sascha Ranftl, and Robert Peharz. Deep Polynomial Chaos Expansion. In 8th
Workshop on Tractable Probabilistic Modeling, 2025.

Gennaro Gala, Cassio P. de Campos, Robert Peharz, Antonio Vergari, and Erik Quaeghebeur. Proba-
bilistic Integral Circuits. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li, editors, Interna-
tional Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos,
Valencia, Spain, volume 238 of Proceedings of Machine Learning Research, pages 2143–2151.
PMLR, 2024a. URL https://proceedings.mlr.press/v238/gala24a.html.

Gennaro Gala, Cassio P. de Campos, Antonio Vergari, and Erik Quaeghebeur. Scaling Contin-
uous Latent Variable Models as Probabilistic Integral Circuits. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang,
editors, Advances in Neural Information Processing Systems 38: Annual Conference on Neu-
ral Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/
hash/14cdc9013d80338bf81483a7736ea05c-Abstract-Conference.html.

Ivan Glasser, Nicola Pancotti, and J. Ignacio Cirac. From Probabilistic Graphical Models to General-
ized Tensor Networks for Supervised Learning. IEEE Access, 8:68169–68182, 2018.

Ivan Glasser, Ryan Sweke, Nicola Pancotti, Jens Eisert, and J. Ignacio Cirac. Expressive power of
tensor-network factorizations for probabilistic modeling. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
1496–1508, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
b86e8d03fe992d1b0e19656875ee557c-Abstract.html.

Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM journal on matrix
analysis and applications, 31(4):2029–2054, 2010.

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, and Pan Zhang. Unsupervised Generative Modeling
Using Matrix Product States. Physical Review X, 8:031012, 2018.

Richard A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an
"explanatory" multi-model factor analysis. In UCLA Working Papers in Phonetics, volume 16,
pages 1–84, 1970.

Juha Harviainen, Vaidyanathan Peruvemba Ramaswamy, and Mikko Koivisto. On inference and
learning with probabilistic generating circuits. In Robin J. Evans and Ilya Shpitser, editors,
Uncertainty in Artificial Intelligence, UAI 2023, July 31 - 4 August 2023, Pittsburgh, PA, USA,
volume 216 of Proceedings of Machine Learning Research, pages 829–838. PMLR, 2023. URL
https://proceedings.mlr.press/v216/harviainen23b.html.

Markus Hauru, Martin Van Damme, and Jutho Haegeman. Riemannian optimization of isometric
tensor networks. SciPost Physics, 2020.

Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and Bo Li. Orthogonal
Weight Normalization: Solution to Optimization Over Multiple Dependent Stiefel Manifolds in
Deep Neural Networks. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings

12

https://proceedings.neurips.cc/paper/2012/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://proceedings.mlr.press/v238/gala24a.html
http://papers.nips.cc/paper_files/paper/2024/hash/14cdc9013d80338bf81483a7736ea05c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/14cdc9013d80338bf81483a7736ea05c-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b86e8d03fe992d1b0e19656875ee557c-Abstract.html
https://proceedings.mlr.press/v216/harviainen23b.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pages 3271–3278. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17072.

Dunham Jackson. The Theory of Approximation, volume 11. Colloquium Publications, 1930. doi:
https://doi.org/10.1090/coll/011.

Dunham Jackson. Fourier Series and Orthogonal Polynomials, volume 6. Carus Mathematical
Monographs, 1941. doi: https://doi.org/10.5948/UPO9781614440062.

Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. On
Tractable Computation of Expected Predictions. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
11167–11178, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
fccc64972a9468a11f125cadb090e89e-Abstract.html.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Doga Gizem Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic Sentential
Decision Diagrams. In International Conference on Principles of Knowledge Representation and
Reasoning, 2014.

Ching-Yun Ko, Cong Chen, Zhuolun He, Yuke Zhang, Kim Batselier, and Ngai Wong. Deep
Model Compression and Inference Speedup of Sum–Product Networks on Tensor Trains. IEEE
Transactions on Neural Networks and Learning Systems, 31(7):2665–2671, 2020.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in pytorch.
ArXiv preprint, abs/2005.02819, 2020. URL https://arxiv.org/abs/2005.02819.

Tamara G. Kolda. Multilinear operators for higher-order decompositions. Technical report, Sandia
National Laboratories, 2006.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

Daphne. Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques.
Adaptive computation and machine learning. MIT Press, 2009.

Sebastian Krämer. Tree tensor networks, associated singular values and high-dimensional approxi-
mation. PhD thesis, 2020.

Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. ArXiv,
abs/1207.6083, 2012.

Leander Kurscheidt, Paolo Morettin, Roberto Sebastiani, Andrea Passerini, and Antonio Vergari.
A Probabilistic Neuro-symbolic Layer for Algebraic Constraint Satisfaction. In Uncertainty in
Artificial Intelligence (UAI), 2025.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Selena Ling, Nicholas Sharp, and Alec Jacobson. VectorAdam for Rotation Equivariant Geometry
Optimization. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/1a774f3555593986d7d95e4780d9e4f4-Abstract-Conference.html.

13

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17072
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17072
https://proceedings.neurips.cc/paper/2019/hash/fccc64972a9468a11f125cadb090e89e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fccc64972a9468a11f125cadb090e89e-Abstract.html
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2005.02819
http://papers.nips.cc/paper_files/paper/2022/hash/1a774f3555593986d7d95e4780d9e4f4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/1a774f3555593986d7d95e4780d9e4f4-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Anji Liu and Guy Van den Broeck. Tractable Regularization of Probabilistic Circuits. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
3558–3570, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
1d0832c4969f6a4cc8e8a8fffe083efb-Abstract.html.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Lossless Compression with Probabilistic Circuits.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
X_hByk2-5je.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Jiawei Han. On the Variance of the Adaptive Learning Rate and Beyond. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=rkgz2aEKDr.

Shuangzhe Liu and Götz Trenkler. Hadamard, Khatri-Rao, Kronecker and other matrix products.
International Journal of Information & Systems Sciences, 4, 2008.

Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, and Antonio Vergari. How to Turn Your
Knowledge Graph Embeddings into Generative Models via Probabilistic Circuits. In Advances in
Neural Information Processing Systems 37 (NeurIPS). Curran Associates, Inc., 2023.

Lorenzo Loconte, Aleksanteri M. Sladek, Stefan Mengel, Martin Trapp, Arno Solin, Nicolas Gillis,
and Antonio Vergari. Subtractive Mixture Models via Squaring: Representation and Learning. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
xIHi5nxu9P.

Lorenzo Loconte, Antonio Mari, Gennaro Gala, Robert Peharz, Cassio de Campos, Erik Quaeghebeur,
Gennaro Vessio, and Antonio Vergari. What is the Relationship between Tensor Factorizations
and Circuits (and How Can We Exploit it)? Transactions on Machine Learning Research, 2025a.
ISSN 2835-8856. Featured Certification.

Lorenzo Loconte, Stefan Mengel, and Antonio Vergari. Sum of Squares Circuits. In The 39th Annual
AAAI Conference on Artificial Intelligence (AAAI), 2025b.

Daniel Lowd and Amirmohammad Rooshenas. Learning Markov Networks With Arithmetic Circuits.
In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2013, Scottsdale, AZ, USA, April 29 - May 1, 2013, volume 31 of JMLR Workshop
and Conference Proceedings, pages 406–414. JMLR.org, 2013. URL http://proceedings.
mlr.press/v31/lowd13a.html.

Ilia A. Luchnikov, Alexander Ryzhov, Sergey N. Filippov, and Henni Ouerdane. QGOpt: Riemannian
optimization for quantum technologies. SciPost Physics, 2021.

Jan R. Magnus and Heinz Neudecker. The Commutation Matrix: Some Properties and Applications.
Annals of Statistics, 7:381–394, 1979.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not All Neuro-
Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine,
editors, Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
e560202b6e779a82478edb46c6f8f4dd-Abstract-Conference.html.

Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini,
and Stefano Teso. BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts. In
Uncertainty in Artificial Intelligence (UAI), 2024.

14

https://proceedings.neurips.cc/paper/2021/hash/1d0832c4969f6a4cc8e8a8fffe083efb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1d0832c4969f6a4cc8e8a8fffe083efb-Abstract.html
https://openreview.net/forum?id=X_hByk2-5je
https://openreview.net/forum?id=X_hByk2-5je
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=xIHi5nxu9P
https://openreview.net/forum?id=xIHi5nxu9P
http://proceedings.mlr.press/v31/lowd13a.html
http://proceedings.mlr.press/v31/lowd13a.html
http://papers.nips.cc/paper_files/paper/2023/hash/e560202b6e779a82478edb46c6f8f4dd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/e560202b6e779a82478edb46c6f8f4dd-Abstract-Conference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and Understanding Overparameterized
Circuit Representations via Low-Rank Tensor Decompositions. In 6th Workshop on Tractable
Probabilistic Modeling, 2023.

Igor L. Markov and Yaoyun Shi. Simulating Quantum Computation by Contracting Tensor Networks.
SIAM Journal on Computing, 38(3):963–981, 2008.

Ulysse Marteau-Ferey, Francis R. Bach, and Alessandro Rudi. Non-parametric Models for Non-
negative Functions. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/968b15768f3d19770471e9436d97913c-Abstract.html.

James Martens and Venkatesh Medabalimi. On the expressive efficiency of sum product networks.
arXiv preprint arXiv:1411.7717, 2014.

Alex Meiburg, Jing Chen, Jacob Miller, Raphaëlle Tihon, Guillaume Rabusseau, and Alejandro
Perdomo-Ortiz. Generative learning of continuous data by tensor networks. SciPost Physics, 18:
096, 2025.

Alexios A Michailidis, Christian Fenton, and Martin Kiffner. Tensor Train Multiplication. ArXiv
preprint, abs/2410.19747, 2024. URL https://arxiv.org/abs/2410.19747.

Valentin Murg, Ors Legeza, Reinhard M. Noack, and F. Verstraete. Simulating strongly correlated
quantum systems with tree tensor networks. Physical Review B, 82:205105, 2010.

Heinz Neudecker and Tom Wansbeek. Some results on commutation matrices, with statistical
applications. Canadian Journal of Statistics-revue Canadienne De Statistique, 11:221–231, 1983.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press, 2010. doi: 10.1017/CBO9780511976667.

Georgii S. Novikov, Maxim E. Panov, and Ivan V. Oseledets. Tensor-train density estimation. In
Cassio P. de Campos, Marloes H. Maathuis, and Erik Quaeghebeur, editors, Proceedings of the
Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2021, Virtual Event, 27-
30 July 2021, volume 161 of Proceedings of Machine Learning Research, pages 1321–1331. AUAI
Press, 2021. URL https://proceedings.mlr.press/v161/novikov21a.html.

Guy Van den Broeck Oliver Broadrick, Honghua Zhang. Polynomial Semantics of Tractable Proba-
bilistic Circuits. In 40th Conference on Uncertainty in Artificial Intelligence (UAI), 2024.

Román Orús. A Practical Introduction to Tensor Networks: Matrix Product States and Projected
Entangled Pair States. Annals of Physics, 349:117–158, 2013.

Román Orús and Guifr’e Vidal. Infinite time-evolving block decimation algorithm beyond unitary
evolution. Physical Review B, 78, 2008.

Ivan. V. Oseledets. Tensor-Train Decomposition. SIAM Journal on Scientific Computing, 33:2295–
2317, 2011.

Robert Peharz, Robert Gens, and Pedro Domingos. Learning Selective Sum-Product Networks. In
ICML, 2014.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro M. Domingos. On Theoretical
Properties of Sum-Product Networks. In Guy Lebanon and S. V. N. Vishwanathan, editors,
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2015, San Diego, California, USA, May 9-12, 2015, volume 38 of JMLR Workshop
and Conference Proceedings. JMLR.org, 2015. URL http://proceedings.mlr.press/
v38/peharz15.html.

15

https://proceedings.neurips.cc/paper/2020/hash/968b15768f3d19770471e9436d97913c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/968b15768f3d19770471e9436d97913c-Abstract.html
https://arxiv.org/abs/2410.19747
https://proceedings.mlr.press/v161/novikov21a.html
http://proceedings.mlr.press/v38/peharz15.html
http://proceedings.mlr.press/v38/peharz15.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Xiaoting Shao, Kris-
tian Kersting, and Zoubin Ghahramani. Random Sum-Product Networks: A Simple and Effective
Approach to Probabilistic Deep Learning. In Amir Globerson and Ricardo Silva, editors, Proceed-
ings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Is-
rael, July 22-25, 2019, volume 115 of Proceedings of Machine Learning Research, pages 334–344.
AUAI Press, 2019. URL http://proceedings.mlr.press/v115/peharz20a.html.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,
Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum Networks: Fast and
Scalable Learning of Tractable Probabilistic Circuits. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 7563–7574. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/peharz20a.html.

Roger Penrose. Applications of Negative Dimensional Tensors. Combinatorial Mathematics and its
Applications, 1:221–244, 1971.

David Pérez-García, F. Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Matrix Product State
Representations. Quantum Information and Computing, 7(5):401–430, 2007. ISSN 1533-7146.

Aluisio Pinheiro and Brani Vidakovic. Estimating the square root of a density via compactly supported
wavelets. Computational Statistics and Data Analysis, 25(4):399–415, 1997.

Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based on Structured Decom-
posability. In 23rd Conference on Artificial Intelligence (AAAI), volume 8, pages 517–522, 2008.

Thammanit Pipatsrisawat and Adnan Darwiche. A Lower Bound on the Size of Decomposable
Negation Normal Form. In Maria Fox and David Poole, editors, Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.
AAAI Press, 2010. URL http://www.aaai.org/ocs/index.php/AAAI/AAAI10/
paper/view/1856.

Hoifung Poon and Pedro M. Domingos. Sum-Product Networks: A New Deep Architecture. In
Fábio Gagliardi Cozman and Avi Pfeffer, editors, UAI 2011, Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 337–
346. AUAI Press, 2011. URL https://dslpitt.org/uai/displayArticleDetails.
jsp?mmnu=1&smnu=2&article_id=2194&proceeding_id=27.

Steven M Roman and Gian-Carlo Rota. The umbral calculus. Advances in Mathematics, 27(2):95–
188, 1978.

Alessandro Rudi and Carlo Ciliberto. PSD Representations for Effective Probability Models. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan, editors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
19411–19422, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a1b63b36ba67b15d2f47da55cdb8018d-Abstract.html.

Ulrich Schollwoeck. The density-matrix renormalization group in the age of matrix product states.
Annals of Physics, 326:96–192, 2010.

Philipp Seitz, Ismael Medina, Esther Cruz, Qunsheng Huang, and Christian B. Mendl. Simulating
quantum circuits using tree tensor networks. Quantum, 7:964, 2022.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig,
and Kristian Kersting. Conditional sum-product networks: Modular probabilistic circuits via gate
functions. International Journal of Approximate Reasoning, 140:298–313, 2022.

Yaoyun Y. Shi, Luming M. Duan, and Guifré Vidal. Classical simulation of quantum many-body
systems with a tree tensor network. Physical Review A, 74:22320, 2006.

16

http://proceedings.mlr.press/v115/peharz20a.html
http://proceedings.mlr.press/v119/peharz20a.html
http://proceedings.mlr.press/v119/peharz20a.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1856
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2194&proceeding_id=27
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2194&proceeding_id=27
https://proceedings.neurips.cc/paper/2021/hash/a1b63b36ba67b15d2f47da55cdb8018d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a1b63b36ba67b15d2f47da55cdb8018d-Abstract.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Andy Shih and Stefano Ermon. Probabilistic Circuits for Variational Inference in Discrete Graph-
ical Models. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
31784d9fc1fa0d25d04eae50ac9bf787-Abstract.html.

Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results and open
questions. Founddations and Trends in Theoretical Computer Science, 5:207–388, 2010.

Aleksanteri Sladek, Martin Trapp, and Arno Solin. Encoding Negative Dependencies in Probabilistic
Circuits. In 6th Workshop on Tractable Probabilistic Modeling, 2023.

Winthrop W. Smith and Joanne M. Smith. Handbook of Real-Time Fast Fourier Transforms: Algo-
rithms to Product Testing. Wiley IEEE Press, 1995.

Edwin Miles Stoudenmire and David J. Schwab. Supervised Learning with Tensor Networks.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
4799–4807, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html.

Zheng-Zhi Sun, Shi-Ju Ran, and Gang Su. Tangent-Space Gradient Optimization of Tensor Network
for Machine Learning. ArXiv preprint, abs/2001.04029, 2020. URL https://arxiv.org/
abs/2001.04029.

The APRIL Lab. cirkit, 2025. URL https://github.com/april-tools/cirkit.

Andrei Tomut, Saeed S. Jahromi, Sukhbinder Singh, Faysal Ishtiaq, Cesar Munoz, Prabdeep Singh
Bajaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David Montero, Pablo Martin-Ramiro,
Muhammad Ibrahim, Oussama Tahiri-Alaoui, John Malcolm, Samuel Mugel, and Román Orús.
CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor
Networks. ArXiv preprint, abs/2401.14109, 2024. URL https://arxiv.org/abs/2401.
14109.

Derrick S. Tracy. Balanced partitioned matrices and their Kronecker products. Computational
Statistics & Data Analysis, 10:315–323, 1990.

Derrick S. Tracy and K. G. Jinadasa. Partitioned kronecker products of matrices and applications.
Canadian Journal of Statistics-revue Canadienne De Statistique, 17:107–120, 1989.

Derrick S. Tracy and Rana P. Singh. A new matrix product and its applications in partitioned matrix
differentiation. Statistica Neerlandica, 26:143–157, 1972.

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Squared Neural Families:
A New Class of Tractable Density Models. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
ea13534ee239bb3977795b8cc855bacc-Abstract-Conference.html.

Russell Tsuchida, Cheng Soon Ong, and Dino Sejdinovic. Exact, Fast and Expressive Poisson Point
Processes via Squared Neural Families. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
Natarajan, editors, Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024,
Vancouver, Canada, pages 20559–20566. AAAI Press, 2024. doi: 10.1609/AAAI.V38I18.30041.
URL https://doi.org/10.1609/aaai.v38i18.30041.

Russell Tsuchida, Jiawei Liu, Cheng Soon Ong, and Dino Sejdinovic. Squared families: Searching
beyond regular probability models. ArXiv preprint, abs/2503.21128, 2025. URL https://
arxiv.org/abs/2503.21128.

