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ABSTRACT

Gradient regularization (GR) is a method that penalizes the gradient norm of
the training loss during training. Although some studies have reported that GR
improves generalization performance in deep learning, little attention has been paid
to it from the algorithmic perspective, that is, the algorithms of GR that efficiently
improve performance. In this study, we first reveal that a specific finite-difference
computation, composed of both gradient ascent and descent steps, reduces the
computational cost for GR. In addition, this computation empirically achieves
better generalization performance. Next, we theoretically analyze a solvable model,
a diagonal linear network, and clarify that GR has a desirable implicit bias in
a certain problem. In particular, learning with the finite-difference GR chooses
better minima as the ascent step size becomes larger. Finally, we demonstrate that
finite-difference GR is closely related to some other algorithms based on iterative
ascent and descent steps for exploring flat minima: sharpness-aware minimization
and the flooding method. We reveal that flooding performs finite-difference GR
in an implicit way. Thus, this work broadens our understanding of GR in both
practice and theory.

1 INTRODUCTION

Explicit or implicit regularization is a key component for achieving better performance in deep
learning. For instance, adding some regularization on the local sharpness of the loss surface is
one common approach to enable the trained model to achieve better performance (Hochreiter &
Schmidhuber, 1997; Foret et al., 2021; Jastrzebski et al., 2021). In the related literature, some
recent studies have empirically reported that gradient regularization (GR), i.e., adding penalty of the
gradient norm to the original loss, makes the training dynamics reach flat minima and leads to better
generalization performance (Barrett & Dherin, 2021; Smith et al., 2021; Zhao et al., 2022). Using
only the information of the first-order gradient seems a simple and computationally friendly idea.
Because the first-order gradient is used to optimize the original loss, using its norm is seemingly
easier to use than other sharpness penalties based on second-order information such as the Hessian
and Fisher information (Hochreiter & Schmidhuber, 1997; Jastrzebski et al., 2021).

Despite its simplicity, our understanding of GR has been limited so far in the following ways.
First, we need to consider the fact that GR must compute the gradient of the gradient with respect
to the parameter. This type of computation has been investigated in a slightly different context:
input-Jacobian regularization, that is, penalizing the gradient with respect to the input dimension
to increase robustness against input noise (Drucker & Le Cun, 1992; Hoffman et al., 2019). Some
studies proposed the use of double backpropagation (DB) as an efficient algorithm for computing
the gradient of the gradient for input-Jacobian regularization, whereas others proposed the use of
finite-difference computation (Peebles et al., 2020; Finlay & Oberman, 2021). Second, theoretical
understanding of GR has been limited. Although empirical studies have confirmed that the GR causes
the gradient dynamics to eventually converge to better minima with higher performance, the previous
work provides no concrete theoretical evaluation for this result. Third, it remains unclear whether the
GR has any potential connection to other regularization methods. Because the finite difference is
composed of both gradient ascent and descent steps by definition, we are reminded of some learning
algorithms for exploring flat minima such as sharpness-aware minimization (SAM) (Foret et al.,
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2021) and the flooding method (Ishida et al., 2020), which are also composed of ascent and descent
steps. Clarifying these points would help to deepen our understanding on efficient regularization
methods for deep learning.

In this work, we reveal that GR works efficiently with a finite-difference computation. This approach
has a lower computational cost, and surprisingly achieves better generalization performance than the
other computation methods. We present three main contributions to deepen our understanding of GR:

• We demonstrate some advantages to using the finite-difference computation. We give a brief
estimation of the computational costs of finite difference and DB in a deep neural network
and show that the finite difference is more efficient than DB (Section 3.2). We find that a
so-called forward finite difference leads to better generalization than a backward one and
DB (Section 3.3). Learning with forward finite-difference GR requires two gradients of
the loss function, gradient ascent and descent. A relatively large ascent step improves the
generalization.

• We give a theoretical analysis of the performance improvement obtained by GR. we analyze
the selection of global minima in a diagonal linear network (DLN), which is a theoretically
solvable model. We prove that GR has an implicit bias for selecting desirable solutions in
the so-called rich regime (Woodworth et al., 2020) which would potentially lead to better
generalization (Section 4.2). This implicit bias is strengthened when we use forward finite-
difference GR with an increasing ascent step size. In contrast, it is weaken for a backward
finite difference, i.e., a negative ascent step.

• Finite-difference GR is also closely related to other learning methods composed of both
gradient ascent and descent, that is, SAM and the flooding method. In particular, we reveal
that the flooding method performs finite-difference GR in an implicit way (Section 5.2).

Thus, this work gives a comprehensive perspective on GR for both practical and theoretical under-
standing.

2 RELATED WORK

Barrett & Dherin (2021) and Smith et al. (2021) investigated explicit and implicit GR in deep learning.
They found that the discrete-time update of the usual gradient descent implicitly regularizes the
gradient norm when its dynamics are mapped to the continual-time counterpart. This is referred to
as implicit GR. They also investigated explicit GR, i.e., adding a GR term explicitly to the original
loss, and reported that it improved generalization performance even further. Jia & Su (2020) also
empirically confirmed that the explicit GR gave the improvement of generalization. Barrett & Dherin
(2021) characterized GR as the slope of the loss surface and showed that a low GR (gentle slope)
prefers flat regions of the surface. Recently, Zhao et al. (2022) independently proposed a similar
but different gradient norm regularization, that is, explicitly adding a non-squared L2 norm of the
gradient to the original loss. They used a forward finite-difference computation, but its superiority to
other computation methods remains unconfirmed.

