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Abstract

Observational noise, inaccurate segmentation and am-
biguity due to symmetry and occlusion lead to inaccurate
object pose estimates. While depth- and RGB-based pose
refinement approaches increase the accuracy of the result-
ing pose estimates, they are susceptible to ambiguity in the
observation as they consider visual alignment. We pro-
pose to leverage the fact that we often observe static, rigid
scenes. Thus, the objects therein need to be under physi-
cally plausible poses. We show that considering plausibility
reduces ambiguity and, in consequence, allows poses to be
more accurately predicted in cluttered environments. To this
end, we extend a recent RL-based registration approach to-
wards iterative refinement of object poses. Experiments on
the LINEMOD and YCB-VIDEO datasets demonstrate the
state-of-the-art performance of our depth-based refinement
approach. See github.com/dornik/sporeagent.

1. Introduction
Applications such as robotic grasping or augmented re-

ality require the estimation of accurate object poses. This
allows an observed scene to be represented by a set of 3D
meshes and enables interaction with these scene objects.
Given an initial pose estimate, the task of object pose re-
finement is to closely align an object’s mesh with the corre-
sponding image patch or point cloud to improve accuracy.

Image-based approaches aim to align with an RGB(D)
image patch or instance segmentation mask [15, 28, 20, 7].
Approaches using point clouds align the sampled surface
of the object mesh with an observed point cloud that is
computed from a depth image [5]. RGB images provide
high resolution and textural information but distance and
scale are ambiguous. Using absolute depth information re-
solves this ambiguity. However, depth sensors offer lower
resolution and suffer from artifacts such as depth shadow-
ing and quantization errors. While approaches combining
both modalities achieve high accuracy [15, 10, 23], they
are bound by the limitations of visual observability. Indis-
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Figure 1. Objects are segmented and initial poses are estimated
(upper left). The scene is initialized and all objects therein are
refined iteratively. In each iteration, we more closely align the
observed source and the target model point clouds (lower left),
while increasing physical plausibility of the scene (lower right).

tinguishable views of an object due to (self)occlusion and
symmetry lead to ambiguous refinement targets.

To resolve such ambiguous situations, recent approaches
additionally consider the physical configuration of the com-
plete scene [22, 16, 3]. This additional source of infor-
mation exploits the pose estimates of other scene objects,
limiting the possible object interactions. These approaches
are, however, limited to resolving collisions [22] or require
physics simulation [16, 3].

In contrast to prior work, we guide our refinement ap-
proach towards non-intersecting, non-floating and statically
stable scenes by using a contact-based definition of physi-
cal plausibility [2]. We extend a Reinforcement Learning-
based point cloud registration approach [4] by considering
surface distance as proxy for scene-level interaction infor-
mation and reinforce a plausibility-based reward. Geomet-
rical symmetry is considered to stabilize training using Imi-
tiation and Reinforcement Learning (IL+RL).

Exploiting this additional source of information in com-
bination with point cloud based alignment, our Scene-
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level Plausibility for Object Pose Refinement Agent
(SporeAgent) achieves accuracy comparable to RGBD ap-
proaches and outperforms competing RGB and depth-only
approaches. While RGB(D)-based methods need large
amounts of training data to converge, we are able to use
a fraction of training images, using only 1/100th of the real
training images provided for YCB-VIDEO.

In summary, we achieve the presented results by:

• integrating physical plausibility with IL+RL-based it-
erative refinement of object poses;

• simultaneously refining all objects in a scene, recov-
ering from pose initialization errors due to ambiguous
alignment using scene-level physical plausibility;

• considering geometrical symmetry, further dealing
with indistinguishable views in the depth domain and

• achieving state-of-the-art accuracy, while requiring
limited amounts of training data.

After an overview of previous work in Section 2, we briefly
introduce the related tasks of point cloud registration and
object pose refinement in Section 3. Extensions to IL+RL-
based point cloud registration tackling the discussed chal-
lenges in pose refinement are proposed in Section 4. We
evaluate our approach on the LINEMOD and YCB-VIDEO
datasets and provide an ablation study of the proposed ex-
tensions in Section 5. Section 6 concludes the paper and
gives an outlook to future work.