17

https://proceedings.neurips.cc/paper/2020/hash/31784d9fc1fa0d25d04eae50ac9bf787-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/31784d9fc1fa0d25d04eae50ac9bf787-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/5314b9674c86e3f9d1ba25ef9bb32895-Abstract.html
https://arxiv.org/abs/2001.04029
https://arxiv.org/abs/2001.04029
https://github.com/april-tools/cirkit
https://arxiv.org/abs/2401.14109
https://arxiv.org/abs/2401.14109
http://papers.nips.cc/paper_files/paper/2023/hash/ea13534ee239bb3977795b8cc855bacc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ea13534ee239bb3977795b8cc855bacc-Abstract-Conference.html
https://doi.org/10.1609/aaai.v38i18.30041
https://arxiv.org/abs/2503.21128
https://arxiv.org/abs/2503.21128

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Leslie G. Valiant. Negation can be exponentially powerful. In 11th Annual ACM Symposium on
Theory of Computing, pages 189–196, 1979.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and understanding sum-
product networks. Machine Learning, 108(4):551–573, 2019.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A Composi-
tional Atlas of Tractable Circuit Operations for Probabilistic Inference. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, ed-
itors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
13189–13201, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
6e01383fd96a17ae51cc3e15447e7533-Abstract.html.

Guifré Vidal. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Physical
Review Letters, 91:147902, 2003.

Benjie Wang and Guy Van den Broeck. On the Relationship Between Monotone and Squared
Probabilistic Circuits. In The 39th Annual AAAI Conference on Artificial Intelligence (AAAI), 2025.

Benjie Wang, Denis Deratani Mauá, Guy Van den Broeck, and YooJung Choi. A Compo-
sitional Atlas for Algebraic Circuits. In Amir Globersons, Lester Mackey, Danielle Bel-
grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
ff9c70659c39cdd801dd5f5a1201c29e-Abstract-Conference.html.

Norbert Wiener. The Homogeneous Chaos. American Journal of Mathematics, 60(4):897–936, 1938.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. ArXiv preprint, abs/1708.07747, 2017. URL https:
//arxiv.org/abs/1708.07747.

Yibo Yang, Stephan Mandt, and Lucas Theis. An Introduction to Neural Data Compression. Founda-
tions and Trends in Computer Graphics and Vision, 15:113–200, 2022.

Zhongjie Yu, Martin Trapp, and Kristian Kersting. Characteristic Circuits. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
6b61c278e483954fee502b49fe71cd14-Abstract-Conference.html.

Honghua Zhang, Steven Holtzen, and Guy Van den Broeck. On the Relationship Between Probabilistic
Circuits and Determinantal Point Processes. In Ryan P. Adams and Vibhav Gogate, editors,
Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2020,
virtual online, August 3-6, 2020, volume 124 of Proceedings of Machine Learning Research,
pages 1188–1197. AUAI Press, 2020. URL http://proceedings.mlr.press/v124/
zhang20c.html.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck. Probabilistic Generating Circuits. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 12447–12457. PMLR, 2021. URL http://proceedings.
mlr.press/v139/zhang21i.html.

Honghua Zhang, Meihua Dang, Benjie Wang, Stefano Ermon, Nanyun Peng, and Guy Van den Broeck.
Scaling Probabilistic Circuits via Monarch Matrices. In Proceedings of the 42th International
Conference on Machine Learning (ICML), 2025a.

Honghua Zhang, Benjie Wang, Marcelo Arenas, and Guy Van den Broeck. Restructuring Tractable
Probabilistic Circuits. In Proceedings of the 28th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2025b.

18

https://proceedings.neurips.cc/paper/2021/hash/6e01383fd96a17ae51cc3e15447e7533-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6e01383fd96a17ae51cc3e15447e7533-Abstract.html
http://papers.nips.cc/paper_files/paper/2024/hash/ff9c70659c39cdd801dd5f5a1201c29e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/ff9c70659c39cdd801dd5f5a1201c29e-Abstract-Conference.html
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
http://papers.nips.cc/paper_files/paper/2023/hash/6b61c278e483954fee502b49fe71cd14-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6b61c278e483954fee502b49fe71cd14-Abstract-Conference.html
http://proceedings.mlr.press/v124/zhang20c.html
http://proceedings.mlr.press/v124/zhang20c.html
http://proceedings.mlr.press/v139/zhang21i.html
http://proceedings.mlr.press/v139/zhang21i.html

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor Ring Decom-
position. ArXiv preprint, abs/1606.05535, 2016. URL https://arxiv.org/abs/1606.
05535.

Pedro Zuidberg Dos Martires. A Quantum Information Theoretic Approach to Tractable Probabilistic
Models. In Uncertainty in Artificial Intelligence (UAI), 2025.

19

https://arxiv.org/abs/1606.05535
https://arxiv.org/abs/1606.05535

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Proofs 21

A.1 Linear-time Partition Function and Marginals Computation via Orthogonality . . 21
A.2 Orthogonality Strictly Generalizes Determinism 23
A.3 Regular Orthogonality is Sufficient for Orthogonality 23
A.4 Marginalizing Any Variables Subset in Linear Time 26
A.5 Tensorized Circuit Multiplication Algorithm 27
A.6 Already-Normalized Tensorized Squared Circuits via Unitarity 30
A.7 A Tighter Marginalization Complexity . 32

B Expressiveness Analysis 34
B.1 Enforcing Orthogonality is #P-hard . 34
B.2 Enforcing (Semi-)Unitary Parameters is Efficient 36

C Tree Tensor Networks as Structured-decomposable Circuits 39
C.1 Unitary Circuits Generalize Upper Canonical Tree Tensor Networks 40

D Related Work 41

E Experimental Details 43
E.1 Continuous Input Features . 43
E.2 Image Distribution Estimation . 44
E.3 Benchmarking Squared PCs . 46

F The Family of Landing Algorithms 47

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A PROOFS

Assumptions. Below we implicitly make the following mild assumptions. We require each inner
unit to compute a Lebesgue-integrable function over its support. We also assume that the functions
computed by input units can be evaluated and integrated over their support efficiently. With a slight
abuse of notation, we use integrals to actually denote summations if taken w.r.t. discrete variables.

A.1 LINEAR-TIME PARTITION FUNCTION AND MARGINALS COMPUTATION VIA
ORTHOGONALITY

In order to prove that computing the partition function of a squared PC, obtained by taking the modulus
square of an orthogonal circuit c (Def. 5), requires time O(|c|) (i.e., our Thm. 1), here we firstly
introduce a generalization of orthogonality. This other condition, which we call Z-orthogonality,
considers only sum units having scope overlapping with Z and requires the inputs to sum units to
encode orthogonal functions when variables that are not in the variables set Z are kept fixed. We
formalize Z-orthogonality below.

Definition A.1 (Z-orthogonality). A smooth sum unit n is Z-orthogonal, with Ẑ = sc(n) ∩ Z ̸= ∅,
if all pairs of its inputs encode orthogonal functions when fixing the variables in sc(n) \ Ẑ, i.e.,
∀i, j ∈ in(n), i ̸= j :

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0, for any y ∈ dom(sc(n) \ Ẑ). Moreover, we

say a circuit over variables X is Z-orthogonal, with Z ⊆ X, if all sum units having scope overlapping
with Z are Z-orthogonal.

Under the satisfaction of Z-orthogonality in c, the following lemma shows that computing the quantity∫
dom(Z)

|c(y, z)|2 dz can be done in time O(|c|), where y ∈ dom(X \Z). In particular, we show the
correctness and complexity of our Alg. A.1 to compute this quantity. We will later show that, by
setting Z = X, one recovers Thm. 1, i.e., computing the partition function Z =

∫
dom(X)

|c(x)|2 dx
can be done in time O(|c|).
Lemma A.1. Let c be a smooth, decomposable and Z-orthogonal circuit over variables X. Then
computing

∫
dom(Z)

|c(y, z)|2 dz can be done in time O(|c|), where y ∈ dom(X \ Z).

Proof. We prove it by showing the correctness of Alg. A.1 via induction on the structure of c.

Units having scope not overlapping with Z. Let n be a unit in c. In the case of sc(n) ∩ Z = ∅,
we have that we can compute |cn(ŷ)|2, for some assignments ŷ obtained from y by restriction over
variables in sc(n), in time O(|c|). This is because we can evaluate cn by doing a feed-forward
evaluation of the sub-circuit rooted in c, and then take the modulus square of the result. This case as
formalized in L1-3 in Alg. A.1.

Sum units. Let n be a sum unit in c such that Ẑ = sc(n) ∩ Z ̸= ∅, i.e., the variables scope
of n overlaps with Z. Thus, assume that n computes cn(y, ẑ) =

∑
i∈in(n) wn,ici(y, ẑ), where

ẑ ∈ dom(Ẑ) and y ∈ dom(Y) with Y = sc(n) \ Ẑ. By hypothesis n is Z-orthogonal, and therefore
we have that ∀i, j ∈ in(n), i ̸= j :

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0. For this reason, we can write∫

dom(Ẑ)

|cn(y, ẑ)|2 dẑ =
∑

i∈in(n)

∑
j∈in(n)

wn,iw
∗
n,j

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ

=
∑

i∈in(n)

|wn,i|2
∫
dom(Ẑ)

|ci(y, ẑ)|2 dẑ.

Thus, we can compute the integral of the modulus squaring of n by firstly evaluating the integral of the
modulus squaring of its inputs and then computing a weighted summation. This is L4-7 in Alg. A.1.
By inductive hypothesis, computing the

∫
dom(Ẑ)

|ci(y, ẑ)|2 dẑ in our algorithm requires time O(|c|)
and therefore evaluating

∫
dom(Ẑ)

|cn(y, ẑ)|2 dẑ also requires time O(|c|). Furthermore, we observe
that if the sub-circuits respectively rooted in i and j, with i, j ∈ in(n), i ̸= j are not compatible
(Def. 4), then computing the integral

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ would be in general a #P-hard

problem (Vergari et al., 2021). In particular, c would not be a structured-decomposable circuit.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

However, due to cancellations arising from Z-orthogonality, our algorithm avoids the computation of
these integrals as they cancels out, thus allowing us to efficiently marginalize variables in the case of
non-structured-decomposable squared PCs.

Product units. Let n be a product unit in c such that Ẑ = sc(n)∩Z ̸= ∅ and computing cn(y, ẑ) =∏
i∈in(n) ci(yi, ẑi). Since c is decomposable we have that (Ẑi)i∈in(n) forms a partitioning of variables

Ẑ with ẑi ∈ dom(Ẑi), and the assignment y to Y is partitioned into assignments (yi)i∈in(n). Thus,
we can write∫

dom(Ẑ)

|cn(y, ẑ)|2 dẑ =

∫
×i∈in(n)dom(Ẑi)

 ∏
i∈in(n)

|ci(yi, ẑi)|2
 dẑ1 · · · dẑ|in(n)|

=
∏

i∈in(n)

∫
dom(Ẑi)

|ci(yi, ẑi)|2 dẑi.

Thus, similar to the case of n being a sum unit above, we have that computing the integral of the
modulus squaring of n translates to multiplying the integrals of the modulus squaring of their inputs.
Note that with a slight abuse of notation we allow Ẑi to be possibly empty for some i ∈ in(n). This
allows us to recursively call our Alg. A.1 to the inputs of n, thus yielding L8-12 in it. Again, by
inductive hypothesis we have that this case requires time O(|c|).
Consider the base case where n is an input unit over X ∈ Z and computing f(X), i.e., cn(X) =
f(X). By assuming that the modulus squaring of f can be integrated efficiently, we have that
computing

∫
dom(X)

|cn(x)|2 dx is efficient. Therefore, since all the cases considered above take time
O(|c|), we have that computing

∫
dom(Z)

|c(y, z)|2 dz with Alg. A.1 requires time O(|c|).

Algorithm A.1 MAR-ORTHO-DEC(c,y,Z)

Input: A circuit c over variables X that is Z-orthogonal for some Z ⊆ X, and an assignment y to variables
Y = X \ Z. We denote as n the output unit of c. Output: The value of

∫
dom(Z)

|c(y, z)|2 dz.

1: if sc(n) ∩ Z = ∅ then ▷ n does not depend on the variables to marginalize
2: let ŷ be the restriction of assignments y to variables in sc(n).
3: r ← EVAL-FEED-FORWARD(n, ŷ)
4: return |r|2
5: else if n is a sum unit then
6: let n receive input from units in(n) and parameterized by {wn,i}i∈in(n)

7: let ri ← MAR-ORTHO-DEC(i,y,Z ∩ sc(n)), ∀i ∈ in(n)
8: return

∑
i∈in(n) |wn,i|2 ri

9: else if n is a product unit then
10: let n receive input from units in(n)
11: ri ← MAR-ORTHO-DEC(i,y,Z ∩ sc(i)), ∀i ∈ in(n)
12: return

∏
i∈in(n) ri

13: else
14: let n be an input unit over a variable X ∈ Z
15: return

∫
dom(X)

|cn(x)|2 dx ▷ Assuming it can be computed efficiently

From Lem. A.1 we are now able to prove Thm. 1, as formalized below.

Theorem 1. Let c be a smooth, decomposable and orthogonal circuit over X. Then computing the
partition function Z =

∫
dom(X)

|c(x)|2 dx can be done in time O(|c|).

Proof. Since c is orthogonal, then c is also Z-orthogonal with Z = X. This can be seen by noticing
that sc(n) ∩ Z = sc(n) for any unit n and with Z = X. Therefore, from Lem. A.1 we have that
computing Z requires time O(|c|) by using Alg. A.1.

Unlike determinism, orthogonality preserves complex parameters. Assume that n is a determin-
istic (Def. 3) smooth sum unit computing cn(X) =

∑
i∈in(n) wn,ici(X). Then, for any i, j ∈ [n],

i ̸= j, we have that ci(X)cj(X) = 0 as i and j have disjoint supports. Thus, we can write

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

|cn(X)|2 =
∑

i∈in(n) |wn,i|2|ci(X)|2. For this reason, the modulus squaring of a deterministic cir-
cuit with possibly complex parameters turns out to be equivalent to another deterministic and mono-
tonic circuit. However, under orthogonality of n instead, we cannot rewrite |cn(X)|2 in the same
way, because cancellations only occur when integrating variables out, and the inputs to n can have
overlapping support (e.g., see Fig. A.1). For this reason, unlike determinism we observe that orthogo-
nality retains the possibly real or complex parameters in the distribution representation modeled as
p(X) ∝ |c(X)|2, which is a crucial feature aiding the expressiveness of squared PCs over monotonic
ones (Loconte et al., 2024; 2025b).

A.2 ORTHOGONALITY STRICTLY GENERALIZES DETERMINISM

In the following, we show that determinism is a sufficient but not a necessary condition for orthogo-
nality in the case of circuits whose unit outputs can be negative or complex valued. In other words,
orthogonality is a strict generalization of determinism in the case of non-monotonic circuits.

Proposition A.1. If a circuit c is deterministic, then it is orthogonal. Under mild assumptions, the
converse implication holds if c is also monotonic.

Proof. (=⇒) By determinism of c we have that, for any sum unit n having scope sc(n) = Z,
∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅. Therefore, we have that either ci(z) = 0 or cj(z) = 0
for any i ̸= j and z ∈ dom(Z). Now, if ci(z) = 0 then ci(z)cj(z)∗ = 0, and if cj(z) = cj(z)

∗ = 0
then ci(z)cj(z)∗ = 0. Therefore, we have that ∀i, j ∈ in(n), i ̸= j :

∫
dom(Z)

ci(z)cj(z)
∗ dz = 0,

i.e., n is orthogonal. Therefore, we conclude that c is an orthogonal circuit.

(⇐= , if c is also monotonic, under mild assumptions) To show the converse direction, we start by
assuming that c is both orthogonal and monotonic, i.e., all input functions and sum unit weights in
c are positive. This means that every computational unit in c computes a positive function over its
support. Now, by orthogonality of c we have that ∀i, j ∈ in(n), i ̸= j :

∫
dom(Z)

ci(z)cj(z)
∗ dz = 0.

However, due to monotonicity we have that cj(z)∗ = cj(z) and, for orthogonality to hold, we recover
that the inputs i and j to n, with i ̸= j, must have disjoint supports, i.e., n is deterministic. In other
words, under monotonicity, if the supports of i and j were overlapping, then ci and cj would not be
in general orthogonal functions as their inner product would be non-zero. Therefore, the circuit c is
deterministic. However, in the case of continuous variables X, for this to hold we require an additional
mild assumption over the supports of i and j. That is, we also need that the set supp(i) ∩ supp(j)
has non-zero measure. Otherwise, supp(i) ∩ supp(j) being of zero measure but non-empty (e.g., a
finite set) would imply orthogonality of ci and cj yet they have overlapping supports (as the integral
taken over a zero measure set is zero).

(⇍= , if c is non-monotonic) To prove that the converse direction does not hold in the more general
case of non-monotonic circuits, we need to find a single non-monotonic circuit that is orthogonal yet
non-deterministic. This circuit can be built as a single sum unit that receives input from two real-
valued orthogonal functions both having R as support, e.g., Hermite functions (Roman and Rota,
1978).

In conclusion, orthogonality is a strict generalization of determinism in the case of non-monotonic
circuits and, under mild assumptions regarding the measure of supports intersections, determinism
and orthogonality become equivalent properties in the case of monotonic circuits.

A.3 REGULAR ORTHOGONALITY IS SUFFICIENT FOR ORTHOGONALITY

In this section, we prove that regular orthogonality (Def. 7) is sufficient for orthogonality to hold
(Def. 5). For this purpose, here we firstly introduce a generalization of regular orthogonality, called
Z-regular orthogonality, and then show it is sufficient for Z-orthogonality as defined in Def. A.1.
By doing so, we present sufficient conditions based on the structure of parameterization of a circuit
to marginalize a subset Z of variables in linear time w.r.t. the circuit size. We start by introducing
the Z-basis decomposability property, which specializes basis decomposability (Def. 6) to only sum
units having scope overlapping with Z. We start by formally introducing the concept of basis scope.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

ψ1
1(x1)

ψ2
1(x1)

ψ1,1
2 (x2)

ψ2,1
2 (x2)

ψ1,2
2 (x2)

ψ2,2
2 (x2)

ψ1
3(x3)

ψ2
3(x3)

ψ(x1, x2, x3)

ψ1,1
2 (X2)

ψ2,1
2 (X2)

ψ1,2
2 (X2)

ψ2,2
2 (X2)

(a) (b)

Figure A.1: Deterministic and orthogonal circuits differ by their input functions. (left) We
consider the circuit c representing the MPS shown in Fig. 1, and we color each input function ψi1,i2

2
over the variable X2 differently. Each sum unit is basis decomposable, as it partitions the sets of
input functions over X2 towards its inputs (see how colored edges are split at sum units). (right) If
we take input functions over X2 having non-overlapping support (a), we recover determinism in c.
Instead, if the input functions are orthogonal yet having the same support (b), then c is orthogonal.

Definition A.2 (Basis scope). The basis scope of a unit n for a variable X ∈ sc(n), denoted as
BX(n), is the set of input unit functions over X that the unit n depends on, i.e., found in the sub-
circuit rooted in n.