The implementation of GR has not been discussed in much detail in the literature. In general, to
compute the gradient of the gradient, there are two well-known computational methods: DB and
finite difference. Some previous studies applied DB to the regularization of an information matrix
(Jastrzebski et al., 2021) and input-Jacobian regularization, i.e., adding the L2 norm of the derivative
with respect to the input dimension (Drucker & Le Cun, 1992; Hoffman et al., 2019). Others have used
the finite-difference computation for Hessian regularization (Peebles et al., 2020) and input-Jacobian
regularization (Finlay & Oberman, 2021). Here, we apply the finite-difference computation to GR
and present some evidence that the finite-difference computation outperforms DB computation with
respect to computational costs and generalization performance.

In Section 4, we give a theoretical analysis of learning with GR in diagonal linear networks (DLNs)
(Woodworth et al., 2020). The characteristic property of this solvable model is that we can evaluate
the implicit bias of learning algorithms (Nacson et al., 2022; Pesme et al., 2021). Our analysis
includes the analysis of SAM in DLN as a special case (Andriushchenko & Flammarion, 2022). In
contrast to previous work, we evaluate another lower-order term, and this enables us to show that
forward finite-difference GR selects global minima in the so-called rich regime.
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3 GRADIENT REGULARIZATION

We consider GR (Barrett & Dherin, 2021; Smith et al., 2021), wherein the squared L2 norm of the
gradient is explicitly added to the original loss L(θ) as follows:

L̃(θ) = L(θ) + γ

2
R(θ), R(θ) = ∥∇L(θ)∥2, (1)

where ∥ · ∥ denotes the Euclidean norm and γ > 0 is a constant regularization coefficient. We
abbreviate the derivative with respect to the parameters∇θ by∇. Its gradient descent is given by

θt+1 = θt − η∇L̃(θt) (2)

for time step t = 0, 1, ... and learning rate η > 0. While previous studies have reported that
explicitly adding a GR term empirically improves generalization performance, its algorithms and
implementations have not been discussed in much detail.

3.1 ALGORITHMS

To optimize the loss function with GR (1) using a gradient method, we need to compute the gradient
of the gradient, i.e., ∇R(θ). As is well studied in input-Jacobian regularization (Drucker & Le Cun,
1992; Hoffman et al., 2019; Finlay & Oberman, 2021), there are two main approaches to computing
the gradient of the gradient.

Finite difference: The finite-difference method approximates a derivative by a finite step. In the
case of GR, we have ∇R(θt)/2 = (∇L(θ′) − ∇L(θt))/ε + O(ε) with θ′ = θt + ε∇L(θt) for a
constant ε > 0. The final term is expressed in Landau notation and is neglected in the computation.
We update the GR term by

∆RF (ε) =
∇L(θt + ε∇L(θt))−∇L(θt)

ε
(F-GR). (3)

We refer to this gradient as Forward finite-difference GR (F-GR). Because the gradient ∇L(θt)
is computed for the original loss, the finite difference (3) requires only one additional gradient
computation ∇L(θ′). The order of the computation time is only double that of the usual gradient
descent. The finite-difference method also has a backward computation:

∆RB(ε) =
∇L(θt)−∇L(θt − ε∇L(θt))

ε
(B-GR). (4)

If we allow a negative step size, ∆RB corresponds to ∆RF through ∆RB(ε) = ∆RF (−ε). For a
sufficiently small ε, both finite-difference GRs yield the same original gradient ∇R(θ) if we can
neglect any numerical instability caused by the limit. The finite-difference method has been used
in the literature for the optimization of neural networks, especially for Hessian-based techniques
(Bishop, 2006; Peebles et al., 2020). When we need a more precise ∇R, we can use a higher-order
approximation, e.g., the centered finite difference, but this requires additional gradient computations,
and hence we focus on the first-order finite difference.

Double Backpropagation: The other approach is to apply the automatic differentiation directly to
the GR term, i.e.,∇R. For example, its PyTorch implementation is quite straightforward, as shown in
Section C.1 of the Appendices. This approach is referred to as DB, which was originally developed
for input-Jacobian regularization (Drucker & Le Cun, 1992). We explain more details on the DB
computation and its computational graph in Section 3.2. DB, in effect, corresponds to computing the
following Hessian-vector product:

∆RDB = H(θt)∇L(θt), (5)

where H(θ) = ∇∇L(θ). The following equation may give us an intuition about the difference
between the finite difference and DB alternatives. From the mean value theorem, F-GR is equivalent
to

∆RF (ε) =
1

ε

∫ ε

0

dsH(θt + s∇L(θt))∇L(θt). (6)

We can interpret the finite difference as taking an average of the curvature (Hessian) along the line of
gradient update. For ε→ 0, this reduces to ∆RDB .
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Figure 1: Finite-difference computation is more efficient than DB computation in wall time.
(a) Wall time required for learning with GR in one epoch. For the ResNet, we used ResNet-
{18, 34, 50, 101, 152}. (b)Training dynamics in ResNet-18 on CIFAR-10. Learning with F-GR is
much faster in wall time.

Note that the difference among these algorithms appears in non-linear models. For a naive linear
model Xθ, the squared error loss has a constant Hessian XX⊤. Therefore, all of ∆R have the same
update. We analyze a simple network model with non-linearity on the parameters in Section 4 and
reveal the difference of implicit biases.

