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ABSTRACT

Squared tensor networks (TNs) and their extension as computational graphs—
squared circuits—have been used as expressive distribution estimators, yet sup-
porting closed-form marginalization. However, the squaring operation introduces
additional complexity when computing the partition function or marginalizing
variables, which hinders their applicability in ML. To solve this issue, canonical
forms of TNs are parameterized via unitary matrices to simplify the computation of
marginals. However, these canonical forms do not apply to circuits, as they can rep-
resent factorizations that do not directly map to a known TN. Inspired by the ideas
of orthogonality in canonical forms and determinism in circuits enabling tractable
maximization, we show how to parameterize squared circuits to overcome their
marginalization overhead. Our parameterizations unlock efficient marginalization
even in factorizations different from TNs, but encoded as circuits, whose structure
would otherwise make marginalization computationally hard. Finally, our exper-
iments on distribution estimation show how our proposed conditions in squared
circuits come with no expressiveness loss, while enabling more efficient learning.

1 INTRODUCTION

Tensor networks (TNs) are low-rank factorizations of tensors with applications in machine learning
(Stoudenmire and Schwab, 2016; Han et al., 2018; Cheng et al., 2019; Novikov et al., 2021; Tomut
et al., 2024), quantum physics (Schollwoeck, 2010; Biamonte and Bergholm, 2017) and quantum
computing (Markov and Shi, 2008). A TN factorizes a complex function ψ over a set of variables
X = {Xi}di=1 having domain dom(X), which can be then used to model a probability distribution
via modulus squaring, i.e., p(X) = Z−1|ψ(X)|2, where Z =

∫
dom(X)

|ψ(x)|2 dx is the partition
function. Recently, Loconte et al. (2025b;a) have shown that the computations done with a TN can
be generalized into computational graphs akin to neural networks, called circuits (Darwiche and
Marquis, 2002; Choi et al., 2020; Vergari et al., 2021). This is done by casting contractions between
tensors in a TN into a hierarchical composition of sum and product computational units.

The language of circuits offers the opportunity to flexibly build novel TN factorizations by stacking
layers of sums and products as “Lego blocks” (Loconte et al., 2025a), including different basis input
functions, and providing a seamless integration with deep learning architectures (Shao et al., 2022;
Gala et al., 2024a;b). Moreover, viewing TNs as circuits allows one to exploit a rich framework
of structural properties, defined over their computational graph and parameterization, to compose
circuits and compute several probabilistic reasoning tasks in closed-form. These include the evaluation
of information-theoretic measures and expectations (Vergari et al., 2021), which is crucial for example
in reliable neurosymbolic AI (Ahmed et al., 2022; Kurscheidt et al., 2025; Marconato et al., 2024;
2023) and causal inference (Choi et al., 2021; Wang et al., 2024). This is done with probabilistic
circuits (PCs)—circuits encoding probability distributions, that are traditionally restricted to have
positive parameters only, i.e., monotonic PCs (Shpilka and Yehudayoff, 2010).

To increase the expressiveness of PCs for representing complicated distributions, one can equip them
with real parameters and square them (Loconte et al., 2024), similar to TNs. Mixing squared PCs
together also provides further expressiveness gains (Loconte et al., 2025b). However, differently from
monotonic PCs that are not squared, squared PCs require additional overhead to be normalized, i.e.,
to compute Z. That is, under particular structural properties, squaring circuits and computing Z has
quadratic complexity w.r.t. the circuit size (Vergari et al., 2021). This quadratic complexity overhead
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carries over the computation of marginals that are simpler than the partition function, i.e., where only
a proper subset of variables are integrated out. This overhead limits the application of squared PCs in
settings where performing exact yet efficient conditioning is crucial, e.g., as for sampling (Loconte
et al., 2024) and in lossless data compression (Yang et al., 2022; Liu et al., 2022).

One possible solution might come from the TN literature, where canonical forms are used to simplify
the computation of marginals (Schollwoeck, 2010; Bonnevie and Schmidt, 2021). E.g., instead of
computing the partition function Z explicitly in a TN, a canonical form ensures |ψ(X)|2 is an already-
normalized distribution, i.e., Z = 1. In practice, canonical forms are obtained by parameterizing a
TN by means of (semi-)unitary matrices. However, different TNs need different canonical forms, and
each of them is tailored for specific marginals only, yielding left/right/mixed/upper canonical forms
in matrix-product states (MPS) (Orús and Vidal, 2008) and tree TNs (TTNs) (Shi et al., 2006; Cheng
et al., 2019). These canonical forms cannot be applied to circuits, as they might not correspond to a
known factorization method or TN (Loconte et al., 2025a). Here, we extract the core principle behind
canonical forms and reformulate it in terms of new structural properties of circuits. Our conditions
revolve around the idea of orthogonality between units of the circuit computational graph, which we
find to be surprisingly related with a classical circuit property, called determinism, which so far has
been mostly exploited in the context of tractable maximization (Darwiche and Marquis, 2002) with
PCs and never linked to TNs before.

Our main contributions are the following: (i) We derive properties based on orthogonality to enable
linear-time marginalization in squared PCs, thus improving over its usual quadratic complexity w.r.t.
their size (§3). (ii) Since PCs often consist of densely-connected layers of sums and products, we relax
our orthogonality properties over scalar units in favor of a parameterization over layers, exploiting
(semi-)unitary matrices instead. While this parameterization is similar to canonical forms in TTNs,
we show it generalizes to a strictly larger set of factorizations when represented as circuits (§4).
(iii) Under this parameterization, we derive an algorithm to marginalize any variable subset whose
best-case complexity scales linearly w.r.t. the number of layers and their size, thus finding a better
complexity bound than a previous known one that squared all layer sizes (§5). (iv) Our experiments
on distribution estimation show no performance loss under the proposed circuit properties, while
enabling more efficient training and the use of previously unavailable circuit architectures (§6).

2 FROM TENSOR NETWORKS TO SQUARED PROBABILISTIC CIRCUITS

We introduce the close relationship between TNs and circuits (Loconte et al., 2024; 2025a), and
show how they can encode probability distributions via modulus squaring. TNs encode hierarchical
factorizations of high dimensional tensors (or functions). Perhaps the most popular TN factorization
is the matrix-product state (MPS) (Pérez-García et al., 2007), also called tensor-train (Oseledets,
2011). A rank-R MPS factorization encodes a function ψ over variables X = {Xj}dj=1 as

ψ(x) =
∑R

i1=1

∑R

i2=1
· · ·
∑R

id−1=1
ψi1
1 (x1)ψ

i1,i2
2 (x2) · · ·ψid−2,id−1

d−1 (xd−1)ψ
id−1

d (xd), (1)

where ψ1 : dom(X1) → CR, ψd : dom(Xd) → CR, and ψk : dom(Xk) → CR×R with 1 < k < d
are the factors. The superscript indices in Eq. (1) select scalar entries from the factors. Note that in the
case of X being discrete with finite domain, Eq. (1) can be seen as a factorization of a d-dimensional
tensor (Kolda, 2006; Kolda and Bader, 2009). Given an assignment x = ⟨x1, . . . , xd⟩ ∈ dom(X),
computing the value of ψ(x) translates to evaluating the univariate factors, products and sums in
Eq. (1), i.e., a complete contraction of the TN (Orús, 2013). While the naive way of contracting the
TN in Eq. (1) requires time O(Rd), one can do it in time O(R2d) by computing products and sums
in a precise left-to-right ordering, i.e., as d− 1 matrix-vector products. The computational graph of
sums and products resulting from the TN contraction in a particular ordering is a circuit.
Definition 1 (Circuit (Choi et al., 2020; Vergari et al., 2021)). A circuit c is a parameterized
computational graph over variables X encoding a function c : dom(X) → C, and comprising three
kinds of units: input, product and sum. Each product or sum unit n receives the outputs of other
units as inputs, denoted with the set in(n). Each unit n encodes a function cn defined as: (i)
fn(X) if n is an input unit, where fn is a function over the variable sc(n) = {X} ⊆ X, called its
scope, (ii)

∏
i∈in(n) ci(sc(i)) if n is a product, and (iii)

∑
i∈in(n) wn,ici(sc(i)) if n is a sum, where

{wn,i ∈ C \ {0}}i∈in(n) are the parameters of the sum unit. The scope of a product or sum unit n is
the union of the scopes of its inputs, i.e., sc(n) =

⋃
i∈in(n) sc(i).
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Figure 1: Matrix-product states (MPSs) are circuits. A
MPS TN of rank R = 2, here in Penrose graphical notation
(bottom right), models a function ψ over X = {X1, X2, X3}
as ψ(X) =

∑R
i1=1

∑R
i2=1 ψ

i1
1 (X1)ψ

i1,i2
2 (X2)ψ

i2
3 (X3).

Given an assignment x = ⟨x1, x2, x3⟩, the circuit computes
the complete contraction of the MPS, i.e., ψ(x) (above left).
The circuit input units ( ) compute the factors ψi1

1 , ψi1,i2
2 ,

ψi2
3 over X1, X2, X3, highlighted in their respective colors.

The composition of product ( ) and sum ( ) units encode
the contraction of the factors following a left-to-right order-
ing, i.e., multiplying and summing the violet (ψ1) and orange
(ψ2) factors before the green one (ψ3). Here, sum weights
are fixed to 1, but can generally be any complex number.

i1 i2

ψ1
1(x1)

ψ2
1(x1)

ψ1,1
2 (x2)

ψ2,1
2 (x2)

ψ1,2
2 (x2)

ψ2,2
2 (x2)

ψ1
3(x3)

ψ2
3(x3)

ψ(x1, x2, x3)

X1 X2 X3

ψ1 ψ2 ψ3

The circuit size, denoted as |c|, is the number of edges between the units. Evaluating a circuit c on an
variables assignment x, i.e., computing c(x), is done by evaluating the input functions, products and
sums, by following the computational graph, thus requiring time O(|c|). Fig. 1 shows an example
of an MPS approximation of ψ represented in Penrose graphical notation (Penrose, 1971), and the
circuit c encoding its left-to-right contraction, i.e., ψ(x) = c(x) as in Eq. (1). The circuit language
allows us to build factorizations by directly connecting sums and products, which in the end might not
correspond to any known TN structure or other tensor factorization method (Loconte et al., 2025a).

Structural properties specified over a circuit graph structure provide sufficient conditions to guaran-
tee the tractable computation of quantities useful in a number of scenarios (Darwiche and Marquis,
2002; Vergari et al., 2021; Wang et al., 2024). For example, a circuit c supports the exact integration
of any variable subset in time O(|c|) if (i) its input functions can be integrated efficiently and (ii) it is
smooth and decomposable (Choi et al., 2020), as formalized next.
Definition 2 (Smoothness and decomposability (Darwiche and Marquis, 2002)). A circuit is smooth if
for every sum unit n, all its input units depend on the same variables, i.e., ∀i, j ∈ in(n) : sc(i) = sc(j).
A circuit is decomposable if the distinct inputs of every product unit n depend on disjoint sets of
variables, i.e., ∀i, j ∈ in(n) i ̸= j : sc(i) ∩ sc(j) = ∅.

Smoothness and decomposability are related to multilinearity, a classical property of tensor factor-
izations (Kolda and Bader, 2009), as a smooth and decomposable circuit is guaranteed to encode
a multilinear function (or polynomial) w.r.t. its input functions (Martens and Medabalimi, 2014;
Oliver Broadrick, 2024). We will make use of another property known as determinism, which instead
ensures tractable maximum-a-posteriori inference in circuits (Darwiche, 2009; Choi et al., 2020).
Definition 3 (Determinism (or support-decomposability) (Darwiche and Marquis, 2002; Choi et al.,
2020)). A sum unit n is deterministic (or support-decomposable) if all its inputs have pairwise disjoint
supports, i.e., ∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅, where supp(n) = {x ∈ dom(sc(n)) |
cn(x) ̸= 0}. A circuit is deterministic if every sum unit in it is deterministic.

Unlike the relationship between smoothness, decomposability and multilinearity, a property similar
to determinism has not been explored in tensor factorization techniques. The relationship between
determinism and orthogonality will be crucial in §3 to devise canonical forms for circuits.

A probabilistic circuit (PC) is a circuit c encoding a non-negative function, thus modeling a possibly
unnormalized probability distribution p(x) = Z−1c(x), where Z is the partition function (Choi et al.,
2020; Vergari et al., 2021). To construct and learn a circuit that is a PC, its parameters and input
functions can be enforced to be non-negative, i.e., they are monotonic PCs (Shpilka and Yehudayoff,
2010). This in fact ensures the circuit outputs are also non-negative. However, PCs whose parameters
can be negative, i.e., non-monotonic PCs, have been shown to be strictly more expressive models than
monotonic ones (Valiant, 1979). Building and learning non-monotonic PCs flexibly while ensuring
they compute a non-negative function is in general a challenging problem (Dennis, 2016). However,
a family of non-monotonic PCs can be constructed via squaring, as we detail next.

Born machines and squared PCs. As mentioned above, to model a distribution p(X) we can take
the modulus square of a complex-valued TN, resulting in a model often called Born machine (Dirac,
1930; Glasser et al., 2018). One can similarly build non-monotonic PCs by squaring circuits with
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real or complex parameters, which comes with theoretically guarantees regarding their increased
expressiveness over monotonic ones (Loconte et al., 2024; 2025b). The property-driven framework of
circuits precisely tells us how to build a circuit such that its squaring can be marginalized efficiently.
This problem is analogous to the one of representing the multiplication of two TNs as yet another
TN (Michailidis et al., 2024). Formally, given a circuit c, a squared PC c2 encodes a distribution
p(x) = Z−1|c(x)|2, where Z =

∫
dom(X)

|c(x)|2 dx. Computing Z or any marginal tractably requires
representing c2 as yet another decomposable circuit (Def. 2), which can be obtained by multiplying c
with its conjugate c∗. While the conjugate circuit c∗ can be efficiently obtained from c by simply
taking the conjugate of the sum parameters and input functions (Yu et al., 2023), realizing the product
of any two decomposable circuits as a decomposable circuit is in general a #P-hard problem (Vergari
et al., 2021). However, it can be done efficiently if these circuits are compatible.
Definition 4 (Compatibility (Vergari et al., 2021)). Two smooth and decomposable circuits c1, c2
over variables X are compatible if (i) the product of any pair fn, fm of input functions respectively
in c1, c2 over the same variable can be efficiently integrated, and (ii) any pair n, m of product units
respectively in c1, c2 having the same scope decompose their scope over their inputs in the same way.

We say that a circuit is structured-decomposable if it is compatible with itself (Pipatsrisawat and
Darwiche, 2008), i.e., all products having the same scope decompose it towards their inputs in the
same way. As detailed in App. C, circuits corresponding to MPS and TTN TNs are structured-
decomposable. If a circuit c is structured-decomposable, then its products implicitly encode a tree-
like partitioning of variables (Kisa et al., 2014), which ensures that the product between c and c∗ can
be encoded by a decomposable circuit of size O(|c|2). This can be done via a circuit multiplication
algorithm as shown in Vergari et al. (2021). The quadratic increase in circuit size is why computing
the partition function or any marginal ultimately requires time O(|c|2). In the next section, we address
this quadratic complexity overhead in squared PCs by deriving novel structural properties.

3 RELAXING DETERMINISM VIA ORTHOGONALITY

By showing how both TN canonical forms and determinism in circuits bring simplifications when
computing marginals, we translate the key idea of orthogonality to the language of circuits. Consider
an MPS encoding ψ over variables X = {X1, X2}, i.e., ψ(x1, x2) =

∑R
i=1 ψ

i
1(x1)ψ

i
2(x2). As an

example, consider a left canonical form requiring the factors {ψi
1}Ri=1 over X1 to satisfy the orthonor-

mality condition
∫
dom(X1)

ψi
1(x1)ψ

j
1(x1)

∗ dx1 = ⟨ψi
1 | ψj

1⟩ = δij , where δij is the Kronecker delta.
Under this condition, we can simplify the marginal p(x2) =

∫
dom(X1)

|ψ(x1, x2)|2 dx1 as∑R

i=1

∑R

j=1
⟨ψi

1 | ψj
1⟩ ψi

2(x2)ψ
j
2(x2)

∗ =
∑R

i=1
|ψi

2(x2)|2, (2)

because the inner product ⟨ψi
1 | ψj

1⟩ is zero whenever i ̸= j. We observe that the same simplification
from O(R2) to O(R) sums would occur also if the factors {ψi

1}Ri=1 were instead defined over non-
overlapping supports, i.e., ∀i, j ∈ [R], i ̸= j, at least one between ψi

1 and ψj
1 is zero. Exploiting

factors having non-overlapping supports rather than being orthogonal suggests us we could use
determinism in order to simplify marginalization in squared PCs. Formally, given n a deterministic
sum unit computing cn(x1, x2) =

∑
i∈in(n) wici(x1, x2), we can write |cn(x1, x2)|2 as∑

i∈in(n)

∑
j∈in(n)

wiw
∗
j ci(x1, x2)cj(x1, x2)

∗ =
∑

i∈in(n)
|wi|2 |ci(x1, x2)|2, (3)

since due to determinism at least one between ci and cj is zero whenever i ̸= j. From Eq. (3)
we recover that the number of input connections to a deterministic sum unit does not quadratically
increases when taking its modulus square. Therefore, by recursively applying Eq. (3) for all sum
units in a deterministic circuit c, it turns out that a decomposable squared PC can be obtained from c
of the same size. For this reason, the satisfaction of determinism allows us to compute any marginal
in the squared PC in time O(|c|) rather than O(|c|2). However, the caveat is that taking the modulus
square of a deterministic circuit can be done by simply replacing each weight and input function
with their modulus square, resulting in a PC with non-negative activations only (e.g., see the |wi|2
in Eq. (3)). As such, real or complex parameters would not bring any expressiveness advantage
over monotonic PCs, as also noticed in Loconte et al. (2024, Prop. 4). This begs the question: How
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can we parameterize squared PCs to overcome their computational overhead without requiring
determinism? Inspired by the simplification in Eq. (2), we introduce a relaxation of determinism
called orthogonality, requiring sum units to receive input from units computing orthogonal functions.
Definition 5 (Orthogonality (or ortho-decomposability)). A smooth sum unit n with sc(n) = Z is
orthogonal if all pairs of distinct inputs encode orthogonal functions, i.e., ∀i, j ∈ in(n), i ̸= j :∫
dom(Z)

ci(z)cj(z)
∗ dz = 0. A circuit is orthogonal if all sum units in it are orthogonal.

Unlike determinism, orthogonality does not necessarily require the inputs to sum units to have disjoint
support. As we formalize in App. A.2, orthogonality strictly generalizes determinism in the case of
non-monotonic circuits. Similar to our discussion above leveraging determinism, given a circuit c
that is orthogonal we have that computing the partition function of its modulus square can be done in
time O(|c|) rather than O(|c|2). We formalize this result in the following theorem.
Theorem 1. Let c be a smooth, decomposable and orthogonal circuit over X. Then computing the
partition function Z =

∫
dom(X)

|c(x)|2 dx can be done in time O(|c|).

We prove it in App. A.1 where we also observe that, unlike determinism, orthogonality allows us to
retain real or complex parameters in the modeled distribution representation. To prove Thm. 1 we
actually introduce a generalization of orthogonality—called Z-orthogonality—that considers sum
units having scope overlapping with Z ⊆ X and allows us to compute the more general quantity∫
dom(Z)

|c(y, z)|2 dz in time O(|c|), where y ∈ dom(X \ Z). Moreover, as detailed in App. A.4, if
a circuit is {X}-orthogonal for all X ∈ X, then it is Z-orthogonal for any Z ⊆ X. Therefore, this
other result also shows a condition to marginalize any subset Z of variables in time O(|c|).
Unlocking non-structured-decomposable squared PCs. One aspect of Thm. 1 is that, under
orthogonality, computing the partition function requires linear time even for squared PCs that are
not structured-decomposable. This is perhaps surprising, because integrating the power of a non-
deterministic and non-structured-decomposable circuit is in general #P-hard, see Vergari et al. (2021,
Thm. 3.3). The key ingredient to overcome marginalization being #P-hard is exploiting cancellations
provided by orthogonality to avoid integrating the product of non-compatible circuits, which would be
otherwise intractable. To the best of our knowledge, TN structures corresponding to non-structured-
decomposable circuits have not been previously investigated. E.g., MPS and TTNs implicitly
encode a single hierarchical partitioning of the variables (Grasedyck, 2010), thus being structured-
decomposable circuits (see App. C). Furthermore, theoretical results link structured-decomposability
to a decrease of expressiveness in circuits and squared PCs (Pipatsrisawat and Darwiche, 2008; 2010;
de Colnet and Mengel, 2021; Loconte et al., 2025b). Although our experiments on a particular class
of non-structured-decomposable squared PCs do not show an expressiveness increase (§6), these
works motivate future research to develop novel expressive factorizations that are not structured-
decomposable, yet their modulus squaring enable efficient marginalization via orthogonality.