Definition A.3 (Z-basis decomposability). A smooth sum unit n is Z-basis decomposable, with
sc(n) ∩ Z ̸= ∅, if the inputs to n depend on non-overlapping basis scopes for a variable in Z, i.e.,
∃X ∈ sc(n) ∩ Z,∀i, j ∈ in(n), i ̸= j : BX(i) ∩ BX(j) = ∅. A circuit is Z-basis decomposable if
every sum unit is Z-basis decomposable.

In the following, we use Z-basis decomposability to define the Z-regular orthogonal property.

Definition A.4 (Z-regular orthogonality). A smooth and decomposable circuit c over X is Z-regular
orthogonal, with Z ⊆ X, if (i) it is Z-basis decomposable, and (ii) if all input units over the same
variable X ∈ Z encode orthogonal functions, i.e., ∀i, j input units over X , i ̸= j, we have that∫
dom(X)

ci(x)cj(x)
∗ dx = 0.

For instance, the circuit shown in Fig. A.1 is {X2}-orthogonal, since the input functions over the
same variable X2 are orthogonal and each sum unit having X2 in their variables scope is {X2}-basis
decomposable, i.e., it splits the input functions over X2 it depends on towards its inputs. Note that,
given a circuit c over variables X, we observe that Z-basis decomposability in c coincides with basis
decomposability (Def. 6) in the special case of Z = X. Therefore, Z-regular orthogonality of c in the
special case Z = X is equivalent to regular orthogonality as defined in Def. 7.

We aim at showing that Z-regular orthogonality is sufficient for Z-orthogonality (Lem. A.3), thus
implying regular orthogonal is sufficient for orthogonality in the special case X = Z (Thm. A.1). In
order to show this result, we firstly prove the following lemma, saying that the integral over variables
Z ⊆ X of the product of two circuits c1, c2 defined over X annihilates (i.e., it is zero), whenever the
input functions in c1 and c2 over the same variable X ∈ Z are orthogonal with each other.

Lemma A.2. Let c1, c2 be smooth and decomposable circuits over variables X, having n1, n2 as
output units, respectively. Assume that, for some variable X ∈ X, the input functions over X in
c1 and c2 are orthogonal, i.e., ∃X ∈ X : ∀f ∈ BX(n1),∀g ∈ BX(n2) :

∫
dom(X)

f(x)g(x)∗ dx = 0.
Then, for any Z ⊆ X such that X ∈ Z, we have that

∫
dom(Z)

c1(y, z)c2(y, z)
∗ dz = 0, where

y ∈ dom(X \ Z).

Proof. For the proof we will write down the polynomial encoded by a circuit, also called the circuit
polynomial (Choi et al., 2020), whose construction relies on the idea of induced sub-circuit of a unit.

Definition A.5 (Induced sub-circuit (Choi et al., 2020)). Let c be a circuit over variables X. An
induced sub-circuit ζ is a circuit constructed from c as follows. The output unit n in c is also the
output unit of ζ. If n is a product unit in ζ then every unit i ∈ in(n), i.e., with a connection from i to
n, is in ζ. If n is a sum unit in ζ, then exactly one of its input unit i ∈ in(n) is in ζ.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Note that each input unit in an induced sub-circuit ζ of a circuit c is also an input unit in c. By
“unrolling” the representation of c as the sum of the collection of all its induced sub-circuits, we
have that the function computed by c can be written as the circuit polynomial below (Shpilka and
Yehudayoff, 2010; Choi et al., 2020):

c(X) =
∑

ζ∈H(c)

 ∏
w∈Θ(ζ)

 ∏
n∈I(ζ)

cn(sc(n))
κ(n,ζ), (4)

where H(c) is the set of all induced sub-circuits of c, Θ(ζ) is the set of all sum unit weights covered
by the induced sub-circuit ζ, I(ζ) is the set of all input units in ζ and κ(n, ζ) is a positive integer
denoting how many times the input unit n ∈ I(ζ) is reachable in ζ from the output unit of ζ. For
brevity, we will denote the coefficients of the polynomial in Eq. (4) as ω(ζ) =

∏
w∈Θ(ζ) w.

In the particular case of c being smooth and decomposable, we observe that also ζ must be from the
construction of an induced sub-circuit. Therefore, under smoothness and decomposability, we have
that each input unit in I(ζ) can be reached from the output unit in ζ exactly one time, i.e., κ(n, ζ) = 1
for any n ∈ I(ζ) and for any ζ ∈ H(c). Thanks to smoothness and decomposability, we also recover
that each input unit in I(ζ) is defined over a different variable in X. With these observations, we can
rewrite Eq. (4) as follows

c(X) =
∑

ζ∈H(c)

ω(ζ)
∏
X∈X

fζ,X(X), (5)

where each fζ,X is the function computed by the only input unit in ζ over the variable X ∈ X, i.e.,
∃n ∈ I(ζ), sc(n) = {X} : cn(X) = fζ,X(X).

Now, given c1, c2 circuits as per hypothesis, from Eq. (5) we can write their circuit polynomials as

c1(X) =
∑

ζ1∈H(c1)

ω(ζ1)
∏
X∈X

fζ1,X(X) and c2(X) =
∑

ζ2∈H(c2)

ω(ζ2)
∏
X∈X

gζ2,X(X). (6)

By hypothesis, we have that ∃X ∈ X such that ∀f ∈ BX(n1), ∀g ∈ BX(n2),∫
dom(X)

f(x)g(x)∗ dx = 0, where n1, n2 respectively denote the output units of c1, c2. Since
the input functions of any induced sub-circuit of a circuit c are always also input units of c, i.e.,
fζ1,X ∈ BX(n1), gζ2,X ∈ BX(n2) for any X ∈ X and for any ζ1 ∈ H(c1), ζ2 ∈ H(c2), we have
that the following statement holds.

∃X ∈ X,∀ζ1 ∈ H(c1),∀ζ2 ∈ H(c2) :

∫
dom(X)

fζ1,X(x)gζ2,X(x)∗ dx = 0 (7)

In other words, for at least one variable X ∈ X, we have that the functions encoded by input units
over X in any pair ζ1, ζ2 of induced sub-circuits are orthogonal with each other. In the following, we
exploit this observation to annihilate the integral over the product of c1 and the conjugate of c2 over
any variables Z ⊆ X such that X ∈ Z, thus yielding the wanted result.

That is, by fixing y ∈ Y = dom(X \ Z) and from the circuit polynomials in Eq. (6), we write down
the integral of the product of c1 and c2 w.r.t. to the variables in Z as follows

∫
dom(Z)

c1(y, z)c2(y, z)
∗ dz =

∑
ζ1∈H(c1)

∑
ζ2∈H(c2)

ω(ζ1)ω(ζ2)
∗

products of functions not depending on Z or X︷ ︸︸ ︷(∏
V ∈Y

fζ1,V (yV)gζ2,V (yV)
∗
)

·

 ∏
V ∈Z\{X}

∫
dom(V)

fζ1,V (zV)gζ2,V (zV)
∗ dzV


︸ ︷︷ ︸

integrals of products of functions depending on Z \ {X}

(∫
dom(X)

fζ1,X(zX)gζ2,X(zX)∗ dzX

)
︸ ︷︷ ︸

= 0 because of Eq. (7)

where we generally denote as xV the assignment to the variable V found in the assignments x.
By plugging Eq. (7) into the formula above, we recover that the products annihilate, since the
inner products of functions over X in ζ1 and in ζ2 are orthogonal. Therefore, this shows that∫
dom(Z)

c1(y, z)c2(y, z)
∗ dz = 0.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

By applying Lem. A.2, we prove in the following theorem that Z-regular orthogonality is a sufficient
condition for Z-orthogonality. Then, in Thm. A.1 we prove that, when Z = X, our Lem. A.3 (Def. 7)
implies the sufficiency of regular orthogonality for orthogonality (Def. 5).

Lemma A.3 (Z-regular orthogonality =⇒ Z-orthogonality). Let c be a Z-regular orthogonal circuit
over variables X, with Z ⊆ X. Then, c is Z-orthogonal.

Proof. By Z-regular orthogonality of c, we have that all input units in c over the same variable
X ∈ Z encode orthogonal functions. In addition, let n be a sum unit in c having scope overlapping
with Z, i.e., Ẑ = sc(n) ∩ Z ̸= ∅, and let i, j ∈ in(n) be any pair of inputs to n such that i ̸= j.
From Z-regular orthogonality of c, we have that ∃X ∈ Ẑ : BX(i) ∩ BX(j) = ∅. By combining
orthogonality of input functions over X ∈ Z and Z-basis decomposability of n, we recover that
∃X ∈ Ẑ,∀f ∈ BX(i),∀g ∈ BX(j) :

∫
dom(X)

f(x)g(x)∗ dx = 0. Now, under these results we can

apply Lem. A.2 and obtain that ci and cj are orthogonal when fixing the variables not in Ẑ, i.e.,∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0, where y ∈ dom(sc(n) \ Ẑ). Thus, we recovered the wanted result,

i.e., ∀i, j ∈ in(n), i ̸= j,
∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0. That is, every sum unit in c having scope

overlapping with Z is Z-orthogonal, i.e., c is a Z-orthogonal circuit.

Theorem A.1. Let c be a regular orthogonal circuit over variables X. Then, c is orthogonal.

Proof. Regular orthogonality in c translates to Z-regular orthogonality in c with Z = X. Therefore,
from Lem. A.3 we have that c is X-orthogonal and thus orthogonal.

A.4 MARGINALIZING ANY VARIABLES SUBSET IN LINEAR TIME

Under Z-orthogonality, Lem. A.1 ensures that computing the particular marginal quantity∫
dom(Z)

|c(y, z)|2 dz requires time O(|c|). As we formalize in the following lemma, if a circuit is
{X}-orthogonal for all variables X ∈ X, then it is Z-orthogonal for all Z ⊆ X, thus allowing us to
compute any marginal in time O(|c|) by using our Alg. A.1. We will use this lemma later in Thm. A.2
to formalize sufficient conditions based on regular orthogonality (see App. A.3), i.e., based on the
circuit structure and parameterization, to marginalize any variables subset in linear time.

Lemma A.4. Let c be a circuit over variables X that is {X}-orthogonal for all X ∈ X. Then c is
Z-orthogonal for all Z ⊆ X.

Proof. To prove this, we need to show that if every sum unit n in c is {X}-orthogonal for all
X ∈ sc(n), then n is Z-orthogonal for all Z ⊆ sc(n). Let n be a sum unit in c having scope
sc(n). By {X}-orthogonality of c for all X ∈ X, we have that the inputs to n encode orthogonal
functions whenever we fix the variables in sc(n) \ {X} for all X ∈ sc(n). Formally, we have that
∀X ∈ sc(n),∀i, j ∈ in(n), i ̸= j :

∫
dom(X)

ci(y, x)cj(y, x)
∗ dx = 0, for any y ∈ dom(sc(n) \X).

Now, consider a subset Z ⊆ sc(n). Therefore, given any X ∈ Z, Ẑ = Z \ {X}, for all i, j ∈ in(n)
with i ̸= j we can write∫

dom(Z)

ci(y, z)cj(y, z)
∗ dz =

∫
dom(Ẑ)

(∫
dom(X)

ci(y, ẑ, x)cj(y, ẑ, x)
∗ dx

)
dẑ = 0,

since the inner integral over X is equal to zero for any variables assignments y and ẑ, as n is {X}-
orthogonal. Therefore, we recover that n is Z-orthogonal for all Z ⊆ sc(n).

We then use the above lemma to formalize the result saying that if a circuit is {X}-regular orthogonal
w.r.t. all variables X (see Def. A.4), then it enables the computation of any marginal in linear time.

Theorem A.2. Let c be a circuit over variables X that is {X}-regular orthogonal for all variables
X ∈ X. That is, for any sum unit n in c we have that its inputs depend on non-overlapping basis
scopes for all variables, i.e., ∀X ∈ sc(n),∀i, j ∈ in(n), i ̸= j : BX(i) ∩ BX(j) = ∅; and all input
units over the same variable encode orthogonal functions. Then computing

∫
dom(Z)

|c(y, z)|2 dz for
any Z ⊆ X, with y ∈ dom(X \ Z) can be done in time O(|c|).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Proof. Since c is {X}-regular orthogonal for all X ∈ X, from Lem. A.3 we recover that c is {X}-
orthogonal for all X ∈ X. Thus, we can apply Lem. A.4 to say that c is also Z-orthogonal for all
variables subsets Z of X. Therefore, by applying Lem. A.1 we conclude that computing any marginal
can be done in time O(|c|) by using Alg. A.1.

A.5 TENSORIZED CIRCUIT MULTIPLICATION ALGORITHM

In the case of tensorized circuits whose sum layers can only receive input from exactly one other layer,
Loconte et al. (2024) already proposed a circuit squaring algorithm operating on layers that only
requires simple linear algebra operations. This assumption over sum layers is particularly convenient,
as it ensures the that tensorized circuit is structured-decomposable by construction (Loconte et al.,
2024), and therefore representing their squaring as yet another decomposable circuit is tractable
(Vergari et al., 2021). In this section, we extend this squaring algorithm to circuits whose sum
layers can receive input from more than one layer, as required by the tensorized circuit definition by
Loconte et al. (2025a) and that we report in Def. 8. This particular difference between Def. 8 and
the circuit representation used in Loconte et al. (2024) allows us to build tensorized squared PCs
that are not necessarily structured-decomposable. Nevertheless, in §5 we show conditions to enable
tractable marginalization of any variables subset. Furthermore, here we trivially extend such squaring
algorithm to tensorized circuits with complex parameters.

Preliminaries. Given a structured-decomposable and tensorized circuit c, we represent its modulus
squaring as yet another decomposable and circuit. This can be done by multiplying cwith its conjugate
c∗ (§2). Note that the conjugate c∗ can be efficiently obtained from c by taking the conjugate of the
functions computed by the input layers and the conjugate of the sum layer weights (Yu et al., 2023).
This procedure preserves the structural properties of c, thus c∗ is also structured-decomposable and
compatible with c. Thus, we can represent the product between c and c∗ as yet another decomposable
circuit in polytime (Vergari et al., 2021). In the following, we present an algorithm, namely MULTIPLY
(Alg. A.2), in order to multiply two tensorized circuits that are compatible as another decomposable
tensorized circuit. Therefore, the modulus squaring of a structured-decomposable circuit c is the
result of MULTIPLY(c, c∗).

Notation. To simplify the notation, note that from now on we typically remove the scopes of the
layers from the argument of the layer evaluations, e.g., we use ℓ = ℓ1 ⊗ ℓ2 to mean ℓ(sc(ℓ)) =
ℓ1(sc(ℓ1))⊗ ℓ2(sc(ℓ2)). Furthermore, for simplicity we will assume that the product layers in the
tensorized circuits c1, c2 to be multiplied are either Kronecker or Hadamard (i.e., no product between
circuits with mixed Kronecker and Hadamard layers). This is without loss of generality, as one can
always rewrite an Hadamard product as a Kronecker product followed by a sum layer encoding
a linear transformation via a selection matrix that filters out the cross products (e.g., see Liu and
Trenkler (2008, Lem. 1)).
Proposition A.2. Let c1, c2 be tensorized and compatible circuits over variables X1, X2 respectively.
Then, there exists an algorithm constructing a smooth and decomposable circuit c over X1 ∪X2

such that c(x) = c1(x) c2(x) for any x ∈ dom(X1 ∪X2). Moreover, the algorithm runs in time
O(L1L2S1,maxS2,max), where L1 (resp. L2) denotes the number of layers in c1 (resp. c1), and S1,max
(resp. S2,max) denotes the maximum layer size in c1 (resp. c2).

Proof. We prove the correctness of Alg. A.2 by structural induction. That is, given ℓ1 and ℓ2 the
output layers of two compatible circuits over variables X1, X2, respectively, we show that Alg. A.2
returns the output layer ℓ of another tensorized circuit over variables X1 ∪X2 such that ℓ = ℓ1 ⊗ ℓ2.

To begin with, consider the case where X1 ∩ X2 = ∅. Then, we construct ℓ as a Kronecker
product layer taking ℓ1, ℓ2 as inputs. Moreover, if ℓ1, ℓ2 are both input layers over the same
variable X1 = X2 = {X}, we construct another input layer over X such that it computes
all the pairwise products of the function computed by ℓ1 and ℓ2. That is, consider ℓ1(X) =
[f1(X) · · · fK1(X)]⊤ and ℓ2(X) = [g1(X) · · · gK2(X)]⊤, then ℓ(X) = ℓ1(X) ⊗ ℓ2(X) =
[f1(X)g1(X) · · · fi(X)gj(X) · · · fK1(X)gK2(X)]⊤. Next, we consider the cases where ℓ1, ℓ2 have
overlapping scope and are either sum or product layers.

We continue the proof by first reviewing the definitions of commutation matrix and Tracy-Singh
product and their properties, as they will be used to perform linear algebra transformations needed to
show the correctness of Alg. A.2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Algorithm A.2 MULTIPLY(c1, c2)

Input: Tensorized and compatible circuits c1, c2 over variables X1, X2 respectively, and having ℓ1, ℓ2
as output layers, respectively. Output: The output layer ℓ of a circuit over variables X1 ∪ X2 such that
ℓ(X1 ∪X2) = ℓ1(X1)⊗ ℓ2(X2).
1: if sc(ℓ1) ∩ sc(ℓ2) = ∅ then return ℓ1 ⊗ ℓ2

2: if ℓ1, ℓ2 are input layers then
3: Assume ℓ1 (resp. ℓ2) computes K1 (resp. K2) functions over a variable X
4: return An input layer ℓ computing K1K2 functions as ℓ1 ⊗ ℓ2
5: if ℓ1 and ℓ2 are sum layers then
6: let ℓ1 = W(1)[ℓ11 · · · ℓ1N1] and ℓ2 = W(2)[ℓ21 · · · ℓ2N2]
7: Assume W1 = [W11 · · ·W1N1] and W2 = [W21 · · ·W2N2]
8: ℓ′ij ← MULTIPLY(ℓ1i, ℓ2j), ∀i ∈ [N1] ∀j ∈ [N2]
9: return (W1 ⊠W2)[ℓ

′
11 · · · ℓ′ij · · · ℓ′N1N2

]
10: where ⊠ denotes the Tracy-Singh product (see proof of Prop. A.2)
11: if ℓ1 and ℓ2 are Hadamard product layers then
12: Assume ℓ1 = ℓ11 ⊙ ℓ12 and ℓ2 = ℓ21 ⊙ ℓ22
13: where the circuit in ℓ11 (resp. ℓ12) is compatible with the circuit ℓ21 (resp. ℓ22).
14: ℓ′1 ← MULTIPLY(ℓ11, ℓ21)
15: ℓ′2 ← MULTIPLY(ℓ12, ℓ22)
16: return ℓ′1 ⊙ ℓ′2
17: if ℓ1 and ℓ2 are Kronecker product layers then
18: Assume ℓ1 = ℓ11 ⊗ ℓ12 and ℓ2 = ℓ21 ⊗ ℓ22
19: where the circuit in ℓ11 (resp. ℓ12) is compatible with the circuit ℓ21 (resp. ℓ22).
20: ℓ′1 ← MULTIPLY(ℓ11, ℓ21)
21: ℓ′2 ← MULTIPLY(ℓ12, ℓ22)
22: return P (ℓ′1 ⊗ ℓ′2) where P is a permutation matrix (see proof of Prop. A.2).