3.2 COMPUTATIONAL COST

We clarify the computational efficiencies of each algorithm of GR in deep networks. First, we give a
rough estimation of the computational cost by counting the number of matrix multiplication required
to compute ∇L̃. Consider an L-layer fully connected neural network with a linear output layer:
Al = ϕ(Ul), Ul = WlAl−1 for l = 1, ..., L. Note that Al denotes a batch of activation and WlAl−1

requires a matrix multiplication. We denote the element-wise activation function as ϕ(·) and weight
matrix as Wl. For simplicity, we neglect the bias terms. The number of matrix multiplications
required to compute∇L̃ is given by

Nmul ∼ 6L (for F-GR), 9L (for DB), (7)

where ∼ hides an uninteresting constant shift independent of the depth. One can evaluate Nmul

straightforwardly from the computational graph (Figure 2), originally developed for the DB computa-
tion of input-Jacobian regularization (Drucker & Le Cun, 1992). In brief, the original gradient ∇L,
that is, the backpropagation on the forward pass {A0 → A1 → · · · → AL}, requires 3L matrix multi-
plications: L for the forward pass, L for backward pass Bl = ϕ′(Ul)◦(W⊤

l+1Bl+1), and L for gradient
Gl := ∂L/∂Wl = BlA

⊤
l−1. Because F-GR is composed of both gradient ascent and descent steps, we

eventually need 6L. In contrast, for learning using the DB of GR, we need 3L for ∇L and additional
6L for the GR term. The GR term requires a forward pass of composed of Al, Bl, and Gl obtained in
the gradient computation of∇L. Note that the upper part {A0 → A1 → · · · → BL → · · · → B1} is
well known as the DB of input-Jacobian regularization. As pointed out in Drucker & Le Cun (1992),
the computation of ∇B1 is equivalent to treating the upper part of the graph as the forward pass and
applying backpropagation. It requires 2L multiplications. In our GR case, we have additional L
multiplications due to Gl. Because the backward pass doubles the number of required multiplications,
we eventually need 2× (2L+ L) = 6L multiplication. Further details are given in Section C.1.

The results of numerical experiments shown in Figure 1 confirm the superiority of finite-difference
GR in typical experimental settings. We trained deep neural networks using an NVIDIA A100 GPU
for this experiment. All experiments were implemented by PyTorch. We summarize the pseudo
code and implementation of GR and present the detailed settings of all experiments in Section C.
Figure 1(a) shows the wall time required for one epoch of training with stochastic gradient descent
(SGD) and the objective function (1). We trained various multi-layer perceptrons (MLPs) and residual
neural networks (ResNets) with different depths. The wall time increased almost linearly as the depth
increased. The slope of the line is different for F-GR and DB, and F-GR was faster. This observation
is consistent with the number of multiplications (7). In particular, in ResNet, one of the most typical
deep neural networks, learning with finite-difference GR was more than twice as fast as learning with
DB. Figure 1(b) confirms that F-GR has fast convergence in ResNet-18 on CIFAR-10. In Figure S.1
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Figure 2: Computational graph of DB. Each node with an incoming solid arrow requires one matrix
multiplication for the forward pass.

, we also show the convergence measured by the training loss and time steps. All of them showed
better convergence for the finite difference.

Note that the finite difference is also better to use from the perspective of memory efficiency. This
is because DB requires all of the {Al, Bl, Gl} to be retained for the forward pass, which occupies
more memory. It is also noteworthy that in general, it is difficult for theory to completely predict
the realistic computational time required because it could heavily depend on the hardware and the
implementation framework and does not necessarily correlate well with the number of floating-point
operations (FLOPs) (Dehghani et al., 2021). Our result suggests that at least the number of matrix
multiplication explains well the superiority of the finite-difference approach in typical settings.

3.3 GENERALIZATION PERFORMANCE

Here, we show that the superiority of finite-difference computation over DB also appears in the
eventual performance of trained models. Figures 3 and S.2 show the test accuracy of a 4-layer
MLP and ResNet-18 trained by using SGD with GR on CIFAR-10 We trained the models in an
exhaustive manner with various values for γ and ε for each algorithm of the GR. For learning
with F-GR, the model achieved the highest accuracy on relatively large ascent steps (ε ∼ 0.1).
In contrast, learning with B-GR showed a rapid decrease of the performance as the step size ε
increased. The highest average test accuracy of F-GR was better than those of B-GR and DB although
our purpose is to confirm the difference among the algorithms and not to achieve higher accuracy
by tuning both γ and ε. It was (F-GR,B-GR,DB) = (58.6, 58.3, 57.6) ± (0.2, 0.2, 0.2) for MLP
and (87.0, 86.2, 86.3)± (0.2, 0.3, 0.3) for ResNet-18. We also confirmed that the same tendencies
appeared in the grid search of ResNet-34 on CIFAR-100 (Figure S.3 ). Moreover, we confirmed that
F-GR performed better than B-GR and DB in a more realistic training of a wide residual network
(WRN-28-10) on CIFAR-10 and CIFAR-100 with/without data augmentation (Table S.1 ).

It is noteworthy that the best accuracy of F-GR was obtained close to the line of γ = ε. This line is
closely related to SAM algorithm. We explain more details in Section 5.1. We also observed that
when the ascent step was too small (e.g., ε ≲ 10−4), numerical instability sometime appeared in
the calculation of the finite difference ∆R. Overall, the experiments suggest that F-GR with a large
ascent step is better to use for achieving higher generalization performance.

F-GR B-GR DB
(b)

F-GR B-GR DB
(a) MLP ResNet-18

Figure 3: Grid search on learning with different GR algorithms shows the superiority of F-GR and
that a relatively large ε achieves a high test accuracy. The color bar shows the average test accuracy
over 5 trials. Gray dashed lines indicate γ = ε.