2. Related Work
Closely related to depth-based pose refinement, the task

of point cloud registration is recently approached as a
learning task. Building on the core ideas of ICP [5],
learned feature representations improve the matching be-
tween corresponding points in the source and the target
point clouds [24, 9, 26]. Yuan et al. [27] learn Gaussian
Mixture Model parameters for probabilistic registration. A
further line of work uses a learned global feature represen-
tation to represent the iterative registration state, combined
with an application of the Lukas-Kanade algorithm [1] or
Reinforcement Learning (RL) [4]. Our refinement approach
is based on the latter RL approach as it suited to incorporate
domain knowledge such as physical plausibility.

Learning-based object pose refinement, in contrast, is
commonly based on RGB images [15, 20, 7, 28] where
the goal is to align a rendering of the object under esti-
mated pose to an observed image patch. Seminal work by
Li et al. [15] uses optical flow features to predict the refine-
ment transformation to more closely align the given image
patches. The approaches of Shao et al. [20] and Busam et
al. [7] consider this as a RL task and learn a policy that pre-
dicts discrete refinement actions. An alternative use of RL

is proposed in [13], where RL actions are selected as one of
a pool of pose hypotheses to be refined in each iteration.

However, these approaches in point cloud registration
and object pose refinement consider a single registration
target (i.e., a single object) at a time. Especially in heav-
ily cluttered scenes that may occur, for example, during
robotic manipulation, consideration of the full scene of ob-
jects is shown to be beneficial. Labbé et al. [14] propose a
global refinement scheme, incorporating all scene objects in
a joint pose optimization and incorporate multiple views of
the scene. By fusing multiple views into a voxel grid, Wada
et al. [22] additionally consider the collision between scene
objects in their refinement method. A formalization of this
concept of considering physical interactions between static
scene objects for evaluation of pose estimates is proposed
in [2], which is used for our definition of physical plausibil-
ity. In contrast, the methods proposed by Mitash et al. [16]
and Bauer et al. [3] apply physics simulation to scene esti-
mates, leveraging the simulated dynamics of the scene ob-
jects to improve pose hypotheses and verify the best aligned
combinations with respect to the observed depth image. We
employ a similar depth-based pose scoring to determine the
best pose during refinement.

3. Background: Point Cloud Registration us-
ing Imitation and Reinforcement Learning

The task of depth-based object pose refinement is closely
related to point cloud registration. In this section, we give
a brief overview of registration, link it to refinement and
introduce terms used throughout the paper. We additionally
discuss how registration – and by extension refinement – is
approached as a reinforcement learning task.

3.1. Point Cloud Registration and Refinement

Assume we are given a source X and target point cloud
Y that, for example, both represent a single object. The
target is offset from the source by an unknown rigid trans-
formation T of form [R ∈ SO(3), t ∈ R3]. The task of reg-
istration is to find a transformation T̂ such that the source
and target are aligned again, i.e., T̂ T−1 = I . This trans-
formation may be found directly or iteratively by updating
the source with intermediary transformations Xi+1 = T̂iX .
Moreover, an initial estimate T̂0 may be provided.

Translated to object pose refinement, the source is a par-
tial and noise afflicted view of the object, represented by
a point cloud, and the target is represented by a 3D mesh.
The initial estimate is commonly computed using a dedi-
cated object pose estimator.

3.2. Reinforced Point Cloud Registration

Iteratively determining a transformation T̂i that, with
each iteration i, more closely aligns two point clouds
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(X,Y ) may be interpreted as taking a sequence of re-
finement actions. We will refer to such a sequence
{a1, ..., ai+1} as a refinement trajectory. Considering the
prediction of such trajectories as a RL task, the goal is to
determine a policy that selects a suitable refinement action
ai+1 given the current observationOi = (Xi, Y ). In related
work [20, 4], the action space for this task is assumed to
consist of a set of discrete steps per transformation dimen-
sion. Hence, in each iteration, the policy must determine a
step per axis, separately for rotation and translation. Such
an action, for example, might relate to taking a small trans-
lation step along x-axis. The policy for this action space
is represented by a discrete probability distribution π(a|O)
that is conditioned on the observation.

Such a policy is predicted by the network architecture
presented in [4]. A simplified PointNet [17] is used as em-
bedding, consisting of three 1D-convolution layers of di-
mension [64, 256, 1024]. Source and target are processed
independently with shared weights. The concatenation of
the max pooling of the final layer constitutes the state vec-
tor and is used as representation of the observation. The
state vector serves as input for the policy network, consist-
ing of two separate heads for rotation and translation ac-
tions and an additional head for computing a value estimate
for the current state. The value estimate serves as base-
line for the advantage computation used in RL. All heads
are implemented using fully-connected layers of dimension
[512, 256, D] and the policy heads’ output is interpreted as
a discrete probability distribution over refinement actions.