3.1 HOW TO BUILD ORTHOGONAL CIRCUITS

Peharz et al. (2014) showed one can build a deterministic circuit by (i) choosing the input functions
over the same variable such that they have disjoint supports, and (ii) ensuring each sum has inputs that
are connected to different input functions in the circuit graph. Each sum unit in a deterministic circuit
built in this way—also called regular selective—acts like a decision node for the input functions it
depends on w.r.t. a variable. This construction can be done recursively (Lowd and Rooshenas, 2013;
Shih and Ermon, 2020). To construct circuits that are orthogonal we can use a similar approach,
where each sum unit implicitly selects a subset of input functions that are however orthogonal rather
than have non-overlapping supports. We start by formalizing the concept of a sum unit acting like a
decision node for the input functions it depends on, which we call basis decomposability.
Definition 6 (Basis decomposability). A smooth sum unit n is basis decomposable if the inputs
to n depend on non-overlapping input functions for a variable, i.e., ∃X ∈ sc(n),∀i, j ∈ in(n), i ̸=
j : BX(i) ∩ BX(j) = ∅, where BX(i) denotes the set of input functions over X in the sub-circuit
rooted in the unit i. A circuit is basis decomposable if every sum unit in it is basis decomposable.

By requiring basis decomposability and that the input functions over the same variable are orthogonal
with each other, we recover the class of regular orthogonal circuits that are guaranteed to be
orthogonal. We formally show this in App. A.3 and define regular orthogonality below.
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Definition 7 (Regular orthogonality). A smooth and decomposable circuit c over X is regular orthog-
onal if (i) it is basis decomposable, and (ii) if all input units over the same variable X ∈ X encode
orthogonal functions, i.e., ∀i, j input units over X , i ̸= j, we have that

∫
dom(X)

ci(x)cj(x)
∗ dx = 0.

Fig. A.1 illustrates examples of regular selective and regular orthogonal circuits as basis decomposable
circuits having the same computational graph but differing by their input functions. Furthermore,
Apps. A.3 and A.4 also generalize regular orthogonality and present sufficient conditions for Z-
orthogonality (§3) enabling linear-time marginalization.

(a) (b)
Figure 2

However, regular orthogonality is rather restrictive as it requires
each input to a sum unit to depend on different input functions.
Fig. 2a depicts this, where we assume that differently colored
inner units depend on different input functions. Instead, circuits
made of densely-connected layers of sums and products can have
inputs to a sum that share the same sets of input functions (see
Fig. 2b), thus not being basis decomposable. This kind of circuits
include popular TN structures such as TTNs (Shi et al., 2006; Cheng et al., 2019) (see Fig. C.1), as
well as circuit architectures that benefit from GPU parallelism (Vergari et al., 2019; Peharz et al.,
2019; 2020; Liu and den Broeck, 2021; Mari et al., 2023; Loconte et al., 2025a; Zhang et al., 2025a).
These circuits—called tensorized circuits—motivates us in finding different conditions relaxing basis
decomposability, yet still useful to simplify the computation of marginals. We show how grouping
computational units into layers enables us to define such conditions. Similarly to a canonical form,
these conditions are based on orthonormal input functions and (semi-)unitary matrices, and ensure
squared PCs encode already-normalized distributions. However, our construction can be applied to
circuits, even those that do not map to any known tensor factorization method.

4 FROM REGULAR ORTHOGONALITY TO UNITARITY

We introduce properties similar to regular orthogonality but instead defined over layers in order to fit
tensorized circuit architectures that would otherwise not be basis decomposable due to their densely-
connected structure. These properties guarantee that a tensorized circuit is orthogonal and that the
squared PC obtained from it encodes an already-normalized distribution, while also providing speed-
ups for the computation of any marginal (§5). These perks generalize to tensorized circuit architectures
that are not structured-decomposable, thus representing a strictly larger set of factorizations when
compared to TTNs (as noticed for orthogonality in §3). We formalize tensorized circuits below.
Definition 8 (Tensorized circuit (Loconte et al., 2025a)). A tensorized circuit c is a parameterized
computational graph encoding a function c(X) and comprising of three kinds of layers: input, product
and sum. A layer ℓ is a vector-valued function defined over variables sc(ℓ) ⊆ X, called scope, and
every non-input layer receives the outputs of other layers as input, denoted as in(ℓ). The scope of
each non-input layer is the union of the scope of its inputs. The three kinds of layers are defined as:

• Each input layer ℓ has scope X ∈ X and computes a collection of K input functions
{fi : dom(X) → C}Ki=1, i.e., ℓ outputs a K-dimensional vector.

• Each product layer ℓ computes either an element-wise (or Hadamard) or Kronecker product
of its N inputs, i.e., ⊙N

i=1ℓi(sc(ℓi)) or ⊗N
i=1ℓi(sc(ℓi)), respectively.

• A sum layer ℓ receiving input from {ℓi}Ni=1 computes the matrix-vector product W·
[ℓ1(sc(ℓ1)) · · · ℓN (sc(ℓN ))], where W ∈ CK1×K2 and [ · ] is the concatenation operation.

As we illustrate in Figs. 3 and C.1, tensorized circuits can be seen as “syntactic sugar” for circuits
(Def. 1) having dense connections between sparse groups of units. That is, a sum layer parameterized
by W ∈ CK1×K2 consists of K1 sum units each receiving K2 inputs and parameterized by a row
in W. Similarly, a product layer consists of scalar product units. Furthermore, we refer to the size
of a layer ℓ as the total number of input connections to the units inside ℓ. As detailed in App. A.5,
there exists a squaring algorithm for tensorized circuits operating on layers and using linear algebra
operations. This squaring algorithm extends another one described in Loconte et al. (2024) to support
circuits whose sum layers can receive input from more than one layer (as in Def. 8).

Similar to regular orthogonality, we start by requiring that the input units over the same variable
encode a collection of orthonormal functions, as we formalize below.
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Figure 3: Tensorized circuits can encode custom hi-
erarchical factorizations with no corresponding TTN.
The shown circuit encodes a factorization over X using
a mix of Hadamard and Kronecker product layers and
two input layers per variable in X = {X1,X2,X3},
Unlike the TTN in Fig. C.1, this circuit is not structured-
decomposable since there are product units that fac-
torize their scope X differently (pointed by arrows):
{{X3}, {X1,X2}} and {{X1,X3}, {X2}}, as indi-
cated with the color stripes, each corresponding to a
dependency w.r.t. a particular variable. Remarkably,
this circuit does satisfy properties (U2) and (U4), as the
pointed product layers that are input to the root sum layer
do not share input layers.

⇒ ⇐

ψ1(x1) ψ2(x2) ψ3(x1) ψ4(x3)

ψ5(x3) ψ6(x2)

(U1) Each input layer ℓ over a variable X encodes K orthonormal functions, i.e., ℓ(X) =
[f1(X) · · · fK(X)]⊤ such that ∀i, j ∈ [K] :

∫
dom(X)

fi(x)fj(x)
∗ dx = δij . For any pair of

input layers ℓi, ℓj over X and with ℓi ̸= ℓj , we have that
∫
dom(X)

ℓi(x)⊗ ℓj(x)
∗ dx = 0.

App. D reviews possible choices for flexible orthonormal input functions. To relax basis decom-
posability, the following property requires that sum layers receive input from layers depending on
different input layers for at least one variable. E.g., the sum layer in Fig. 2b receives input from two
other layers (with red and violet units), each depending on different input functions. Still, the sums in
a sum layer receive input from units that share the input functions, thus not being basis decomposable
in general (e.g., in Fig. 2b each sum receives input from two red/violet units).
(U2) Each sum layer ℓ receives inputs from layers {ℓi}Ni=1 such that ∃X ∈ sc(ℓ), ∀i, j ∈ [N ],

i ̸= j : the sub-circuits rooted in ℓi and ℓj dot not share input layers over the variable X .
In the particular case of a circuit where each layer consists of exactly one unit, (U2) is equivalent to
basis decomposability. Finally, each sum layer has to be parameterized by a (semi-)unitary matrix.
(U3) Each sum layer is parameterized by a (semi-)unitary matrix W ∈ CK1×K2 , K1 ≤ K2, i.e.,

WW† = IK1 or, equivalently, the rows of W are orthonormal.
If a tensorized circuit satisfies (U1-3) above, we say it is unitary. As formalized below and as we
prove in App. A.6, by exploiting cancellations provided by the orthonormality of input functions and
weights, the modulus squaring of a unitarity circuit encodes a normalized distribution.

Theorem 2. Let c be smooth and decomposable circuit over variables X. If c is unitary, i.e., if it
satisfies conditions (U1-3), then we have that c is orthogonal and Z =

∫
dom(X)

|c(x)|2 dx = 1.

This is similar in spirit to Born machines obtained as the modulus square of a TTN in a convenient
canonical form—also called upper-canonical form (Cheng et al., 2019)—ensuring normalization by
exploiting (semi-)unitary matrices. As detailed in App. C.1, our unitarity conditions strictly generalize
such canonical form to more general tensorized circuits. This is because we can build unitary circuits
that are not structured-decomposable, i.e., whose structure encodes multiple hierarchical variables
partitionings (see Fig. 3), yet their squaring encode a normalized distribution as for Thm. 2.

Expressiveness analysis. Since we introduced new families of circuits based on orthogonality
and unitarity properties, in App. B we provide a preliminary analysis regarding their expressive
efficiency, i.e., the ability of a circuit class to encode a function in a polysize computational graph.
This contributes to a number of works investigating the expressiveness of circuits and squared PCs
(Darwiche and Marquis, 2002; Martens and Medabalimi, 2014; de Colnet and Mengel, 2021; Glasser
et al., 2019; Loconte et al., 2025b). In App. B.1 we firstly show that enforcing orthogonality in a
smooth and decomposable circuit is #P-hard, thus suggesting future work looking at whether some
functions encoded by smooth and decomposable circuits cannot be encoded by polysize orthogonal
ones. We conjecture this to hold similarly to the case of deterministic circuits (Bova et al., 2016).
Instead, in App. B.2 we show that enforcing (semi-)unitary weights in sum layers can be done in
polytime, thus guaranteeing no loss in terms of expressive efficiency. Our experiments in §6 confirm
this, showing one can learn unitary squared PCs that perform similarly to non-unitary ones, while
App. E.1 shows that Fourier input functions are competitive w.r.t. Gaussians for density estimation.
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5 A TIGHTER COMPLEXITY FOR VARIABLE MARGINALIZATION

As shown in Loconte et al. (2024) and discussed in App. A.5, computing any marginal probability in
a PC obtained by taking the modulus square of a structured-decomposable and tensorized circuit c
requires time O(L2S2

max), where L is the number of layers and Smax is an upper-bound to the size of
each layer in c. In fact, the marginalization algorithm would (i) represent the modulus squaring of c
as another decomposable circuit, thus quadratically increasing its size O(LSmax), and (ii) compute a
marginal with a single forward-pass over the squared PC. Here, we not only present an algorithm
to compute any marginal that can be much more efficient, but we also show it generalizes to non-
structured-decomposable squared PCs as well. We do so by exploiting the unitarity conditions (U1-3).

Our idea is that, when computing marginal probabilities we do not need to evaluate the layers whose
scope depends on only the variables being integrated out, because they simplify to identity matrices
(see proof of Thm. 2). We also observe that we do not need to square the whole tensorized circuit c,
but only a fraction of the layers depending on both the marginalized variables and the ones being left
over. By doing so, a part of the complexity will ultimately depend on Smax rather than S2

max. However,
in order to be able to marginalize any variable subset, we need to specialize (U2) in unitarity by
requiring that the layers that are input to a sum layer have disjoint input functions dependencies w.r.t.
all variables. As formalized below, we simply need to change “∃X” to “∀X” in (U2).
(U4) Each sum layer ℓ receives inputs from layers {ℓi}Ni=1 such that ∀X ∈ sc(ℓ), ∀i, j ∈ [N ],

i ̸= j : the sub-circuits rooted in ℓi and ℓj dot not share input layers over the variable X .
For instance, the non-structured-decomposable circuit in Fig. 3 satisfies (U4). Thanks to (U4), we
can ignore the integration of all pairwise products between multiple inputs to a sum layer, as they
annihilate thanks to orthogonality. This makes our complexity ultimately depend on O(L) rather than
O(L2). Alg. A.3 presents our marginalization algorithm and, as we show in App. A.7, the following
theorem guarantees it is correct also in the case of non-structured tensorized circuits.
Theorem 3. Let c be a smooth and decomposable circuit over X that satisfies (U1-4), and let Z ⊆ X,
Y = X \Z. Computing the marginal p(y) =

∫
dom(Z)

|c(y, z)|2 dz requires time O(|ϕY \ϕZ|Smax +

|ϕY ∩ ϕZ|S2
max), where ϕ⋆ is the set of layers whose scope depends on at least one variable in ⋆.

Moreover, App. A.7 details why our algorithm has complexity O(|ϕY \ ϕZ|Smax) in the best case.
The relationship with TN canonical forms. To speed-up the computation of a certain marginal with
a Born machine, we firstly need to adapt the TN parameters into a canonical form that is specific for
the chosen marginal (Vidal, 2003; Bonnevie and Schmidt, 2021). This comes with additional overhead
depending on the number of variables and the TN shape. Instead, our marginalization algorithm does
not require us to change the parameters depending on the marginal being computed, yet it provides a
speed-up when compared to the naive approach that materializes a squared PC as a decomposable
one. Moreover, our algorithm generalizes over non-structured-decomposable factorizations when
represented as unitary circuits, which otherwise would not support tractable marginalization (§2).

6 EMPIRICAL EVALUATION

We now assess the practical benefits of using unitary circuits. Namely, we investigate whether
unitary circuits result in faster and lighter squared PCs (RQ1), if we can train unitary circuits without
sacrificing model performance (RQ2), and whether we can, for the first time, efficiently train squared
non-structured-decomposable PCs (RQ3). Additional details and results can be found in App. E.

Experimental setting. Given a training dataset D on variables X, we aim at finding the parameters
of a given squared PC that maximize the data likelihood. We follow Loconte et al. (2024) and, given
a batch B ⊂ D, write its negative log-likelihood as L := |B| logZ −∑x∈B 2 log |c(x)|, such that
we just need to materialize the squared PC once per batch to compute the log-partition function,
significantly speeding up computations. For every circuit we use complex-valued parameters, identical
architectures and batch sizes, and report results on a test dataset of the model with best validation
performance during training. Similar to Loconte et al. (2024), we employ Hadamard product layers
for the baseline squared PCs, denoted as ±2

C, while we use Kronecker product layers for the squared
unitary PCs, ⊥2

C, as we found them to perform significantly better in practice (see Apps. E.1 and E.2).

RQ1: Improved throughput. First, we measure to which extent squared unitary PCs improve
the time and memory overhead of squared PCs that instead require computing Z explicitly during
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Figure 4: Squared unitary PCs scale better than squared PCs while retaining performance. By
virtue of not materializing their squares, unitary circuits result in faster and lighter models, even when
using Kronecker product layers (a). This is, in practice, without any sacrifice in model performance,
as we observe on the bits-per-dimension (bpd, lower is better) on image datasets (b). Remarkably, our
parametrization allows efficiently training squared non-structured-decomposable PCs (gray lines).

training. To this end, we build circuits with increasing number of units per layer and measure the
time and memory required to perform one optimization step. Fig. 4a and Tab. E.3 show that squared
unitary PCs are consistently faster to evaluate and use less memory. This becomes especially clear at
large scales where a squared unitary PC with Kronecker product layers and 357M parameters takes
12GiB of GPU memory and 0.29ms per iteration, against the 18GiB and 0.52ms of its counterpart
with Hadamard layers. Hence, unitary circuits enable learning squared PCs with Kronecker layers
at scale, which is remarkable given that materializing the squared PCs as a decomposable one to
compute Z would further increase the Kronecker layer sizes dramatically (details in App. A.5).

RQ2: Learning unitary circuits. Next, we train squared PCs for distribution estimation on
MNIST (LeCun et al., 2010) and FashionMNIST (Xiao et al., 2017) images. Fig. 4b shows the bits-
per-dimension of squared PCs of increasing sizes on both datasets, where we can observe that squared
unitary PCs gracefully scale, matching the performance of their baseline counterparts. To this end,
we adapted the LandingSGD optimizer (Ablin and Peyré, 2022; Ablin et al., 2024) to our setting,
which we describe in App. F and can be of independent interest to the community. This is remarkable
since orthogonally-constrained optimization is notoriously challenging and in active development
(Ablin et al., 2024; Kochurov et al., 2020; Casado, 2019) and therefore, further advancements in the
field can only benefit squared unitary PCs.

RQ3: Non-structured-decomposable squared unitary PCs. Lastly, we reuse the previous setup
and train a squared unitary PC whose architecture is not structured-decomposable (see App. E.2),
and hence materializing its square as a decomposable circuit to compute Z explicitly is generally not
tractable (Vergari et al., 2021; Zhang et al., 2025b). Fig. 4b shows that such PCs can be competitive
with their structured-decomposable counterparts, especially at large scales, but might be harder to
train. Thus, our theory and preliminary experiments open future interesting venues to design and
train better non-structured-decomposable PCs and TNs, which can be exponentially more expressive
than structured ones (Pipatsrisawat and Darwiche, 2008; 2010; de Colnet and Mengel, 2021).

7 CONCLUSION AND FUTURE WORK

Inspired by determinism in circuits and canonical forms in TNs, we introduced novel conditions
described in the circuit framework to simplify the computation of marginals in squared PCs and ensure
they encode already-normalized distributions. As for the close connection between circuits and TNs,
our conditions motivate research aimed at exploring new factorization structures that can be more
expressive, yet enabling exact and efficient marginalization and sampling. Recently, determinism
has been generalized as a property between two circuits in Wang et al. (2024) to bring complexity
simplifications for exact causal inference and weighted model counting (Chavira and Darwiche, 2008).
We believe one can extend our orthogonality (§3) as a property between two circuits similarly, thus
possibly simplifying the computation of compositional operations while being less restrictive than
determinism. Finally, as we detail in App. D, there are a number of directions aimed at understanding
the relative expressiveness of the proposed circuit families w.r.t. other classes of PCs, e.g., the recent
positive unital circuits generalizing squared PCs shown in Zuidberg Dos Martires (2025).
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included our complete source code as supple-
mentary material. Our code submission contains the model implementation, training scripts for exper-
iments, and instructions for setting up the required environment. Furthermore, a detailed description
of all experimental settings is included in App. E.
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A PROOFS

Assumptions. Below we implicitly make the following mild assumptions. We require each inner
unit to compute a Lebesgue-integrable function over its support. We also assume that the functions
computed by input units can be evaluated and integrated over their support efficiently. With a slight
abuse of notation, we use integrals to actually denote summations if taken w.r.t. discrete variables.

A.1 LINEAR-TIME PARTITION FUNCTION AND MARGINALS COMPUTATION VIA
ORTHOGONALITY

In order to prove that computing the partition function of a squared PC, obtained by taking the modulus
square of an orthogonal circuit c (Def. 5), requires time O(|c|) (i.e., our Thm. 1), here we firstly
introduce a generalization of orthogonality. This other condition, which we call Z-orthogonality,
considers only sum units having scope overlapping with Z and requires the inputs to sum units to
encode orthogonal functions when variables that are not in the variables set Z are kept fixed. We
formalize Z-orthogonality below.

Definition A.1 (Z-orthogonality). A smooth sum unit n is Z-orthogonal, with Ẑ = sc(n) ∩ Z ̸= ∅,
if all pairs of its inputs encode orthogonal functions when fixing the variables in sc(n) \ Ẑ, i.e.,
∀i, j ∈ in(n), i ̸= j :

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0, for any y ∈ dom(sc(n) \ Ẑ). Moreover, we

say a circuit over variables X is Z-orthogonal, with Z ⊆ X, if all sum units having scope overlapping
with Z are Z-orthogonal.