Definition A.6 (Commutation matrix (Magnus and Neudecker, 1979)). A commutation matrix
K(m,n) is a nm × nm permutation matrix for which, for any m × n matrix A, we have that
K(m,n)vec(A⊤) = vec(A), where vec denotes the flattening (or vectorization) operation.

Proposition A.3. Let Pmn
rs denote the permutation matrix In ⊗K(s,m) ⊗ Ir. The following proper-

ties hold (Neudecker and Wansbeek, 1983; Tracy and Jinadasa, 1989; Tracy, 1990).

(C1) Given v ∈ Cm, w ∈ Cn, then K(m,n)(v ⊗w) = w ⊗ v.

(C2) (K(s,m))⊤= (K(s,m))−1 = K(m,s) and (Pmn
rs)⊤ = (Pmn

rs)−1 = Psn
rm = In⊗K(m,s)⊗Ir.

(C3) Given A ∈ Cm×n, B ∈ Cr×s, then vec(A⊗B) = Psn
rm(vec(A)⊗ vec(B)).

(C4) Given a ∈ Cm, b ∈ Cn, c ∈ Cr, d ∈ Cs, then Prm
sn (a⊗ b⊗ c⊗ d) = a⊗ c⊗ b⊗ d.

Definition A.7 (Tracy-Singh product (Tracy and Singh, 1972)). Let A ∈ Cm×n be a block matrix
where each block A(i,j) is a mi × nj matrix, and similarly let B ∈ Cr×s be a block matrix where
each block B(i,j) is a ri × sj matrix. Here, m =

∑
imi, n =

∑
j nj , r =

∑
i ri, s =

∑
j sj . The

Tracy-Singh product between A and B, with such blocks and denoted as A⊠B is defined as the
block matrix C ∈ Cmr×ns where each block C((i,k),(j,l)) is computed as A(i,j) ⊗B(k,l).

Proposition A.4. The following properties hold (Tracy and Jinadasa, 1989; Tracy, 1990).

(T1) For non-block matrices A, B, we have that A⊠B = A⊗B.

(T2) For block matrices A, B, (A⊠B)⊤ = A⊤ ⊠B⊤.

(T3) For block matrices A, B, we have that A⊠B = Sr
mGr

m(A⊗B)Hs
nS

n
s , where each of the

matrices Sα
β , Gα

β and Hα
β is a special kind of a αβ × αβ permutation matrix that depends

on the number of row and column blocks in A, B.

(T4) For block matrices A, B consisting of a single row of blocks, i.e., m = m1 and r = r1, we
have that A⊠B = (A⊗B)Hs

nS
n
s .

(T5) For block matrices A, B, we have that A⊗B = Hr
mSm

r (A⊠B)Ss
nG

s
n.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

For a precise formalization of the permutation matrices Sα
β , Gα

β , Hα
β , and for the proofs of these

statements, refer to Tracy and Jinadasa (1989, §2) and Tracy and Jinadasa (1989, Thm. 7).

We now consider the product and sum layers case by case.

Case (i): Hadamard layers. We assume without loss of generality that each product layer receives
input from exactly two other layers and, due to compatibility, two pairs of product layers with
overlapping scope will factorize their scope towards their layer inputs in the same way. Let ℓ1,
ℓ2 be Hadamard product layers receiving inputs from in(ℓ1) = {ℓ11, ℓ12}, in(ℓ2) = {ℓ21, ℓ22},
respectively. From decomposability and compatibility of ℓ1 and ℓ2, we have that ℓ11 is compatible
with ℓ21 and ℓ12 is compatible with ℓ22. As such, let ℓ′1 (resp. ℓ′2) be the output layer of the tensorized
circuit obtained by recursively calling MULTIPLY(ℓ11, ℓ21) (resp. MULTIPLY(ℓ12, ℓ22)). In other
words, ℓ′1 and ℓ′2 compute ℓ11 ⊗ ℓ21 and ℓ12 ⊗ ℓ22, respectively. Then, we encode ℓ1 ⊗ ℓ2 as yet
another Hadamard layer ℓ:

ℓ = ℓ1 ⊗ ℓ2 = (ℓ11 ⊙ ℓ12)⊗ (ℓ21 ⊙ ℓ22) = (ℓ11 ⊗ ℓ21)⊙ (ℓ12 ⊗ ℓ22) = ℓ′1 ⊙ ℓ′2, (8)

where we used the mixed-product property of the Kronecker operation, with respect to the Hadamard
product. Therefore, Alg. A.2 returns another Hadamard layer ℓ that receive inputs from ℓ′1, ℓ′2,
respectively.

Case (ii): Kronecker layers. We proceed similarly to the case of Hadamard layers above. Let
ℓ1, ℓ2 be Kronecker product layers receiving inputs from in(ℓ1) = {ℓ11, ℓ12}, in(ℓ2) = {ℓ21, ℓ22},
respectively. From decomposability and compatibility of ℓ1 and ℓ2, we have that ℓ11 is compatible
with ℓ21 and ℓ12 is compatible with ℓ22. As such, let ℓ′1 (resp. ℓ′2) be the output layer of the tensorized
circuit obtained by recursively calling MULTIPLY(ℓ11, ℓ21) (resp. MULTIPLY(ℓ12, ℓ22)). Then, we
encode ℓ1 ⊗ ℓ2 as yet another Hadamard layer ℓ:

ℓ = ℓ1⊗ ℓ2 = (ℓ11⊗ ℓ12)⊗ (ℓ21⊗ ℓ22) = PK3K1

K4K2
((ℓ11⊗ ℓ21)⊗ (ℓ12⊗ ℓ22)) = PK3K1

K4K2
(ℓ′1⊗ ℓ′2),

where PK3K1

K4K2
is a permutation matrix used to re-arrange the Kronecker products as defined and shown

in Prop. A.3, and K1, K2, K3, K4 respectively denote the output size of layers ℓ11, ℓ21, ℓ12, ℓ22.
Therefore, Alg. A.2 returns a composition of a sum and a Kronecker layer, where the sum layer applies
the permutation matrix PK3K1

K4K2
and the Kronecker layer receive inputs from ℓ′1, ℓ′2, respectively.

Case (iii): sum layers. Let ℓ1, ℓ2 be sum layers receiving inputs from layers in(ℓ1) =

{ℓ11, . . . , ℓ1N1} and in(ℓ2) = {ℓ21, . . . , ℓ2N2}, respectively. Moreover, let W(1), W(2) denote the
parameter matrices of ℓ1, ℓ2, respectively. We will firstly consider the case N1 = N2 = 1, and gener-
alize it for any N1, N2 later. If N1 = N2 = 1, then due to smoothness we have that ℓ11 and ℓ21 are
compatible. As such let ℓ′1 denote the result from MULTIPLY(ℓ11, ℓ21). From induction hypothesis,
we have that ℓ′1 computes ℓ11 ⊗ ℓ21. Now, we instantiate a layer ℓ over variables X1 ∪X2 such that

ℓ = ℓ11 ⊗ ℓ21 = (W(1)ℓ11)⊗ (W(2)ℓ21) = (W(1) ⊗W(2))(ℓ11 ⊗ ℓ21),

where we used the mixed-product property of the Kronecker operation. Therefore, we realize ℓ

as another sum layer having W(1) ⊗ W(2) as parameters and receiving input from ℓ′1. Next, we
consider the case N1, N2 > 1. In this case we rewrite W(1) ∈ CK1×K2 , W(2) ∈ CJ1×J2 as block-
wise matrices as follows

W(1) = [W(1,1) · · ·W(1,N1)] W(1) = [W(2,1) · · ·W(2,N2)].

Now, by smoothness of ℓ1 and ℓ2, we have that ∀i ∈ [N1], ∀j ∈ [N2], ℓ1i is compatible with ℓ2j . As
such, by induction hypothesis we will denote as ℓ′ij the layer obtained by calling MULTIPLY(ℓ1i, ℓ2j),
i.e., ℓ′ij is the output layer of smooth and decomposable circuit that computes the Kronecker product
ℓ′ij = ℓ1i ⊗ ℓ2j . Now, let L1, L2 denote placeholders for the layer concatenations [ℓ11 · · · ℓ1N1

] and
[ℓ21 · · · ℓ2N2

], respectively. To retrieve another layer ℓ such that it computes ℓ1 ⊗ ℓ2, we rewrite

ℓ = ℓ1 ⊗ ℓ2 = (W(1) ⊗W(2))(L1 ⊗ L2) = (W(1) ⊗W(2))HJ2

K2
SK2

J2
(L1 ⊠ L2)

= (W(1) ⊠W(2))(L1 ⊠ L2) = (W(1) ⊠W(2))[ℓ′11 · · · ℓ′ij · · · ℓ′N1N2
],

where we used the following properties: (i) Kronecker mixed-product property; (ii) the transformation
from Kronecker to Tracy-Singh product by using the permutation matrix HJ2

K2
SK2

J2
as written in the

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

property (T5) in Prop. A.4; and (iii) the similar transformation using the permutation matrix HJ2

K2
SK2

J2

as written in property (T4) in Prop. A.4, which is a specialization of (T3) as the number of block rows
in W(1) and W(2) is one. Therefore, we obtained that for sum layers ℓ1, ℓ2 having arity N1 ≥ 1,
N2 ≥ 1 in general, our Alg. A.2 returns another sum layer ℓ receiving inputs in(ℓ) = {ℓ′ij}N1,N2

i=1,j=1

and parameterized by the weight matrix W(1) ⊠W(2).

Finally, we consider the complexity of our Alg. A.2. Due to Kronecker products, we firstly observe
that the size of each layer in the resulting product circuit must be O(S1,maxS2,max) where S1,max (resp.
S2,max) denotes the maximum layer size in c1 (resp. c2). Furthermore, multiplying sum layers ℓ1,
ℓ2 receiving inputs from N1 layers and N2 layers respectively, is done calling Alg. A.2 recursively
on all the N1N2 pairings of inputs to ℓ1 and ℓ2. Thus, the number of layers of the resulting product
circuit is O(L1L2) in the worst case, where L1 (resp. L2) denotes the number of layers in c1 (resp.
c2). Therefore, Alg. A.2 must run in worst case time O(L1L2S1,maxS2,max).

A.6 ALREADY-NORMALIZED TENSORIZED SQUARED CIRCUITS VIA UNITARITY

In the following we prove that the modulus squaring of a tensorized circuit that is unitarity, i.e., it
satisfies (U1) to (U3), is orthogonal (Def. 5) and encodes an already-normalized distribution (Thm. 2).
Below we start by clarifying some notation.

Notation. In this section and in App. A.7, we require integrating layers ℓ that output vectors, e.g., in
CK . That is, given a layer ℓ having scope sc(ℓ) = Y∪Z and encoding a function ℓ : dom(Y∪Z) →
CK , we write

∫
dom(Z)

ℓ(y, z) dz to refer to the K-dimensional vector obtained by integrating the K
univariate function components encoded by the scalar computational units in ℓ:∫

dom(Z)

ℓ(y, z) dz =
[∫

dom(Z)
ℓ(y, z)1 dz

∫
dom(Z)

ℓ(y, z)2 dz · · ·
∫
dom(Z)

ℓ(y, z)K dz
]
∈ CK .

Moreover, due to the linearity of the matrix-vector product, we can write∫
dom(Z)

Wℓ(y, z) dz = W
[∫

dom(Z)
ℓ(y, z)1 dz · · ·

∫
dom(Z)

ℓ(y, z)K dz
]
= W

∫
dom(Z)

ℓ(y, z) dz.

Furthermore, for Hadamard products of layers having disjoint scopes, we can write∫
dom(Z1)×dom(Z2)

ℓ1(y1, z1)⊙ ℓ2(y2, z2) dz1 dz2 =

∫
dom(Z1)

ℓ1(y1, z1) dz1 ⊙
∫
dom(Z2)

ℓ2(y1, z2) dz2,

where (Y1,Y2) is a partitioning of Y and (Z1,Z2) is a partitioning of Z. The above equality still
holds if we replace the Hadamard product (⊙) with the Kronecker product (⊗).

Theorem 2. Let c be smooth and decomposable circuit over variables X. If c is unitary, i.e., it
satisfies conditions (U1-3), then we have that c is orthogonal and Z =

∫
dom(X)

|c(x)|2 dx = 1.

Proof. We prove it bottom-up by showing that, since c is unitary, then every layer ℓ over variables
Z ⊆ X in c satisfies

∫
dom(Z)

ℓ(z) ⊗ ℓ(z)∗ dz = vec(IK), where vec denotes the vectorization (or
flattening) operation and K denotes the size of the output of ℓ. Thus, for the last layer in c, i.e.,
having number of units K = 1 and computing the output of c, we have that Z = 1. In other words,
we will inductively prove that each layer consisting of K units encodes a vector of K orthonormal
functions. This will not only give us Z = 1 for the last layer in c, but also that c is is orthogonal by
observing orthonormality of the inputs to a sum layer. Below we proceed by cases.

Case (i): input layer. Let ℓ be an input layer in c over the variable X . By unitarity of c and
in particular from (U1), we have that ℓ computes a vector of K orthonormal functions ℓ(X) =
[f1(X) · · · fK(X)]⊤. Therefore, we have that

∫
dom(X)

ℓ(x)⊗ ℓ(x)∗ dx = vec(IK).

Case (ii): Hadamard product layer. Let ℓ be a Hadamard product layer in c receiving inputs
from layers in(ℓ) = {ℓ1, ℓ2}. By decomposability, we have that sc(ℓ1) = Z1, sc(ℓ2) = Z2, with
Z1 ∩ Z2 = ∅ and sc(ℓ) = Z = Z1 ∪ Z2. Assume by induction hypothesis that

∫
dom(Z1)

ℓ1(z1)⊗

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

ℓ1(z1)
∗ dz1 = vec(IK) and

∫
dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2 = vec(IK). Then, we have that∫

dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z1)×dom(Z2)

(ℓ1(z1)⊙ ℓ2(z2))⊗ (ℓ1(z1)
∗ ⊙ ℓ2(z2)

∗) dz1 dz2

=

(∫
dom(Z1)

ℓ1(z1)⊗ ℓ1(z1)
∗ dz1

)
⊙
(∫

dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2

)
= vec(IK)⊙ vec(IK) = vec(IK),

where we used the Kronecker mixed-product property with respect to the Hadamard product, and
decomposed the integral into lower dimensional ones by using the fact that Z1 ∩ Z2 = ∅.

Case (iii): Kronecker product layer. Let ℓ be a Kronecker product layer in c receiving inputs
from layers in(ℓ) = {ℓ1, ℓ2}. By decomposability, we have that sc(ℓ1) = Z1, sc(ℓ2) = Z2, with
Z1 ∩ Z2 = ∅ and sc(ℓ) = Z = Z1 ∪ Z2. Assume by induction hypothesis that

∫
dom(Z1)

ℓ1(z1)⊗
ℓ1(z1)

∗ dz1 = vec(IK1
) and

∫
dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2 = vec(IK2

). Then, we have that∫
dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z1)×dom(Z2)

(ℓ1(z1)⊗ ℓ2(z2))⊗ (ℓ1(z1)
∗ ⊗ ℓ2(z2)

∗) dz1 dz2

=

∫
dom(Z1)×dom(Z2)

PK2K1

K2K1
[(ℓ1(z1)⊗ ℓ1(z1)

∗)⊗ (ℓ2(z2)⊗ ℓ2(z2)
∗)] dz1 dz2

= PK2K1

K2K1

[(∫
dom(Z1)

ℓ1(z1)⊗ ℓ1(z1)
∗ dz1

)
⊗
(∫

dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2

)]
= PK2K1

K2K1
(vec(IK1)⊗ vec(IK2)) = vec(IK1 ⊗ IK2) = vec(IK1K2),

where PK2K1

K2K1
is a permutation matrix as defined as in Prop. A.3. In particular, in the above we apply

the property (C4) in Prop. A.3, then we decompose the integral into lower dimensional ones by using
the fact that Z1 ∩ Z2 = ∅, and finally use the property (C3) in Prop. A.3.

Case (iv): sum layer. Let ℓ be a sum layer in c receiving inputs from layers in(ℓ) = {ℓi}Ni=1, and
ℓ is parameterized by a (semi-)unitary matrix W ∈ CK1×K2 with K1 ≤ K2 by unitarity of c, i.e.,
WW† = IK1

as for (U3). From smoothness, we recover that sc(ℓi) = sc(ℓ) = Z, for any i ∈ [N].
We firstly assume that N = 1, i.e., in(ℓ) = {ℓ1}, and then handle the case N > 1 later. For N = 1
by induction hypothesis we have that

∫
dom(Z)

ℓ1(z)⊗ ℓ1(z)
∗ dz = vec(IK2

). Then, we have that∫
dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z)

(Wℓ1(z))⊗ (W∗ℓ1(z)
∗) dz = (W ⊗W∗)

∫
dom(Z)

ℓ1(z)⊗ ℓ1(z)
∗ dz

= (W ⊗W∗)vec(IK2
) = vec(W∗IK2

W⊤) = vec((WW†)∗) = vec(IK1
),

where we used the Kronecker mixed-product property, and the following property of the Kronecker:
(A ⊗ B)vec(V) = vec(BVA⊤) for matrices A, B, V. Consider now the case N > 1. For all
i ∈ [N] by induction hypothesis we have that

∫
dom(Z)

ℓi(z)⊗ℓi(z)
∗ dz = vec(IJi), where Ji denotes

the size of the output of ℓi, i.e., K2 =
∑N

i=1 Ji. With a slight abuse of notation, we overload the
basis scope definition (Def. A.2) to layers rather than units, i.e., we denote as BX(ℓ) the union of all
basis scopes w.r.t. X of the units within ℓ. Then, from (U2) of unitarity by hypothesis, we can apply
the following lemma.

Lemma A.5. Let ℓ1, ℓ2 be output layers of smooth and decomposable tensorized circuits c1, c2
over variables X. Assume that, for some X ∈ X, the input functions computed by the input
layers over X in c1 and c2 are orthogonal with each other, i.e., ∃X ∈ X : ∀f ∈ BX(ℓ1),∀g ∈
BX(ℓ2) :

∫
dom(X)

f(x)g(x)∗ dx = 0. Then, for any Z ⊆ X such that X ∈ Z, we have that∫
dom(Z)

ℓ1(y, z)⊗ ℓ2(y, z)
∗ dz = 0, where y ∈ dom(X \ Z).