An expert policy π∗ is able to determine the optimal ac-
tions in every iteration by taking the largest step towards the
ground-truth pose T . Formally, such an expert policy may
be defined [4] by taking the largest rotation and translation
actions per-axis to minimize the residuals

δRi = RR̂i
>
, δti = t− t̂i, (1)

where T = [R, t] is the ground-truth transformation and
T̂i = [R̂i, t̂i] is the current estimate. The actions pre-
dicted by this policy may be used in conjunction with IL ap-
proaches such as Behavioral Cloning, for which they serve
as ground-truth labels during training.

A combination of IL with RL is proposed in [4]. An
alignment-based reward ra is reinforced via Proximal Pol-
icy Optimization (PPO) [19] in a discounted task. For an
action ai+1 in iteration i, it is defined as

ra =


−ρ−, CD(Xi+1, X

∗) > CD(Xi, X
∗)

−ρ0, CD(Xi+1, X
∗) = CD(Xi, X

∗)

ρ+, CD(Xi+1, X
∗) < CD(Xi, X

∗),

(2)

whereCD is the Chamfer distance,X∗ = TX is the source
under ground-truth pose and (−ρ−,−ρ0, ρ+) is a set of re-
wards for worsening, stagnating and improving the align-
ment with respect to the previous step. The loss from IL is
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Figure 2. Representation for per-object refinement (left) and for
computation of the scene-level information (right).

blended with the PPO loss via a scaling factor α that affects
the impact of PPO. We employ this combined approach as
it is shown to quickly converge, while allowing further do-
main knowledge to be integrated via adaptation of the expert
policy in Equation (1) and the reward in Equation (2).

4. Reinforced Scene-level Plausibility for
Object Pose Refinement

In applications such as robotic grasping or augmented re-
ality, erroneous object pose estimates may result in missed
grasps or might disrupt the immersion of the user. To im-
prove upon single-shot pose estimation, object pose refine-
ment aims to iteratively increase the alignment of an object
under estimated pose with an observation.

Object pose refinement from a single view further in-
creases the difficulty of the task. First, objects are com-
monly observed in the context of complex scenes, requir-
ing instance segmentation of the object of interest. Second,
many classes of objects (e.g, cylindrical, box-shaped) fea-
ture geometrical symmetries, which makes alignment am-
biguous. Finally, objects are only partially observable from
a single view. This issue is aggravated in cluttered scenes
due to occlusion between objects.

To tackle each of these challenges, we extend the rein-
forced point cloud registration approach presented in Sec-
tion 3 towards pose refinement. Consideration of geometri-
cal symmetry in the expert policy and surface normals as ad-
ditional input are discussed in Section 4.1. As presented in
Section 4.2, we furthermore integrate contact-based phys-
ical plausibility as input and at the RL stage to deal with
visual ambiguity.

4.1. From Registration to Object Pose Refinement

The baseline approach is designed for registration of
noisy yet complete point clouds. In object pose refinement,
however, the observed point cloud represents only a single
partial view of the object. The required instance segmenta-
tion might include points belonging to the background or
close-by objects. Hence, the noisy source only partially
overlaps with the noise-free target that is sampled from the
object’s 3D mesh. The target may also have geometrical
symmetries. The correct alignment between source and tar-
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get point cloud is thus ambiguous, as any symmetrical pose
will result in an indistinguishable observation of the object.
The following extensions enable the registration to perform
accurately on real data on the pose refinement task.

4.1.1 Extending Input and Embedding

To deal with inaccurate segmentation of the object, we adapt
the input representation and extend it by further geometri-
cal information. Surface normals are a strong geometrical
cue for outlier points as the observed normals are subject
to large changes at object borders. Source normals are es-
timated from the observed point cloud. For the target point
cloud, they are retrieved from the mesh face from which the
points are sampled.

Normalizing the input point clouds provides an induc-
tive bias that any point outside the unit sphere is either mis-
aligned or an outlier. This also reduces the range of the
potential inputs. Formally, the normalization with respect
to the target Y is defined by

X ′ = (X − µY )/dY , Y ′ = (Y − µY )/dY , (3)

where µY is the centroid of the target and dY is the max-
imal distance from the centroid to any point in the target.
See Figure 2 (left) for an illustration. Supporting the uni-
form coverage of the input space further, we align objects
into a canonical orientation in which the major symmetry
axis is aligned with the z-axis. Cylindrical, cuboid and box-
shaped objects are oriented uniformly as shown in Figure 3.
Thereby, objects’ targets will more closely align and thus
leverage similar geometrical features. This supports train-
ing and results in higher refinement accuracy as discussed
in the ablation study in Section 5.3.