Under the satisfaction of Z-orthogonality in c, the following lemma shows that computing the quantity∫
dom(Z)

|c(y, z)|2 dz can be done in time O(|c|), where y ∈ dom(X \Z). In particular, we show the
correctness and complexity of our Alg. A.1 to compute this quantity. We will later show that, by
setting Z = X, one recovers Thm. 1, i.e., computing the partition function Z =

∫
dom(X)

|c(x)|2 dx
can be done in time O(|c|).
Lemma A.1. Let c be a smooth, decomposable and Z-orthogonal circuit over variables X. Then
computing

∫
dom(Z)

|c(y, z)|2 dz can be done in time O(|c|), where y ∈ dom(X \ Z).

Proof. We prove it by showing the correctness of Alg. A.1 via induction on the structure of c.

Units having scope not overlapping with Z. Let n be a unit in c. In the case of sc(n) ∩ Z = ∅,
we have that we can compute |cn(ŷ)|2, for some assignments ŷ obtained from y by restriction over
variables in sc(n), in time O(|c|). This is because we can evaluate cn by doing a feed-forward
evaluation of the sub-circuit rooted in c, and then take the modulus square of the result. This case as
formalized in L1-3 in Alg. A.1.

Sum units. Let n be a sum unit in c such that Ẑ = sc(n) ∩ Z ̸= ∅, i.e., the variables scope
of n overlaps with Z. Thus, assume that n computes cn(y, ẑ) =

∑
i∈in(n) wn,ici(y, ẑ), where

ẑ ∈ dom(Ẑ) and y ∈ dom(Y) with Y = sc(n) \ Ẑ. By hypothesis n is Z-orthogonal, and therefore
we have that ∀i, j ∈ in(n), i ̸= j :

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0. For this reason, we can write∫

dom(Ẑ)

|cn(y, ẑ)|2 dẑ =
∑

i∈in(n)

∑
j∈in(n)

wn,iw
∗
n,j

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ

=
∑

i∈in(n)

|wn,i|2
∫
dom(Ẑ)

|ci(y, ẑ)|2 dẑ.

Thus, we can compute the integral of the modulus squaring of n by firstly evaluating the integral of the
modulus squaring of its inputs and then computing a weighted summation. This is L4-7 in Alg. A.1.
By inductive hypothesis, computing the

∫
dom(Ẑ)

|ci(y, ẑ)|2 dẑ in our algorithm requires time O(|c|)
and therefore evaluating

∫
dom(Ẑ)

|cn(y, ẑ)|2 dẑ also requires time O(|c|). Furthermore, we observe
that if the sub-circuits respectively rooted in i and j, with i, j ∈ in(n), i ̸= j are not compatible
(Def. 4), then computing the integral

∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ would be in general a #P-hard

problem (Vergari et al., 2021). In particular, c would not be a structured-decomposable circuit.
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However, due to cancellations arising from Z-orthogonality, our algorithm avoids the computation of
these integrals as they cancels out, thus allowing us to efficiently marginalize variables in the case of
non-structured-decomposable squared PCs.

Product units. Let n be a product unit in c such that Ẑ = sc(n)∩Z ̸= ∅ and computing cn(y, ẑ) =∏
i∈in(n) ci(yi, ẑi). Since c is decomposable we have that (Ẑi)i∈in(n) forms a partitioning of variables

Ẑ with ẑi ∈ dom(Ẑi), and the assignment y to Y is partitioned into assignments (yi)i∈in(n). Thus,
we can write∫

dom(Ẑ)

|cn(y, ẑ)|2 dẑ =

∫
×i∈in(n)dom(Ẑi)

 ∏
i∈in(n)

|ci(yi, ẑi)|2
 dẑ1 · · · dẑ|in(n)|

=
∏

i∈in(n)

∫
dom(Ẑi)

|ci(yi, ẑi)|2 dẑi.

Thus, similar to the case of n being a sum unit above, we have that computing the integral of the
modulus squaring of n translates to multiplying the integrals of the modulus squaring of their inputs.
Note that with a slight abuse of notation we allow Ẑi to be possibly empty for some i ∈ in(n). This
allows us to recursively call our Alg. A.1 to the inputs of n, thus yielding L8-12 in it. Again, by
inductive hypothesis we have that this case requires time O(|c|).
Consider the base case where n is an input unit over X ∈ Z and computing f(X), i.e., cn(X) =
f(X). By assuming that the modulus squaring of f can be integrated efficiently, we have that
computing

∫
dom(X)

|cn(x)|2 dx is efficient. Therefore, since all the cases considered above take time
O(|c|), we have that computing

∫
dom(Z)

|c(y, z)|2 dz with Alg. A.1 requires time O(|c|).

Algorithm A.1 MAR-ORTHO-DEC(c,y,Z)

Input: A circuit c over variables X that is Z-orthogonal for some Z ⊆ X, and an assignment y to variables
Y = X \ Z. We denote as n the output unit of c. Output: The value of

∫
dom(Z)

|c(y, z)|2 dz.

1: if sc(n) ∩ Z = ∅ then ▷ n does not depend on the variables to marginalize
2: let ŷ be the restriction of assignments y to variables in sc(n).
3: r ← EVAL-FEED-FORWARD(n, ŷ)
4: return |r|2
5: else if n is a sum unit then
6: let n receive input from units in(n) and parameterized by {wn,i}i∈in(n)

7: let ri ← MAR-ORTHO-DEC(i,y,Z ∩ sc(n)), ∀i ∈ in(n)
8: return

∑
i∈in(n) |wn,i|2 ri

9: else if n is a product unit then
10: let n receive input from units in(n)
11: ri ← MAR-ORTHO-DEC(i,y,Z ∩ sc(i)), ∀i ∈ in(n)
12: return

∏
i∈in(n) ri

13: else
14: let n be an input unit over a variable X ∈ Z
15: return

∫
dom(X)

|cn(x)|2 dx ▷ Assuming it can be computed efficiently

From Lem. A.1 we are now able to prove Thm. 1, as formalized below.

Theorem 1. Let c be a smooth, decomposable and orthogonal circuit over X. Then computing the
partition function Z =

∫
dom(X)

|c(x)|2 dx can be done in time O(|c|).

Proof. Since c is orthogonal, then c is also Z-orthogonal with Z = X. This can be seen by noticing
that sc(n) ∩ Z = sc(n) for any unit n and with Z = X. Therefore, from Lem. A.1 we have that
computing Z requires time O(|c|) by using Alg. A.1.

Unlike determinism, orthogonality preserves complex parameters. Assume that n is a determin-
istic (Def. 3) smooth sum unit computing cn(X) =

∑
i∈in(n) wn,ici(X). Then, for any i, j ∈ [n],

i ̸= j, we have that ci(X)cj(X) = 0 as i and j have disjoint supports. Thus, we can write
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|cn(X)|2 =
∑

i∈in(n) |wn,i|2|ci(X)|2. For this reason, the modulus squaring of a deterministic cir-
cuit with possibly complex parameters turns out to be equivalent to another deterministic and mono-
tonic circuit. However, under orthogonality of n instead, we cannot rewrite |cn(X)|2 in the same
way, because cancellations only occur when integrating variables out, and the inputs to n can have
overlapping support (e.g., see Fig. A.1). For this reason, unlike determinism we observe that orthogo-
nality retains the possibly real or complex parameters in the distribution representation modeled as
p(X) ∝ |c(X)|2, which is a crucial feature aiding the expressiveness of squared PCs over monotonic
ones (Loconte et al., 2024; 2025b).

A.2 ORTHOGONALITY STRICTLY GENERALIZES DETERMINISM

In the following, we show that determinism is a sufficient but not a necessary condition for orthogo-
nality in the case of circuits whose unit outputs can be negative or complex valued. In other words,
orthogonality is a strict generalization of determinism in the case of non-monotonic circuits.

Proposition A.1. If a circuit c is deterministic, then it is orthogonal. Under mild assumptions, the
converse implication holds if c is also monotonic.

Proof. ( =⇒ ) By determinism of c we have that, for any sum unit n having scope sc(n) = Z,
∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅. Therefore, we have that either ci(z) = 0 or cj(z) = 0
for any i ̸= j and z ∈ dom(Z). Now, if ci(z) = 0 then ci(z)cj(z)∗ = 0, and if cj(z) = cj(z)

∗ = 0
then ci(z)cj(z)∗ = 0. Therefore, we have that ∀i, j ∈ in(n), i ̸= j :

∫
dom(Z)

ci(z)cj(z)
∗ dz = 0,

i.e., n is orthogonal. Therefore, we conclude that c is an orthogonal circuit.

( ⇐= , if c is also monotonic, under mild assumptions) To show the converse direction, we start by
assuming that c is both orthogonal and monotonic, i.e., all input functions and sum unit weights in
c are positive. This means that every computational unit in c computes a positive function over its
support. Now, by orthogonality of c we have that ∀i, j ∈ in(n), i ̸= j :

∫
dom(Z)

ci(z)cj(z)
∗ dz = 0.

However, due to monotonicity we have that cj(z)∗ = cj(z) and, for orthogonality to hold, we recover
that the inputs i and j to n, with i ̸= j, must have disjoint supports, i.e., n is deterministic. In other
words, under monotonicity, if the supports of i and j were overlapping, then ci and cj would not be
in general orthogonal functions as their inner product would be non-zero. Therefore, the circuit c is
deterministic. However, in the case of continuous variables X, for this to hold we require an additional
mild assumption over the supports of i and j. That is, we also need that the set supp(i) ∩ supp(j)
has non-zero measure. Otherwise, supp(i) ∩ supp(j) being of zero measure but non-empty (e.g., a
finite set) would imply orthogonality of ci and cj yet they have overlapping supports (as the integral
taken over a zero measure set is zero).

( ⇍= , if c is non-monotonic) To prove that the converse direction does not hold in the more general
case of non-monotonic circuits, we need to find a single non-monotonic circuit that is orthogonal yet
non-deterministic. This circuit can be built as a single sum unit that receives input from two real-
valued orthogonal functions both having R as support, e.g., Hermite functions (Roman and Rota,
1978).

In conclusion, orthogonality is a strict generalization of determinism in the case of non-monotonic
circuits and, under mild assumptions regarding the measure of supports intersections, determinism
and orthogonality become equivalent properties in the case of monotonic circuits.

A.3 REGULAR ORTHOGONALITY IS SUFFICIENT FOR ORTHOGONALITY

In this section, we prove that regular orthogonality (Def. 7) is sufficient for orthogonality to hold
(Def. 5). For this purpose, here we firstly introduce a generalization of regular orthogonality, called
Z-regular orthogonality, and then show it is sufficient for Z-orthogonality as defined in Def. A.1.
By doing so, we present sufficient conditions based on the structure of parameterization of a circuit
to marginalize a subset Z of variables in linear time w.r.t. the circuit size. We start by introducing
the Z-basis decomposability property, which specializes basis decomposability (Def. 6) to only sum
units having scope overlapping with Z. We start by formally introducing the concept of basis scope.
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ψ1
1(x1)

ψ2
1(x1)

ψ1,1
2 (x2)

ψ2,1
2 (x2)

ψ1,2
2 (x2)

ψ2,2
2 (x2)

ψ1
3(x3)

ψ2
3(x3)

ψ(x1, x2, x3)

ψ1,1
2 (X2)

ψ2,1
2 (X2)

ψ1,2
2 (X2)

ψ2,2
2 (X2)

(a) (b)

Figure A.1: Deterministic and orthogonal circuits differ by their input functions. (left) We
consider the circuit c representing the MPS shown in Fig. 1, and we color each input function ψi1,i2

2
over the variable X2 differently. Each sum unit is basis decomposable, as it partitions the sets of
input functions over X2 towards its inputs (see how colored edges are split at sum units). (right) If
we take input functions over X2 having non-overlapping support (a), we recover determinism in c.
Instead, if the input functions are orthogonal yet having the same support (b), then c is orthogonal.

Definition A.2 (Basis scope). The basis scope of a unit n for a variable X ∈ sc(n), denoted as
BX(n), is the set of input unit functions over X that the unit n depends on, i.e., found in the sub-
circuit rooted in n.

Definition A.3 (Z-basis decomposability). A smooth sum unit n is Z-basis decomposable, with
sc(n) ∩ Z ̸= ∅, if the inputs to n depend on non-overlapping basis scopes for a variable in Z, i.e.,
∃X ∈ sc(n) ∩ Z,∀i, j ∈ in(n), i ̸= j : BX(i) ∩ BX(j) = ∅. A circuit is Z-basis decomposable if
every sum unit is Z-basis decomposable.

In the following, we use Z-basis decomposability to define the Z-regular orthogonal property.

Definition A.4 (Z-regular orthogonality). A smooth and decomposable circuit c over X is Z-regular
orthogonal, with Z ⊆ X, if (i) it is Z-basis decomposable, and (ii) if all input units over the same
variable X ∈ Z encode orthogonal functions, i.e., ∀i, j input units over X , i ̸= j, we have that∫
dom(X)

ci(x)cj(x)
∗ dx = 0.

For instance, the circuit shown in Fig. A.1 is {X2}-orthogonal, since the input functions over the
same variable X2 are orthogonal and each sum unit having X2 in their variables scope is {X2}-basis
decomposable, i.e., it splits the input functions over X2 it depends on towards its inputs. Note that,
given a circuit c over variables X, we observe that Z-basis decomposability in c coincides with basis
decomposability (Def. 6) in the special case of Z = X. Therefore, Z-regular orthogonality of c in the
special case Z = X is equivalent to regular orthogonality as defined in Def. 7.

We aim at showing that Z-regular orthogonality is sufficient for Z-orthogonality (Lem. A.3), thus
implying regular orthogonal is sufficient for orthogonality in the special case X = Z (Thm. A.1). In
order to show this result, we firstly prove the following lemma, saying that the integral over variables
Z ⊆ X of the product of two circuits c1, c2 defined over X annihilates (i.e., it is zero), whenever the
input functions in c1 and c2 over the same variable X ∈ Z are orthogonal with each other.

Lemma A.2. Let c1, c2 be smooth and decomposable circuits over variables X, having n1, n2 as
output units, respectively. Assume that, for some variable X ∈ X, the input functions over X in
c1 and c2 are orthogonal, i.e., ∃X ∈ X : ∀f ∈ BX(n1),∀g ∈ BX(n2) :

∫
dom(X)

f(x)g(x)∗ dx = 0.
Then, for any Z ⊆ X such that X ∈ Z, we have that

∫
dom(Z)

c1(y, z)c2(y, z)
∗ dz = 0, where

y ∈ dom(X \ Z).

Proof. For the proof we will write down the polynomial encoded by a circuit, also called the circuit
polynomial (Choi et al., 2020), whose construction relies on the idea of induced sub-circuit of a unit.

Definition A.5 (Induced sub-circuit (Choi et al., 2020)). Let c be a circuit over variables X. An
induced sub-circuit ζ is a circuit constructed from c as follows. The output unit n in c is also the
output unit of ζ. If n is a product unit in ζ then every unit i ∈ in(n), i.e., with a connection from i to
n, is in ζ. If n is a sum unit in ζ, then exactly one of its input unit i ∈ in(n) is in ζ.
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Note that each input unit in an induced sub-circuit ζ of a circuit c is also an input unit in c. By
“unrolling” the representation of c as the sum of the collection of all its induced sub-circuits, we
have that the function computed by c can be written as the circuit polynomial below (Shpilka and
Yehudayoff, 2010; Choi et al., 2020):

c(X) =
∑

ζ∈H(c)

 ∏
w∈Θ(ζ)

 ∏
n∈I(ζ)

cn(sc(n))
κ(n,ζ), (4)

where H(c) is the set of all induced sub-circuits of c, Θ(ζ) is the set of all sum unit weights covered
by the induced sub-circuit ζ, I(ζ) is the set of all input units in ζ and κ(n, ζ) is a positive integer
denoting how many times the input unit n ∈ I(ζ) is reachable in ζ from the output unit of ζ. For
brevity, we will denote the coefficients of the polynomial in Eq. (4) as ω(ζ) =

∏
w∈Θ(ζ) w.

In the particular case of c being smooth and decomposable, we observe that also ζ must be from the
construction of an induced sub-circuit. Therefore, under smoothness and decomposability, we have
that each input unit in I(ζ) can be reached from the output unit in ζ exactly one time, i.e., κ(n, ζ) = 1
for any n ∈ I(ζ) and for any ζ ∈ H(c). Thanks to smoothness and decomposability, we also recover
that each input unit in I(ζ) is defined over a different variable in X. With these observations, we can
rewrite Eq. (4) as follows

c(X) =
∑

ζ∈H(c)

ω(ζ)
∏
X∈X

fζ,X(X), (5)

where each fζ,X is the function computed by the only input unit in ζ over the variable X ∈ X, i.e.,
∃n ∈ I(ζ), sc(n) = {X} : cn(X) = fζ,X(X).

Now, given c1, c2 circuits as per hypothesis, from Eq. (5) we can write their circuit polynomials as

c1(X) =
∑

ζ1∈H(c1)

ω(ζ1)
∏
X∈X

fζ1,X(X) and c2(X) =
∑

ζ2∈H(c2)

ω(ζ2)
∏
X∈X

gζ2,X(X). (6)

By hypothesis, we have that ∃X ∈ X such that ∀f ∈ BX(n1), ∀g ∈ BX(n2),∫
dom(X)

f(x)g(x)∗ dx = 0, where n1, n2 respectively denote the output units of c1, c2. Since
the input functions of any induced sub-circuit of a circuit c are always also input units of c, i.e.,
fζ1,X ∈ BX(n1), gζ2,X ∈ BX(n2) for any X ∈ X and for any ζ1 ∈ H(c1), ζ2 ∈ H(c2), we have
that the following statement holds.

∃X ∈ X,∀ζ1 ∈ H(c1),∀ζ2 ∈ H(c2) :

∫
dom(X)

fζ1,X(x)gζ2,X(x)∗ dx = 0 (7)

In other words, for at least one variable X ∈ X, we have that the functions encoded by input units
over X in any pair ζ1, ζ2 of induced sub-circuits are orthogonal with each other. In the following, we
exploit this observation to annihilate the integral over the product of c1 and the conjugate of c2 over
any variables Z ⊆ X such that X ∈ Z, thus yielding the wanted result.

That is, by fixing y ∈ Y = dom(X \ Z) and from the circuit polynomials in Eq. (6), we write down
the integral of the product of c1 and c2 w.r.t. to the variables in Z as follows

∫
dom(Z)

c1(y, z)c2(y, z)
∗ dz =

∑
ζ1∈H(c1)

∑
ζ2∈H(c2)

ω(ζ1)ω(ζ2)
∗

products of functions not depending on Z or X︷ ︸︸ ︷( ∏
V ∈Y

fζ1,V (yV )gζ2,V (yV )
∗
)

·

 ∏
V ∈Z\{X}

∫
dom(V )

fζ1,V (zV )gζ2,V (zV )
∗ dzV


︸ ︷︷ ︸

integrals of products of functions depending on Z \ {X}

(∫
dom(X)

fζ1,X(zX)gζ2,X(zX)∗ dzX

)
︸ ︷︷ ︸

= 0 because of Eq. (7)

where we generally denote as xV the assignment to the variable V found in the assignments x.
By plugging Eq. (7) into the formula above, we recover that the products annihilate, since the
inner products of functions over X in ζ1 and in ζ2 are orthogonal. Therefore, this shows that∫
dom(Z)

c1(y, z)c2(y, z)
∗ dz = 0.
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By applying Lem. A.2, we prove in the following theorem that Z-regular orthogonality is a sufficient
condition for Z-orthogonality. Then, in Thm. A.1 we prove that, when Z = X, our Lem. A.3 (Def. 7)
implies the sufficiency of regular orthogonality for orthogonality (Def. 5).

Lemma A.3 (Z-regular orthogonality =⇒ Z-orthogonality). Let c be a Z-regular orthogonal circuit
over variables X, with Z ⊆ X. Then, c is Z-orthogonal.

Proof. By Z-regular orthogonality of c, we have that all input units in c over the same variable
X ∈ Z encode orthogonal functions. In addition, let n be a sum unit in c having scope overlapping
with Z, i.e., Ẑ = sc(n) ∩ Z ̸= ∅, and let i, j ∈ in(n) be any pair of inputs to n such that i ̸= j.
From Z-regular orthogonality of c, we have that ∃X ∈ Ẑ : BX(i) ∩ BX(j) = ∅. By combining
orthogonality of input functions over X ∈ Z and Z-basis decomposability of n, we recover that
∃X ∈ Ẑ,∀f ∈ BX(i),∀g ∈ BX(j) :

∫
dom(X)

f(x)g(x)∗ dx = 0. Now, under these results we can

apply Lem. A.2 and obtain that ci and cj are orthogonal when fixing the variables not in Ẑ, i.e.,∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0, where y ∈ dom(sc(n) \ Ẑ). Thus, we recovered the wanted result,

i.e., ∀i, j ∈ in(n), i ̸= j,
∫
dom(Ẑ)

ci(y, ẑ)cj(y, ẑ)
∗ dẑ = 0. That is, every sum unit in c having scope

overlapping with Z is Z-orthogonal, i.e., c is a Z-orthogonal circuit.