Proof. By hypothesis for some X ∈ Z ⊆ X the basis scopes of ℓ1 and ℓ2 w.r.t. X consists of
orthogonal functions overX . As such, for any pair of units n andm respectively in ℓ1 and ℓ2, the input
functions overX in the sub-circuits rooted in n andm, respectively, are orthogonal. Therefore, we can
apply Lem. A.2 to recover the wanted result: all pairs of units n andm respectively in ℓ1 and ℓ2 encode
orthogonal functions when fixing variables not in Z, i.e.,

∫
dom(Z)

ℓ1(y, z)⊗ ℓ2(y, z)
∗ dz = 0.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Therefore, for all i ∈ [N], j ∈ [N], i ̸= j, by leveraging (U1) and (U2) of unitarity we can apply
Lem. A.5 and recover that

∫
dom(Z)

ℓi(z)⊗ ℓj(z)
∗ dz = 0, i.e., a zero vector of size JiJj . From these

equalities and by rewriting Kronecker products in terms of outer products (denoted as ◦), we also
obtain that

∫
dom(Z)

ℓi(z)
∗ ◦ ℓi(z) dz = IJi , and

∫
dom(Z)

ℓi(z)
∗ ◦ ℓj(z) dz = 0 for any i, j ∈ [N],

i ̸= j, where ◦ denotes the outer product. Therefore, we can write the following:∫
dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z)

(W[ℓ1(z) · · · ℓN (z)])⊗ (W∗[ℓ1(z)
∗ · · · ℓN (z)∗]) dz

= (W ⊗W∗)
∫
dom(Z)

vec ([ℓ1(z)
∗ · · · ℓN (z)∗] ◦ [ℓ1(z) · · · ℓN (z)] dz)

= (W ⊗W∗)vec



∫
dom(Z)

ℓ1(z)
∗ ◦ ℓ1(z) dz · · ·

∫
dom(Z)

ℓ1(z)
∗ ◦ ℓN (z) dz

...
. . .

...∫
dom(Z)

ℓN (z)∗ ◦ ℓ1(z) dz · · ·
∫
dom(Z)

ℓN (z)∗ ◦ ℓN (z) dz




= (W ⊗W∗)vec


IJ1

0
. . .

0 IJN




= (W ⊗W∗)vec(IK2
) = vec(W∗IK2

W⊤) = vec((WW†)∗) = vec(IK1
),

where we applied the same properties used for the case N = 1 shown above. From the above we
recover that each sum unit in the sum layer ℓ receives input from units encoding orthogonal functions,
as integrating all pairwise products yields an identity matrix. Therefore, it turns out that c is orthogonal.
By recursively applying the above cases, if ℓ is the output layer of the tensorized circuit c, then
K1 = 1, and we have that Z =

∫
dom(X)

|c(x)|2 dx =
∫
dom(X)

ℓ(x)ℓ(x)∗ dx = vec(I1) = 1.

A.7 A TIGHTER MARGINALIZATION COMPLEXITY

Theorem 3. Let c be a tensorized circuit over variables X that satisfies (U1-4), and let Z ⊆ X,
Y = X \Z. Computing the marginal p(y) =

∫
dom(Z)

|c(y, z)|2 dz requires time O(|ϕY \ϕZ|Smax +

|ϕY ∩ ϕZ|S2
max), where ϕ⋆ is the set of layers whose scope depends on at least one variable in ⋆.

Proof. We prove it by constructing Alg. A.3, i.e., the algorithm computing the marginal likelihood
given by hypothesis. Alg. A.3 is based on two ideas. First, integrating sub-circuits whose layer
depend only on the variables being integrated over (i.e., Z) will yield identity matrices, so there is no
need to evaluate these sub-circuits. Second, the sub-circuits whose layers depend on the variables
that are not integrated over (i.e., Y) do not need to be squared and can be evaluated bringing a linear
rather than quadratic complexity w.r.t. the circuit size. Below, we consider different cases of layers
based on the variables they depend on, and we later discuss the overall complexity.

Case (i): layers depending on variables Z only. Consider a layer ℓ in c such that sc(ℓ) ⊆ Z, i.e.,
ℓ ∈ ϕZ \ϕY by hypothesis. Since the tensorized circuit c is unitary by hypothesis, the tensorized sub-
circuit rooted in ℓ is also unitary. Therefore, from our proof for Thm. 2 we recover that integrating
the Kronecker product of ℓ and its conjugate yields the flattening of an identity matrix. Formally,
we have that

∫
dom(sc(ℓ)∩Z)

ℓ(z)⊗ ℓ(z)∗ dz = vec(IK), where K denote the size of the output of ℓ.
Therefore, layers in ϕZ \ ϕY do not need be evaluated, and this is reflected in L1-2 of our Alg. A.3.

Case (ii): layers depending on variables Y only. Consider a layer ℓ in c such that sc(ℓ) ∩ Z = ∅,
i.e., ℓ ∈ ϕY \ ϕZ by hypothesis. Since ℓ does not depend on the variables to be marginalized out,
we can compute ℓ(y)⊗ ℓ(y)∗ with y ∈ dom(sc(ℓ) ∩Y) by evaluating ℓ on y and then computing
the conjugation and Kronecker product. This case is captured by L3-5 in Alg. A.3. Note that the
complexity of evaluating ℓ on y is O(|ϕY \ ϕZ|Smax). Moreover, we observe that L3-5 are executed
only on layers ℓ that are input to other layers having scope overlapping with both Y and Z, i.e., they
are in ϕY ∩ ϕZ If that were not the case, then either Case (i) would have been executed, or L3-5
would have been executed on the layer receiving input from ℓ instead. Since each product layer in
ϕY ∩ ϕZ receives input from exactly two other layers ℓ1, ℓ2 and at most one between ℓ1 and ℓ2 can
depend on variables Y only (i.e, it is in ϕY \ ϕZ), we have that L3-5 are executed a number of times

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Algorithm A.3 MAR-SQUARED-UNITARY(c,y,Z)

Input: A tensorized circuit c over variables X satisfying conditions (U1) to (U4), where ℓ is the output layer in
c; a set of variables Z ⊆ X to marginalize, and an assignment y to variables Y = X \ Z.
Output: The vector

∫
dom(Z)

ℓ(y, z)⊗ ℓ(y, z)∗ dz. If ℓ is the last layer of c, then it consists of exactly one unit,
and thus the algorithm returns the marginal likelihood p(y) =

∫
dom(Z)

|c(y, z)|2 dz.

1: if sc(ℓ) \ Z = ∅ then ▷ ℓ depends on only the variables being marginalized
2: return vec(IK)
3: else if sc(ℓ) ∩ Z = ∅ then ▷ ℓ does not depend on the variables to marginalize
4: r← EVAL-FEED-FORWARD(ℓ,y)
5: return r⊗ r∗

6: else if ℓ is a sum layer then ▷ ℓ depend on both the variables to marginalize and the ones left over
7: let ℓ receive inputs from {ℓ1, . . . , ℓN} and parameterized by W ∈ CK1×K2

8: Assume W is a block matrix W = [W(1) · · ·W(N)]
9: ri ← MAR-SQUARED-UNITARY(ℓi,y,Z ∩ sc(ℓi)), ∀i ∈ [N].

10: let Rii be the reshaping of ri as a Ji × Ji matrix, ∀i ∈ [N]

11: return vec
(∑N

i=1 W
(i)RiiW

(i)†
)∗

12: else if ℓ is a Hadamard product layer then
13: let ℓ = ℓ1 ⊙ ℓ2
14: r1 ← MAR-SQUARED-UNITARY(ℓ1,y,Z ∩ sc(ℓ1))
15: r2 ← MAR-SQUARED-UNITARY(ℓ2,y,Z ∩ sc(ℓ2))
16: return r1 ⊙ r2
17: else ▷ ℓ is a Kronecker product layer
18: let ℓ = ℓ1 ⊗ ℓ2
19: r1 ← MAR-SQUARED-UNITARY(ℓ1,y,Z ∩ sc(ℓ1))
20: r2 ← MAR-SQUARED-UNITARY(ℓ2,y,Z ∩ sc(ℓ2))
21: return P(r1 ⊗ r2), where P is a permutation matrix

that is in O(|ϕY ∩ϕZ|). This would be true even if a product layer receives input from more than two
layers, as it can be casted into multiple product layers receiving input from exactly two other layers.
Furthermore, since the size of a layer ℓ (i.e., the number of scalar input connections) is bounded by
below by the number of units K in ℓ, we have that the Kronecker products (L5) will account for just
a O(|ϕY ∩ ϕZ|K2) ⊆ O(|ϕY ∩ ϕZ|S2

max) factor to the overall time complexity of Alg. A.3.

Case (iii): layers depending on variables both in Y and Z. Consider a layer ℓ in c such that
sc(ℓ)∩Y ̸= ∅ and sc(ℓ)∩Z ̸= ∅, i.e., ℓ ∈ ϕY∩ϕZ by hypothesis. Since we assume that input layers
can only compute univariate functions (Def. 8), we have that ℓ must be either a sum or product layer.

Case (iii-a): product layers. Now, assume ℓ is an Hadamard product layer in c receiving input from
ℓ1, ℓ2. Let Ẑ = sc(ℓ) ∩ Ẑ, Ẑ1 = sc(ℓ1) ∩ Ẑ, Ẑ2 = sc(ℓ2) ∩ Ẑ. From decomposability, we recover
that (Ẑ1, Ẑ2) is a partitioning of Ẑ. We denote as ŷ the variables assignment obtained from y by
restriction to variables in sc(ℓ)\ Ẑ, and similarly let ŷ1, ŷ2 denote the variables assignments obtained
from y by restriction to sc(ℓ1) \ Ẑ1, sc(ℓ2) \ Ẑ2, respectively. Therefore, we can write

∫
dom(Ẑ)

ℓ(ŷ, ẑ)⊗ ℓ(ŷ, ẑ)∗ dẑ =

(∫
dom(Ẑ1)

ℓ1(ŷ1, ẑ1)⊗ ℓ1(ŷ1, ẑ1)
∗ dẑ1

)
⊙
(∫

dom(Ẑ2)

ℓ2(ŷ2, ẑ2)⊗ ℓ2(ŷ2, ẑ2)
∗ dẑ2

)

where we used the Kronecker mixed-product property w.r.t. the Hadamard product, and split the
integral into lower dimensional ones. Therefore, L12-16 in our Alg. A.3 use recursion to compute the
integrals w.r.t. the layers ℓ1, ℓ2 and then aggregate the results with an Hadamard product. In the case of
ℓ being a Kronecker product layer in c instead, a similar approach can be used, resulting in L18-21 in
Alg. A.3. In the case of Kronecker product layers, a permutation matrix described as in Thm. 2 is used.

Case (iii-b): sum layers. Let ℓ be a sum layer receiving inputs from layers in(ℓ) = {ℓ1, . . . , ℓN}
and parameterized by W ∈ CK1×K2 . Assume that W is a block matrix W = [W(1) · · ·W(N)].
Moreover, let Ẑ = sc(ℓ) ∩ Z, Ŷ = sc(ℓ) \ Z and let ŷ denote the variables assignment obtained
from y by restriction to variables in sc(ℓ) \ Ẑ. For any i, j ∈ [N], we will denote as Rij the matrix
Rij =

∫
dom(Ẑ)

ℓi(ŷ, ẑ) ◦ ℓj(ŷ, ẑ)∗ dẑ. By the satisfaction of unitary and the property (U4), and by
applying Lem. A.5 we have that ∀ℓi, ℓj ∈ in(ℓ), ℓi ̸= ℓj , Rij = 0. Therefore, similarly to our proof

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

for Thm. 2, we recover that∫
dom(Ẑ)

ℓ(ŷ, ẑ)⊗ ℓ(ŷ, ẑ)∗ dẑ =

∫
dom(Z)

(W[ℓ1(ŷ, ẑ) · · · ℓN (ŷ, ẑ)])⊗ (W∗[ℓ1(ŷ, ẑ)
∗ · · · ℓN (ŷ, ẑ)∗]) dẑ

= (W ⊗W∗)
∫
dom(Ẑ)

vec([ℓ1(ŷ, ẑ)
∗ · · · ℓN (ŷ, ẑ)∗] ◦ [ℓ1(ŷ, ẑ) · · · ℓN (ŷ, ẑ)] dẑ)

= (W ⊗W∗)vec


R

∗
11 0

. . .
0 R∗

NN


 = vec

(
W∗diag(R∗

11, · · · ,R∗
NN)W⊤

)

= vec

(
N∑
i=1

W(i)∗R∗
iiW

(i)⊤
)

= vec

(
N∑
i=1

W(i)RiiW
(i)†
)∗

.

L6-11 in our Alg. A.3 recursively marginalize the Kronecker product of ℓi by its conjugate, for all
i ∈ [N], resulting in matrices {Rii}Ni=1 and then performing matrix multiplications and summations.

Computational complexity. We recover the overall time complexity stated in the theorem. First,
Case (ii) has an overall complexity of O(|ϕY \ ϕZ|Smax + |ϕY ∩ ϕZ|S2

max). Second, for Cases (iii-
a) and (iii-b) above, we have that we need to evaluate the integral of a “squared” layer, i.e., the
integral

∫
dom(Ẑ)

ℓ(ŷ, ẑ) ⊗ ℓ(ŷ, ẑ)∗ dẑ. Thus, these cases account for a quadratic complexity w.r.t.
the layer size, i.e., O(S2

max) as highlighted in the proof of Prop. A.2, and they occur a number of
times that is |ϕY ∩ ϕZ|. Therefore, we conclude that the overall complexity of our Alg. A.3 is
O(|ϕY\ϕZ|Smax+|ϕY∩ϕZ|S2

max). Furthermore, note that we have |ϕY\ϕZ|+|ϕY∩ϕZ| = |ϕY| ≤ L.
In other words, the complexity is independent on the number of layers whose scope is a subset of Z,
i.e., |ϕZ \ ϕY|. Although the complexity depends on the particular marginal being computed and the
circuit structure chosen, our Alg. A.3 can be much more efficient than O(L2S2

max). To see this, we
consider the following example. The structure for a circuit defined over pixel variables can be built by
recursively splitting an image into patches obtained by alternating vertical and horizontal even cuts
(Mari et al., 2023; Loconte et al., 2025a). If Z consists of only the pixel variables in the left-hand side
of an image (i.e., we are computing the marginal of the right-hand side Y), then |ϕY ∩ϕZ| is constant
w.r.t. L since only a few layers near the circuit output layer will depend on variables both in Y and Z.
The rest of the layers will entirely depend either on Y or on Z. Therefore, the best-case complexity
considers |ϕY∩ϕZ| being independent of the total number of layersL, i.e., it is O(|ϕY\ϕZ|Smax).

B EXPRESSIVENESS ANALYSIS

We presented new families of circuits through the introduction of novel circuit properties, namely
orthogonality (§3) and unitarity (§4). In general, each family of circuits with a particular parameteri-
zation and a set of structural properties they satisfy exhibit a different expressive efficiency, which
refers to the ability of encoding a function or distribution with a circuit computational graph having
polynomial size w.r.t the number of variables (Martens and Medabalimi, 2014). As such many works
focused on the formulation of hierarchies that compare different circuit clases in terms of their expres-
sive efficiency (Darwiche and Marquis, 2002; de Colnet and Mengel, 2021; Loconte et al., 2025b).
Here, we provide a preliminary expressiveness analysis by investigating which of the presented prop-
erties can be enforced in polytime, as this would immediately guarantee no loss expressive efficiency.
We start with a negative result, which tells us that enforcing orthogonality is #P-hard.

B.1 ENFORCING ORTHOGONALITY IS #P-HARD

Theorem B.1. Let c be a smooth and decomposable circuit over variables X. Then, constructing a
circuit c′ from c such that c′(X) = c(X) and c′ is an orthogonal circuit is #P-hard.

Proof. The idea is to construct a reduction from the problem of making a smooth and decomposable
circuit also orthogonal to #3SAT, which is known to be a #P-hard problem. In particular, we leverage
the same technique used to prove that representing any power of a non-structured-decomposable
circuit as another decomposable circuit is in general #P-hard (Vergari et al., 2021, Thm. 3.3).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

We start by defining the #3SAT problem. Let X = {Xi}ni=1 be a set of Boolean variables, and let Φ
be a CNF formula that contains m clauses Γ = {cj}mj=1, where each clause contains exactly 3 literals.
The #3SAT problem consists of counting the number of assignments to the variables X that satisfy
Φ, i.e., the quantity

∑
x∈dom(X) Φ(x), where Φ(x) is 1 if x satisfies Φ and 0 otherwise. For every

variable Xi and for every clause cj , we introduce an auxiliary variable Xij . We denote as X̂ the set
of all such auxiliary variables, i.e., X̂ = {Xij | Xi ∈ X, cj ∈ Γ}. For every variable Xi we set all
auxiliary variables associated to it to share the same Boolean value of Xi, which can be described
by the logic formula β = ∧Xi∈X(Xi1 ⇔ Xi2 ⇔ · · · ⇔ Xim). In order to encode Φ using an
equivalent logic formula defined over the auxiliary variables instead, we introduce the logic formula
γ = ∧cj∈Γ ∨Xi∈φ(cj) l(Xij), where we denote as φ(cj) the variables scope of the clause cj and
l(Xij) is the literal ofXi found in cj . We can see that Φ is equivalent to β∧γ. As detailed in Khosravi
et al. (2019) and Vergari et al. (2021, §A.3), the logic formulae β and γ can be respectively encoded
by structured-decomposable and deterministic circuits cβ and cγ having polynomial size. This is
done by casting conjunction and disjunctions into products and deterministic sums, respectively.
Therefore, Φ(x) can be computed as the product of the outputs of cβ and cγ when evaluated on x̂,
which is obtained from the assignments x as for the sharing of Boolean values between the auxiliary
variables of each Xi. Crucially, we have that cβ and cγ are not compatible circuits by construction.

Reducing finding an orthogonal circuit to solving #3SAT. Consider now the circuit cα computing
cα(x̂) = cβ(x̂) + cγ(x̂) for any x̂ ∈ dom(X̂). Since cβ , cγ are structured-decomposable, non-
compatible, and with overlapping support for a generic satisfiable logic formula Φ, we have that cα
is a smooth and decomposable circuit that is non-deterministic and non-structured decomposable.
Moreover, from the sizes of cα and cβ we recover that cα has also polynomial size. From now on, we
will focus on the problem of computing the quantity

∑
x̂∈dom(X̂) cα(x̂)

2, called POW2PC in Vergari
et al. (2021), and reduce it to solving #3SAT. Formally, by the construction of cα we have that the
POW2PC quantity can be written as∑

x̂∈dom(X̂)

cα(x̂)
2 =

∑
x̂∈dom(X̂)

cβ(x̂)
2 +

∑
x̂∈dom(X̂)

cγ(x̂)
2 + 2

∑
x̂∈dom(X̂)

cβ(x̂)cγ(x̂).