To accommodate this additional input and further ex-
tensions to be discussed in the following sections, we
add two additional layers to the baseline’s embedding net-
work, resulting in five 1D-convolution layers of dimension
[64, 128, 256, 512, 1024] in total.

Moreover, outlier points are pruned using a segmentation
branch consisting of four 1D-convolution layers of dimen-
sion [512, 256, 128, 1]. The concatenation of the first and
last layer’s feature embedding as well as a one-hot class
vector results in a 1088 + k dimensional input, where k
is the number of classes. Points that are labeled outliers
are ignored in the max pooling operation and thus do not
contribute towards the state vector. This outlier removal is
trained using the ground-truth instance labels and a binary
cross-entropy loss, scaled by a factor β.

4.1.2 Symmetry-aware Expert Policy

The expert policy presented in Section 3 provides the goal
trajectories for IL. It is defined to minimize the residual be-
tween the estimated and ground-truth pose. However, for

Figure 3. Geometrical symmetry classes. From left to right: Cylin-
drical, cuboid, box, front-back and rotational. Rotational symme-
tries (blue) are sampled with a resolution of ∆deg.

symmetrical objects, the object under ground-truth pose is
indistinguishable from a transformation by an alternative
symmetrical pose. The expert labels are thus inconsistent
with respect to the observation and the agent will receive a
varying loss for seemingly equivalent actions.

To address this issue, we consider multiple equivalent
ground-truth poses of form [Rs, ts] for symmetrical objects.
The expert should follow the shortest trajectory and thus
move towards the symmetrical pose that is closest to the cur-
rent estimate T̂i. Due to the symmetry axes coinciding with
the origin in our canonical representation of the objects, the
symmetry transformations do not involve any translation.
The index si of the closest pose is thus determined by tak-
ing the residual rotation with the smallest angle

si = argmin
s

arccos
trace(RsR̂i

>
)− 1

2

= argmax
s

trace(RsR̂i
>
).

(4)

The expert actions are computed as before by retrieving the
symmetry-aware residuals using Equation (1) with respect
to [Rsi , tsi ] as ground truth.

Since most related approaches exploit RGB information,
the available symmetry annotations for common pose esti-
mation datasets [12] consider the texture of objects as well
as their geometry. Hence, we need to annotate additional
geometrical symmetries for use with depth-only observa-
tions. In canonical representation, this reduces to assigning
objects to one of the five symmetry classes, as illustrated in
Figure 3, in our experiments1.

4.2. Scene-level Physical Plausibility

Visual information alone might still be ambiguous due
to occlusion or observational noise. However, assuming
the observed scene is static, physically plausible interac-
tions between an object and its support limit the space of
admissible object poses within the scene.

1The transformations to our canonical representation and the corre-
sponding symmetry annotations per object are provided with our code.
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Figure 4. Definition of physical plausibility based on critical points for a single object (left) and a scene (right). If feasible, the CoM
projected in gravity direction must intersect the support polygon (convex hull of supported points) to be considered stable.

4.2.1 Definition of Physical Plausibility

Individual aspects of physical plausibility such as collision
are modeled using voxel grids [22] or by the dynamics com-
puted using physics simulation [16, 3]. In contrast, physical
plausibility defined in [2] is based on the interacting points
between objects. As such, this approach is well suited to be
incorporated with point cloud inputs.

As illustrated in Figure 4 (left), the signed distance be-
tween two objects serves as a basis for the definition of
points that are critical for physical plausibility. The signed
distance is the Euclidean distance to the closest surface
point, with points inside the surface having negative sign.
We refer to it as surface distance d(x) of a point x.

Points farther within another object than a threshold ε
are considered intersecting, as defined by

I = {x ∈ X : d(x) < −ε}. (5)

Points within an absolute distance of ε are considered in
contact, or formally

C = {x ∈ X : |d(x)| < ε}. (6)

In addition to the definitions of [2], we consider a contact to
be supported, if

S = {c ∈ C : cos(ny(c) · g) < 0}, (7)

where ny(c) is the normal of the closest point y to c in the
scene and g the gravity direction. These critical points allow
to define the plausibility conditions, illustrated in Figure 4.