Theorem A.1. Let c be a regular orthogonal circuit over variables X. Then, c is orthogonal.

Proof. Regular orthogonality in c translates to Z-regular orthogonality in c with Z = X. Therefore,
from Lem. A.3 we have that c is X-orthogonal and thus orthogonal.

A.4 MARGINALIZING ANY VARIABLES SUBSET IN LINEAR TIME

Under Z-orthogonality, Lem. A.1 ensures that computing the particular marginal quantity∫
dom(Z)

|c(y, z)|2 dz requires time O(|c|). As we formalize in the following lemma, if a circuit is
{X}-orthogonal for all variables X ∈ X, then it is Z-orthogonal for all Z ⊆ X, thus allowing us to
compute any marginal in time O(|c|) by using our Alg. A.1. We will use this lemma later in Thm. A.2
to formalize sufficient conditions based on regular orthogonality (see App. A.3), i.e., based on the
circuit structure and parameterization, to marginalize any variables subset in linear time.

Lemma A.4. Let c be a circuit over variables X that is {X}-orthogonal for all X ∈ X. Then c is
Z-orthogonal for all Z ⊆ X.

Proof. To prove this, we need to show that if every sum unit n in c is {X}-orthogonal for all
X ∈ sc(n), then n is Z-orthogonal for all Z ⊆ sc(n). Let n be a sum unit in c having scope
sc(n). By {X}-orthogonality of c for all X ∈ X, we have that the inputs to n encode orthogonal
functions whenever we fix the variables in sc(n) \ {X} for all X ∈ sc(n). Formally, we have that
∀X ∈ sc(n),∀i, j ∈ in(n), i ̸= j :

∫
dom(X)

ci(y, x)cj(y, x)
∗ dx = 0, for any y ∈ dom(sc(n) \X).

Now, consider a subset Z ⊆ sc(n). Therefore, given any X ∈ Z, Ẑ = Z \ {X}, for all i, j ∈ in(n)
with i ̸= j we can write∫

dom(Z)

ci(y, z)cj(y, z)
∗ dz =

∫
dom(Ẑ)

(∫
dom(X)

ci(y, ẑ, x)cj(y, ẑ, x)
∗ dx

)
dẑ = 0,

since the inner integral over X is equal to zero for any variables assignments y and ẑ, as n is {X}-
orthogonal. Therefore, we recover that n is Z-orthogonal for all Z ⊆ sc(n).

We then use the above lemma to formalize the result saying that if a circuit is {X}-regular orthogonal
w.r.t. all variables X (see Def. A.4), then it enables the computation of any marginal in linear time.

Theorem A.2. Let c be a circuit over variables X that is {X}-regular orthogonal for all variables
X ∈ X. That is, for any sum unit n in c we have that its inputs depend on non-overlapping basis
scopes for all variables, i.e., ∀X ∈ sc(n),∀i, j ∈ in(n), i ̸= j : BX(i) ∩ BX(j) = ∅; and all input
units over the same variable encode orthogonal functions. Then computing

∫
dom(Z)

|c(y, z)|2 dz for
any Z ⊆ X, with y ∈ dom(X \ Z) can be done in time O(|c|).
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Proof. Since c is {X}-regular orthogonal for all X ∈ X, from Lem. A.3 we recover that c is {X}-
orthogonal for all X ∈ X. Thus, we can apply Lem. A.4 to say that c is also Z-orthogonal for all
variables subsets Z of X. Therefore, by applying Lem. A.1 we conclude that computing any marginal
can be done in time O(|c|) by using Alg. A.1.

A.5 TENSORIZED CIRCUIT MULTIPLICATION ALGORITHM

In the case of tensorized circuits whose sum layers can only receive input from exactly one other layer,
Loconte et al. (2024) already proposed a circuit squaring algorithm operating on layers that only
requires simple linear algebra operations. This assumption over sum layers is particularly convenient,
as it ensures the that tensorized circuit is structured-decomposable by construction (Loconte et al.,
2024), and therefore representing their squaring as yet another decomposable circuit is tractable
(Vergari et al., 2021). In this section, we extend this squaring algorithm to circuits whose sum
layers can receive input from more than one layer, as required by the tensorized circuit definition by
Loconte et al. (2025a) and that we report in Def. 8. This particular difference between Def. 8 and
the circuit representation used in Loconte et al. (2024) allows us to build tensorized squared PCs
that are not necessarily structured-decomposable. Nevertheless, in §5 we show conditions to enable
tractable marginalization of any variables subset. Furthermore, here we trivially extend such squaring
algorithm to tensorized circuits with complex parameters.

Preliminaries. Given a structured-decomposable and tensorized circuit c, we represent its modulus
squaring as yet another decomposable and circuit. This can be done by multiplying cwith its conjugate
c∗ (§2). Note that the conjugate c∗ can be efficiently obtained from c by taking the conjugate of the
functions computed by the input layers and the conjugate of the sum layer weights (Yu et al., 2023).
This procedure preserves the structural properties of c, thus c∗ is also structured-decomposable and
compatible with c. Thus, we can represent the product between c and c∗ as yet another decomposable
circuit in polytime (Vergari et al., 2021). In the following, we present an algorithm, namely MULTIPLY
(Alg. A.2), in order to multiply two tensorized circuits that are compatible as another decomposable
tensorized circuit. Therefore, the modulus squaring of a structured-decomposable circuit c is the
result of MULTIPLY(c, c∗).

Notation. To simplify the notation, note that from now on we typically remove the scopes of the
layers from the argument of the layer evaluations, e.g., we use ℓ = ℓ1 ⊗ ℓ2 to mean ℓ(sc(ℓ)) =
ℓ1(sc(ℓ1))⊗ ℓ2(sc(ℓ2)). Furthermore, for simplicity we will assume that the product layers in the
tensorized circuits c1, c2 to be multiplied are either Kronecker or Hadamard (i.e., no product between
circuits with mixed Kronecker and Hadamard layers). This is without loss of generality, as one can
always rewrite an Hadamard product as a Kronecker product followed by a sum layer encoding
a linear transformation via a selection matrix that filters out the cross products (e.g., see Liu and
Trenkler (2008, Lem. 1)).
Proposition A.2. Let c1, c2 be tensorized and compatible circuits over variables X1, X2 respectively.
Then, there exists an algorithm constructing a smooth and decomposable circuit c over X1 ∪X2

such that c(x) = c1(x) c2(x) for any x ∈ dom(X1 ∪X2). Moreover, the algorithm runs in time
O(L1L2S1,maxS2,max), where L1 (resp. L2) denotes the number of layers in c1 (resp. c1), and S1,max
(resp. S2,max) denotes the maximum layer size in c1 (resp. c2).

Proof. We prove the correctness of Alg. A.2 by structural induction. That is, given ℓ1 and ℓ2 the
output layers of two compatible circuits over variables X1, X2, respectively, we show that Alg. A.2
returns the output layer ℓ of another tensorized circuit over variables X1 ∪X2 such that ℓ = ℓ1 ⊗ ℓ2.

To begin with, consider the case where X1 ∩ X2 = ∅. Then, we construct ℓ as a Kronecker
product layer taking ℓ1, ℓ2 as inputs. Moreover, if ℓ1, ℓ2 are both input layers over the same
variable X1 = X2 = {X}, we construct another input layer over X such that it computes
all the pairwise products of the function computed by ℓ1 and ℓ2. That is, consider ℓ1(X) =
[f1(X) · · · fK1(X)]⊤ and ℓ2(X) = [g1(X) · · · gK2(X)]⊤, then ℓ(X) = ℓ1(X) ⊗ ℓ2(X) =
[f1(X)g1(X) · · · fi(X)gj(X) · · · fK1(X)gK2(X)]⊤. Next, we consider the cases where ℓ1, ℓ2 have
overlapping scope and are either sum or product layers.

We continue the proof by first reviewing the definitions of commutation matrix and Tracy-Singh
product and their properties, as they will be used to perform linear algebra transformations needed to
show the correctness of Alg. A.2.
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Algorithm A.2 MULTIPLY(c1, c2)

Input: Tensorized and compatible circuits c1, c2 over variables X1, X2 respectively, and having ℓ1, ℓ2
as output layers, respectively. Output: The output layer ℓ of a circuit over variables X1 ∪ X2 such that
ℓ(X1 ∪X2) = ℓ1(X1)⊗ ℓ2(X2).
1: if sc(ℓ1) ∩ sc(ℓ2) = ∅ then return ℓ1 ⊗ ℓ2

2: if ℓ1, ℓ2 are input layers then
3: Assume ℓ1 (resp. ℓ2) computes K1 (resp. K2) functions over a variable X
4: return An input layer ℓ computing K1K2 functions as ℓ1 ⊗ ℓ2
5: if ℓ1 and ℓ2 are sum layers then
6: let ℓ1 = W(1)[ℓ11 · · · ℓ1N1 ] and ℓ2 = W(2)[ℓ21 · · · ℓ2N2 ]
7: Assume W1 = [W11 · · ·W1N1 ] and W2 = [W21 · · ·W2N2 ]
8: ℓ′ij ← MULTIPLY(ℓ1i, ℓ2j), ∀i ∈ [N1] ∀j ∈ [N2]
9: return (W1 ⊠W2)[ℓ

′
11 · · · ℓ′ij · · · ℓ′N1N2

]
10: where ⊠ denotes the Tracy-Singh product (see proof of Prop. A.2)
11: if ℓ1 and ℓ2 are Hadamard product layers then
12: Assume ℓ1 = ℓ11 ⊙ ℓ12 and ℓ2 = ℓ21 ⊙ ℓ22
13: where the circuit in ℓ11 (resp. ℓ12) is compatible with the circuit ℓ21 (resp. ℓ22).
14: ℓ′1 ← MULTIPLY(ℓ11, ℓ21)
15: ℓ′2 ← MULTIPLY(ℓ12, ℓ22)
16: return ℓ′1 ⊙ ℓ′2
17: if ℓ1 and ℓ2 are Kronecker product layers then
18: Assume ℓ1 = ℓ11 ⊗ ℓ12 and ℓ2 = ℓ21 ⊗ ℓ22
19: where the circuit in ℓ11 (resp. ℓ12) is compatible with the circuit ℓ21 (resp. ℓ22).
20: ℓ′1 ← MULTIPLY(ℓ11, ℓ21)
21: ℓ′2 ← MULTIPLY(ℓ12, ℓ22)
22: return P (ℓ′1 ⊗ ℓ′2) where P is a permutation matrix (see proof of Prop. A.2).

Definition A.6 (Commutation matrix (Magnus and Neudecker, 1979)). A commutation matrix
K(m,n) is a nm × nm permutation matrix for which, for any m × n matrix A, we have that
K(m,n)vec(A⊤) = vec(A), where vec denotes the flattening (or vectorization) operation.

Proposition A.3. Let Pmn
rs denote the permutation matrix In ⊗K(s,m) ⊗ Ir. The following proper-

ties hold (Neudecker and Wansbeek, 1983; Tracy and Jinadasa, 1989; Tracy, 1990).

(C1) Given v ∈ Cm, w ∈ Cn, then K(m,n)(v ⊗w) = w ⊗ v.

(C2) (K(s,m))⊤= (K(s,m))−1 = K(m,s) and (Pmn
rs )⊤ = (Pmn

rs )−1 = Psn
rm = In⊗K(m,s)⊗Ir.

(C3) Given A ∈ Cm×n, B ∈ Cr×s, then vec(A⊗B) = Psn
rm(vec(A)⊗ vec(B)).

(C4) Given a ∈ Cm, b ∈ Cn, c ∈ Cr, d ∈ Cs, then Prm
sn (a⊗ b⊗ c⊗ d) = a⊗ c⊗ b⊗ d.

Definition A.7 (Tracy-Singh product (Tracy and Singh, 1972)). Let A ∈ Cm×n be a block matrix
where each block A(i,j) is a mi × nj matrix, and similarly let B ∈ Cr×s be a block matrix where
each block B(i,j) is a ri × sj matrix. Here, m =

∑
imi, n =

∑
j nj , r =

∑
i ri, s =

∑
j sj . The

Tracy-Singh product between A and B, with such blocks and denoted as A⊠B is defined as the
block matrix C ∈ Cmr×ns where each block C((i,k),(j,l)) is computed as A(i,j) ⊗B(k,l).

Proposition A.4. The following properties hold (Tracy and Jinadasa, 1989; Tracy, 1990).

(T1) For non-block matrices A, B, we have that A⊠B = A⊗B.

(T2) For block matrices A, B, (A⊠B)⊤ = A⊤ ⊠B⊤.

(T3) For block matrices A, B, we have that A⊠B = Sr
mGr

m(A⊗B)Hs
nS

n
s , where each of the

matrices Sα
β , Gα

β and Hα
β is a special kind of a αβ × αβ permutation matrix that depends

on the number of row and column blocks in A, B.

(T4) For block matrices A, B consisting of a single row of blocks, i.e., m = m1 and r = r1, we
have that A⊠B = (A⊗B)Hs

nS
n
s .

(T5) For block matrices A, B, we have that A⊗B = Hr
mSm

r (A⊠B)Ss
nG

s
n.
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For a precise formalization of the permutation matrices Sα
β , Gα

β , Hα
β , and for the proofs of these

statements, refer to Tracy and Jinadasa (1989, §2) and Tracy and Jinadasa (1989, Thm. 7).

We now consider the product and sum layers case by case.

Case (i): Hadamard layers. We assume without loss of generality that each product layer receives
input from exactly two other layers and, due to compatibility, two pairs of product layers with
overlapping scope will factorize their scope towards their layer inputs in the same way. Let ℓ1,
ℓ2 be Hadamard product layers receiving inputs from in(ℓ1) = {ℓ11, ℓ12}, in(ℓ2) = {ℓ21, ℓ22},
respectively. From decomposability and compatibility of ℓ1 and ℓ2, we have that ℓ11 is compatible
with ℓ21 and ℓ12 is compatible with ℓ22. As such, let ℓ′1 (resp. ℓ′2) be the output layer of the tensorized
circuit obtained by recursively calling MULTIPLY(ℓ11, ℓ21) (resp. MULTIPLY(ℓ12, ℓ22)). In other
words, ℓ′1 and ℓ′2 compute ℓ11 ⊗ ℓ21 and ℓ12 ⊗ ℓ22, respectively. Then, we encode ℓ1 ⊗ ℓ2 as yet
another Hadamard layer ℓ:

ℓ = ℓ1 ⊗ ℓ2 = (ℓ11 ⊙ ℓ12)⊗ (ℓ21 ⊙ ℓ22) = (ℓ11 ⊗ ℓ21)⊙ (ℓ12 ⊗ ℓ22) = ℓ′1 ⊙ ℓ′2, (8)

where we used the mixed-product property of the Kronecker operation, with respect to the Hadamard
product. Therefore, Alg. A.2 returns another Hadamard layer ℓ that receive inputs from ℓ′1, ℓ′2,
respectively.

Case (ii): Kronecker layers. We proceed similarly to the case of Hadamard layers above. Let
ℓ1, ℓ2 be Kronecker product layers receiving inputs from in(ℓ1) = {ℓ11, ℓ12}, in(ℓ2) = {ℓ21, ℓ22},
respectively. From decomposability and compatibility of ℓ1 and ℓ2, we have that ℓ11 is compatible
with ℓ21 and ℓ12 is compatible with ℓ22. As such, let ℓ′1 (resp. ℓ′2) be the output layer of the tensorized
circuit obtained by recursively calling MULTIPLY(ℓ11, ℓ21) (resp. MULTIPLY(ℓ12, ℓ22)). Then, we
encode ℓ1 ⊗ ℓ2 as yet another Hadamard layer ℓ:

ℓ = ℓ1⊗ ℓ2 = (ℓ11⊗ ℓ12)⊗ (ℓ21⊗ ℓ22) = PK3K1

K4K2
((ℓ11⊗ ℓ21)⊗ (ℓ12⊗ ℓ22)) = PK3K1

K4K2
(ℓ′1⊗ ℓ′2),

where PK3K1

K4K2
is a permutation matrix used to re-arrange the Kronecker products as defined and shown

in Prop. A.3, and K1, K2, K3, K4 respectively denote the output size of layers ℓ11, ℓ21, ℓ12, ℓ22.
Therefore, Alg. A.2 returns a composition of a sum and a Kronecker layer, where the sum layer applies
the permutation matrix PK3K1

K4K2
and the Kronecker layer receive inputs from ℓ′1, ℓ′2, respectively.

Case (iii): sum layers. Let ℓ1, ℓ2 be sum layers receiving inputs from layers in(ℓ1) =

{ℓ11, . . . , ℓ1N1} and in(ℓ2) = {ℓ21, . . . , ℓ2N2}, respectively. Moreover, let W(1), W(2) denote the
parameter matrices of ℓ1, ℓ2, respectively. We will firstly consider the case N1 = N2 = 1, and gener-
alize it for any N1, N2 later. If N1 = N2 = 1, then due to smoothness we have that ℓ11 and ℓ21 are
compatible. As such let ℓ′1 denote the result from MULTIPLY(ℓ11, ℓ21). From induction hypothesis,
we have that ℓ′1 computes ℓ11 ⊗ ℓ21. Now, we instantiate a layer ℓ over variables X1 ∪X2 such that

ℓ = ℓ11 ⊗ ℓ21 = (W(1)ℓ11)⊗ (W(2)ℓ21) = (W(1) ⊗W(2))(ℓ11 ⊗ ℓ21),

where we used the mixed-product property of the Kronecker operation. Therefore, we realize ℓ

as another sum layer having W(1) ⊗ W(2) as parameters and receiving input from ℓ′1. Next, we
consider the case N1, N2 > 1. In this case we rewrite W(1) ∈ CK1×K2 , W(2) ∈ CJ1×J2 as block-
wise matrices as follows

W(1) = [W(1,1) · · ·W(1,N1)] W(1) = [W(2,1) · · ·W(2,N2)].

Now, by smoothness of ℓ1 and ℓ2, we have that ∀i ∈ [N1], ∀j ∈ [N2], ℓ1i is compatible with ℓ2j . As
such, by induction hypothesis we will denote as ℓ′ij the layer obtained by calling MULTIPLY(ℓ1i, ℓ2j),
i.e., ℓ′ij is the output layer of smooth and decomposable circuit that computes the Kronecker product
ℓ′ij = ℓ1i ⊗ ℓ2j . Now, let L1, L2 denote placeholders for the layer concatenations [ℓ11 · · · ℓ1N1

] and
[ℓ21 · · · ℓ2N2

], respectively. To retrieve another layer ℓ such that it computes ℓ1 ⊗ ℓ2, we rewrite

ℓ = ℓ1 ⊗ ℓ2 = (W(1) ⊗W(2))(L1 ⊗ L2) = (W(1) ⊗W(2))HJ2

K2
SK2

J2
(L1 ⊠ L2)

= (W(1) ⊠W(2))(L1 ⊠ L2) = (W(1) ⊠W(2))[ℓ′11 · · · ℓ′ij · · · ℓ′N1N2
],

where we used the following properties: (i) Kronecker mixed-product property; (ii) the transformation
from Kronecker to Tracy-Singh product by using the permutation matrix HJ2

K2
SK2

J2
as written in the
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property (T5) in Prop. A.4; and (iii) the similar transformation using the permutation matrix HJ2

K2
SK2

J2

as written in property (T4) in Prop. A.4, which is a specialization of (T3) as the number of block rows
in W(1) and W(2) is one. Therefore, we obtained that for sum layers ℓ1, ℓ2 having arity N1 ≥ 1,
N2 ≥ 1 in general, our Alg. A.2 returns another sum layer ℓ receiving inputs in(ℓ) = {ℓ′ij}N1,N2

i=1,j=1

and parameterized by the weight matrix W(1) ⊠W(2).