5



Under review as a conference paper at ICLR 2023

4 THEORETICAL ANALYSIS OF IMPLICIT BIAS

Although previous work and our experiments in Section 3.3 indicate improvements of prediction
performance caused by GR, theoretical understanding of this phenomenon remains limited. Because
the gradient norm itself eventually becomes zero after the model achieves a zero training loss, it
seems challenging to distinguish the generalization capacity by simply observing the value of the
gradient norm after training. In addition, our experiments clarified that the performance also depends
on the choice of the algorithm and revealed that the situation is complicated. To attack this problem,
we consider a solvable model and reveal that GR methods actually contribute to the selection of
global minima and the eventual performance.

4.1 DIAGONAL LINEAR NETWORK

A DLN is a solvable model proposed by Woodworth et al. (2020). It is a linear transformation of input
x ∈ Rd defined as ⟨β, x⟩ where β is parameterized by β = w2

+ − w2
− with w = (w+, w−) ∈ R2d.

Here, the square of the vector is an element-wise square operation. Suppose we have n training
samples (xi, yi) (i = 1, ..., n). The training loss is given by

L(w) = 1

4n

n∑
i=1

(〈
w2

+ − w2
−, xi

〉
− yi

)2
. (8)

Consider continual-time training dynamics dw/dt = −∇L. We set an initialization w+(t = 0) =
w−(t = 0) = α0 which is a d-dimensional vector and whose entries are non-zero. We define a data
matrix X whose i-th row is given by xi. Woodworth et al. (2020) found that interpolation solutions
of usual gradient descent are given by

β∞(α) = argmin
β∈Rd s.t. Xβ=y

ϕα(β) (9)

with α = α0. The potential function ϕα is given by ϕα(β) =
∑d

i=1 α
2
i q

(
βi/α

2
i

)
with q(z) =

2−
√
4 + z2 + z arcsinh(z/2). For a larger scale of initialization α, this potential function becomes

closer to L2 regularization as α2
i q(βi/α

2
i ) ∼ |βi|2, which corresponds to the L2 min-norm solution

of the lazy regime (Chizat et al., 2019). In contrast, for a smaller scale of initialization α, it becomes
closer to L1 regularization as α2

i q(βi/α
2
i ) ∼ |βi|. In this way, we can observe a one-parameter

interpolation between L1 and L2 implicit biases. Deep neural networks in practice acquire rich
features depending on data structure and are believed to be beyond the lazy regime. Thus, obtaining
an L1 solution by setting small α is referred to as the rich regime and desirable. Previous work has
revealed that effective values of α decreases by a larger learning rate in the discrete update (Nacson
et al., 2022), SGD (Pesme et al., 2021), and SAM update (Andriushchenko & Flammarion, 2022).
These learning methods have an implicit bias that chooses the L1 sparse solution in the rich regime.

4.2 IMPLICIT BIAS OF GR

Now, consider gradient descent with F-GR dw/dt = −∇L(w)− γ∆RF (w). We find that the GR
has implicit bias for the rich regime, and moreover, the strength of the bias depends on the ascent
step size.
Theorem 4.1. Assume that (i) the gradient dynamics converges to the interpolation solution satisfying
Xβ = y, (ii) L2 norm of the parameter ∥w(t)∥ has a constant upper bound independent of γ and ε,
(iii) for sufficiently small γ and ε, the integral of the training loss, i.e.,

∫∞
0
L(w(t))dt, has a constant

upper (lower, respectively) bound R (R) independent of γ and ε. Then, for sufficiently small γ and ε,
interpolation solutions are given by β∞(αF -GR) with

αF -GR ≤ α0 ◦ exp(−γεc∗ +O(γ2) +O(ε2)). (10)

The exponent c∗ ∈ Rd is a non-negative constant vector given by

c∗ =
1

2n2
(X⊤(Xβ(t = 0)− y))2. (11)

Note that the inequality is element-wise. The proof is given in Section A.1. Technically speaking,
learning with F-GR requires to evaluate a novel c∗ term, which has not appeared in the analyses of
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Figure 4: Results of training of DLNs using gradient descent with F-GR (γ = 0.02). (a) L1 norm of
the solutions, (b) test loss, and (c) the largest eigenvalue of the Hessian of the training loss.

previous studies. Lemma A.1 clarifies that we can prove the positivity of the seemingly complicated
term of c∗ through an integral of the learning dynamics. The assumptions seem rational in the
following sense. First, assumption (i) is common in the previous studies on DLNs. Second, Nacson
et al. (2022) recently reported that we can obtain interpolation solutions with a smaller parameter
norm ∥w(t)∥ using the discrete update with a larger learning rate. Because the interpolation solutions
of gradient descent are also those of our learning with GR, assumption (ii) seems rational. The
upper bound of assumption (iii) means that the convergence speed of L(w(t)) does not get too small
for sufficiently small γ and ε. As a side note, we can replace assumption (iii) with the positive
definiteness of a certain matrix (assumption A.2). This is seemingly rather technical, but related to a
sufficient condition that the dynamics converge to the global minima. See Section A.2 for details.