If there is at least one intersecting point, the object is
considered intersecting. If an object has no contact point,
it is consider to be floating. If it is neither intersecting nor
floating, the object is defined to be under a feasible pose
within the current scene. Finally, if the center of mass
(CoM) of the object – projected in the gravity direction –
falls within the supporting polygon, the object is stable. The
supporting polygon is defined as the convex hull of the sup-
ported points S. An object that is both feasible and stable
under a given pose is considered to be physically plausible.

4.2.2 Computing Surface Distance and Critical Points

As the used definition of physical plausibility depends on
the surface distance, we need to efficiently compute it for

the whole scene in every refinement iteration. Moreover,
we need to determine an initial supporting plane and gravity
direction from the observation.

Assuming the supporting plane is sufficiently visible in
the scene, we use a RANSAC-based approach to fit a plane
to the subset of the source point cloud that is assigned a
background label in the instance segmentation. The plane’s
pose with respect to the camera is then given by P̂ . To deter-
mine the surface distance between scene objects, we trans-
form all corresponding object point clouds to this plane.
The sources are already in camera space and may thus be
transformed by P̂ . For the targets, we consider the current
pose estimate T̂i and transform targets by P̂ T̂i

−1
.

The surface distance with respect to the plane is now triv-
ially obtained by the z-coordinate of the queried point x.
For the distance between objects, the nearest neighbor in
each scene object is computed per queried point. The point
lies within the corresponding scene object if

cos(ny(x) · (y − x)) > 0, (8)

that is, if the normal of the nearest neighbor ny(x) points
in the same direction as the vector from x to the nearest
neighbor y. To make this test more robust, we compute it for
the k nearest neighbors and consider the point to lie inside
if it holds for a certain fraction of k. Note that a similar
quorum check is used to compute the supported points S.

The final surface distance per point x is computed by tak-
ing the minimum over the distances to all scene objects (and
the plane). The critical points of the queried point cloud are
then computed using Equations (5)–(7), with the gravity di-
rection given by the normal of the supporting plane.

Initially, the plausibility information derived from the
computed surface distances is inaccurate, since the initial
poses of the scene objects themselves are inaccurate. We
therefore consider all object poses in parallel – as all poses
improve, so does the scene-level plausibility information.

4.2.3 Leveraging Plausibility for Refinement

We want to exploit the additional source of information and
guide the agent towards plausible poses. The most straight-
forward approach is to add the surface distance as additional
input. Intuitively, the agent should move away from points
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that have a negative surface distance (intersecting) and keep
some points close to zero distance (in contact). As the sur-
face distance is available for both source and target, this
also situates the object within the scene – if we assume two
points to correspond, their surface distance under the esti-
mated pose should also correspond.

To enforce this behavior and to also provide a training
signal for the full trajectory, we add a plausibility-based re-
ward term. To reinforce actions that lead to poses under
which the object rest stably within the scene, we define

rp =

{
+ρp, if stable,
−ρp, otherwise.

(9)

Note that a necessary condition for stability is feasibility.
Thus, by reinforcing stability, feasibility is implicitly con-
sidered too. This reward is combined with the alignment-
based reward in Equation (2) in a discounted task. Hence,
if actions lead to a stable pose later on, the reward also re-
inforces these earlier actions via the discounted return.

4.2.4 Rendering-based Pose Scoring

Due to imprecise segmentation, the refinement may con-
sider close-by objects or points sampled from the back-
ground. Consequently, the alignment after the final itera-
tion might be lower than in an intermediary step. This is
all the more important as poses of scene objects influence
one another. Related work [10, 3] deals with this issue by
rendering-based verification of pose hypotheses.

In each iteration, the object under currently estimated
pose is rendered, giving a depth image Îd and a normal
image În. These are compared to the observed depth and
normal images Id and In, masked by the estimated segmen-
tation for the corresponding object. Based on [3], we define
the per-pixel score e(p) by

e(p) = (ed + en)/2, ∀p ∈ Îd > 0 ∪ Id > 0, (10)

where the depth and the normal scores ed, en are given by

ed(p) = 1−min(1, |Îd(p)− Id(p)|/τd),
en(p) = 1−min(1, (1− cosÎn(p) · In(p))/τn),

(11)

with thresholds τd and τn clamping and scaling the respec-
tive error to the range [0, 1]. Note that for the normal error
en, the cosine is clamped to [0, 1]. The mean over the per-
pixel scores is used to score the corresponding pose and the
one with maximal score is returned as refinement result.