Finally, we consider the complexity of our Alg. A.2. Due to Kronecker products, we firstly observe
that the size of each layer in the resulting product circuit must be O(S1,maxS2,max) where S1,max (resp.
S2,max) denotes the maximum layer size in c1 (resp. c2). Furthermore, multiplying sum layers ℓ1,
ℓ2 receiving inputs from N1 layers and N2 layers respectively, is done calling Alg. A.2 recursively
on all the N1N2 pairings of inputs to ℓ1 and ℓ2. Thus, the number of layers of the resulting product
circuit is O(L1L2) in the worst case, where L1 (resp. L2) denotes the number of layers in c1 (resp.
c2). Therefore, Alg. A.2 must run in worst case time O(L1L2S1,maxS2,max).

A.6 ALREADY-NORMALIZED TENSORIZED SQUARED CIRCUITS VIA UNITARITY

In the following we prove that the modulus squaring of a tensorized circuit that is unitarity, i.e., it
satisfies (U1) to (U3), is orthogonal (Def. 5) and encodes an already-normalized distribution (Thm. 2).
Below we start by clarifying some notation.

Notation. In this section and in App. A.7, we require integrating layers ℓ that output vectors, e.g., in
CK . That is, given a layer ℓ having scope sc(ℓ) = Y∪Z and encoding a function ℓ : dom(Y∪Z) →
CK , we write

∫
dom(Z)

ℓ(y, z) dz to refer to the K-dimensional vector obtained by integrating the K
univariate function components encoded by the scalar computational units in ℓ:∫

dom(Z)

ℓ(y, z) dz =
[∫

dom(Z)
ℓ(y, z)1 dz

∫
dom(Z)

ℓ(y, z)2 dz · · ·
∫
dom(Z)

ℓ(y, z)K dz
]
∈ CK .

Moreover, due to the linearity of the matrix-vector product, we can write∫
dom(Z)

Wℓ(y, z) dz = W
[∫

dom(Z)
ℓ(y, z)1 dz · · ·

∫
dom(Z)

ℓ(y, z)K dz
]
= W

∫
dom(Z)

ℓ(y, z) dz.

Furthermore, for Hadamard products of layers having disjoint scopes, we can write∫
dom(Z1)×dom(Z2)

ℓ1(y1, z1)⊙ ℓ2(y2, z2) dz1 dz2 =

∫
dom(Z1)

ℓ1(y1, z1) dz1 ⊙
∫
dom(Z2)

ℓ2(y1, z2) dz2,

where (Y1,Y2) is a partitioning of Y and (Z1,Z2) is a partitioning of Z. The above equality still
holds if we replace the Hadamard product (⊙) with the Kronecker product (⊗).

Theorem 2. Let c be smooth and decomposable circuit over variables X. If c is unitary, i.e., it
satisfies conditions (U1-3), then we have that c is orthogonal and Z =

∫
dom(X)

|c(x)|2 dx = 1.

Proof. We prove it bottom-up by showing that, since c is unitary, then every layer ℓ over variables
Z ⊆ X in c satisfies

∫
dom(Z)

ℓ(z) ⊗ ℓ(z)∗ dz = vec(IK), where vec denotes the vectorization (or
flattening) operation and K denotes the size of the output of ℓ. Thus, for the last layer in c, i.e.,
having number of units K = 1 and computing the output of c, we have that Z = 1. In other words,
we will inductively prove that each layer consisting of K units encodes a vector of K orthonormal
functions. This will not only give us Z = 1 for the last layer in c, but also that c is is orthogonal by
observing orthonormality of the inputs to a sum layer. Below we proceed by cases.

Case (i): input layer. Let ℓ be an input layer in c over the variable X . By unitarity of c and
in particular from (U1), we have that ℓ computes a vector of K orthonormal functions ℓ(X) =
[f1(X) · · · fK(X)]⊤. Therefore, we have that

∫
dom(X)

ℓ(x)⊗ ℓ(x)∗ dx = vec(IK).

Case (ii): Hadamard product layer. Let ℓ be a Hadamard product layer in c receiving inputs
from layers in(ℓ) = {ℓ1, ℓ2}. By decomposability, we have that sc(ℓ1) = Z1, sc(ℓ2) = Z2, with
Z1 ∩ Z2 = ∅ and sc(ℓ) = Z = Z1 ∪ Z2. Assume by induction hypothesis that

∫
dom(Z1)

ℓ1(z1)⊗
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ℓ1(z1)
∗ dz1 = vec(IK) and

∫
dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2 = vec(IK). Then, we have that∫

dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z1)×dom(Z2)

(ℓ1(z1)⊙ ℓ2(z2))⊗ (ℓ1(z1)
∗ ⊙ ℓ2(z2)

∗) dz1 dz2

=

(∫
dom(Z1)

ℓ1(z1)⊗ ℓ1(z1)
∗ dz1

)
⊙
(∫

dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2

)
= vec(IK)⊙ vec(IK) = vec(IK),

where we used the Kronecker mixed-product property with respect to the Hadamard product, and
decomposed the integral into lower dimensional ones by using the fact that Z1 ∩ Z2 = ∅.

Case (iii): Kronecker product layer. Let ℓ be a Kronecker product layer in c receiving inputs
from layers in(ℓ) = {ℓ1, ℓ2}. By decomposability, we have that sc(ℓ1) = Z1, sc(ℓ2) = Z2, with
Z1 ∩ Z2 = ∅ and sc(ℓ) = Z = Z1 ∪ Z2. Assume by induction hypothesis that

∫
dom(Z1)

ℓ1(z1)⊗
ℓ1(z1)

∗ dz1 = vec(IK1
) and

∫
dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2 = vec(IK2

). Then, we have that∫
dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z1)×dom(Z2)

(ℓ1(z1)⊗ ℓ2(z2))⊗ (ℓ1(z1)
∗ ⊗ ℓ2(z2)

∗) dz1 dz2

=

∫
dom(Z1)×dom(Z2)

PK2K1

K2K1
[(ℓ1(z1)⊗ ℓ1(z1)

∗)⊗ (ℓ2(z2)⊗ ℓ2(z2)
∗)] dz1 dz2

= PK2K1

K2K1

[(∫
dom(Z1)

ℓ1(z1)⊗ ℓ1(z1)
∗ dz1

)
⊗
(∫

dom(Z2)

ℓ2(z2)⊗ ℓ2(z2)
∗ dz2

)]
= PK2K1

K2K1
(vec(IK1)⊗ vec(IK2)) = vec(IK1 ⊗ IK2) = vec(IK1K2),

where PK2K1

K2K1
is a permutation matrix as defined as in Prop. A.3. In particular, in the above we apply

the property (C4) in Prop. A.3, then we decompose the integral into lower dimensional ones by using
the fact that Z1 ∩ Z2 = ∅, and finally use the property (C3) in Prop. A.3.

Case (iv): sum layer. Let ℓ be a sum layer in c receiving inputs from layers in(ℓ) = {ℓi}Ni=1, and
ℓ is parameterized by a (semi-)unitary matrix W ∈ CK1×K2 with K1 ≤ K2 by unitarity of c, i.e.,
WW† = IK1

as for (U3). From smoothness, we recover that sc(ℓi) = sc(ℓ) = Z, for any i ∈ [N ].
We firstly assume that N = 1, i.e., in(ℓ) = {ℓ1}, and then handle the case N > 1 later. For N = 1
by induction hypothesis we have that

∫
dom(Z)

ℓ1(z)⊗ ℓ1(z)
∗ dz = vec(IK2

). Then, we have that∫
dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z)

(Wℓ1(z))⊗ (W∗ℓ1(z)
∗) dz = (W ⊗W∗)

∫
dom(Z)

ℓ1(z)⊗ ℓ1(z)
∗ dz

= (W ⊗W∗)vec(IK2
) = vec(W∗IK2

W⊤) = vec((WW†)∗) = vec(IK1
),

where we used the Kronecker mixed-product property, and the following property of the Kronecker:
(A ⊗ B)vec(V) = vec(BVA⊤) for matrices A, B, V. Consider now the case N > 1. For all
i ∈ [N ] by induction hypothesis we have that

∫
dom(Z)

ℓi(z)⊗ℓi(z)
∗ dz = vec(IJi), where Ji denotes

the size of the output of ℓi, i.e., K2 =
∑N

i=1 Ji. With a slight abuse of notation, we overload the
basis scope definition (Def. A.2) to layers rather than units, i.e., we denote as BX(ℓ) the union of all
basis scopes w.r.t. X of the units within ℓ. Then, from (U2) of unitarity by hypothesis, we can apply
the following lemma.

Lemma A.5. Let ℓ1, ℓ2 be output layers of smooth and decomposable tensorized circuits c1, c2
over variables X. Assume that, for some X ∈ X, the input functions computed by the input
layers over X in c1 and c2 are orthogonal with each other, i.e., ∃X ∈ X : ∀f ∈ BX(ℓ1),∀g ∈
BX(ℓ2) :

∫
dom(X)

f(x)g(x)∗ dx = 0. Then, for any Z ⊆ X such that X ∈ Z, we have that∫
dom(Z)

ℓ1(y, z)⊗ ℓ2(y, z)
∗ dz = 0, where y ∈ dom(X \ Z).

Proof. By hypothesis for some X ∈ Z ⊆ X the basis scopes of ℓ1 and ℓ2 w.r.t. X consists of
orthogonal functions overX . As such, for any pair of units n andm respectively in ℓ1 and ℓ2, the input
functions overX in the sub-circuits rooted in n andm, respectively, are orthogonal. Therefore, we can
apply Lem. A.2 to recover the wanted result: all pairs of units n andm respectively in ℓ1 and ℓ2 encode
orthogonal functions when fixing variables not in Z, i.e.,

∫
dom(Z)

ℓ1(y, z)⊗ ℓ2(y, z)
∗ dz = 0.
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Therefore, for all i ∈ [N ], j ∈ [N ], i ̸= j, by leveraging (U1) and (U2) of unitarity we can apply
Lem. A.5 and recover that

∫
dom(Z)

ℓi(z)⊗ ℓj(z)
∗ dz = 0, i.e., a zero vector of size JiJj . From these

equalities and by rewriting Kronecker products in terms of outer products (denoted as ◦), we also
obtain that

∫
dom(Z)

ℓi(z)
∗ ◦ ℓi(z) dz = IJi , and

∫
dom(Z)

ℓi(z)
∗ ◦ ℓj(z) dz = 0 for any i, j ∈ [N ],

i ̸= j, where ◦ denotes the outer product. Therefore, we can write the following:∫
dom(Z)

ℓ(z)⊗ ℓ(z)∗ dz =

∫
dom(Z)

(W[ℓ1(z) · · · ℓN (z)])⊗ (W∗[ℓ1(z)
∗ · · · ℓN (z)∗]) dz

= (W ⊗W∗)
∫
dom(Z)

vec ([ℓ1(z)
∗ · · · ℓN (z)∗] ◦ [ℓ1(z) · · · ℓN (z)] dz)

= (W ⊗W∗)vec



∫
dom(Z)

ℓ1(z)
∗ ◦ ℓ1(z) dz · · ·

∫
dom(Z)

ℓ1(z)
∗ ◦ ℓN (z) dz

...
. . .

...∫
dom(Z)

ℓN (z)∗ ◦ ℓ1(z) dz · · ·
∫
dom(Z)

ℓN (z)∗ ◦ ℓN (z) dz




= (W ⊗W∗)vec


IJ1

0
. . .

0 IJN




= (W ⊗W∗)vec(IK2
) = vec(W∗IK2

W⊤) = vec((WW†)∗) = vec(IK1
),

where we applied the same properties used for the case N = 1 shown above. From the above we
recover that each sum unit in the sum layer ℓ receives input from units encoding orthogonal functions,
as integrating all pairwise products yields an identity matrix. Therefore, it turns out that c is orthogonal.
By recursively applying the above cases, if ℓ is the output layer of the tensorized circuit c, then
K1 = 1, and we have that Z =

∫
dom(X)

|c(x)|2 dx =
∫
dom(X)

ℓ(x)ℓ(x)∗ dx = vec(I1) = 1.

A.7 A TIGHTER MARGINALIZATION COMPLEXITY

Theorem 3. Let c be a tensorized circuit over variables X that satisfies (U1-4), and let Z ⊆ X,
Y = X \Z. Computing the marginal p(y) =

∫
dom(Z)

|c(y, z)|2 dz requires time O(|ϕY \ϕZ|Smax +

|ϕY ∩ ϕZ|S2
max), where ϕ⋆ is the set of layers whose scope depends on at least one variable in ⋆.

Proof. We prove it by constructing Alg. A.3, i.e., the algorithm computing the marginal likelihood
given by hypothesis. Alg. A.3 is based on two ideas. First, integrating sub-circuits whose layer
depend only on the variables being integrated over (i.e., Z) will yield identity matrices, so there is no
need to evaluate these sub-circuits. Second, the sub-circuits whose layers depend on the variables
that are not integrated over (i.e., Y) do not need to be squared and can be evaluated bringing a linear
rather than quadratic complexity w.r.t. the circuit size. Below, we consider different cases of layers
based on the variables they depend on, and we later discuss the overall complexity.

Case (i): layers depending on variables Z only. Consider a layer ℓ in c such that sc(ℓ) ⊆ Z, i.e.,
ℓ ∈ ϕZ \ϕY by hypothesis. Since the tensorized circuit c is unitary by hypothesis, the tensorized sub-
circuit rooted in ℓ is also unitary. Therefore, from our proof for Thm. 2 we recover that integrating
the Kronecker product of ℓ and its conjugate yields the flattening of an identity matrix. Formally,
we have that

∫
dom(sc(ℓ)∩Z)

ℓ(z)⊗ ℓ(z)∗ dz = vec(IK), where K denote the size of the output of ℓ.
Therefore, layers in ϕZ \ ϕY do not need be evaluated, and this is reflected in L1-2 of our Alg. A.3.

Case (ii): layers depending on variables Y only. Consider a layer ℓ in c such that sc(ℓ) ∩ Z = ∅,
i.e., ℓ ∈ ϕY \ ϕZ by hypothesis. Since ℓ does not depend on the variables to be marginalized out,
we can compute ℓ(y)⊗ ℓ(y)∗ with y ∈ dom(sc(ℓ) ∩Y) by evaluating ℓ on y and then computing
the conjugation and Kronecker product. This case is captured by L3-5 in Alg. A.3. Note that the
complexity of evaluating ℓ on y is O(|ϕY \ ϕZ|Smax). Moreover, we observe that L3-5 are executed
only on layers ℓ that are input to other layers having scope overlapping with both Y and Z, i.e., they
are in ϕY ∩ ϕZ If that were not the case, then either Case (i) would have been executed, or L3-5
would have been executed on the layer receiving input from ℓ instead. Since each product layer in
ϕY ∩ ϕZ receives input from exactly two other layers ℓ1, ℓ2 and at most one between ℓ1 and ℓ2 can
depend on variables Y only (i.e, it is in ϕY \ ϕZ), we have that L3-5 are executed a number of times
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Algorithm A.3 MAR-SQUARED-UNITARY(c,y,Z)

Input: A tensorized circuit c over variables X satisfying conditions (U1) to (U4), where ℓ is the output layer in
c; a set of variables Z ⊆ X to marginalize, and an assignment y to variables Y = X \ Z.
Output: The vector

∫
dom(Z)

ℓ(y, z)⊗ ℓ(y, z)∗ dz. If ℓ is the last layer of c, then it consists of exactly one unit,
and thus the algorithm returns the marginal likelihood p(y) =

∫
dom(Z)

|c(y, z)|2 dz.

1: if sc(ℓ) \ Z = ∅ then ▷ ℓ depends on only the variables being marginalized
2: return vec(IK)
3: else if sc(ℓ) ∩ Z = ∅ then ▷ ℓ does not depend on the variables to marginalize
4: r← EVAL-FEED-FORWARD(ℓ,y)
5: return r⊗ r∗

6: else if ℓ is a sum layer then ▷ ℓ depend on both the variables to marginalize and the ones left over
7: let ℓ receive inputs from {ℓ1, . . . , ℓN} and parameterized by W ∈ CK1×K2

8: Assume W is a block matrix W = [W(1) · · ·W(N)]
9: ri ← MAR-SQUARED-UNITARY(ℓi,y,Z ∩ sc(ℓi)), ∀i ∈ [N ].

10: let Rii be the reshaping of ri as a Ji × Ji matrix, ∀i ∈ [N ]

11: return vec
(∑N

i=1 W
(i)RiiW

(i)†
)∗

12: else if ℓ is a Hadamard product layer then
13: let ℓ = ℓ1 ⊙ ℓ2
14: r1 ← MAR-SQUARED-UNITARY(ℓ1,y,Z ∩ sc(ℓ1))
15: r2 ← MAR-SQUARED-UNITARY(ℓ2,y,Z ∩ sc(ℓ2))
16: return r1 ⊙ r2
17: else ▷ ℓ is a Kronecker product layer
18: let ℓ = ℓ1 ⊗ ℓ2
19: r1 ← MAR-SQUARED-UNITARY(ℓ1,y,Z ∩ sc(ℓ1))
20: r2 ← MAR-SQUARED-UNITARY(ℓ2,y,Z ∩ sc(ℓ2))
21: return P(r1 ⊗ r2), where P is a permutation matrix

that is in O(|ϕY ∩ϕZ|). This would be true even if a product layer receives input from more than two
layers, as it can be casted into multiple product layers receiving input from exactly two other layers.
Furthermore, since the size of a layer ℓ (i.e., the number of scalar input connections) is bounded by
below by the number of units K in ℓ, we have that the Kronecker products (L5) will account for just
a O(|ϕY ∩ ϕZ|K2) ⊆ O(|ϕY ∩ ϕZ|S2

max) factor to the overall time complexity of Alg. A.3.

Case (iii): layers depending on variables both in Y and Z. Consider a layer ℓ in c such that
sc(ℓ)∩Y ̸= ∅ and sc(ℓ)∩Z ̸= ∅, i.e., ℓ ∈ ϕY∩ϕZ by hypothesis. Since we assume that input layers
can only compute univariate functions (Def. 8), we have that ℓ must be either a sum or product layer.

Case (iii-a): product layers. Now, assume ℓ is an Hadamard product layer in c receiving input from
ℓ1, ℓ2. Let Ẑ = sc(ℓ) ∩ Ẑ, Ẑ1 = sc(ℓ1) ∩ Ẑ, Ẑ2 = sc(ℓ2) ∩ Ẑ. From decomposability, we recover
that (Ẑ1, Ẑ2) is a partitioning of Ẑ. We denote as ŷ the variables assignment obtained from y by
restriction to variables in sc(ℓ)\ Ẑ, and similarly let ŷ1, ŷ2 denote the variables assignments obtained
from y by restriction to sc(ℓ1) \ Ẑ1, sc(ℓ2) \ Ẑ2, respectively. Therefore, we can write

∫
dom(Ẑ)

ℓ(ŷ, ẑ)⊗ ℓ(ŷ, ẑ)∗ dẑ =

(∫
dom(Ẑ1)

ℓ1(ŷ1, ẑ1)⊗ ℓ1(ŷ1, ẑ1)
∗ dẑ1

)
⊙
(∫

dom(Ẑ2)

ℓ2(ŷ2, ẑ2)⊗ ℓ2(ŷ2, ẑ2)
∗ dẑ2

)

where we used the Kronecker mixed-product property w.r.t. the Hadamard product, and split the
integral into lower dimensional ones. Therefore, L12-16 in our Alg. A.3 use recursion to compute the
integrals w.r.t. the layers ℓ1, ℓ2 and then aggregate the results with an Hadamard product. In the case of
ℓ being a Kronecker product layer in c instead, a similar approach can be used, resulting in L18-21 in
Alg. A.3. In the case of Kronecker product layers, a permutation matrix described as in Thm. 2 is used.