This theorem reveals that GR has an implicit bias to select the L1 solution, that is, the rich regime
because α is always smaller than α0. As the ascent step increases, we have an exponentially smaller
upper bound and the implicit bias to L1 solution will become stronger. We confirm this dependence
of solutions on the ascent step in numerical experiments (Figure 4). As in previous work, we
trained DLNs on the synthetic data of a sparse regression problem, where xi ∼ N (µ1, σ2I) and
yi ∼ N (⟨β∗, xi⟩ , 0.01), and where β∗ is k∗-sparse with non-zero entries equal to 1/

√
k∗ (d = 100

and n = 50). Following Nacson et al. (2022), we chose µ = σ2 = 5, where the parameter norm
a(t) is suppressed and assumption (ii) ix expected to hold. As the ascent step increases, models
trained by F-GR obtain sparser solutions (Figure 4(a)) and better generalization performance (Figure
4(b)). The dashed lines show the results of gradient descent without GR. This result is consistent with
our experiments of in more realistic settings (Figure 3) where a relatively large ε achieves the best
performance. In Figure 4(c), we also present the largest eigenvalue of the Hessian (S.50 ), computed
after training. As the ascent step size increases, F-GR chooses flatter minima. This is also consistent
with empirical observations in previous studies on GR. Note that B-GR can potentially make the
bound looser as the step size ε increases since B-GR is equivalent to F-GR with −ε. Actually, we
can immediately find a lower bound αB-GR ≳ C ◦ exp(γεc∗) for a positive constant vector C, as
is remarked in Section A.1. The results of numerical experiments on DLNs shown in Figure S.3
confirm that learning with F-GR achieved better generalization performance than B-GR.

While Theorem 4.1 gives us insight into the finite-difference GR, the upper bound converges to α0

for the DB limit (ε→ 0+) and becomes meaningless. Fortunately, we can construct an upper bound
applicable to the DB limit.

Proposition 4.2. Under the same assumptions as in Theorem 4.1, for sufficiently small ε and γ,

αF -GR ≤ α0 ◦ exp(−γc+O(γ2) +O(ε2)), (12)

where the exponent c ∈ Rd is a non-negative variable given by c = n−2
∫∞
0

(X⊤(Xβ(s)− y))2ds.

Its derivation is given in Section A.3. One can regard this proposition as a minor extension of
Theorem 1 in Andriushchenko & Flammarion (2022), which has investigated γ = ε. This setting has
a special meaning as we mention in Section 5.1. From the proposition, one can see that the DB limit
still has the implicit bias to select the rich regime. This is consistent with the numerical experiments
in Figure 4 where the limit of small ε achieves slightly better and sparser solutions than GD without
GR. Although the bound (12) is informative, it is difficult to evaluate a concrete value of c. As a side
note, we can make a bound of the average over entries, that is,

∑d
i=1 ci/d ≥ (4n/d)λmin(XX⊤)R.

See Section A.3 for details.

7



Under review as a conference paper at ICLR 2023

5 GR IN GRADIENT-ASCENT-AND-DESCENT LEARNING

We have revealed that learning with finite-difference GR, F-GR in particular, improves performance.
We recall that the GR is composed of both gradient ascent and descent steps. This computation makes
the GR essentially related to two other learning methods similarly composed of both gradient ascent
and descent steps: the SAM algorithm and the flooding method.

5.1 CONNECTION WITH SAM

The SAM algorithm was derived from the minimization of a surrogate loss max∥ε∥≤ρ L(θ + ε) for
a fixed ρ > 0, and has achieved the highest performance in various models (Foret et al., 2021).
After some heuristic approximations, its update rule reduces to iterative gradient ascent and descent
steps: θt+1 = θt − η∇L(θ′) with θ′ = θt + εt∇L(θt) and εt = ρ/∥∇L(θt)∥. Under a specific
condition, the SAM update can be seen as gradient descent with F-GR. Let us consider time-dependent
regularization coefficient γt and ascent step εt. Then, for γt = εt, the gradient descent with F-GR
becomes equivalent to the SAM update:

∇L(θ) + γt
εt
(∇L(θ′)−∇L(θ)) = ∇L(θ′). (13)

A similar equivalence has been pointed out in Zhao et al. (2022) which supposes a non-squared
gradient norm and εt = ρ/∥∇L(θt)∥ naturally appears. Let us focus on the SAM update without
the gradient normalization for simplicity, that is, εt = ρ. This simplified SAM update was analyzed
on DLNs in Andriushchenko & Flammarion (2022). We can recover the SAM case by setting a
sufficiently small γ = ε in Proposition 4.2. Although it will be curious to identify any optimal setting
of (γ, ε), our analysis is limited to the range of the first-order Taylor expansion and characterizing
any optimal setting seems beyond the scope of our analysis. In Figure 3, we empirically observed
the optimal setting for generalization was very close to or just on the line γ = ε. In contrast, our
Figures 4, S.3 and the previous study Zhao et al. (2022) demonstrated that the optimal setting was
not necessarily on γ = ε, and thus combining the ascent and descent steps would be still promising.

5.2 FLOODING PERFORMS GR IN AN IMPLICIT WAY

The flooding method (Ishida et al., 2020) is another learning algorithm composed of both gradient
ascent and descent steps. Its update rule is given by

θt+1 = θt − ηSign(L − b)∇L (14)

for a constant b > 0, referred to as the flood level. When the training loss becomes lower than
the flood level, the sign of the gradient is flipped and the parameter is updated by gradient ascent.
Therefore, the flooding causes the training dynamics to continue to wander around L(θ) ∼ b, and its
gradient continues to take a non-zero value. This would seem a kind of early stopping, but previous
work empirically demonstrates that flooding performs better than naive early stopping and finds flat
minima. For simplicity, let us focus on the gradient descent for a full batch. The following theorem
clarifies a hidden mechanism of flooding.
Theorem 5.1. Consider the time step t satisfying L(θt) < b and L(θt+1) > b. Then, the flooding
update from θt to θt+2 is equivalent to the gradient of the F-GR with ε = γ = η:

θt+2 = θt − η2
∇L(θt + η∇L(θt))−∇L(θt)

η
. (15)

Similarly, for L(θt) > b and L(θt+1) < b, the flooding update is equivalent to the gradient of the
B-GR.