Now, since cβ and cγ are both deterministic, we observe that
∑

x̂∈dom(X̂) cβ(x̂)
2 and∑

x̂∈dom(X̂) cγ(x̂)
2 can both be computed in polytime (Vergari et al., 2021). Assume by absurdum

that there exists a polytime algorithm taking a smooth and decomposable circuit as input, e.g., cα,
and that returns an orthogonal circuit computing the same function. Then, from Thm. 1 we have that
we would be able to compute

∑
x̂∈dom(X̂) cα(x̂)

2 in polytime. As a consequence, from the definition
of POW2PC, we would be able to compute the remaining quantity

∑
x̂∈dom(X̂) cβ(x̂)cγ(x̂) in poly-

time. However, computing this last quantity in polytime would imply solving #3SAT in polytime,
since the conjunction of β and γ is equivalent to the logic formula Φ as described in the preliminaries
above. Therefore, an algorithm receiving a smooth and decomposable circuit as input and converting
it to an orthogonal circuit cannot run in polytime. In particular, the problem of representing a smooth
and decomposable circuit as an orthogonal one must be at least #P-hard.

From Thm. B.1 it turns out that enforcing regular orthogonality and unitarity must also be hard, since
they both imply orthogonality (see App. A.3 and Thm. 2). However, Thm. B.1 does not necessarily
imply an expressiveness separation (Martens and Medabalimi, 2014) between orthogonal and smooth
and decomposable circuits, i.e., the existence of a family of functions that cannot be encoded by any
orthogonal and polysize circuit, while it can by a smooth and decomposable circuit. The reason is that
Thm. B.1 does not say anything about the minimum circuit sizes required by an orthogonal circuit.
While investigating such separation deserves a separate work, here we conjecture it to hold similarly
to a known separation between deterministic and non-deterministic circuits (Bova et al., 2016).

In the following, we instead investigate whether the choice of orthonormal input functions and (semi-
)unitary weights in tensorized circuits (i.e., only the conditions (U1) and (U3) in unitarity) can restrict
their expressiveness when compared to squared PCs that do not satisfy such conditions. First, as
we further detail in App. D, there are many choices of orthonormal basis functions that come with
guarantees about the families of functions they can arbitrarily approximate. Second, the following
theorem guarantees that there is no loss in terms of expressive efficiency from restricting the sum
layer parameters to be (semi-)unitary matrices (i.e., (U3)), as it can be enforced in polytime.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Algorithm B.1 UNITARIZE(ℓ)

Input: A tensorized circuit c over variables X, where ℓ is the output layer in c.
Output: The output layer ℓ′ of a tensorized circuit c′ over X such that each sum layer in c′ has a (semi-)unitary
matrix as weight; and a matrix R ∈ CK1×K2 , K1 ≤ K2, such that ℓ equivalently computes Rℓ′ where K1,K2

are the width of layers ℓ, ℓ′ respectively (i.e., the number of units in the layers ℓ, ℓ′).
1: if ℓ is an input layer then
2: Assume ℓ computes K orthonormal functions
3: return (ℓ, IK)

4: if ℓ is a sum layer receiving inputs from in(ℓ) = {ℓ1, . . . , ℓN} and parameterized by W ∈ CK1×K2 then
5: (ℓ′i,Ri)← UNITARIZE(ℓi), ∀i ∈ [N]
6: where Ri ∈ CJi×Hi

7: let W = [W(1) · · ·W(N)] ∈ CK1×K2

8: where ∀i ∈ [N] : W(i) ∈ CK1×Ji and K2 =
∑N

i=1 Ji
9: let V = [W(1)R(1) · · ·W(N)R(N)] ∈ CK1×H , where H =

∑N
i=1Hi

10: Factorize V† = QR, where Q is (semi-)unitary and R is upper triangular
11: let ℓ′ be a sum layer computing Q†[ℓ′1 · · · ℓ′N]
12: return (ℓ′,R†)

13: if ℓ is a Kronecker product layer with inputs ℓ1, ℓ2 then
14: (ℓ′1,R1)← UNITARIZE(ℓ1), R1 ∈ CK1×K2

15: (ℓ′2,R2)← UNITARIZE(ℓ2), R2 ∈ CK3×K4

16: let ℓ′ be a layer computing ℓ′1 ⊗ ℓ′2
17: return (ℓ′,R1 ⊗R2) ▷ ⊗: Kronecker matrix product
18: if ℓ is an Hadamard product layer with inputs ℓ1, ℓ2 then
19: (ℓ′1,R1)← UNITARIZE(ℓ1), R1 ∈ CK1×K2

20: (ℓ′2,R2)← UNITARIZE(ℓ2), R2 ∈ CK1×K3

21: let ℓ′ be a layer computing ℓ′1 ⊗ ℓ′2
22: return (ℓ′,R1 •R2) ▷ •: Face-splitting matrix product (see Def. B.1)

B.2 ENFORCING (SEMI-)UNITARY PARAMETERS IS EFFICIENT

Theorem B.2. Let c be a smooth and decomposable tensorized circuit over X. There exists an
algorithm running in polynomial time returning a circuit c′ with (semi-)unitary matrices as sum layer
weights, where c′ is equivalent to c up to a multiplicative constant, i.e., c′(X) = βc(X), β ≥ 0.

Proof. We prove the correctness of our Alg. B.1 to “unitarize” the weights of a tensorized circuit,
whose idea is to recursively make the circuit parameters (semi-)unitary via QR decompositions. More
formally, Alg. B.1 is used to retrieve a tensorized circuit c′ from c such that c′(X) = βc(X) for a
non-negative constant β, where the weight matrices of sum layers in c′ are (semi-)unitary. To do so,
we take inspiration from the unitarization (or canonization) algorithm in tree-shaped tensor networks
(TTNs) (Shi et al., 2006; Orús, 2013; Cheng et al., 2019; Krämer, 2020). That is, the idea of Alg. B.1
is to recursively apply QR decompositions to make the weight matrices of sum layers (semi-)unitary,
while still preserving the function computed by the circuit up to a non-negative multiplicative constant
β. However, differently from the canonization algorithm in (TTNs), our Alg. B.1 generalizes to
hierarchical tensor factorizations when represented by circuits (Loconte et al., 2025a) (see §§3 and 4).

Assumptions. In the proof we are going to assume that each sum layer receives inputs from product
layers, and that each product layer receives inputs from either two input layers or two sum layers.
These assumptions are without loss of generality, as they can be enforced in polynomial time without
changing the function computed by c and with at most a polynomial increase in circuit size. For
instance, if a product layer receives inputs from another product layer, then we can “interleave” these
product layers by introducing a sum layer whose parameter matrix is an identity matrix. Now, given
ℓ the output layer of a tensorized circuit, we will show by structural induction that Alg. B.1 returns
a pair (ℓ′,R), where ℓ′ is the output layer of the tensorized circuit c′, and R is a matrix such that
ℓ equivalently computes the matrix-vector product Rℓ′. In particular, R will have as many rows
as the number of units in ℓ (i.e., its layer width) and as many columns as the number of units in ℓ′.
Moreover, we will have that the sum layers in the sub-circuit rooted in ℓ′ have (semi-)unitary matrices
as parameters. Therefore, when Alg. B.1 is applied to the output layer of c, then R is a 1× 1 matrix
containing the value of β as stated above. We proceed by cases below.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Case (i): input layer. The base case is when ℓ is an input layer in c. Assume that ℓ computes the value
ofK functions. Then, L1-3 in Alg. B.1 returns ℓ unchanged, i.e., ℓ′ = ℓ and it sets R to be theK×K
identity matrix IK . We also have that the circuit rooted in ℓ′ does not have sum layers and therefore it
trivially satisfies the requirement that the weights of the sub-circuit rooted in ℓ′ must be (semi-)unitary.

Case (ii): sum layer. Let ℓ be a sum layer receiving input from layers in(ℓ) = {ℓi}Ni=1 and computing
the matrix-vector product ℓ = W[ℓ1 · · · ℓN], where W ∈ CK1×K2 denote the parameter matrix
of ℓ. By inductive hypothesis, for each ℓi, i ∈ [N], Alg. B.1 returns the output layer ℓ′i of circuit
whose weights are (semi-)unitary, and a matrix Ri ∈ CJi×Hi with K2 =

∑N
i=1 Ji, where Hi is the

number of units in the layer ℓ′i. That is, we have that ℓi equivalently computes Riℓ
′
i. We denote W

as the block matrix W = [W(1) · · ·W(N)] where W(i) ∈ CK1×Ji , and we can rewrite the function
computed by ℓ as follows

ℓ = W[ℓ1 · · · ℓN] =

N∑
i=1

W(i)ℓi =

N∑
i=1

W(i)Riℓ
′
i = V[ℓ′1 · · · ℓ′N],

where we set V = [V(1) · · ·V(N)] ∈ CK1×H , with H =
∑N

i=1Hi, and such that each block is
V(i) = W(i)Ri ∈ CK1×Hi . To retrieve a (semi-)unitary matrix, we perform the QR decomposition
on V†, thus retrieving V† = QR. Now, in the following we distinguish two cases based on whether
V† is a wide or tall matrix.

V† =

{
QR where Q ∈ CH×H ,R ∈ CH×K1 V† is wide or square, i.e., H ≤ K1

QR where Q ∈ CH×K1 ,R ∈ CK1×K1 V† is tall, i.e., H > K1

Moreover, in the wide or square case we have that Q†Q = IH , while in the tall case we have that
Q†Q = IK1 . In both cases, we have that R is upper triangular. Thus, we can rewrite the function
computed by ℓ as

ℓ = V[ℓ′1 · · · ℓ′N] = R†Q†[ℓ′1 · · · ℓ′N] = R†ℓ′

where ℓ′ is a sum layer parameterized by the (semi-)unitary matrix Q† and computing Q†[ℓ′1 · · · ℓ′N].
Therefore, L4-12 in Alg. B.1 returns (ℓ′,R†), and we have that the sub-circuit rooted in ℓ′ has (semi-
)unitary matrices as the weights of sum layers. Finally, we observe that the number of sum units
in ℓ′—or equivalently the number of rows in Q†—is min(H,K1) whatever V† is a wide, square
or tall matrix. Therefore, the number of units in ℓ′ is bounded by the number of units K1 in ℓ.
Similarly, the size of the matrix R† returned by Alg. B.1 is at most of size K1 ×K1. Instead, in the
particular case of V† being tall, i.e., H > K1, we notice that Q† ∈ CK1×H can possibly be larger
than W ∈ CK1×K2 , which would account for an increase in the circuit size. As we detail below, this
increase in circuit size is still polynomial, as it can only occur in the case of Hadamard product layers
and it is bounded to be at most quadratic w.r.t. the original circuit size.

Case (iii): Hadamard product layer. Let ℓ be a Hadamard product layer computing ℓ = ℓ1⊙ℓ2. By
inductive hypothesis, let ℓ′1 and ℓ′2 be the output layers of tensorized circuits obtained by recursively
applying Alg. B.1 on ℓ1 and ℓ2, respectively. Moreover, let R1 ∈ CK1×K2 and R2 ∈ CK1×K3 be
the matrices obtained via Alg. B.1 w.r.t. ℓ1 and ℓ2. That is, we have that ℓ1 (resp. ℓ2) equivalently
computes R1ℓ

′
1 (resp. R2ℓ

′
2). For this reason, we can rewrite the function computed by ℓ as

ℓ = (R1ℓ
′
1)⊙ (R2ℓ

′
2) = (R1 •R2)(ℓ

′
1 ⊗ ℓ′2),

where we used the Hadamard mixed-product property, and • denotes the face-splitting matrix product.

Definition B.1 (Face-splitting matrix product). Let A ∈ Cm×k and B ∈ Cm×r be matrices. The
face-splitting product A •B is defined as the matrix C ∈ Cm×kr,

C =

 a1 ⊗ b1

...
am ⊗ bm

 where A =

a1...
am

 B =

b1

...
bm

 ,
and {ai}mi=1, {bi}mi=1 are row vectors.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

L18-22 in Alg. B.1 constructs a Kronecker layer ℓ′ in c′ computing ℓ′ = ℓ′1 ⊗ ℓ′2, i.e., ℓ equivalently
computes (R1 • R2)ℓ

′. Thus, L22 returns returns both ℓ′ and the matrix R1 • R2. By inductive
hypothesis, we have that the circuits rooted in ℓ′1 and ℓ′2 have sum layers with (semi-)unitary weights,
thus also the circuit rooted in ℓ′ must have. Furthermore, we observe that an Hadamard product layer
is replaced by a Kronecker ones, resulting in a quadratic increase in circuit size. To avoid the size of
the layers in c′ and the matrices R being returned by Alg. B.1 to grow exponentially in the particular
case of subsequent Hadamard product layers in c, the assumptions made at the beginning of this proof
become here useful. As stated above, we can efficiently “interleave” consecutive Hadamard layers in
c by using sum layers having identity matrices as parameters. By doing so and as observed in Case
(ii) above for sum layers, the size of the matrices R returned by Alg. B.1 and the number of units in
each sum layer being built in c′ remain bounded. Therefore, this effectively bounds the size of the
Kronecker layers being built in c′ from Hadamard layers in c.

Case (iv): Kronecker product layer. Let ℓ be a Kronecker product layer computing ℓ = ℓ1⊗ ℓ2. By
inductive hypothesis, let ℓ′1 and ℓ′2 be the output layers of tensorized circuits obtained by recursively
applying Alg. B.1 on ℓ1 and ℓ2, respectively. Moreover, let R1 ∈ CK1×K2 and R2 ∈ CK3×K4 be
the matrices obtained via Alg. B.1 w.r.t. ℓ1 and ℓ2. That is, we have that ℓ1 (resp. ℓ2) equivalently
computes R1ℓ

′
1 (resp. R2ℓ

′
2). For this reason, we can rewrite the function computed by ℓ as

ℓ = (R1ℓ
′
1)⊗ (R2ℓ

′
2) = (R1 ⊗R2)(ℓ

′
1 ⊗ ℓ′2),

where we use the Kronecker mixed-product property. That is, we retrieve a Kronecker layer ℓ′ in
c′ computing ℓ′ = ℓ′1 ⊗ ℓ′2, i.e., ℓ equivalently computes (R1 ⊗R2)ℓ

′. Thus, L13-17 in Alg. B.1
returns both ℓ′ and the matrix R1 ⊗R2. By inductive hypothesis, we have that the circuits rooted in
ℓ′1 and ℓ′2 have sum layers with (semi-)unitary weights, thus also the circuit rooted in ℓ′ must have.

Case (v): output layer. We consider the case of ℓ being the output layer in c, thus resulting in
the last step of our Alg. B.1. Without loss of generality, we consider ℓ being a sum layer. Then
from our Case (ii) above, we have that R ∈ C1×1 is obtained by the QR decomposition of a
column vector V† ∈ CK×1, thus corresponding to the scalar r11 such that ||r11V†||2 = 1, i.e.,

r11 = ||V†||−1
2 =

(∑K
i=1 |vi1|2

)− 1
2

. Therefore, the non-negative scalar β mentioned in the theorem
must be exactly β = r11.

A note on the value of β and on unitarity. Assume that c satisfies (U1) and (U2) of unitarity.
Since Alg. B.1 does not change the input layers and the dependencies of the sum layer inputs to the
input layers, we have that c′ also satisfies (U1) and (U2). Therefore, c′ is unitary because it satisfies
conditions (U1) to (U3), and thus from Thm. 2 we have that the modulus squaring of c′ is an already
normalized distribution, i.e., p(X) = |c′(X)|2 = β2|c(X)|2. This means that, under the assumptions
of (U1) and (U2), the value of β is exactly β = Z− 1

2 with Z being the partition function of the
modulus squaring of c, i.e., Z =

∫
dom(X)

|c(x)|2 dx. Finally, Thm. B.2 can be seen as the dual of
another result about monotonic PCs shown by Peharz et al. (2015): they show an algorithm that
updates the positive weights of a smooth and decomposable PC such that the distribution it encodes
is already normalized, while Alg. B.1 updates the complex weights of a circuit such that its modulus
squaring is an already-normalized distribution.

A note on the computational complexity. We now analyze the computational complexity of Alg. B.1.
We observe that the complexity mainly depends on the complexity of performing QR decompositions
and computing Kronecker (or face-splitting) products of matrices. In particular, we need to perform
as many QR decompositions as the number of sum layers in c, each requiring time O(K2

1H) in the
case of a wide matrix V ∈ CK1×H and O(K1H

2) in the tall matrix case. Now, let Kmax denote
the maximum number of units in a layer in c. By the way the matrix V is computed (see Case (ii)
above) and since the Hadamard layer is the only case accounting to a quadratic increase in layer
width (i.e., transforming Hadamard into Kronecker and leveraging the face-splitting product), we
have that K1 ≤ Kmax and H ≤ K2

max. As such, the complexity of performing the QR factorizations
will be O(LK4

max), where L is the number of layers in c. Similarly, the complexity of computing
Kronecker and face-splitting products as in Cases (iii-iv) above is O(K4

max). Overall, the complexity
of our Alg. B.1 is O(LK4

max).

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

i3 i4 i5 i6

i1 i2

X1 X2 X3 X4

ψ1 ψ2 ψ3 ψ4

W(1) W(2)

W(0)

ψ1(x1) ψ2(x2) ψ3(x3) ψ4(x4)

W(1) W(2)

W(0)

Figure C.1: Tree tensor networks (TTNs) represented as tensorized circuits. The contraction of a
TTN over variables X = {X1, . . . , X4} (left, in Penrose graphical notation) starting from the factors
at the bottom towards the root node can be encoded by a tensorized circuit having Kronecker product
layers, and whose sum layers are parameterized by the non-leaf tensors, i.e., W(0),W(1),W(2)

(right). Due to the densely connected structure, the circuit is not basis decomposable (Def. 6), as the
products that are input to the output sum depend on the same input functions (in colors). Similarly
to the circuit corresponding to the MPS factorization shown in Fig. 1, this circuit is structured-
decomposable because the products encode a single hierarchical partitioning of the variables.

C TREE TENSOR NETWORKS AS STRUCTURED-DECOMPOSABLE CIRCUITS

In this section, we show how the complete contraction of a tree-shaped tensor network (TTN) (Shi
et al., 2006) can be encoded by a particular class of structured-decomposable tensorized circuits
(Def. 8), where product layers are Kronecker products. By a very similar argument, one can see
how also other TN structures, such as MPS (Schollwoeck, 2010) and tensor rings (Zhao et al., 2016),
can be encoded by structured-decomposable circuits. Although a result representing the hierarchical
Tucker tensor factorization (Grasedyck, 2010) as a circuit was already formally shown in Loconte
et al. (2025a),1 in App. C.1 we connect this construction to a canonical form of TTNs ensuring
normalization of the distribution modeled via modulus squaring.