Case (iii-b): sum layers. Let ℓ be a sum layer receiving inputs from layers in(ℓ) = {ℓ1, . . . , ℓN}
and parameterized by W ∈ CK1×K2 . Assume that W is a block matrix W = [W(1) · · ·W(N)].
Moreover, let Ẑ = sc(ℓ) ∩ Z, Ŷ = sc(ℓ) \ Z and let ŷ denote the variables assignment obtained
from y by restriction to variables in sc(ℓ) \ Ẑ. For any i, j ∈ [N ], we will denote as Rij the matrix
Rij =

∫
dom(Ẑ)

ℓi(ŷ, ẑ) ◦ ℓj(ŷ, ẑ)∗ dẑ. By the satisfaction of unitary and the property (U4), and by
applying Lem. A.5 we have that ∀ℓi, ℓj ∈ in(ℓ), ℓi ̸= ℓj , Rij = 0. Therefore, similarly to our proof
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for Thm. 2, we recover that∫
dom(Ẑ)

ℓ(ŷ, ẑ)⊗ ℓ(ŷ, ẑ)∗ dẑ =

∫
dom(Z)

(W[ℓ1(ŷ, ẑ) · · · ℓN (ŷ, ẑ)])⊗ (W∗[ℓ1(ŷ, ẑ)
∗ · · · ℓN (ŷ, ẑ)∗]) dẑ

= (W ⊗W∗)
∫
dom(Ẑ)

vec([ℓ1(ŷ, ẑ)
∗ · · · ℓN (ŷ, ẑ)∗] ◦ [ℓ1(ŷ, ẑ) · · · ℓN (ŷ, ẑ)] dẑ)

= (W ⊗W∗)vec


R

∗
11 0

. . .
0 R∗

NN


 = vec

(
W∗diag(R∗

11, · · · ,R∗
NN )W⊤

)

= vec

(
N∑
i=1

W(i)∗R∗
iiW

(i)⊤
)

= vec

(
N∑
i=1

W(i)RiiW
(i)†
)∗

.

L6-11 in our Alg. A.3 recursively marginalize the Kronecker product of ℓi by its conjugate, for all
i ∈ [N ], resulting in matrices {Rii}Ni=1 and then performing matrix multiplications and summations.

Computational complexity. We recover the overall time complexity stated in the theorem. First,
Case (ii) has an overall complexity of O(|ϕY \ ϕZ|Smax + |ϕY ∩ ϕZ|S2

max). Second, for Cases (iii-
a) and (iii-b) above, we have that we need to evaluate the integral of a “squared” layer, i.e., the
integral

∫
dom(Ẑ)

ℓ(ŷ, ẑ) ⊗ ℓ(ŷ, ẑ)∗ dẑ. Thus, these cases account for a quadratic complexity w.r.t.
the layer size, i.e., O(S2

max) as highlighted in the proof of Prop. A.2, and they occur a number of
times that is |ϕY ∩ ϕZ|. Therefore, we conclude that the overall complexity of our Alg. A.3 is
O(|ϕY\ϕZ|Smax+|ϕY∩ϕZ|S2

max). Furthermore, note that we have |ϕY\ϕZ|+|ϕY∩ϕZ| = |ϕY| ≤ L.
In other words, the complexity is independent on the number of layers whose scope is a subset of Z,
i.e., |ϕZ \ ϕY|. Although the complexity depends on the particular marginal being computed and the
circuit structure chosen, our Alg. A.3 can be much more efficient than O(L2S2

max). To see this, we
consider the following example. The structure for a circuit defined over pixel variables can be built by
recursively splitting an image into patches obtained by alternating vertical and horizontal even cuts
(Mari et al., 2023; Loconte et al., 2025a). If Z consists of only the pixel variables in the left-hand side
of an image (i.e., we are computing the marginal of the right-hand side Y), then |ϕY ∩ϕZ| is constant
w.r.t. L since only a few layers near the circuit output layer will depend on variables both in Y and Z.
The rest of the layers will entirely depend either on Y or on Z. Therefore, the best-case complexity
considers |ϕY∩ϕZ| being independent of the total number of layersL, i.e., it is O(|ϕY\ϕZ|Smax).

B EXPRESSIVENESS ANALYSIS

We presented new families of circuits through the introduction of novel circuit properties, namely
orthogonality (§3) and unitarity (§4). In general, each family of circuits with a particular parameteri-
zation and a set of structural properties they satisfy exhibit a different expressive efficiency, which
refers to the ability of encoding a function or distribution with a circuit computational graph having
polynomial size w.r.t the number of variables (Martens and Medabalimi, 2014). As such many works
focused on the formulation of hierarchies that compare different circuit clases in terms of their expres-
sive efficiency (Darwiche and Marquis, 2002; de Colnet and Mengel, 2021; Loconte et al., 2025b).
Here, we provide a preliminary expressiveness analysis by investigating which of the presented prop-
erties can be enforced in polytime, as this would immediately guarantee no loss expressive efficiency.
We start with a negative result, which tells us that enforcing orthogonality is #P-hard.

B.1 ENFORCING ORTHOGONALITY IS #P-HARD

Theorem B.1. Let c be a smooth and decomposable circuit over variables X. Then, constructing a
circuit c′ from c such that c′(X) = c(X) and c′ is an orthogonal circuit is #P-hard.

Proof. The idea is to construct a reduction from the problem of making a smooth and decomposable
circuit also orthogonal to #3SAT, which is known to be a #P-hard problem. In particular, we leverage
the same technique used to prove that representing any power of a non-structured-decomposable
circuit as another decomposable circuit is in general #P-hard (Vergari et al., 2021, Thm. 3.3).
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We start by defining the #3SAT problem. Let X = {Xi}ni=1 be a set of Boolean variables, and let Φ
be a CNF formula that contains m clauses Γ = {cj}mj=1, where each clause contains exactly 3 literals.
The #3SAT problem consists of counting the number of assignments to the variables X that satisfy
Φ, i.e., the quantity

∑
x∈dom(X) Φ(x), where Φ(x) is 1 if x satisfies Φ and 0 otherwise. For every

variable Xi and for every clause cj , we introduce an auxiliary variable Xij . We denote as X̂ the set
of all such auxiliary variables, i.e., X̂ = {Xij | Xi ∈ X, cj ∈ Γ}. For every variable Xi we set all
auxiliary variables associated to it to share the same Boolean value of Xi, which can be described
by the logic formula β = ∧Xi∈X(Xi1 ⇔ Xi2 ⇔ · · · ⇔ Xim). In order to encode Φ using an
equivalent logic formula defined over the auxiliary variables instead, we introduce the logic formula
γ = ∧cj∈Γ ∨Xi∈φ(cj) l(Xij), where we denote as φ(cj) the variables scope of the clause cj and
l(Xij) is the literal ofXi found in cj . We can see that Φ is equivalent to β∧γ. As detailed in Khosravi
et al. (2019) and Vergari et al. (2021, §A.3), the logic formulae β and γ can be respectively encoded
by structured-decomposable and deterministic circuits cβ and cγ having polynomial size. This is
done by casting conjunction and disjunctions into products and deterministic sums, respectively.
Therefore, Φ(x) can be computed as the product of the outputs of cβ and cγ when evaluated on x̂,
which is obtained from the assignments x as for the sharing of Boolean values between the auxiliary
variables of each Xi. Crucially, we have that cβ and cγ are not compatible circuits by construction.

Reducing finding an orthogonal circuit to solving #3SAT. Consider now the circuit cα computing
cα(x̂) = cβ(x̂) + cγ(x̂) for any x̂ ∈ dom(X̂). Since cβ , cγ are structured-decomposable, non-
compatible, and with overlapping support for a generic satisfiable logic formula Φ, we have that cα
is a smooth and decomposable circuit that is non-deterministic and non-structured decomposable.
Moreover, from the sizes of cα and cβ we recover that cα has also polynomial size. From now on, we
will focus on the problem of computing the quantity

∑
x̂∈dom(X̂) cα(x̂)

2, called POW2PC in Vergari
et al. (2021), and reduce it to solving #3SAT. Formally, by the construction of cα we have that the
POW2PC quantity can be written as∑

x̂∈dom(X̂)

cα(x̂)
2 =

∑
x̂∈dom(X̂)

cβ(x̂)
2 +

∑
x̂∈dom(X̂)

cγ(x̂)
2 + 2

∑
x̂∈dom(X̂)

cβ(x̂)cγ(x̂).

Now, since cβ and cγ are both deterministic, we observe that
∑

x̂∈dom(X̂) cβ(x̂)
2 and∑

x̂∈dom(X̂) cγ(x̂)
2 can both be computed in polytime (Vergari et al., 2021). Assume by absurdum

that there exists a polytime algorithm taking a smooth and decomposable circuit as input, e.g., cα,
and that returns an orthogonal circuit computing the same function. Then, from Thm. 1 we have that
we would be able to compute

∑
x̂∈dom(X̂) cα(x̂)

2 in polytime. As a consequence, from the definition
of POW2PC, we would be able to compute the remaining quantity

∑
x̂∈dom(X̂) cβ(x̂)cγ(x̂) in poly-

time. However, computing this last quantity in polytime would imply solving #3SAT in polytime,
since the conjunction of β and γ is equivalent to the logic formula Φ as described in the preliminaries
above. Therefore, an algorithm receiving a smooth and decomposable circuit as input and converting
it to an orthogonal circuit cannot run in polytime. In particular, the problem of representing a smooth
and decomposable circuit as an orthogonal one must be at least #P-hard.

From Thm. B.1 it turns out that enforcing regular orthogonality and unitarity must also be hard, since
they both imply orthogonality (see App. A.3 and Thm. 2). However, Thm. B.1 does not necessarily
imply an expressiveness separation (Martens and Medabalimi, 2014) between orthogonal and smooth
and decomposable circuits, i.e., the existence of a family of functions that cannot be encoded by any
orthogonal and polysize circuit, while it can by a smooth and decomposable circuit. The reason is that
Thm. B.1 does not say anything about the minimum circuit sizes required by an orthogonal circuit.
While investigating such separation deserves a separate work, here we conjecture it to hold similarly
to a known separation between deterministic and non-deterministic circuits (Bova et al., 2016).

In the following, we instead investigate whether the choice of orthonormal input functions and (semi-
)unitary weights in tensorized circuits (i.e., only the conditions (U1) and (U3) in unitarity) can restrict
their expressiveness when compared to squared PCs that do not satisfy such conditions. First, as
we further detail in App. D, there are many choices of orthonormal basis functions that come with
guarantees about the families of functions they can arbitrarily approximate. Second, the following
theorem guarantees that there is no loss in terms of expressive efficiency from restricting the sum
layer parameters to be (semi-)unitary matrices (i.e., (U3)), as it can be enforced in polytime.
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Algorithm B.1 UNITARIZE(ℓ)

Input: A tensorized circuit c over variables X, where ℓ is the output layer in c.
Output: The output layer ℓ′ of a tensorized circuit c′ over X such that each sum layer in c′ has a (semi-)unitary
matrix as weight; and a matrix R ∈ CK1×K2 , K1 ≤ K2, such that ℓ equivalently computes Rℓ′ where K1,K2

are the width of layers ℓ, ℓ′ respectively (i.e., the number of units in the layers ℓ, ℓ′).
1: if ℓ is an input layer then
2: Assume ℓ computes K orthonormal functions
3: return (ℓ, IK)

4: if ℓ is a sum layer receiving inputs from in(ℓ) = {ℓ1, . . . , ℓN} and parameterized by W ∈ CK1×K2 then
5: (ℓ′i,Ri)← UNITARIZE(ℓi), ∀i ∈ [N ]
6: where Ri ∈ CJi×Hi

7: let W = [W(1) · · ·W(N)] ∈ CK1×K2

8: where ∀i ∈ [N ] : W(i) ∈ CK1×Ji and K2 =
∑N

i=1 Ji
9: let V = [W(1)R(1) · · ·W(N)R(N)] ∈ CK1×H , where H =

∑N
i=1Hi

10: Factorize V† = QR, where Q is (semi-)unitary and R is upper triangular
11: let ℓ′ be a sum layer computing Q†[ℓ′1 · · · ℓ′N ]
12: return (ℓ′,R†)

13: if ℓ is a Kronecker product layer with inputs ℓ1, ℓ2 then
14: (ℓ′1,R1)← UNITARIZE(ℓ1), R1 ∈ CK1×K2

15: (ℓ′2,R2)← UNITARIZE(ℓ2), R2 ∈ CK3×K4

16: let ℓ′ be a layer computing ℓ′1 ⊗ ℓ′2
17: return (ℓ′,R1 ⊗R2) ▷ ⊗: Kronecker matrix product
18: if ℓ is an Hadamard product layer with inputs ℓ1, ℓ2 then
19: (ℓ′1,R1)← UNITARIZE(ℓ1), R1 ∈ CK1×K2

20: (ℓ′2,R2)← UNITARIZE(ℓ2), R2 ∈ CK1×K3

21: let ℓ′ be a layer computing ℓ′1 ⊗ ℓ′2
22: return (ℓ′,R1 •R2) ▷ •: Face-splitting matrix product (see Def. B.1)

B.2 ENFORCING (SEMI-)UNITARY PARAMETERS IS EFFICIENT

Theorem B.2. Let c be a smooth and decomposable tensorized circuit over X. There exists an
algorithm running in polynomial time returning a circuit c′ with (semi-)unitary matrices as sum layer
weights, where c′ is equivalent to c up to a multiplicative constant, i.e., c′(X) = βc(X), β ≥ 0.

Proof. We prove the correctness of our Alg. B.1 to “unitarize” the weights of a tensorized circuit,
whose idea is to recursively make the circuit parameters (semi-)unitary via QR decompositions. More
formally, Alg. B.1 is used to retrieve a tensorized circuit c′ from c such that c′(X) = βc(X) for a
non-negative constant β, where the weight matrices of sum layers in c′ are (semi-)unitary. To do so,
we take inspiration from the unitarization (or canonization) algorithm in tree-shaped tensor networks
(TTNs) (Shi et al., 2006; Orús, 2013; Cheng et al., 2019; Krämer, 2020). That is, the idea of Alg. B.1
is to recursively apply QR decompositions to make the weight matrices of sum layers (semi-)unitary,
while still preserving the function computed by the circuit up to a non-negative multiplicative constant
β. However, differently from the canonization algorithm in (TTNs), our Alg. B.1 generalizes to
hierarchical tensor factorizations when represented by circuits (Loconte et al., 2025a) (see §§3 and 4).

Assumptions. In the proof we are going to assume that each sum layer receives inputs from product
layers, and that each product layer receives inputs from either two input layers or two sum layers.
These assumptions are without loss of generality, as they can be enforced in polynomial time without
changing the function computed by c and with at most a polynomial increase in circuit size. For
instance, if a product layer receives inputs from another product layer, then we can “interleave” these
product layers by introducing a sum layer whose parameter matrix is an identity matrix. Now, given
ℓ the output layer of a tensorized circuit, we will show by structural induction that Alg. B.1 returns
a pair (ℓ′,R), where ℓ′ is the output layer of the tensorized circuit c′, and R is a matrix such that
ℓ equivalently computes the matrix-vector product Rℓ′. In particular, R will have as many rows
as the number of units in ℓ (i.e., its layer width) and as many columns as the number of units in ℓ′.
Moreover, we will have that the sum layers in the sub-circuit rooted in ℓ′ have (semi-)unitary matrices
as parameters. Therefore, when Alg. B.1 is applied to the output layer of c, then R is a 1× 1 matrix
containing the value of β as stated above. We proceed by cases below.
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Case (i): input layer. The base case is when ℓ is an input layer in c. Assume that ℓ computes the value
ofK functions. Then, L1-3 in Alg. B.1 returns ℓ unchanged, i.e., ℓ′ = ℓ and it sets R to be theK×K
identity matrix IK . We also have that the circuit rooted in ℓ′ does not have sum layers and therefore it
trivially satisfies the requirement that the weights of the sub-circuit rooted in ℓ′ must be (semi-)unitary.

Case (ii): sum layer. Let ℓ be a sum layer receiving input from layers in(ℓ) = {ℓi}Ni=1 and computing
the matrix-vector product ℓ = W[ℓ1 · · · ℓN ], where W ∈ CK1×K2 denote the parameter matrix
of ℓ. By inductive hypothesis, for each ℓi, i ∈ [N ], Alg. B.1 returns the output layer ℓ′i of circuit
whose weights are (semi-)unitary, and a matrix Ri ∈ CJi×Hi with K2 =

∑N
i=1 Ji, where Hi is the

number of units in the layer ℓ′i. That is, we have that ℓi equivalently computes Riℓ
′
i. We denote W

as the block matrix W = [W(1) · · ·W(N)] where W(i) ∈ CK1×Ji , and we can rewrite the function
computed by ℓ as follows

ℓ = W[ℓ1 · · · ℓN ] =

N∑
i=1

W(i)ℓi =

N∑
i=1

W(i)Riℓ
′
i = V[ℓ′1 · · · ℓ′N ],

where we set V = [V(1) · · ·V(N)] ∈ CK1×H , with H =
∑N

i=1Hi, and such that each block is
V(i) = W(i)Ri ∈ CK1×Hi . To retrieve a (semi-)unitary matrix, we perform the QR decomposition
on V†, thus retrieving V† = QR. Now, in the following we distinguish two cases based on whether
V† is a wide or tall matrix.

V† =

{
QR where Q ∈ CH×H ,R ∈ CH×K1 V† is wide or square, i.e., H ≤ K1

QR where Q ∈ CH×K1 ,R ∈ CK1×K1 V† is tall, i.e., H > K1

Moreover, in the wide or square case we have that Q†Q = IH , while in the tall case we have that
Q†Q = IK1 . In both cases, we have that R is upper triangular. Thus, we can rewrite the function
computed by ℓ as

ℓ = V[ℓ′1 · · · ℓ′N ] = R†Q†[ℓ′1 · · · ℓ′N ] = R†ℓ′

where ℓ′ is a sum layer parameterized by the (semi-)unitary matrix Q† and computing Q†[ℓ′1 · · · ℓ′N ].
Therefore, L4-12 in Alg. B.1 returns (ℓ′,R†), and we have that the sub-circuit rooted in ℓ′ has (semi-
)unitary matrices as the weights of sum layers. Finally, we observe that the number of sum units
in ℓ′—or equivalently the number of rows in Q†—is min(H,K1) whatever V† is a wide, square
or tall matrix. Therefore, the number of units in ℓ′ is bounded by the number of units K1 in ℓ.
Similarly, the size of the matrix R† returned by Alg. B.1 is at most of size K1 ×K1. Instead, in the
particular case of V† being tall, i.e., H > K1, we notice that Q† ∈ CK1×H can possibly be larger
than W ∈ CK1×K2 , which would account for an increase in the circuit size. As we detail below, this
increase in circuit size is still polynomial, as it can only occur in the case of Hadamard product layers
and it is bounded to be at most quadratic w.r.t. the original circuit size.

Case (iii): Hadamard product layer. Let ℓ be a Hadamard product layer computing ℓ = ℓ1⊙ℓ2. By
inductive hypothesis, let ℓ′1 and ℓ′2 be the output layers of tensorized circuits obtained by recursively
applying Alg. B.1 on ℓ1 and ℓ2, respectively. Moreover, let R1 ∈ CK1×K2 and R2 ∈ CK1×K3 be
the matrices obtained via Alg. B.1 w.r.t. ℓ1 and ℓ2. That is, we have that ℓ1 (resp. ℓ2) equivalently
computes R1ℓ

′
1 (resp. R2ℓ

′
2). For this reason, we can rewrite the function computed by ℓ as

ℓ = (R1ℓ
′
1)⊙ (R2ℓ

′
2) = (R1 •R2)(ℓ

′
1 ⊗ ℓ′2),

where we used the Hadamard mixed-product property, and • denotes the face-splitting matrix product.

Definition B.1 (Face-splitting matrix product). Let A ∈ Cm×k and B ∈ Cm×r be matrices. The
face-splitting product A •B is defined as the matrix C ∈ Cm×kr,

C =

 a1 ⊗ b1

...
am ⊗ bm

 where A =

a1...
am

 B =

b1

...
bm

 ,
and {ai}mi=1, {bi}mi=1 are row vectors.
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L18-22 in Alg. B.1 constructs a Kronecker layer ℓ′ in c′ computing ℓ′ = ℓ′1 ⊗ ℓ′2, i.e., ℓ equivalently
computes (R1 • R2)ℓ

′. Thus, L22 returns returns both ℓ′ and the matrix R1 • R2. By inductive
hypothesis, we have that the circuits rooted in ℓ′1 and ℓ′2 have sum layers with (semi-)unitary weights,
thus also the circuit rooted in ℓ′ must have. Furthermore, we observe that an Hadamard product layer
is replaced by a Kronecker ones, resulting in a quadratic increase in circuit size. To avoid the size of
the layers in c′ and the matrices R being returned by Alg. B.1 to grow exponentially in the particular
case of subsequent Hadamard product layers in c, the assumptions made at the beginning of this proof
become here useful. As stated above, we can efficiently “interleave” consecutive Hadamard layers in
c by using sum layers having identity matrices as parameters. By doing so and as observed in Case
(ii) above for sum layers, the size of the matrices R returned by Alg. B.1 and the number of units in
each sum layer being built in c′ remain bounded. Therefore, this effectively bounds the size of the
Kronecker layers being built in c′ from Hadamard layers in c.