5. Experiments
We evaluate the proposed depth-based pose refinement

approach in comparison with state-of-the-art methods, pro-
vide an ablation study for the proposed extensions and dis-
cuss failure cases. Qualitative examples are shown in Figure
5. Further experiments are provided in the supplement.

Datasets: The single object scenario is evaluated on the
LINEMOD dataset (LM) [11], consisting of 15 test scenes
showing one object in a cluttered environment each but with
only minor occlusion of the target object. The test split de-
fined in related work [6, 18, 21] is used, omitting scenes
3 and 7. The YCB-VIDEO dataset (YCBV) [25] features
more complex scene-level interactions and heavy occlusion
with test scenes consisting of three to six YCB objects [8].
In contrast to most competing approaches, we do not use
any additional synthetic training data. Moreover, on YCBV,
we only use 1/100th of the real training images.

Metrics: Evaluation metrics used in related work are
the Average Distance of Model Points (ADD) and Aver-
age Distance of Model Points with Indistinguishable Views
(ADI) [11]. The ADD is defined as the mean distance
between corresponding model points under estimated and
ground-truth pose. The ADI computes the mean distance
over the nearest points and as such is better suited for sym-
metrical objects. The AD uses ADI for objects that are sym-
metrical and ADD otherwise. Note that the distinction be-
tween (non)symmetrical objects in related work also con-
siders textural information in the color image which is not
observable by our depth-based approach.

Baselines: We compare our approach to state-of-the
art pose refinement methods that use RGB (DeepIM [15],
PoseRBPF [10], PFRL [20], DPOD [28]), depth (Point-to-
Plane ICP (P2Pl-ICP) [29], Iterative Collision Check with
ICP (ICC-ICP) [22], VeREFINE [3], the ICP-based multi-
hypothesis approach (Multi-ICP) in [25]) or a combination
of both modalities (DenseFusion [23], RGBD versions of
DeepIM [15] and PoseRBPF [10]). The RGB-based method
of Shao et al. [20] (PFRL) is conceptionally close to our ap-
proach as it leverages RL to refine the pose by aligning the
observed mask. In terms of used modality, the ICP-based
approaches are considered for direct comparison. Note that
the initialization by PoseCNN [25] only provides a single
pose hypothesis; we indicate the use of additional pose hy-
potheses by Multi-ICP with ∗. P2Pl-ICP and VeREFINE
(using P2Pl-ICP) are given a budget of 30 refinement iter-
ations. The correspondence threshold for P2Pl-ICP, given
as index in the results, is defined as fraction of the object
size. By (RGB)D we indicate that a method uses depth for
refinement but is initialized by a method that additionally
uses color information.

Implementation Details: Following related work [20,
15, 10, 14], we use the instance segmentation masks and
poses estimated by PoseCNN [25] for initialization.

For the refinement actions, we use step sizes of
[0.0033, 0.01, 0.03, 0.09, 0.27] in positive and negative di-
rection plus a “stop” action with step size 0. Step sizes are
interpreted in radians for rotation and in units of the nor-
malized representation for translation. Rotational symme-
tries are sampled with a resolution of 5deg. The threshold ε
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Figure 5. Initial (purple) and final pose (blue) on LINEMOD (left,
cropped) and YCB-VIDEO (right). Best viewed digitally.

for computing the critical points for plausibility is experi-
mentally determined with 1cm. The reward function uses
ρ = (−0.6,−0.1, 0.5) for alignment and ρp = 0.5 for plau-
sibility. The RL loss term is scaled by α = 0.1 on LM and
by 0.2 on YCBV. The outlier-removal loss term is scaled by
β = 7. The remaining network parameters are chosen as in
[4]. The segmentation masks are provided as a single chan-
nel image, missing information where they overlap, and the
clamps in YCBV are confused in many frames. To compute
the verification score, we thus merge both masks and use
thresholds τd = 2cm and τn = 0.7.

During training, we generate a replay buffer of 128
object trajectories each, delaying network updates until it
is filled and sampling batches from the shuffled buffer. The
training samples are augmented by an artificial segmenta-
tion error, random pose error for initialization and a ran-
dom error in the pose of the plane. The segmentation error
selects a random pixel within the ground-truth mask. The
nearest neighbors to this pixel are determined and p% of the
foreground and 100− p% of the background neighbors are
sampled. This simulates occlusion and inaccurate segmen-
tation, including parts of the background. Error magnitudes
are given with the experiments on the respective dataset.
We train SporeAgent for 100 epochs, starting with a learn-
ing rate of 10−3 and halving it every 20 epochs.