Although its derivation is quite straightforward (see Section B), this essential connection between
finite-difference GR and flooding has been missed in the literature. Ishida et al. (2020) conjectured
that flooding causes a random walk on the loss surface and this would contribute to the search for flat
minima in some ways. Our result implies that the dynamics of flooding are not necessarily random
and it can actively search the loss surface in a direction that decreases the GR. This is consistent with
the observations that the usual gradient descent with GR finds flat minima (Barrett & Dherin, 2021;
Zhao et al., 2022). Note that the ascent step is given by the learning rate η, and η is usually decayed

8
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(b)(a)

Figure 5: Flooding decreases the gradient norm, as expected by theory. (a) Training dynamics of
flooding with b = 0.05. (b) Test accuracy and gradient norm after the training.

in the training. This implies that because the ascent step size is relatively small, the implicit B-GR in
the flooding update would not make the generalization performance much worse.

Figure 5 empirically confirms that the flooding method decreases the gradient norm R(θ). We trained
ResNet-18 on CIFAR-10 by using flooding. Figure 5(a) shows that at the beginning of the training,
the training loss decreases in the usual way because the loss is far above flood level b. Around the
10th epoch, the loss value becomes sufficiently close to the flood level for the decrease in the loss to
slow (Figure S.5 ). Then, the flooding update becomes dominant in the dynamics the gradient norm
begins to decrease. Figure 5(b) demonstrates that the gradient norm of the trained model decreases as
the initial learning rate increases. This is consistent with Theorem 5.1 because the theorem claims
that the larger learning rate induces the larger regularization coefficient of the GR γ = η. In contrast,
naive SGD training without flooding always reaches an almost zero gradient norm regardless of the
learning rate. Thus, the change in the gradient norm depending on the learning rate is specific to
flooding and implies that it implicitly performs GR.

6 DISCUSSION

This work presented novel practical and theoretical insights into GR. The finite-difference computation
is effective in the sense of both reducing computational cost and improving performance. Theoretical
analysis supports the empirical observation that the forward difference computation has an implicit
bias that chooses potentially better minima depending on the size of the ascent step. Because deep
learning requires large-scale models, it would be reasonable to use learning methods only composed
of first-order descent or ascent gradients. The current work suggests that the F-GR is a promising
direction for further investigation and could be extended for our understanding and practical usage of
gradient-based regularization.

We suggest several potentially interesting research directions. From a broader perspective, we may
regard finite-difference GR, SAM, and flooding as a single learning framework composed of iterative
gradient ascent and descent steps. It would be interesting to investigate if there is optimal combination
of these steps for further improving performance. As our experiments suggest, only using the gradient
descent or ascent does not necessarily achieve the best performance, and a combination of them
seems to be the best approach. Similar results were empirically observed in other gradient-based
regularization techniques (Zhao et al., 2022; Zhuang et al., 2022). Related to the combination between
the gradient descent and ascent, although we fixed the ascent step size as a constant, a step size decay
or any scheduling could enhance the performance further. For instance, Zhuang et al. (2022) used a
time-step dependent ascent step to achieve high prediction performance for SAM.

It will also be interesting to explore any theoretical clarification beyond the scope of DLNs. Although
a series of analyses in DLNs enable us to explore the implicit bias for selecting global minima, it
assumes global convergence and avoids an explicit evaluation of convergence dynamics. Thus, it
would be informative to explore the convergence rate or escape from local minima in other solvable
models or a more general formulation if possible. Constructing generalization bounds would also be
an interesting direction. Some theoretical work has proved that regularizing first-order derivatives of
the network output control the generalization capacity (Ma & Ying, 2021), and such derivatives are
included in the gradient norm as a part. We expect that the current work will serve as a foundation for
further developing and understanding regularization methods in deep learning.

9
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Appendices
A ANALYSIS BY DIAGONAL LINEAR NETWORKS

A.1 PROOF OF THEOREM 4.1

A.1.1 INTERPOLATION SOLUTIONS BETWEEN L1 AND L2 REGULARIZATION

We consider the training dynamics with F-GR as

ẇt = −∇L(wt)− γ
∇L(wt + ε∇L(wt))−∇L(wt)

ε
(S.1)

= −q1∇L(wt)− q2∇L(wt + ε∇L(wt)), (S.2)

where q1 = (1 − γ/ε), q2 = γ/ε. The training loss L(w) is defined in (8). The dynamics are
rewritten as

dw(t)

dt
= −q1

n
(X̃⊤r(t)) ◦ w(t)− q2

n
(X̃⊤r∗(t)) ◦ w∗(t), (S.3)

where ◦ denotes the element-wise product between vectors. We defined r(t) = X̃w(t)2 − y,
r∗(t) = X̃w∗(t)2− y, w∗(t) = w(t)+ ε∇L(w(t)), and put X̃ = [ X −X ] ∈ Rn×2d. We recall
that the square of the vector is an element-wise square operation. The general solution of (S.3 ) is
written as

w(t) =

[
α0

α0

]
◦ exp

(
− 1

n
X̃⊤

∫ t

0

(q1r(s) + q2r
∗(s))ds

)
◦ exp

(
−q2ε

n2

∫ t

0

(X̃⊤r∗(s)) ◦ (X̃⊤r(s))ds

)
. (S.4)

This recovers the GD solution obtained by Woodworth et al. (2020) for (q1, q2) = (1, 0), and SAM
solution by Andriushchenko & Flammarion (2022) for (q1, q2) = (0, 1). To evaluate the effect of
both ε and γ on the implicit bias, we need a lower-order evaluation compared to previous work.