Case (iv): Kronecker product layer. Let ℓ be a Kronecker product layer computing ℓ = ℓ1⊗ ℓ2. By
inductive hypothesis, let ℓ′1 and ℓ′2 be the output layers of tensorized circuits obtained by recursively
applying Alg. B.1 on ℓ1 and ℓ2, respectively. Moreover, let R1 ∈ CK1×K2 and R2 ∈ CK3×K4 be
the matrices obtained via Alg. B.1 w.r.t. ℓ1 and ℓ2. That is, we have that ℓ1 (resp. ℓ2) equivalently
computes R1ℓ

′
1 (resp. R2ℓ

′
2). For this reason, we can rewrite the function computed by ℓ as

ℓ = (R1ℓ
′
1)⊗ (R2ℓ

′
2) = (R1 ⊗R2)(ℓ

′
1 ⊗ ℓ′2),

where we use the Kronecker mixed-product property. That is, we retrieve a Kronecker layer ℓ′ in
c′ computing ℓ′ = ℓ′1 ⊗ ℓ′2, i.e., ℓ equivalently computes (R1 ⊗R2)ℓ

′. Thus, L13-17 in Alg. B.1
returns both ℓ′ and the matrix R1 ⊗R2. By inductive hypothesis, we have that the circuits rooted in
ℓ′1 and ℓ′2 have sum layers with (semi-)unitary weights, thus also the circuit rooted in ℓ′ must have.

Case (v): output layer. We consider the case of ℓ being the output layer in c, thus resulting in
the last step of our Alg. B.1. Without loss of generality, we consider ℓ being a sum layer. Then
from our Case (ii) above, we have that R ∈ C1×1 is obtained by the QR decomposition of a
column vector V† ∈ CK×1, thus corresponding to the scalar r11 such that ||r11V†||2 = 1, i.e.,

r11 = ||V†||−1
2 =

(∑K
i=1 |vi1|2

)− 1
2

. Therefore, the non-negative scalar β mentioned in the theorem
must be exactly β = r11.

A note on the value of β and on unitarity. Assume that c satisfies (U1) and (U2) of unitarity.
Since Alg. B.1 does not change the input layers and the dependencies of the sum layer inputs to the
input layers, we have that c′ also satisfies (U1) and (U2). Therefore, c′ is unitary because it satisfies
conditions (U1) to (U3), and thus from Thm. 2 we have that the modulus squaring of c′ is an already
normalized distribution, i.e., p(X) = |c′(X)|2 = β2|c(X)|2. This means that, under the assumptions
of (U1) and (U2), the value of β is exactly β = Z− 1

2 with Z being the partition function of the
modulus squaring of c, i.e., Z =

∫
dom(X)

|c(x)|2 dx. Finally, Thm. B.2 can be seen as the dual of
another result about monotonic PCs shown by Peharz et al. (2015): they show an algorithm that
updates the positive weights of a smooth and decomposable PC such that the distribution it encodes
is already normalized, while Alg. B.1 updates the complex weights of a circuit such that its modulus
squaring is an already-normalized distribution.

A note on the computational complexity. We now analyze the computational complexity of Alg. B.1.
We observe that the complexity mainly depends on the complexity of performing QR decompositions
and computing Kronecker (or face-splitting) products of matrices. In particular, we need to perform
as many QR decompositions as the number of sum layers in c, each requiring time O(K2

1H) in the
case of a wide matrix V ∈ CK1×H and O(K1H

2) in the tall matrix case. Now, let Kmax denote
the maximum number of units in a layer in c. By the way the matrix V is computed (see Case (ii)
above) and since the Hadamard layer is the only case accounting to a quadratic increase in layer
width (i.e., transforming Hadamard into Kronecker and leveraging the face-splitting product), we
have that K1 ≤ Kmax and H ≤ K2

max. As such, the complexity of performing the QR factorizations
will be O(LK4

max), where L is the number of layers in c. Similarly, the complexity of computing
Kronecker and face-splitting products as in Cases (iii-iv) above is O(K4

max). Overall, the complexity
of our Alg. B.1 is O(LK4

max).
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i3 i4 i5 i6

i1 i2

X1 X2 X3 X4

ψ1 ψ2 ψ3 ψ4

W(1) W(2)

W(0)

ψ1(x1) ψ2(x2) ψ3(x3) ψ4(x4)

W(1) W(2)

W(0)

Figure C.1: Tree tensor networks (TTNs) represented as tensorized circuits. The contraction of a
TTN over variables X = {X1, . . . , X4} (left, in Penrose graphical notation) starting from the factors
at the bottom towards the root node can be encoded by a tensorized circuit having Kronecker product
layers, and whose sum layers are parameterized by the non-leaf tensors, i.e., W(0),W(1),W(2)

(right). Due to the densely connected structure, the circuit is not basis decomposable (Def. 6), as the
products that are input to the output sum depend on the same input functions (in colors). Similarly
to the circuit corresponding to the MPS factorization shown in Fig. 1, this circuit is structured-
decomposable because the products encode a single hierarchical partitioning of the variables.

C TREE TENSOR NETWORKS AS STRUCTURED-DECOMPOSABLE CIRCUITS

In this section, we show how the complete contraction of a tree-shaped tensor network (TTN) (Shi
et al., 2006) can be encoded by a particular class of structured-decomposable tensorized circuits
(Def. 8), where product layers are Kronecker products. By a very similar argument, one can see
how also other TN structures, such as MPS (Schollwoeck, 2010) and tensor rings (Zhao et al., 2016),
can be encoded by structured-decomposable circuits. Although a result representing the hierarchical
Tucker tensor factorization (Grasedyck, 2010) as a circuit was already formally shown in Loconte
et al. (2025a),1 in App. C.1 we connect this construction to a canonical form of TTNs ensuring
normalization of the distribution modeled via modulus squaring.

From TTNs to tensorized circuits. When compared to matrix-product states (MPS) TNs (Pérez-
García et al., 2007), TTNs come with the advantage of better capturing longer variables sequence
correlations by using a hierarchical tree-like structure (Murg et al., 2010; Seitz et al., 2022). Formally,
let X = {Xj}dj=1 be a set of variables, and for each Xj ∈ X let Ψj = {ψk

j : dom(Xj) → C}Rk=1 be
a set of factors for the variable Xj , where R is the factorization rank of the TTN. For simplicity, here
we consider the case of binary TTNs, i.e., whose structure in Penrose graphical notation is a binary
tree, but the following discussion can be translated to other TTNs as well. A rank-R binary TTN
factorization defines the following decomposition of ψ(X).

ψ(x) =

R∑
i1=1

R∑
i2=1

· · ·
R∑

i2N=1

w
(0)
i1i2

(
N−1∏
n=1

w
(n)
ini2n+1i2(n+1)

) d∏
j=1

ψ
id−2+j

j (xj)

 , (9)

where W(0) ∈ CR×R and for all n ∈ [N − 1] : W(n) ∈ CR×R×R, with N being the total number
of inner tensors in the TTNs, i.e., N = d − 1 in this binary tree case. For example, Fig. C.1 (left)
illustrates a TTN over d = 4 variables, which encodes the following factorization of ψ(X).

ψ(x1, x2, x3, x4) =

R∑
i1=1

R∑
i2=1

· · ·
R∑

i6=1

w
(0)
i1i2

w
(1)
i1i3i4

w
(2)
i2i5i6

ψi3
1 (x1)ψ

i4
2 (x2)ψ

i5
3 (x3)ψ

i6
4 (x4) (10)

The complete contraction of a TTN following a bottom-up topological ordering can be encoded by
a tensorized circuit. In order to give an intuition of this, we focus on the example in Eq. (10). We
reorder summations and multiplications in Eq. (10) as in the equation below, which corresponds to

1Hierarchical Tucker tensor is essentially a TTN having a binary tree structure in Penrose graphical notation.
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a contraction ordering that starts from the factor leaves and proceeds towards the root tensor of the
TTN (i.e., the matrix W(0)).

ψ(x1, x2, x3, x4) =

R∑
i1=1

R∑
i2=1

w
(0)
i1i2

(
R∑

i3=1

R∑
i4=1

w
(1)
i1i3i4

ψi3
1 (x1)ψ

i4
2 (x2)

) (
R∑

i5=1

R∑
i6=1

w
(2)
i2i5i6

ψi5
3 (x3)ψ

i6
4 (x4)

)
(11)

In other words, we pushed the outer summations as inside as possible in the TTN factorization
formula. By doing so, we recover three groups of sums and products that contract the indices {i1, i2},
{i3, i4} and {i5, i6}, respectively in red, green and blue colors in Eq. (11). In order to build a
tensorized circuit c encoding this contraction, i.e., c(X) = ψ(X), we construct one input layer ℓin

j for
each variable Xj ∈ X computing the corresponding factors in Ψj as a R-dimensional vector. That
is is, for all Xj ∈ X we have that ℓin

j computes ℓin
j (xj) = [ψ1

j (xj) · · ·ψR
j (xj)]

⊤. We then observe
from Eq. (11) that the composition of groups of sums and products can be encoded by a hierarchical

composition of sum layers and Kronecker product layers. Formally, let Ŵ
(0)

denote the reshaping

of W(0) as a 1×R2 matrix, and similarly let Ŵ
(1)

and Ŵ
(2)

respectively denote the reshaping of
W(1) and W(2) as R×R2 matrices. Then, we can rewrite Eq. (11) as

ψ(x1, x2, x3, x4) = Ŵ
(0)

[
Ŵ

(1)
(
ℓin
1 (x1)⊗ ℓin

2 (x2)
)]

⊗
[
Ŵ

(2)
(
ℓin
3 (x3)⊗ ℓin

4 (x4)
)]

.

(12)
The above can be equivalently encoded by a tensorized circuit c, as we illustrate in Fig. C.1 (right).
That is, the Kronecker products are computed by Kronecker layers in c, and the matrix-vector

multiplications are computed by sum layers respectively parameterized by the matrices Ŵ
(0)

, Ŵ
(1)

,

Ŵ
(2)

. We also observe that the corresponding circuit c is structured-decomposable, as we can
interpret its structure as encoding a single hierarchical partitioning of the set of variables X it is
defined on, i.e., X is partitioned into {X1, X2} and {X3, X4} by the Kronecker product layers, and in
turn these are split towards the univariate input layers respectively over {X1}, {X2} and {X3}, {X4}.

Next, we connect our orthogonality conditions defined over circuits with a popular TTN canonical
form—sometimes called upper-canonical form (Cheng et al., 2019)—which ensures that the cor-
responding Born machine encodes an already-normalized distribution. That is, we show that this
canonical form in TTNs is a particular case of unitarity, i.e., the corresponding tensorized circuit
satisfies the conditions (U1) to (U3) shown in §4. We then make some observations on how unitary
tensorized circuits can represent a strictly larger set of hierarchical factorizations when compared to
TTNs, which instead can only be structured-decomposable by construction (see §2 and App. C).

C.1 UNITARY CIRCUITS GENERALIZE UPPER CANONICAL TREE TENSOR NETWORKS

The upper-canonical form is a special case of unitarity. The upper canonical form of a TTN
consists of two assumptions on the factors and the inner tensors. That is, we require the factors over
the same variable to be orthonormal, and that each inner tensor is an isometry w.r.t. the two indices
pointing downwards. More formally, a TTN is upper canonical if it satisfies the following conditions.

∀Xj ∈ X,∀k1, k2 ∈ [R] :

∫
dom(Xj)

ψk1
j (xj)ψ

k2
j (xj)

∗ dxj = δk1k2
(13)

R∑
i2=1

w
(0)
i1,i2

w
(0)∗
j1,i2

= δi1j1 , and ∀n ∈ [N − 1] :

R∑
i2n+1=1

R∑
i2(n+1)=1

w
(n)
ini2n+1i2(n+1)

w
(n)∗
jni2n+1i2(n+1)

= δinjn

(14)

It is possible to show that these two conditions ensure that the partition function of the corresponding
Born machine obtained by modulus squaring of ψ isZ =

∫
dom(X)

|ψ(x)|2 dx = 1 (Cheng et al., 2019;
Seitz et al., 2022). We interpret Eqs. (13) and (14) as conditions defined over the input layers and
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weight matrices of the tensorized circuit c described by Eq. (12). That is, under upper canonicity of
the TTNs, we recover that each input layer ℓin

j over the variable Xj ∈ X satisfies
∫
dom(Xj)

ℓin
j (xj)⊗

ℓin
j (xj)

∗ dxj = IR. For this reason, the tensorized circuit c satisfies (U1) of unitarity. Furthermore,
we have that c satisfies (U2) of unitarity trivially, since by construction each sum layer receives input
from exactly one other layer, i.e., a Kronecker product. Finally, we can equivalently rewrite Eq. (14)

as Ŵ
(0)

Ŵ
(0)†

= IR, Ŵ
(1)

Ŵ
(1)†

= IR, and Ŵ
(2)

Ŵ
(2)†

= IR. In other words, each sum layer
in c is parameterized by a (semi-)unitary matrix, thus it satisfies (U3) of unitarity. Therefore, we
conclude that the tensorized circuit c encoding the same upper canonical TTN is unitarity.

Going beyond TTNs with unitarity. As also stressed in §§3 and 4, tensorized circuits can represent
a strictly larger set of hierarchical factorizations when compared to TTNs. This is because TTNs are
a particular instance of tensorized circuits that are structured-decomposable. Instead, non-structured-
decomposable tensorized circuits can encode multiple hierarchical partitionings of variables, e.g.,
see the circuit in Fig. 3. Despite this crucial difference w.r.t. TTNs, the modulus squaring of a non-
structured-decomposable tensorized circuit can still encode a normalized distribution via unitarity
(as for Thm. 2), and it supports the tractable computation of marginals (as for Thm. 3). In particular,
theoretical results in circuit complexity have shown that structured-decomposable circuits can be
exponentially less expressive than non-structured-decomposable ones (Pipatsrisawat and Darwiche,
2008; 2010; de Colnet and Mengel, 2021). For this reason, our contributions motivate future work
aimed at developing novel TN structures different from TTNs that can possibly be more expressive,
yet they support tractable marginalization and sampling via unitarity.

D RELATED WORK

The relationship between circuits and TNs. To the best of our knowledge, Ko et al. (2020) was the
first work linking ideas from both TNs and from particular circuits known as sum-product networks
(SPNs) (Poon and Domingos, 2011), by showing an approach to approximate sparse SPNs into non-
negative MPS TNs (Glasser et al., 2019). Representing popular factorization methods such as CP
(Carroll and Chang, 1970; Harshman, 1970), hierarchical Tucker (Grasedyck, 2010) and MPS TNs as
circuits was later highlighted in Loconte et al. (2023; 2025b;a). In particular, casting TN contractions
into a composition of sums and products is analogous to performing variable elimination in a graphical
model (Koller and Friedman, 2009; Glasser et al., 2018), whose implementation can also be encoded
by a circuit (Darwiche and Provan, 1996; Darwiche, 2003; 2009). The property-driven framework of
circuits provides sufficient and necessary conditions to compose them in operations and enable the
computation of quantities in closed-form, such as expectations and information-theoretic measures
(Vergari et al., 2021; Wang et al., 2024). Recently, determinism has been generalized as a property
between two circuits in Wang et al. (2024) to bring complexity simplifications for exact causal
inference and weighted model counting (Chavira and Darwiche, 2008). Similarly, we believe one
can extend our orthogonality (§3) as a property between two circuits, thus possibly simplifying the
computation of compositional operations while being possibly less restrictive than determinism. Note
that these properties and operations can be translated to TNs as well, as for their close relationship
with circuits (§2). Furthermore, in some cases one can efficiently restructure the hierarchical variables
decomposition implicitly encoded by a structured-decomposable circuit (and thus TNs) (Zhang et al.,
2025b)—also called vtree (Pipatsrisawat and Darwiche, 2008; Kisa et al., 2014)—thus enabling the
efficient renormalization of the product of certain non-compatible circuits.

Canonical forms of TNs exploit parameterizations in terms of (semi-)unitary matrices to unlock many
practical advantages (Schollwoeck, 2010). Among these, canonical forms provide simplifications for
the computation of certain physical quantities (Orús, 2013), as well as the computation of marginal
and conditional probabilities (Bonnevie and Schmidt, 2021) by ensuring the modeled distribution
is normalized. By connecting with circuit determinism, we provide novel conditions defined in
the circuit language to unlock similar advantages, namely ensuring squared PCs encode already-
normalized distributions (§4) and to enable fast marginalization (§5 and App. A.1). Moreover,
TNs expressed in canonical forms come with an enhanced numerical stability, support optimization
methods aimed at avoiding vanishing and exploding gradients (Sun et al., 2020), and are amenable to
advanced Riemannian optimization techniques (Hauru et al., 2020; Luchnikov et al., 2021). These
practical advantages can be translated to circuits as well. Furthermore, popular TNs such as MPS and
TTNs can be efficiently turned into a particular canonical form by iteratively performing either SVD

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

or QR decompositions (Shi et al., 2006; Orús, 2013; Cheng et al., 2019; Krämer, 2020). Our algorithm
to make the parameters of a circuit (semi-)unitary (App. B) takes inspiration from procedures to make
a TN canonical, but generalizes to tensorized circuits.

Possible choices of orthonormal functions. Depending on whether a variable is discrete or continu-
ous, we have different ways to encode it with orthonormal functions. For a variable X with domain
dom(X) = [v], any function f(X) can be expressed as

∑v
k=1 f(k)δxk, i.e., f can be written in terms

of v Kronecker deltas {δxk}vk=1 that are orthonormal. That is,
∑

x∈[v] δxkδxk′ = δkk′ for k, k′ ∈ [v].
For a continuous variable X , many function families can be expressed in terms of orthonormal basis.
E.g., periodic functions can be represented by Fourier series (Jackson, 1941) and, under certain conti-
nuity conditions, functions can be approximated arbitrarily well by finite Fourier partial sums (Jackson,
1930). Furthermore, certain families of functions can also be described in terms of orthogonal polyno-
mials (Abramowitz et al., 1965), e.g., Hermite functions generalize Gaussians and form an orthonor-
mal basis of square-integrable functions over all R (Roman and Rota, 1978). More in general, any set
of linearly independent functions can be described as a linear projection of a set of orthonormal basis
functions (see Meiburg et al. (2025, §A)). In practice, different choices of orthonormal functions and
polynomials have been used in signal processing (Pinheiro and Vidakovic, 1997), score-based varia-
tional inference (Cai et al., 2024) and also in TNs modeling density functions (Meiburg et al., 2025).
Recently, orthonormal functions have been used in circuits to better scale polynomial chaos expansion
(Wiener, 1938) for uncertainty quantification analysis to high dimensions (Exenberger et al., 2025).

Learning (semi-)unitary matrices. Many works in the deep learning community have investigated
the challenging problem of learning on the manifold of (semi-)unitary matrices, also called the Stiefel
manifold (Absil et al., 2007). That is, there are many ways of parameterizing unitary matrices, with
different advantages regarding efficiency, numerical stability and generality (Arjovsky et al., 2016;
Huang et al., 2018; Bansal et al., 2018; Casado and Martínez-Rubio, 2019), which could be employed
for learning the parameters of squared PCs. More recently, Hauru et al. (2020); Luchnikov et al.
(2021) proposed optimizing the parameters of MPS TNs and quantum gates using Riemmanian
optimization approaches (Kochurov et al., 2020).

Many models supporting tractable marginalization have been recently introduced. These include
squared neural families with real or complex parameters that square the 2-norm of the output of
a single-hidden-layer neural network (Tsuchida et al., 2023; 2024; 2025). In addition to squared
PCs and mixtures thereof (Loconte et al., 2024; 2025b), other models are based on squared circuit
representations. These are PSD circuits (Sladek et al., 2023) inspired from PSD kernel methods
(Marteau-Ferey et al., 2020; Rudi and Ciliberto, 2021), and Inception PCs generalizing structured-
decomposable monotonic and squared PCs (Wang and Van den Broeck, 2025). Zuidberg Dos
Martires (2025) has recently unified these circuit families under a single formalism—positive unital
circuits (PUnCs)—based on concepts from quantum information theory (Nielsen and Chuang, 2010).
The realization of the squaring of a structured-decomposable circuit as yet another decomposable
circuit is subsumed by PUnCs. However, differently from PUnCs where the layer activations are
K × K PSD matrices, a unitary squared PC admits a more memory efficient representation by
means of a circuit that does not necessarily require being squared, i.e., whose layer activations are
K-dimensional vectors instead. While PUnCs has been proposed also as a way to construct non-
structured-decomposable non-monotonic PCs, we find that ensuring either orthogonality (§3) or
unitarity (§§4 and 5) is sufficient for it in non-structured-decomposable squared PCs instead.