5.1. Single Object: LINEMOD

For training, we uniformly randomly choose the fore-
ground fraction p ∈ [50, 100%]. The initial pose is sam-
pled by rotation about a uniformly random rotation vector
by a random magnitude in [0, 90deg]. Similarly, the trans-
lation is in direction of a uniformly random vector of mag-
nitude [0.0, 1.0] units in the normalized space of the respec-
tive object. Additionally, the estimated plane is jittered by
a random rotation in [0, 5deg] and a random translation in
[0, 2cm], sampled as for to the initial pose.

Table 1 shows the mean class recalls for varying preci-
sion thresholds with respect to the object diameter d. As
shown, SporeAgent outperforms related approaches by a
large margin of 3.8% using the 0.05d threshold and 10.8%
using the 0.02d as compared to the next best methods.

AD (↑)
< 0.10d

AD (↑)
< 0.05d

AD (↑)
< 0.02d

Modality

PoseCNN [25] 62.7 26.9 3.3 RGB
PFRL [20] 79.7 – – RGB
DeepIM [15] 88.6 69.2 30.9 RGB
P2Pl-ICP0.2 [29] 90.6 81.2 36.8 (RGB)D
VeREFINE0.2 [3] 95.4 87.5 39.5 (RGB)D
P2Pl-ICP0.3 [29] 92.6 79.8 29.9 (RGB)D
VeREFINE0.3 [3] 96.1 85.8 32.5 (RGB)D
Multi-ICP∗ [25] 99.3 89.9 35.6 (RGB)D
SporeAgent (ours) 99.3 93.7 50.3 (RGB)D

Table 1. Results on LINEMOD (mean over per-class results).

ADD (↑)
AUC

AD (↑)
AUC

ADI (↑)
AUC Modality

PoseCNN [25] 51.5 61.3 75.2 RGB
CosyPose [14] – 84.5 89.5 RGB
PoseRBPF [10] 59.9 – 77.5 RGB
DeepIM [15] 71.7 81.9 88.1 RGB
PoseRBPF [10] 80.8 88.5 93.3 RGBD
DeepIM [15] 80.7 90.4 94.0 RGBD
ICC-ICP [22] 67.5 77.0 85.6 (RGB)D
P2Pl-ICP1.0 [29] 68.2 79.2 87.8 (RGB)D
VeREFINE1.0 [3] 70.1 81.0 88.8 (RGB)D
Multi-ICP∗ [25] 77.4 86.6 92.6 (RGB)D
SporeAgent (ours) 79.0 88.8 93.6 (RGB)D

Table 2. Results on YCB-VIDEO (mean over per-class results).

5.2. Full Scene: YCB-VIDEO

As YCBV already features large amounts of occlu-
sion, we increase the foreground fraction p to the range
[80, 100%] during training. In addition to this, the training
samples are more challenging and we thus reduce the initial
pose error to [0, 75deg] and [0, 0.75] translation units. The
same plane error as on LM is used.

The results in Table 2 report the Area Under the
precision-recall Curve (AUC) for a varying precision
threshold of [0, 10cm], averaged over per-class results. On
the ADI metric, our approach achieves accuracy on par with
RGBD-based methods, being only second to the RGBD ver-
sion of DeepIM [15]. Although our approach uses depth
information and, as such, may not consider textural sym-
metries reflected by high ADD and AD scores, we are able
to achieve higher accuracy than competing RGB-based ap-
proaches. Compared to the best other evaluated depth-
based approach (Multi-ICP [25]), we improve accuracy by
1 to 2.2%. Over the best single-hypothesis depth-based ap-
proach (VeREFINE [3]), the improvement is even higher
with 4.8 to 8.9%. Moreover, note that compared to the best
performing learning-based approaches, we require orders of
magnitude less real and no synthetic training data.

We would like to emphasize that the results reported for
PoseCNN are recomputed from the poses provided by the
authors of [25], as those poses serve as initialization to our
method. They however differ slightly from the scores re-
ported in their paper. Results for Multi-ICP are also com-
puted from the poses provided by the authors of [25, 15].
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AD (↑)
< 0.10d

AD (↑)
< 0.05d

AD (↑)
< 0.02d

SporeAgent 99.3 93.7 50.3
no normals 99.1 93.5 50.8
no outlier removal 99.3 93.6 50.1
no stability reward 99.3 93.7 50.0
no surface distance 99.4 94.0 46.3
no pose scoring 98.9 92.5 46.9
Baseline (IL) 98.8 90.6 39.7

Table 3. Ablation on LINEMOD.