From TTNs to tensorized circuits. When compared to matrix-product states (MPS) TNs (Pérez-
García et al., 2007), TTNs come with the advantage of better capturing longer variables sequence
correlations by using a hierarchical tree-like structure (Murg et al., 2010; Seitz et al., 2022). Formally,
let X = {Xj}dj=1 be a set of variables, and for each Xj ∈ X let Ψj = {ψk

j : dom(Xj) → C}Rk=1 be
a set of factors for the variable Xj , where R is the factorization rank of the TTN. For simplicity, here
we consider the case of binary TTNs, i.e., whose structure in Penrose graphical notation is a binary
tree, but the following discussion can be translated to other TTNs as well. A rank-R binary TTN
factorization defines the following decomposition of ψ(X).

ψ(x) =

R∑
i1=1

R∑
i2=1

· · ·
R∑

i2N=1

w
(0)
i1i2

(
N−1∏
n=1

w
(n)
ini2n+1i2(n+1)

) d∏
j=1

ψ
id−2+j

j (xj)

 , (9)

where W(0) ∈ CR×R and for all n ∈ [N − 1] : W(n) ∈ CR×R×R, with N being the total number
of inner tensors in the TTNs, i.e., N = d − 1 in this binary tree case. For example, Fig. C.1 (left)
illustrates a TTN over d = 4 variables, which encodes the following factorization of ψ(X).

ψ(x1, x2, x3, x4) =

R∑
i1=1

R∑
i2=1

· · ·
R∑

i6=1

w
(0)
i1i2

w
(1)
i1i3i4

w
(2)
i2i5i6

ψi3
1 (x1)ψ

i4
2 (x2)ψ

i5
3 (x3)ψ

i6
4 (x4) (10)

The complete contraction of a TTN following a bottom-up topological ordering can be encoded by
a tensorized circuit. In order to give an intuition of this, we focus on the example in Eq. (10). We
reorder summations and multiplications in Eq. (10) as in the equation below, which corresponds to

1Hierarchical Tucker tensor is essentially a TTN having a binary tree structure in Penrose graphical notation.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

a contraction ordering that starts from the factor leaves and proceeds towards the root tensor of the
TTN (i.e., the matrix W(0)).

ψ(x1, x2, x3, x4) =

R∑
i1=1

R∑
i2=1

w
(0)
i1i2

(
R∑

i3=1

R∑
i4=1

w
(1)
i1i3i4

ψi3
1 (x1)ψ

i4
2 (x2)

) (
R∑

i5=1

R∑
i6=1

w
(2)
i2i5i6

ψi5
3 (x3)ψ

i6
4 (x4)

)
(11)

In other words, we pushed the outer summations as inside as possible in the TTN factorization
formula. By doing so, we recover three groups of sums and products that contract the indices {i1, i2},
{i3, i4} and {i5, i6}, respectively in red, green and blue colors in Eq. (11). In order to build a
tensorized circuit c encoding this contraction, i.e., c(X) = ψ(X), we construct one input layer ℓin

j for
each variable Xj ∈ X computing the corresponding factors in Ψj as a R-dimensional vector. That
is is, for all Xj ∈ X we have that ℓin

j computes ℓin
j (xj) = [ψ1

j (xj) · · ·ψR
j (xj)]

⊤. We then observe
from Eq. (11) that the composition of groups of sums and products can be encoded by a hierarchical

composition of sum layers and Kronecker product layers. Formally, let Ŵ
(0)

denote the reshaping

of W(0) as a 1×R2 matrix, and similarly let Ŵ
(1)

and Ŵ
(2)

respectively denote the reshaping of
W(1) and W(2) as R×R2 matrices. Then, we can rewrite Eq. (11) as

ψ(x1, x2, x3, x4) = Ŵ
(0)

[
Ŵ

(1)
(
ℓin
1 (x1)⊗ ℓin

2 (x2)
)]

⊗
[
Ŵ

(2)
(
ℓin
3 (x3)⊗ ℓin

4 (x4)
)]

.

(12)
The above can be equivalently encoded by a tensorized circuit c, as we illustrate in Fig. C.1 (right).
That is, the Kronecker products are computed by Kronecker layers in c, and the matrix-vector

multiplications are computed by sum layers respectively parameterized by the matrices Ŵ
(0)

, Ŵ
(1)

,

Ŵ
(2)

. We also observe that the corresponding circuit c is structured-decomposable, as we can
interpret its structure as encoding a single hierarchical partitioning of the set of variables X it is
defined on, i.e., X is partitioned into {X1, X2} and {X3, X4} by the Kronecker product layers, and in
turn these are split towards the univariate input layers respectively over {X1}, {X2} and {X3}, {X4}.

Next, we connect our orthogonality conditions defined over circuits with a popular TTN canonical
form—sometimes called upper-canonical form (Cheng et al., 2019)—which ensures that the cor-
responding Born machine encodes an already-normalized distribution. That is, we show that this
canonical form in TTNs is a particular case of unitarity, i.e., the corresponding tensorized circuit
satisfies the conditions (U1) to (U3) shown in §4. We then make some observations on how unitary
tensorized circuits can represent a strictly larger set of hierarchical factorizations when compared to
TTNs, which instead can only be structured-decomposable by construction (see §2 and App. C).

C.1 UNITARY CIRCUITS GENERALIZE UPPER CANONICAL TREE TENSOR NETWORKS

The upper-canonical form is a special case of unitarity. The upper canonical form of a TTN
consists of two assumptions on the factors and the inner tensors. That is, we require the factors over
the same variable to be orthonormal, and that each inner tensor is an isometry w.r.t. the two indices
pointing downwards. More formally, a TTN is upper canonical if it satisfies the following conditions.

∀Xj ∈ X,∀k1, k2 ∈ [R] :

∫
dom(Xj)

ψk1
j (xj)ψ

k2
j (xj)

∗ dxj = δk1k2
(13)

R∑
i2=1

w
(0)
i1,i2

w
(0)∗
j1,i2

= δi1j1 , and ∀n ∈ [N − 1] :

R∑
i2n+1=1

R∑
i2(n+1)=1

w
(n)
ini2n+1i2(n+1)

w
(n)∗
jni2n+1i2(n+1)

= δinjn

(14)

It is possible to show that these two conditions ensure that the partition function of the corresponding
Born machine obtained by modulus squaring of ψ isZ =

∫
dom(X)

|ψ(x)|2 dx = 1 (Cheng et al., 2019;
Seitz et al., 2022). We interpret Eqs. (13) and (14) as conditions defined over the input layers and

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

weight matrices of the tensorized circuit c described by Eq. (12). That is, under upper canonicity of
the TTNs, we recover that each input layer ℓin

j over the variable Xj ∈ X satisfies
∫
dom(Xj)

ℓin
j (xj)⊗

ℓin
j (xj)

∗ dxj = IR. For this reason, the tensorized circuit c satisfies (U1) of unitarity. Furthermore,
we have that c satisfies (U2) of unitarity trivially, since by construction each sum layer receives input
from exactly one other layer, i.e., a Kronecker product. Finally, we can equivalently rewrite Eq. (14)

as Ŵ
(0)

Ŵ
(0)†

= IR, Ŵ
(1)

Ŵ
(1)†

= IR, and Ŵ
(2)

Ŵ
(2)†

= IR. In other words, each sum layer
in c is parameterized by a (semi-)unitary matrix, thus it satisfies (U3) of unitarity. Therefore, we
conclude that the tensorized circuit c encoding the same upper canonical TTN is unitarity.

Going beyond TTNs with unitarity. As also stressed in §§3 and 4, tensorized circuits can represent
a strictly larger set of hierarchical factorizations when compared to TTNs. This is because TTNs are
a particular instance of tensorized circuits that are structured-decomposable. Instead, non-structured-
decomposable tensorized circuits can encode multiple hierarchical partitionings of variables, e.g.,
see the circuit in Fig. 3. Despite this crucial difference w.r.t. TTNs, the modulus squaring of a non-
structured-decomposable tensorized circuit can still encode a normalized distribution via unitarity
(as for Thm. 2), and it supports the tractable computation of marginals (as for Thm. 3). In particular,
theoretical results in circuit complexity have shown that structured-decomposable circuits can be
exponentially less expressive than non-structured-decomposable ones (Pipatsrisawat and Darwiche,
2008; 2010; de Colnet and Mengel, 2021). For this reason, our contributions motivate future work
aimed at developing novel TN structures different from TTNs that can possibly be more expressive,
yet they support tractable marginalization and sampling via unitarity.

D RELATED WORK

The relationship between circuits and TNs. To the best of our knowledge, Ko et al. (2020) was the
first work linking ideas from both TNs and from particular circuits known as sum-product networks
(SPNs) (Poon and Domingos, 2011), by showing an approach to approximate sparse SPNs into non-
negative MPS TNs (Glasser et al., 2019). Representing popular factorization methods such as CP
(Carroll and Chang, 1970; Harshman, 1970), hierarchical Tucker (Grasedyck, 2010) and MPS TNs as
circuits was later highlighted in Loconte et al. (2023; 2025b;a). In particular, casting TN contractions
into a composition of sums and products is analogous to performing variable elimination in a graphical
model (Koller and Friedman, 2009; Glasser et al., 2018), whose implementation can also be encoded
by a circuit (Darwiche and Provan, 1996; Darwiche, 2003; 2009). The property-driven framework of
circuits provides sufficient and necessary conditions to compose them in operations and enable the
computation of quantities in closed-form, such as expectations and information-theoretic measures
(Vergari et al., 2021; Wang et al., 2024). Recently, determinism has been generalized as a property
between two circuits in Wang et al. (2024) to bring complexity simplifications for exact causal
inference and weighted model counting (Chavira and Darwiche, 2008). Similarly, we believe one
can extend our orthogonality (§3) as a property between two circuits, thus possibly simplifying the
computation of compositional operations while being possibly less restrictive than determinism. Note
that these properties and operations can be translated to TNs as well, as for their close relationship
with circuits (§2). Furthermore, in some cases one can efficiently restructure the hierarchical variables
decomposition implicitly encoded by a structured-decomposable circuit (and thus TNs) (Zhang et al.,
2025b)—also called vtree (Pipatsrisawat and Darwiche, 2008; Kisa et al., 2014)—thus enabling the
efficient renormalization of the product of certain non-compatible circuits.

Canonical forms of TNs exploit parameterizations in terms of (semi-)unitary matrices to unlock many
practical advantages (Schollwoeck, 2010). Among these, canonical forms provide simplifications for
the computation of certain physical quantities (Orús, 2013), as well as the computation of marginal
and conditional probabilities (Bonnevie and Schmidt, 2021) by ensuring the modeled distribution
is normalized. By connecting with circuit determinism, we provide novel conditions defined in
the circuit language to unlock similar advantages, namely ensuring squared PCs encode already-
normalized distributions (§4) and to enable fast marginalization (§5 and App. A.1). Moreover,
TNs expressed in canonical forms come with an enhanced numerical stability, support optimization
methods aimed at avoiding vanishing and exploding gradients (Sun et al., 2020), and are amenable to
advanced Riemannian optimization techniques (Hauru et al., 2020; Luchnikov et al., 2021). These
practical advantages can be translated to circuits as well. Furthermore, popular TNs such as MPS and
TTNs can be efficiently turned into a particular canonical form by iteratively performing either SVD

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

or QR decompositions (Shi et al., 2006; Orús, 2013; Cheng et al., 2019; Krämer, 2020). Our algorithm
to make the parameters of a circuit (semi-)unitary (App. B) takes inspiration from procedures to make
a TN canonical, but generalizes to tensorized circuits.

Possible choices of orthonormal functions. Depending on whether a variable is discrete or continu-
ous, we have different ways to encode it with orthonormal functions. For a variable X with domain
dom(X) = [v], any function f(X) can be expressed as

∑v
k=1 f(k)δxk, i.e., f can be written in terms

of v Kronecker deltas {δxk}vk=1 that are orthonormal. That is,
∑

x∈[v] δxkδxk′ = δkk′ for k, k′ ∈ [v].
For a continuous variable X , many function families can be expressed in terms of orthonormal basis.
E.g., periodic functions can be represented by Fourier series (Jackson, 1941) and, under certain conti-
nuity conditions, functions can be approximated arbitrarily well by finite Fourier partial sums (Jackson,
1930). Furthermore, certain families of functions can also be described in terms of orthogonal polyno-
mials (Abramowitz et al., 1965), e.g., Hermite functions generalize Gaussians and form an orthonor-
mal basis of square-integrable functions over all R (Roman and Rota, 1978). More in general, any set
of linearly independent functions can be described as a linear projection of a set of orthonormal basis
functions (see Meiburg et al. (2025, §A)). In practice, different choices of orthonormal functions and
polynomials have been used in signal processing (Pinheiro and Vidakovic, 1997), score-based varia-
tional inference (Cai et al., 2024) and also in TNs modeling density functions (Meiburg et al., 2025).
Recently, orthonormal functions have been used in circuits to better scale polynomial chaos expansion
(Wiener, 1938) for uncertainty quantification analysis to high dimensions (Exenberger et al., 2025).

Learning (semi-)unitary matrices. Many works in the deep learning community have investigated
the challenging problem of learning on the manifold of (semi-)unitary matrices, also called the Stiefel
manifold (Absil et al., 2007). That is, there are many ways of parameterizing unitary matrices, with
different advantages regarding efficiency, numerical stability and generality (Arjovsky et al., 2016;
Huang et al., 2018; Bansal et al., 2018; Casado and Martínez-Rubio, 2019), which could be employed
for learning the parameters of squared PCs. More recently, Hauru et al. (2020); Luchnikov et al.
(2021) proposed optimizing the parameters of MPS TNs and quantum gates using Riemmanian
optimization approaches (Kochurov et al., 2020).

Many models supporting tractable marginalization have been recently introduced. These include
squared neural families with real or complex parameters that square the 2-norm of the output of
a single-hidden-layer neural network (Tsuchida et al., 2023; 2024; 2025). In addition to squared
PCs and mixtures thereof (Loconte et al., 2024; 2025b), other models are based on squared circuit
representations. These are PSD circuits (Sladek et al., 2023) inspired from PSD kernel methods
(Marteau-Ferey et al., 2020; Rudi and Ciliberto, 2021), and Inception PCs generalizing structured-
decomposable monotonic and squared PCs (Wang and Van den Broeck, 2025). Zuidberg Dos
Martires (2025) has recently unified these circuit families under a single formalism—positive unital
circuits (PUnCs)—based on concepts from quantum information theory (Nielsen and Chuang, 2010).
The realization of the squaring of a structured-decomposable circuit as yet another decomposable
circuit is subsumed by PUnCs. However, differently from PUnCs where the layer activations are
K × K PSD matrices, a unitary squared PC admits a more memory efficient representation by
means of a circuit that does not necessarily require being squared, i.e., whose layer activations are
K-dimensional vectors instead. While PUnCs has been proposed also as a way to construct non-
structured-decomposable non-monotonic PCs, we find that ensuring either orthogonality (§3) or
unitarity (§§4 and 5) is sufficient for it in non-structured-decomposable squared PCs instead.

About expressiveness. The satisfaction of either orthogonality or unitarity allows us to build
squared PCs that are not structured-decomposable, yet they still enable the tractable computation
of marginals (§§3 and 5). Since popular TN structures such as MPS and TTNs are encoded by
structured-decomposable circuit by construction (App. C), our contribution motivates future works
aimed at understanding how non-structured-decomposable squared PCs are related to structured-
decomposable ones in terms of expressive efficiency. We believe that answering to these questions
might require techniques that are different to the ones used to prove separations between circuits
and squared PCs that are structured-decomposable (de Colnet and Mengel, 2021; Loconte et al.,
2024; 2025b). Furthermore, as shown by Agarwal and Bläser (2024) and Oliver Broadrick (2024),
other instances of non-monotonic PCs that are not squared include determinantal point processes
(Kulesza and Taskar, 2012; Zhang et al., 2020) and probabilistic generating circuits (Zhang et al.,
2021; Harviainen et al., 2023). Understanding the relationship in terms of expressiveness also w.r.t.
these other non-monotonic PCs and PUnCs (Zuidberg Dos Martires, 2025) is an interesting direction.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

In this section, we describe all the necessary details to reproduce the results from §6.

Computational resources. To run all experiments, we use a cluster of 8 NVIDIA L40S GPUs and
8 NVIDIA RTX A6000 GPUs managed via Slurm. Every experiment uses a single GPU. For the
benchmark experiments (see App. E.3), we make sure all experiments run in isolation in one of the
NVIDIA RTX A6000, to properly compare their time and memory requirements.

Implementation and sanity checks. Our implementations of squared unitary PCs are based on
the cirkit library (The APRIL Lab, 2025), and extend a previous code base for squared PCs
with complex parameters by Loconte et al. (2025b). Since the proposed unitary parameterization
ensure squared PCs encode already-normalized distributions, we do not materialize their square as
another decomposable circuit in order to compute the partition function. This allows us to efficiently
train squared PCs by maximum-likelihood even in those cases where materializing the squared PC
would be too expensive memory-wise, e.g., when using Kronecker product layers. As we do not
compute the partition function explicitly, how do we make sure that the squared unitary PCs in our
software implementation encode a normalized distribution? Besides the theory presented in this
manuscript, we employed several units tests to check that the distribution modeled by squared unitary
PCs integrates to one via numerical integration on randomly-initialized circuits with Kronecker
product layers, as well as in the case of non-structured-decomposable circuits having different sizes.
As a result, we have empirically corroborated that our implementation of squared unitary PCs indeed
model normalized distributions up to unavoidable numerical errors due to floating point precision.

Squared PCs families. In the following we denote as ±2
C the class of squared PCs with complex

parameters, while we use ⊥2
C to denote the class of squared unitary PCs.

E.1 CONTINUOUS INPUT FEATURES

In this section, we perform some preliminary experiments assessing the expressiveness of orthogonal
input functions in the case where we have continuous variables, as discussed in App. D and §4.

Fourier input functions. To this end, for each input function in the circuit we use one single term
of a Fourier series with equal periodicity across input functions. That is, if we have 2K + 1 input
functions—we assume an odd number of them—then each input function fk is of the form fk(x) ∝
exp(2πi kP (x+b)), where i ∈ C is the imaginary unit, k ∈ {−K,−K+1, . . . ,K}, P is the same for
every k and larger than the size of dom(X), and b ∈ R is a learnable bias term. As a result, all input
functions are orthogonal between then, and we make them orthonormal by normalizing them, such
that they integrate out to one. We set P = 6 for the spinner dataset, and P = 12 for the spiral dataset.