About expressiveness. The satisfaction of either orthogonality or unitarity allows us to build
squared PCs that are not structured-decomposable, yet they still enable the tractable computation
of marginals (§§3 and 5). Since popular TN structures such as MPS and TTNs are encoded by
structured-decomposable circuit by construction (App. C), our contribution motivates future works
aimed at understanding how non-structured-decomposable squared PCs are related to structured-
decomposable ones in terms of expressive efficiency. We believe that answering to these questions
might require techniques that are different to the ones used to prove separations between circuits
and squared PCs that are structured-decomposable (de Colnet and Mengel, 2021; Loconte et al.,
2024; 2025b). Furthermore, as shown by Agarwal and Bläser (2024) and Oliver Broadrick (2024),
other instances of non-monotonic PCs that are not squared include determinantal point processes
(Kulesza and Taskar, 2012; Zhang et al., 2020) and probabilistic generating circuits (Zhang et al.,
2021; Harviainen et al., 2023). Understanding the relationship in terms of expressiveness also w.r.t.
these other non-monotonic PCs and PUnCs (Zuidberg Dos Martires, 2025) is an interesting direction.
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E EXPERIMENTAL DETAILS

In this section, we describe all the necessary details to reproduce the results from §6.

Computational resources. To run all experiments, we use a cluster of 8 NVIDIA L40S GPUs and
8 NVIDIA RTX A6000 GPUs managed via Slurm. Every experiment uses a single GPU. For the
benchmark experiments (see App. E.3), we make sure all experiments run in isolation in one of the
NVIDIA RTX A6000, to properly compare their time and memory requirements.

Implementation and sanity checks. Our implementations of squared unitary PCs are based on
the cirkit library (The APRIL Lab, 2025), and extend a previous code base for squared PCs
with complex parameters by Loconte et al. (2025b). Since the proposed unitary parameterization
ensure squared PCs encode already-normalized distributions, we do not materialize their square as
another decomposable circuit in order to compute the partition function. This allows us to efficiently
train squared PCs by maximum-likelihood even in those cases where materializing the squared PC
would be too expensive memory-wise, e.g., when using Kronecker product layers. As we do not
compute the partition function explicitly, how do we make sure that the squared unitary PCs in our
software implementation encode a normalized distribution? Besides the theory presented in this
manuscript, we employed several units tests to check that the distribution modeled by squared unitary
PCs integrates to one via numerical integration on randomly-initialized circuits with Kronecker
product layers, as well as in the case of non-structured-decomposable circuits having different sizes.
As a result, we have empirically corroborated that our implementation of squared unitary PCs indeed
model normalized distributions up to unavoidable numerical errors due to floating point precision.

Squared PCs families. In the following we denote as ±2
C the class of squared PCs with complex

parameters, while we use ⊥2
C to denote the class of squared unitary PCs.

E.1 CONTINUOUS INPUT FEATURES

In this section, we perform some preliminary experiments assessing the expressiveness of orthogonal
input functions in the case where we have continuous variables, as discussed in App. D and §4.

Fourier input functions. To this end, for each input function in the circuit we use one single term
of a Fourier series with equal periodicity across input functions. That is, if we have 2K + 1 input
functions—we assume an odd number of them—then each input function fk is of the form fk(x) ∝
exp(2πi kP (x+b)), where i ∈ C is the imaginary unit, k ∈ {−K,−K+1, . . . ,K}, P is the same for
every k and larger than the size of dom(X), and b ∈ R is a learnable bias term. As a result, all input
functions are orthogonal between then, and we make them orthonormal by normalizing them, such
that they integrate out to one. We set P = 6 for the spinner dataset, and P = 12 for the spiral dataset.

Experimental setting. We take two synthetic datasets from the official code released by Loconte et al.
(2025b), and train different circuit architectures to perform distribution estimation. To this end, in each
iteration we sample a new batch of size 1024 from the synthetic generator function, and add noise from
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Figure E.1: Densities estimated by different combinations of circuit classes, product layers, and input
layers (one per column), fitted with samples from two different synthetic datasets (one per row).
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a centered Gaussian with a standard deviation of 0.1 to avoid overfitting. We train all models for a
thousand iterations and apply cosine learning rate annealing to avoid instabilities at the end of training.

Circuits. We take a baseline a squared PC with Hadamard product layers and Gaussian in-
put functions, and then test the Fourier input functions in all combinations of usual and unitary
squared PCs with Hadamard or Kronecker product layers, i.e., the configurations in {±2

C,⊥2
C

} × {Hadamard,Kronecker}. For regular squared PCs we use Adam (Kingma and Ba, 2015) with
learning rate 0.001, and our LandingPC (see App. F) for squared unitary PCs with learning rate 0.01
and λ = 0.1 . For every combination we use 21 input and sum units, except for ±2

C with Hadamard
layers for which we keep them at 7, since otherwise the model takes too long to run.

Results. We show the estimated densities for each model combination and dataset in Fig. E.1. Despite
the simplicity of the synthetic datasets at hand, we find a couple of interesting insights. First, we see
that the Fourier layers do outperform the fitting (at least, qualitatively) of the identical same circuit
with Gaussian input functions. Therefore, validating the expressivity claims regarding the input
functions made at the end of §4. Second, we find that certain combinations work better than others.
Specifically, ±2

C seem to work better when combined with Hadamard product layers, while ⊥2
C do

particularly well with Kronecker layers. This is consistent with the fact that a multivariate Fourier
series definition considers all possible product combinations of univariate complex exponentials
(Smith and Smith, 1995), i.e., similarly to a Kronecker product. In addition, we later validate again in
App. E.2 that Hadamard layers do not seem to work well with ⊥2

C.

E.2 IMAGE DISTRIBUTION ESTIMATION

Here we describe the details for the experiments on image distribution estimation, as well as present
some additional results that complement the findings from the main text.

Datasets. For the distribution estimation experiments with image data, we employ the MNIST (LeCun
et al., 2010) and FashionMNIST (Xiao et al., 2017) datasets composed of, respectively, digits and
clothing black-and-white pictures of size 28× 28 px, yielding a total of 784 input features. We treat
each of these inputs as Categorical inputs with 256 classes (one for each of the grayscale intensity
values). We randomly reserve 5% of the training dataset split for validation.

Building structured-decomposable circuit architectures. One way of easily construct smooth
and decomposable (Def. 2) circuit architectures is by parameterizing via product and sum units a
hierarchical partitioning of the variables scope. This hierarchical variables partitioning—known
as region graph (Dennis and Ventura, 2012)—recursively splits a set of variables X into disjoint
sets, which provides a “skeleton” for the circuit architecture. In other words, a region graph tells us
how the product units will split their scope towards their inputs, thus guaranteeing the satisfaction
of decomposability. A region graph whose structure is constrained to be a tree is analogous to
mode cluster trees as in hierarchical factorization methods (Grasedyck, 2010), which also guarantees
the corresponding circuit is structured-decomposable (Pipatsrisawat and Darwiche, 2008). Now,
following Peharz et al. (2019; 2020); Loconte et al. (2025a) we build tensorized circuits by (i)
instantiating a region graph and (ii) parameterizing each variables partitioning node in the region
graph by adding a product layer followed by a sum layer. This guarantees that the resulting tensorized
circuit is smooth ad decomposable. To build structured-decomposable circuits over image pixel
variables, we consider a tree-shaped region graph called quad-tree, which is obtained by recursively
splitting the image into four even and aligned patches (Mari et al., 2023). Our baseline and unitary
squared PCs (±2

C and ⊥2
C, respectively) are based on this region graph.

Building non-structured-decomposable circuit architectures. In addition to structured-
decomposable squared unitary PCs, we experiment with non-structured-decomposable ones, i.e.,
squared PCs that satisfy our conditions (U1) to (U4) and whose structure encode multiple variable par-
titionings (unlike TTNs, e.g., see Fig. 3). Differently from the quad-tree region graph, which only re-
sults in structured-decomposable circuits, we devise a new region graph by considering multiple ways
to recursively split an image patch into smaller patches. Formally, given a set of image pixel variables
X, we partition them into two distinct ways by splitting the image either horizontally or vertically, re-
sulting in partitions (Xabove,Xbelow) and (Xleft,Xright), respectively. We do the same recursively
for each obtained image patch Xabove, Xbelow, Xleft, Xright, until either the patch height or width is
too small w.r.t. a certain threshold (we choose our minimum patch width and height to be 8), or the
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patch is composed of a single pixel. This approach of constructing a region graph for images by con-
sidering multiple ways of splitting the same patch recursively is similar to other ones in the circuit lit-
erature (Poon and Domingos, 2011; Peharz et al., 2020; Mari et al., 2023). However, these approaches
construct one input layer for each pixel variable, whose outputs are then shared by different parts of the
non-structured-decomposable circuit architecture. Instead, in order to ensure orthogonality between
input layers over the same variable (i.e., to satisfy our conditions (U1) and (U2) and (U4)) we do not
share the embedding input layers and parameterize them such that they are pairwise orthonormal. Note
that, since the goal of the work is showing that one can train squared non-structured-decomposable
squared unitary PCs supporting tractable marginalization, we did not focus on the construction of
the region graph. We believe that our results for non-structured-decomposable squared unitary PCs
(Fig. E.2) could be further improved by exploring different ways of constructing their architecture.

Hyperparameters. In our experiments whose results are shown in Fig. 4b and Fig. E.2, we vary
the number of computational units in each input and sum layer by ensuring that all models have a
comparable number of trainable parameters. That is, for circuits build from the quad-tree region graph,
we consider {16, 32, 64, 128, 256, 512} units in the case of squared PCs with Hadamard layers and
{4, 6, 8, 10, 12, 14, 16} units in the case of Kronecker layers. For the non-structured-decomposable
squared PCs with Kronecker layers, we also consider {18, 20, 22} units per layer. For the baseline
squared PCs, we tune the models where we consider Adam with a learning rate of 0.01 (which
were the best hyperparameters found by Loconte et al. (2025b)), as well as SGD with learning rates
0.01 and 0.001. For squared unitary PCs, we consider LandingPC∗ with learning rate of 0.05 and
LandingSGD∗ with a momentum of 0.9 and learning rates 0.01 and 0.001, where we fix λ = 0.1
always. Here, an asterisk denotes LandingSGD with one or both modifications described in App. F.
Finally, for unitary circuits we also consider LandingSGD as described by Ablin et al. (2024) and the
same hyperparameter as described before for LandingSGD∗.

Additional settings. To provide a broader view on the design choices made in our experimental
section, we expand in Fig. E.2 the plot from Fig. 4b with more combinations of product layers and
optimizers. The first observation is that the performances of baseline squared PCs heavily relies
on the optimizer: despite testing various learning rates, we could not obtain satisfactory results
using SGD as the optimizer. Second, we observe that indeed squared unitary PCs do not play well
with Hadamard product layers: for every optimizer and circuit size we tried, their performance is
significantly worse that the best models. Finally, we see the importance of the adjustments made to
the LandingSGD algorithm (Ablin and Peyré, 2022) described in App. F: while the original algorithm
(LandingSGD) does not perform well, by projecting back to the Stiefel manifold each time a matrix
goes too far from it (LandingSGD∗) we significantly improve their performance, yet they struggle
with the larger circuits. Then, by replacing the Euclidean gradient in the algorithm (LandingPC∗) we
strictly improve the performance of the trained unitary circuits in every setting we tested.

Table E.1: Distribution estimation performances of a squared PC and a unitarity squared PC on the
MNIST dataset (LeCun et al., 2010) as we increase the number of layer units. Performance shows
mean and standard deviation across three random initializations.

Circuit
class

Product
layer

# params Test performance
Optimizer # units (×106) (bpd)

±2
C Hadamard Adam

16 6.5577 1.3071 ± 0.0105
32 13.3858 1.2676 ± 0.0068
64 27.8529 1.2518 ± 0.0033

128 60.0312 1.2337 ± 0.0011
256 137.3640 1.2147 ± 0.0015
512 343.9340 1.1991 ± 0.0004

⊥2
C Kronecker

LandingPC
(see App. F)

4 2.1353 1.3112 ± 0.0001
6 6.4260 1.2567 ± 0.0003
8 20.1339 1.2328 ± 0.0005

10 55.6461 1.2201 ± 0.0005
12 133.2764 1.2064 ± 0.0005
14 283.2467 1.1998 ± 0.0015
16 547.6680 1.1923 ± 0.0007
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Figure E.2: Image distribution estimation experiment from Fig. 4b with additional settings. Specifi-
cally, we show normal and unitary squared PCs using Hadamard or Kronecker product layers, and us-
ing different optimizers. An asterisk denotes LandingSGD with one or both modifications described
in App. F, referring to the latter as LandingPC. The plot is computed over three random initializations.

Table E.2: Distribution estimation performances of a squared PC and a unitarity squared PC on the
FashionMNIST dataset (Xiao et al., 2017) as we increase the number of layer units. Performance
shows mean and standard deviation across three random initializations.

Circuit
class

Product
layer

# params Test performance
Optimizer # units (×106) (bpd)

±2
C Hadamard Adam

16 6.5577 3.5451 ± 0.0020
32 13.3858 3.4689 ± 0.0019
64 27.8529 3.4479 ± 0.0008

128 60.0312 3.4545 ± 0.0044
256 137.3640 3.4349 ± 0.0024
512 343.9340 3.4199 ± 0.0012

⊥2
C Kronecker

LandingPC
(see App. F)

4 2.1353 3.6700 ± 0.0008
6 6.4260 3.5325 ± 0.0005
8 20.1339 3.4651 ± 0.0008

10 55.6461 3.4306 ± 0.0016
12 133.2764 3.4148 ± 0.0007
14 283.2467 3.4105 ± 0.0009
16 547.6680 3.4128 ± 0.0028

E.3 BENCHMARKING SQUARED PCS

In this section, we briefly describe the experimental details regarding the benchmark results plotted
in Fig. 4a, as well as provide the quantitative results of said experiment, see Tab. E.3.

Experimental setting. We keep the experimental setting as close as possible to that from App. E.2,
meaning that we use the same circuit architectures as there. To increase the number of parameters,
we increase the number of units in input and sum layers, as we report in Tab. E.3. To provide reliable
timings and peak GPU memory measurement, we simulate a single optimization step (or training
iteration) that minimizes the negative log-likelihood computed over one batch of data points. That is,
we measure time and peak GPU memory required to evaluate the input and inner layers, as well as to
perform the backpropagation step and parameters update using a particular optimizer (SGD, Adam
and LandingPC (App. F)). Finally, we average the results over 50 training iterations and perform 10
initial burn-in iterations to discard initial artifacts and overheads.

Results. In Tab. E.3 we report time and peak GPU memory measurements illustrated in Fig. 4a
in tabular format, for both squared PCs (±2

C) and squared unitary PCs (⊥2
C). As discussed in §6,

the unitary parameterization in squared PCs permits us to not materialize the squared PC as a
decomposable circuit in order to compute the partition function (as it is fixed to 1) required by the
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negative log-likelihood loss. As such, the unitary parameterization together with the LandingPC
optimizer (App. F) brings computationally cheaper parameter updates, when compared to baseline
squared PCs learned using either SGD or Adam as optimizer.

Table E.3: Time and memory consumption of different combinations of squared PCs and optimizers
for a single training iteration. We find that squared unitary PCs are faster and use less memory than
their counterparts, even if they employ Kronecker product layers.

Circuit
class

Product
layer

# params GPU Mem. Time
Optimizer # units (×106) (GiB) (ms/iter)

±2
C Hadamard SGD

8 0.0873 0.0889 0.0366
16 0.3492 0.1647 0.0374
32 1.3968 0.3348 0.0371
64 5.5870 0.7497 0.0337

128 22.3479 1.8779 0.0443
256 89.3914 5.3277 0.1285
512 357.5649 17.0012 0.5226

±2
C Hadamard Adam

8 0.0873 0.0893 0.0366
16 0.0349 0.1660 0.0374
32 1.3968 0.3400 0.0375
64 5.5870 0.7705 0.0375

128 22.3479 1.9611 0.0459
256 89.3914 5.6607 0.1337
512 357.5649 18.3332 0.5426

⊥2
C Hadamard

LandingPC
(see App. F)

8 0.0873 0.0866 0.0170
16 0.3492 0.1555 0.0171
32 1.3968 0.2984 0.0173
64 5.5870 0.6040 0.0199

128 22.3479 1.2953 0.0303
256 89.3914 2.9979 0.0737
512 357.5649 11.0130 0.2666

⊥2
C Kronecker

LandingPC
(see App. F)

8 11.2108 0.8895 0.0364
10 34.1124 1.9109 0.0508
12 84.7711 3.7685 0.0848
14 183.0993 6.9384 0.1695
16 356.8435 12.0623 0.2923

F THE FAMILY OF LANDING ALGORITHMS

Here, we briefly describe the family of Landing optimization algorithms used to learn semi-unitary
matrices, as well as the modifications we performed to train squared unitary PCs. Refer to the original
works to see a full description of the LandingSGD algorithm, its variants, as well as their theoretical
properties (Ablin and Peyré, 2022; Ablin et al., 2024).

Say that we want to optimize one of the matrices W ∈ Rn×p with n > p of a circuit, constraining
W to lie in the Stiefel manifold, i.e. such that W⊤W = Ip. The LandingSGD algorithm (Ablin and
Peyré, 2022) will then produce a sequence of iterates as follows:

Wt+1 := Wt − ηΛ(Wt) (15)

where Λ is the landing field defined as

Λ(W) := gradf(W) + λW(W⊤W − Ip) (16)

and where gradf(W) = skew(∇f(W)W⊤)W is the relative gradient (i.e. gradient in the tangent
space of the non-singular matrix manifold with respect to multiplicative noise, rather than additive)
of the loss function f we are trying to optimize. The second term of the last equation can also be
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Algorithm F.1 The original LandingSGD algorithm (Ablin and Peyré, 2022).
Input: The matrix W, its gradient∇f(W), a momentum buffer A (initiated as∇f(W)), and the iteration t.
Hyper-parameters: Learning rate η, momentum γ, weight decay ψ, dampening υ, attraction strength λ, safe
step ϵ, stabilization steps T .
1: let g = ∇f(W) + ψW ▷ Weight decay
2: let gradf(W) = skew(∇f(W)W⊤)W ▷ Relative gradient (in the manifold)
3: if γ > 0 then
4: let A = γA+ (1− υ)g ▷ Momentum
5: let g = A
6: if use Nesterov momentum then
7: let g = ∇f(W) + γA

8: let∇N (W) = λW(W⊤W − Ip) ▷ Normal direction (towards the manifold)
9: if ϵ > 0 then ▷ Compute safe step size

10: let d = ||W⊤W − Ip||F
11: let r = ||g +∇N (W)||F
12: let η∗ = (−λd(d− 1) +

√
λ2d2(d− 1)2 + r2 max(0, ϵ− d))/(r2 + 1e−8)

13: let η = min(η∗, η)

14: let W = W − ηg
15: if t mod T = 0 then
16: let W = (W⊤W)−

1
2W ▷ Project back to the manifold

17: let A = A−WA⊤W ▷ Project to the tangent space of W

seen as the gradient of the distance of the matrix W to the manifold, ∇N (W), where N (W) =
1
4 ||W

⊤W − Ip||2. In turns out that the two terms of the sum above are actually orthogonal, and
thus the landing algorithm can be understood as the combination of an f -informed force (the relative
gradient) and an attractive force which pulls the iterates towards the Stiefel manifold.

From the base algorithm introduced by Ablin and Peyré (2022), and described in Alg. F.1, Ablin et al.
(2024) generalize it and introduce its stochastic version, LandingSGD, as well as another variant
for variance reduction. In order to make the algorithm work on our setting, we took our own spin
and modified LandingSGD. Namely, we introduced two main changes: (i) we replace the Euclidean
gradient ∇f(W) to be the one given by the result of combining VectorAdam (Ling et al., 2022) and
RAdam (Liu et al., 2020); and (ii) project the gradient back to the manifold if we find their distance
to exceed the same threshold ϵ as the one given to the LandingSGD algorithm. To distinguish it from
the original algorithm, in this manuscript we refer to the final algorithm after the aforementioned
adjustments as LandingPC. The change of gradient does not break the theoretical guarantees of
landing algorithms since the generalized analysis by Ablin et al. (2024) works as long as gradf(W)
is skew-symmetric, which is still the case if we replace ∇f(W).
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