ADD (↑)
AUC

AD (↑)
AUC

ADI (↑)
AUC

SporeAgent 79.0 88.8 93.6
no canonical 76.4 86.7 92.6
no symmetry 78.2 88.0 93.4
no outlier removal 78.6 88.5 93.5
no stability reward 78.2 88.1 93.4
no surface distance 77.3 87.3 92.9
no pose scoring 78.3 88.1 93.0
Baseline (IL) + normals 72.2 82.2 90.7

Table 4. Ablation on YCB-VIDEO.

fraction
ADD (↑)

AUC
AD (↑)
AUC

ADI (↑)
AUC

1/400th 75.4 86.2 92.5
1/200th 77.9 87.9 93.3
1/100th 79.0 88.8 93.6

points
ADD (↑)

AUC
AD (↑)
AUC

ADI (↑)
AUC

256 77.9 87.8 93.3
512 78.6 88.4 93.5
1024 79.0 88.8 93.6

Table 5. Results by fraction of training split used (left) and number
of points sampled for refinement (right) on YCB-VIDEO.

5.3. Ablation Study

To evaluate the impact of each of the proposed parts of
our method, we train separate models on LM and YCBV
with each part removed individually.

Table 3 shows results on LM. We see that the scene-
level information is essential to achieve high recall under
restrictive thresholds. Moreover, the rendering-based scor-
ing is able to determine the best-aligned intermediary pose
– without the scoring, the last iterations jitter between tight
alignment and observational noise.

The ablation study on YCBV, shown in Table 4, high-
lights the benefit of representing the target point clouds in a
canonical frame. As on LM, the consideration of the phys-
ical plausibility improves accuracy. The scene-level infor-
mation is able to support the refinement, even when com-
puted from initially inaccurate object poses.

Furthermore, we evaluate the impact of the number of
training samples and point samples used on YCBV. As
shown in Table 5 (left), the performance of Multi-ICP
[25] is achieved already using 1/400th of the available real
training images. Using 1/100th, SporeAgent outperforms
RGBD-based PoseRBPF on the AD AUC and ADI AUC
metrics. The number of points may be reduced to improve
runtime and memory footprint while maintaining high ac-
curacy, indicated by the results in Table 5 (right).

Figure 6. Failure cases on YCB-VIDEO. Best viewed digitally.

5.4. Analysis of Failure Cases and Future Work

Nevertheless, we observe specific systematic failure
cases that could not be resolved by considering physical
plausibility. For example, as shown in Figure 6, the two
differently sized clamps in YCBV are typically confused
by PoseCNN (our initialization) and may thus end-up stuck
within one another. Similarly, the bowl in YCBV may be
estimated in an upside-down pose due to occlusion. In this
scenario, refinement gets stuck between the plane and the
scene object resting on the bowl. We hypothesize that such
systematic errors can be best addressed by tighter integra-
tion of detection, pose estimation and refinement, as for ex-
ample proposed by Labbé et al. [14] for CosyPose.

In addition, when inaccurate segmentation, occlusion or
missing depth values (e.g., of metallic surfaces like caps
of cans) decimate the number of foreground points in the
source point cloud too much, accuracy of our approach
significantly drops as the remainder of the source mostly
consists of background points. Additional consideration of
color information might lessen this issue.

Further robustness may be achieved by consideration of
multiple pose hypotheses per instance, as proposed in re-
lated work [14, 16, 3]. For example, in the case of the
confused clamp classes, one hypothesis per class might
be refined and the most probable one selected using the
rendering-based scoring.

6. Conclusion
We present SporeAgent, a reinforcement learning ap-

proach to object pose refinement. SporeAgent jointly re-
fines the poses of multiple objects in an observed depth
frame in parallel. By considering object symmetries and
physical plausibility of the scene, we achieve state-of-the-
art results as shown in our evaluation on the LINEMOD and
YCB-VIDEO datasets. The provided ablation study illus-
trates the benefit of each proposed part and our analysis of
failure cases motivates future improvements towards further
robustness to noise and inaccuracy in detection, segmenta-
tion and initialization.
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