Suppose an interpolation solution β∞ satisfying Xβ∞ = y. We can represent it by

β∞ = w+(∞)2 − w−(∞)2 (S.5)

= 2α2
F -GR ◦ sinh

(
X⊤ν

)
, (S.6)

where ν = − 2
n

∫∞
0

(q1r(s) + q2r
∗(s))ds and

αF -GR := α0 ◦ exp
(
− γ

n2
Ψ
)
, Ψ :=

∫ ∞

0

(
X⊤r∗(s)

)
◦
(
X⊤r(s)

)
ds. (S.7)

Put β∞ = BαF -GR

(
X⊤ν

)
with BαF -GR

(z) = 2α2
F -GR ◦ sinh(z). Because the form of the function

β∞ = Bα

(
X⊤ν

)
is the same as in the analysis of usual gradient descent (Woodworth et al., 2020),

we can use their transformation of β∞ as it is. We have a KKT condition∇ϕα(w) = X⊤ν and the
function ϕα satisfies

∇ϕα(β) = B−1
α (β) = arcsinh

(
1

2α2
◦ β

)
. (S.8)

We have
β∞(α) = argmin

β∈Rd s.t. Xβ=y

ϕα(β) (S.9)

with

ϕα(β) =

d∑
i=1

α2
i q

(
βi/α

2
i

)
(S.10)

and
q(z) = 2−

√
4 + z2 + z arcsinh(z/2). (S.11)

In our GR case, α is just replaced by αF -GR.
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A.1.2 EVALUATION ON αF -GR

From the definitions of r(t) and r∗(t), we have

r∗(t)− r(t) =
2ε

n
X̃((X̃⊤r(t)) ◦ w(t)2) + ε2

n2
X̃((X̃⊤r(t))2 ◦ w(t)2). (S.12)

Then,

Ψ =

∫ ∞

0

(X⊤r(s))2ds+
ε

n

∫ ∞

0

2(X⊤X̃((X̃⊤r(s)) ◦ w(s)2)) ◦ (X⊤r(s))︸ ︷︷ ︸
=:z(s)

ds

+
ε2

n2

∫ ∞

0

(X⊤X̃((X̃⊤r(s))2 ◦ w(t)2)) ◦ (X⊤r(s))︸ ︷︷ ︸
=:zh(s)

ds. (S.13)

Let us put

Ψ = Ψ0 +
ε

n
Ψ1 +

ε2

n2
Ψ2, (S.14)

Ψ0 :=

∫ ∞

0

(X⊤r(s))2ds, Ψ1 :=

∫ ∞

0

z(s)ds, Ψ2 :=

∫ ∞

0

zh(s)ds. (S.15)

Note that the first term Ψ0 essentially corresponds to the implicit bias of the SAM update investigated
in the previous study (Andriushchenko & Flammarion, 2022). Because the SAM update corresponds
to γ = ε, the dominant term of γΨ is Ψ0 and they neglect the other terms. In our GR case, γ and ε
have different scales in general and we need to evaluate the coefficient of the ascent step, that is, Ψ1.
Lemma A.1. Under assumptions (i)-(iii), for sufficiently small γ, Ψ1 > nb(0)2/2 + O(γ). If we
further assume bi(0) ̸= 0 for all i, Ψ1 > nb(0)2/4.

Proof of Lemma A.1. The dynamics (S.3 ) are rewritten as

n
dw

dt
= −b̃ ◦ w − γ

n
[2(Z̃(b̃ ◦ w2)) ◦ w + b̃2 ◦ w]

− γε

n2
[(Z̃(b̃2 ◦ w2)) ◦ w + 2(Z̃(b̃ ◦ w2)) ◦ w ◦ b̃]− γε2

n3
[(Z̃(b̃2 ◦ w2)) ◦ w ◦ b̃], (S.16)

where we put b̃ = X̃⊤r and Z̃ = X̃⊤X̃ . This gives us

n

2

dβ

dt
= −b ◦ a− γ

n
[2(Z(b ◦ a)) ◦ a+ b2 ◦ β]︸ ︷︷ ︸

=:Q1(t)

− γε

n2
[(Z(b2 ◦ β)) ◦ a+ 2(Z(b ◦ a)) ◦ β ◦ b]︸ ︷︷ ︸

=:Q2(t)

−γε2

n3
[(Z(b2 ◦ β)) ◦ β ◦ b]︸ ︷︷ ︸

=:Q3(t)

, (S.17)

where we put a = w2
+ + w2

−, b = X⊤r and Z = X⊤X . Note that db/dt = X⊤(dr/dt) =

X⊤X(dβ/dt). By multiplying X⊤X to (S.17 ) and taking the Hadamard product with b, we have

n
db2

dt
= −4b ◦ (X⊤X(b ◦ a))− 4γ

n
b ◦ [X⊤X(Q1(t) +

ε

n
Q2(t) +

ε2

n2
Q3(t))]︸ ︷︷ ︸

=:Q(t)

. (S.18)

The point is that we have 2b◦ (X⊤X(b◦a)) = z(t). This relation makes us to evaluate the seemingly
complicated term Ψ1 by the change of b(t)2, which corresponds to a training loss. By taking the
integral over time, the above dynamics become

Ψ1 =

∫ ∞

0

z(s)ds =
n

2
b(0)2 − 2

γ

n

∫ ∞

0

Q(s)ds. (S.19)

We used assumption (i) that we have a global minimum and b(∞) = 0. If γ is sufficiently small and∫∞
0

Q(s)ds is finite, we will have a non-negative Ψ1.
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Here, we use assumption (ii) that the parameter norm has a finite constant upper bound independent
of γ and ε. Because ∥a(t)∥ = ∥w+(t)

2 + w−(t)
2∥ ≤ ∥w∥2, we have an upper bound of ∥a(t)∥ as

well:
∥a(t)∥ ≤ ā. (S.20)