Experimental setting. We take two synthetic datasets from the official code released by Loconte et al.
(2025b), and train different circuit architectures to perform distribution estimation. To this end, in each
iteration we sample a new batch of size 1024 from the synthetic generator function, and add noise from

S
p
in

n
er

Samples

±2
C

Gaussian
Hadamard

±2
C

Fourier
Hadamard

⊥2
C

Fourier
Hadamard

±2
C

Fourier
Kronecker

⊥2
C

Fourier
Kronecker

S
p
ir

a
l

Figure E.1: Densities estimated by different combinations of circuit classes, product layers, and input
layers (one per column), fitted with samples from two different synthetic datasets (one per row).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

a centered Gaussian with a standard deviation of 0.1 to avoid overfitting. We train all models for a
thousand iterations and apply cosine learning rate annealing to avoid instabilities at the end of training.

Circuits. We take a baseline a squared PC with Hadamard product layers and Gaussian in-
put functions, and then test the Fourier input functions in all combinations of usual and unitary
squared PCs with Hadamard or Kronecker product layers, i.e., the configurations in {±2

C,⊥2
C

} × {Hadamard,Kronecker}. For regular squared PCs we use Adam (Kingma and Ba, 2015) with
learning rate 0.001, and our LandingPC (see App. F) for squared unitary PCs with learning rate 0.01
and λ = 0.1 . For every combination we use 21 input and sum units, except for ±2

C with Hadamard
layers for which we keep them at 7, since otherwise the model takes too long to run.

Results. We show the estimated densities for each model combination and dataset in Fig. E.1. Despite
the simplicity of the synthetic datasets at hand, we find a couple of interesting insights. First, we see
that the Fourier layers do outperform the fitting (at least, qualitatively) of the identical same circuit
with Gaussian input functions. Therefore, validating the expressivity claims regarding the input
functions made at the end of §4. Second, we find that certain combinations work better than others.
Specifically, ±2

C seem to work better when combined with Hadamard product layers, while ⊥2
C do

particularly well with Kronecker layers. This is consistent with the fact that a multivariate Fourier
series definition considers all possible product combinations of univariate complex exponentials
(Smith and Smith, 1995), i.e., similarly to a Kronecker product. In addition, we later validate again in
App. E.2 that Hadamard layers do not seem to work well with ⊥2

C.

E.2 IMAGE DISTRIBUTION ESTIMATION

Here we describe the details for the experiments on image distribution estimation, as well as present
some additional results that complement the findings from the main text.

Datasets. For the distribution estimation experiments with image data, we employ the MNIST (LeCun
et al., 2010) and FashionMNIST (Xiao et al., 2017) datasets composed of, respectively, digits and
clothing black-and-white pictures of size 28× 28 px, yielding a total of 784 input features. We treat
each of these inputs as Categorical inputs with 256 classes (one for each of the grayscale intensity
values). We randomly reserve 5% of the training dataset split for validation.

Building structured-decomposable circuit architectures. One way of easily construct smooth
and decomposable (Def. 2) circuit architectures is by parameterizing via product and sum units a
hierarchical partitioning of the variables scope. This hierarchical variables partitioning—known
as region graph (Dennis and Ventura, 2012)—recursively splits a set of variables X into disjoint
sets, which provides a “skeleton” for the circuit architecture. In other words, a region graph tells us
how the product units will split their scope towards their inputs, thus guaranteeing the satisfaction
of decomposability. A region graph whose structure is constrained to be a tree is analogous to
mode cluster trees as in hierarchical factorization methods (Grasedyck, 2010), which also guarantees
the corresponding circuit is structured-decomposable (Pipatsrisawat and Darwiche, 2008). Now,
following Peharz et al. (2019; 2020); Loconte et al. (2025a) we build tensorized circuits by (i)
instantiating a region graph and (ii) parameterizing each variables partitioning node in the region
graph by adding a product layer followed by a sum layer. This guarantees that the resulting tensorized
circuit is smooth ad decomposable. To build structured-decomposable circuits over image pixel
variables, we consider a tree-shaped region graph called quad-tree, which is obtained by recursively
splitting the image into four even and aligned patches (Mari et al., 2023). Our baseline and unitary
squared PCs (±2

C and ⊥2
C, respectively) are based on this region graph.

Building non-structured-decomposable circuit architectures. In addition to structured-
decomposable squared unitary PCs, we experiment with non-structured-decomposable ones, i.e.,
squared PCs that satisfy our conditions (U1) to (U4) and whose structure encode multiple variable par-
titionings (unlike TTNs, e.g., see Fig. 3). Differently from the quad-tree region graph, which only re-
sults in structured-decomposable circuits, we devise a new region graph by considering multiple ways
to recursively split an image patch into smaller patches. Formally, given a set of image pixel variables
X, we partition them into two distinct ways by splitting the image either horizontally or vertically, re-
sulting in partitions (Xabove,Xbelow) and (Xleft,Xright), respectively. We do the same recursively
for each obtained image patch Xabove, Xbelow, Xleft, Xright, until either the patch height or width is
too small w.r.t. a certain threshold (we choose our minimum patch width and height to be 8), or the

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

patch is composed of a single pixel. This approach of constructing a region graph for images by con-
sidering multiple ways of splitting the same patch recursively is similar to other ones in the circuit lit-
erature (Poon and Domingos, 2011; Peharz et al., 2020; Mari et al., 2023). However, these approaches
construct one input layer for each pixel variable, whose outputs are then shared by different parts of the
non-structured-decomposable circuit architecture. Instead, in order to ensure orthogonality between
input layers over the same variable (i.e., to satisfy our conditions (U1) and (U2) and (U4)) we do not
share the embedding input layers and parameterize them such that they are pairwise orthonormal. Note
that, since the goal of the work is showing that one can train squared non-structured-decomposable
squared unitary PCs supporting tractable marginalization, we did not focus on the construction of
the region graph. We believe that our results for non-structured-decomposable squared unitary PCs
(Fig. E.2) could be further improved by exploring different ways of constructing their architecture.

Hyperparameters. In our experiments whose results are shown in Fig. 4b and Fig. E.2, we vary
the number of computational units in each input and sum layer by ensuring that all models have a
comparable number of trainable parameters. That is, for circuits build from the quad-tree region graph,
we consider {16, 32, 64, 128, 256, 512} units in the case of squared PCs with Hadamard layers and
{4, 6, 8, 10, 12, 14, 16} units in the case of Kronecker layers. For the non-structured-decomposable
squared PCs with Kronecker layers, we also consider {18, 20, 22} units per layer. For the baseline
squared PCs, we tune the models where we consider Adam with a learning rate of 0.01 (which
were the best hyperparameters found by Loconte et al. (2025b)), as well as SGD with learning rates
0.01 and 0.001. For squared unitary PCs, we consider LandingPC∗ with learning rate of 0.05 and
LandingSGD∗ with a momentum of 0.9 and learning rates 0.01 and 0.001, where we fix λ = 0.1
always. Here, an asterisk denotes LandingSGD with one or both modifications described in App. F.
Finally, for unitary circuits we also consider LandingSGD as described by Ablin et al. (2024) and the
same hyperparameter as described before for LandingSGD∗.

Additional settings. To provide a broader view on the design choices made in our experimental
section, we expand in Fig. E.2 the plot from Fig. 4b with more combinations of product layers and
optimizers. The first observation is that the performances of baseline squared PCs heavily relies
on the optimizer: despite testing various learning rates, we could not obtain satisfactory results
using SGD as the optimizer. Second, we observe that indeed squared unitary PCs do not play well
with Hadamard product layers: for every optimizer and circuit size we tried, their performance is
significantly worse that the best models. Finally, we see the importance of the adjustments made to
the LandingSGD algorithm (Ablin and Peyré, 2022) described in App. F: while the original algorithm
(LandingSGD) does not perform well, by projecting back to the Stiefel manifold each time a matrix
goes too far from it (LandingSGD∗) we significantly improve their performance, yet they struggle
with the larger circuits. Then, by replacing the Euclidean gradient in the algorithm (LandingPC∗) we
strictly improve the performance of the trained unitary circuits in every setting we tested.

Table E.1: Distribution estimation performances of a squared PC and a unitarity squared PC on the
MNIST dataset (LeCun et al., 2010) as we increase the number of layer units. Performance shows
mean and standard deviation across three random initializations.

Circuit
class

Product
layer

params Test performance
Optimizer # units (×106) (bpd)

±2
C Hadamard Adam

16 6.5577 1.3071 ± 0.0105
32 13.3858 1.2676 ± 0.0068
64 27.8529 1.2518 ± 0.0033

128 60.0312 1.2337 ± 0.0011
256 137.3640 1.2147 ± 0.0015
512 343.9340 1.1991 ± 0.0004

⊥2
C Kronecker

LandingPC
(see App. F)

4 2.1353 1.3112 ± 0.0001
6 6.4260 1.2567 ± 0.0003
8 20.1339 1.2328 ± 0.0005

10 55.6461 1.2201 ± 0.0005
12 133.2764 1.2064 ± 0.0005
14 283.2467 1.1998 ± 0.0015
16 547.6680 1.1923 ± 0.0007

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

107 108

1.2

1.3

1.4

1.5

1.6
te

st
b
p

d

MNIST

107 108

3.4

3.6

3.8

4.0

4.2

4.4

FashionMNIST
⊥2
C - Kronecker - LandingPC∗ (non-str-dec)

⊥2
C - Kronecker - LandingPC∗

⊥2
C - Hadamard - LandingPC∗

⊥2
C - Hadamard - LandingSGD∗

⊥2
C - Kronecker - LandingSGD∗

⊥2
C - Kronecker - LandingSGD

±2
C - Hadamard - Adam

±2
C - Hadamard - SGD

parameters

Figure E.2: Image distribution estimation experiment from Fig. 4b with additional settings. Specifi-
cally, we show normal and unitary squared PCs using Hadamard or Kronecker product layers, and us-
ing different optimizers. An asterisk denotes LandingSGD with one or both modifications described
in App. F, referring to the latter as LandingPC. The plot is computed over three random initializations.

Table E.2: Distribution estimation performances of a squared PC and a unitarity squared PC on the
FashionMNIST dataset (Xiao et al., 2017) as we increase the number of layer units. Performance
shows mean and standard deviation across three random initializations.

Circuit
class

Product
layer

params Test performance
Optimizer # units (×106) (bpd)

±2
C Hadamard Adam

16 6.5577 3.5451 ± 0.0020
32 13.3858 3.4689 ± 0.0019
64 27.8529 3.4479 ± 0.0008

128 60.0312 3.4545 ± 0.0044
256 137.3640 3.4349 ± 0.0024
512 343.9340 3.4199 ± 0.0012

⊥2
C Kronecker

LandingPC
(see App. F)

4 2.1353 3.6700 ± 0.0008
6 6.4260 3.5325 ± 0.0005
8 20.1339 3.4651 ± 0.0008

10 55.6461 3.4306 ± 0.0016
12 133.2764 3.4148 ± 0.0007
14 283.2467 3.4105 ± 0.0009
16 547.6680 3.4128 ± 0.0028

E.3 BENCHMARKING SQUARED PCS

In this section, we briefly describe the experimental details regarding the benchmark results plotted
in Fig. 4a, as well as provide the quantitative results of said experiment, see Tab. E.3.

Experimental setting. We keep the experimental setting as close as possible to that from App. E.2,
meaning that we use the same circuit architectures as there. To increase the number of parameters,
we increase the number of units in input and sum layers, as we report in Tab. E.3. To provide reliable
timings and peak GPU memory measurement, we simulate a single optimization step (or training
iteration) that minimizes the negative log-likelihood computed over one batch of data points. That is,
we measure time and peak GPU memory required to evaluate the input and inner layers, as well as to
perform the backpropagation step and parameters update using a particular optimizer (SGD, Adam
and LandingPC (App. F)). Finally, we average the results over 50 training iterations and perform 10
initial burn-in iterations to discard initial artifacts and overheads.

Results. In Tab. E.3 we report time and peak GPU memory measurements illustrated in Fig. 4a
in tabular format, for both squared PCs (±2

C) and squared unitary PCs (⊥2
C). As discussed in §6,

the unitary parameterization in squared PCs permits us to not materialize the squared PC as a
decomposable circuit in order to compute the partition function (as it is fixed to 1) required by the

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

negative log-likelihood loss. As such, the unitary parameterization together with the LandingPC
optimizer (App. F) brings computationally cheaper parameter updates, when compared to baseline
squared PCs learned using either SGD or Adam as optimizer.

Table E.3: Time and memory consumption of different combinations of squared PCs and optimizers
for a single training iteration. We find that squared unitary PCs are faster and use less memory than
their counterparts, even if they employ Kronecker product layers.

Circuit
class

Product
layer

params GPU Mem. Time
Optimizer # units (×106) (GiB) (ms/iter)

±2
C Hadamard SGD

8 0.0873 0.0889 0.0366
16 0.3492 0.1647 0.0374
32 1.3968 0.3348 0.0371
64 5.5870 0.7497 0.0337

128 22.3479 1.8779 0.0443
256 89.3914 5.3277 0.1285
512 357.5649 17.0012 0.5226

±2
C Hadamard Adam

8 0.0873 0.0893 0.0366
16 0.0349 0.1660 0.0374
32 1.3968 0.3400 0.0375
64 5.5870 0.7705 0.0375

128 22.3479 1.9611 0.0459
256 89.3914 5.6607 0.1337
512 357.5649 18.3332 0.5426

⊥2
C Hadamard

LandingPC
(see App. F)

8 0.0873 0.0866 0.0170
16 0.3492 0.1555 0.0171
32 1.3968 0.2984 0.0173
64 5.5870 0.6040 0.0199

128 22.3479 1.2953 0.0303
256 89.3914 2.9979 0.0737
512 357.5649 11.0130 0.2666

⊥2
C Kronecker

LandingPC
(see App. F)

8 11.2108 0.8895 0.0364
10 34.1124 1.9109 0.0508
12 84.7711 3.7685 0.0848
14 183.0993 6.9384 0.1695
16 356.8435 12.0623 0.2923

F THE FAMILY OF LANDING ALGORITHMS

Here, we briefly describe the family of Landing optimization algorithms used to learn semi-unitary
matrices, as well as the modifications we performed to train squared unitary PCs. Refer to the original
works to see a full description of the LandingSGD algorithm, its variants, as well as their theoretical
properties (Ablin and Peyré, 2022; Ablin et al., 2024).

Say that we want to optimize one of the matrices W ∈ Rn×p with n > p of a circuit, constraining
W to lie in the Stiefel manifold, i.e. such that W⊤W = Ip. The LandingSGD algorithm (Ablin and
Peyré, 2022) will then produce a sequence of iterates as follows:

Wt+1 := Wt − ηΛ(Wt) (15)

where Λ is the landing field defined as

Λ(W) := gradf(W) + λW(W⊤W − Ip) (16)

and where gradf(W) = skew(∇f(W)W⊤)W is the relative gradient (i.e. gradient in the tangent
space of the non-singular matrix manifold with respect to multiplicative noise, rather than additive)
of the loss function f we are trying to optimize. The second term of the last equation can also be

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Algorithm F.1 The original LandingSGD algorithm (Ablin and Peyré, 2022).
Input: The matrix W, its gradient∇f(W), a momentum buffer A (initiated as∇f(W)), and the iteration t.
Hyper-parameters: Learning rate η, momentum γ, weight decay ψ, dampening υ, attraction strength λ, safe
step ϵ, stabilization steps T .
1: let g = ∇f(W) + ψW ▷ Weight decay
2: let gradf(W) = skew(∇f(W)W⊤)W ▷ Relative gradient (in the manifold)
3: if γ > 0 then
4: let A = γA+ (1− υ)g ▷ Momentum
5: let g = A
6: if use Nesterov momentum then
7: let g = ∇f(W) + γA

8: let∇N (W) = λW(W⊤W − Ip) ▷ Normal direction (towards the manifold)
9: if ϵ > 0 then ▷ Compute safe step size

10: let d = ||W⊤W − Ip||F
11: let r = ||g +∇N (W)||F
12: let η∗ = (−λd(d− 1) +

√
λ2d2(d− 1)2 + r2 max(0, ϵ− d))/(r2 + 1e−8)

13: let η = min(η∗, η)

14: let W = W − ηg
15: if t mod T = 0 then
16: let W = (W⊤W)−

1
2W ▷ Project back to the manifold

17: let A = A−WA⊤W ▷ Project to the tangent space of W

seen as the gradient of the distance of the matrix W to the manifold, ∇N (W), where N (W) =
1
4 ||W

⊤W − Ip||2. In turns out that the two terms of the sum above are actually orthogonal, and
thus the landing algorithm can be understood as the combination of an f -informed force (the relative
gradient) and an attractive force which pulls the iterates towards the Stiefel manifold.

From the base algorithm introduced by Ablin and Peyré (2022), and described in Alg. F.1, Ablin et al.
(2024) generalize it and introduce its stochastic version, LandingSGD, as well as another variant
for variance reduction. In order to make the algorithm work on our setting, we took our own spin
and modified LandingSGD. Namely, we introduced two main changes: (i) we replace the Euclidean
gradient ∇f(W) to be the one given by the result of combining VectorAdam (Ling et al., 2022) and
RAdam (Liu et al., 2020); and (ii) project the gradient back to the manifold if we find their distance
to exceed the same threshold ϵ as the one given to the LandingSGD algorithm. To distinguish it from
the original algorithm, in this manuscript we refer to the final algorithm after the aforementioned
adjustments as LandingPC. The change of gradient does not break the theoretical guarantees of
landing algorithms since the generalized analysis by Ablin et al. (2024) works as long as gradf(W)
is skew-symmetric, which is still the case if we replace ∇f(W).

48

	Introduction
	From Tensor Networks to Squared Probabilistic Circuits
	Relaxing Determinism via Orthogonality
	How to Build Orthogonal Circuits

	From Regular Orthogonality to Unitarity
	A Tighter Complexity for Variable Marginalization
	Empirical Evaluation
	Conclusion and Future Work
	 Appendix
	Proofs
	Linear-time Partition Function and Marginals Computation via Orthogonality
	Orthogonality Strictly Generalizes Determinism
	Regular Orthogonality is Sufficient for Orthogonality
	Marginalizing Any Variables Subset in Linear Time
	Tensorized Circuit Multiplication Algorithm
	Already-Normalized Tensorized Squared Circuits via Unitarity
	A Tighter Marginalization Complexity

	Expressiveness Analysis
	Enforcing Orthogonality is #P-hard
	Enforcing (Semi-)Unitary Parameters is Efficient

	Tree Tensor Networks as Structured-decomposable Circuits
	Unitary Circuits Generalize Upper Canonical Tree Tensor Networks

	Related Work
	Experimental Details
	Continuous Input Features
	Image Distribution Estimation
	Benchmarking Squared PCs

	The Family of Landing Algorithms