Define κ1 := argmaxi ∥Xxi∥, κ2 := argmaxi ∥xi∥ and κ3 := ∥XX⊤∥2. Then, we find

|Q1,i(t)| ≤ 2ai∥Xxi∥∥b ◦ a∥+ b2i |βi| (S.21)

≤ 2ā2κ1
√
κ3∥r(t)∥+ āκ2

2∥r(t)∥2. (S.22)

where we used ∥b ◦ a∥ ≤ ∥b∥∥a∥ ≤ √κ3ā∥r∥ and ∥β∥ ≤ ∥a∥ ≤ ā. Similarly, we have

|Q2,i(t)| ≤ ā2κ1κ3∥r∥2 + 2ā2κ1κ2
√
κ3∥r∥2, (S.23)

where we used ∥b2∥ ≤
√∑

i(Xir)4 ≤
∑

i(Xir)
2 = ∥b∥2. We also have

|Q3,i(t)| ≤ ā2κ1κ2κ3∥r∥3. (S.24)

Note that under assumption (ii), the training loss is upper-bounded as well because

∥r(t)∥ ≤ ∥Xβ∥+ ∥y∥ ≤
√
κ3ā+ ∥y∥ =: L̄. (S.25)

Therefore, we have
|Q3,i(t)| ≤ ∥a∥κ1κ2κ3L̄∥r∥2. (S.26)

After all, the inequalities (S.22 ,S.23 ,S.26 ) lead to∫ ∞

0

dsQi(s) ≤ C

∫ ∞

0

ds∥r∥2, (S.27)

where C denotes an uninteresting positive constant. By using assumption (iii) that
∫∞
0

ds∥r∥2 has an
constant upper bound 4nR̄ independent of γ and ε, we have

Ψ1 ≥
nb(0)2

2
− 8γCR̄. (S.28)

Therefore, for sufficiently small γ, the dominant term is non-negative. Moreover, if we have bi(0) ̸= 0
for all i,

Ψ1 ≥
nb(0)2

4
> 0 for γ < min

i

nbi(0)
2

32CR̄
. (S.29)

■

As a side note, the inequality (S.29 ) of γ gives us some insight into non-asymptotic evaluation on
how large γ we can take. First, the constant C includes ā and it implies that we need a smaller γ
for a larger parameter norm ā. Second, note that R̄ controls the integral of the training loss over the
whole training dynamics. We need a smaller γ as well for a larger R̄ which implies the convergence
of dynamics is slower.

Next, we evaluate Ψ2. Since
zh(s) = (Z(b2 ◦ β)) ◦ b, (S.30)

we have

|zh,i| ≤ κ1κ2κ3āL̄∥r∥2. (S.31)

Therefore,

|
∫ ∞

0

zh,i(s)ds| ≤ C ′R̄. (S.32)

exThus, Ψ2 is finite and becomes negligible in Ψ for a sufficiently small ε.

Finally, we have

γΨ ≥ εγ
b(0)2

2
− 8εγ2

n
CR̄− ε2γ

n2
C ′R̄, (S.33)
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where we used Lemma A.1. Substituting the above inequality and b(0) = X⊤r(0) into (S.7 ), we
obtain Theorem 4.1.

Remark on higher-order terms in Theorem 4.1: First, let us remark on O(γ2) term. Lemma A.1
tells us that if we have bi(0) ̸= 0 for all i, we have a slightly stronger result than Theorem 4.1:

αF -GR ≤ α0 ◦ exp(−γεc∗/2 +O(ε2)), (S.34)

where theO(γ2) term disappears. The condition of bi(0) ̸= 0 seems to hold in usual cases because the
network parameters and training samples are randomly assigned at initialization. Second, regarding
O(ε2) term, we have Ψ ≥ 0 for

ε ≤ n2

C ′R̄

(
min
i

bi(0)
2

2
− 8γ

n
CR̄

)
(S.35)

< min
i

n2bi(0)
2

4C ′R̄
(S.36)

where the first line comes from (S.33 ) and the second one from a small γ satisfying (S.33 ). This
implies that we need a smaller ε for larger ā and R̄ in a similar way to γ.

Remark on B-GR: We have obtained the upper bound of αF -GR, that is, the lower bound of Ψ for
F-GR. Since we can see B-GR as the F-GR with a negative ε, the sign of Ψ1 is flipped in B-GR. Then,
we can easily obtain the upper bound of Ψ as follows.

First, we have

Ψ0 ≤ 2λmax(XX⊤)

∫ ∞

0

∥r(s)∥2ds (S.37)

≤ 8nλmax(XX⊤)R̄, (S.38)

where λmax(XX⊤) denotes the largest eigenvalue of XX⊤. We have

Ψ = Ψ0 −
ε

n
Ψ1 +O(ε2) (S.39)

≲ 8nλmax(XX⊤)R̄− ε
b(0)2

2
, (S.40)

where we used Lemma A.1. Substituting the above inequality into (S.7 ), we obtain αF -GR ≳
C ◦ exp(γεc∗) for a positive constant C. Thus, the lower bound increases for a larger step size ε > 0
in B-GR and the implicit bias is strengthen in the direction to L2 solutions.

A.2 ALTERNATIVE TO ASSUMPTION (III)

Instead of assumption (iii), we may use

Assumption A.2. For sufficiently small ε and γ, the smallest eigenvalue of S(t) := Xdiag(a(t))X⊤

is positive.

Since we suppose the overparameterized case (d > n), the matrix X is a wide matrix and S has no
trivial zero eigenvalue. The positive definiteness of S is a sufficient condition of global convergence
as follows. From Eq. (S.17 ), we have

n

4

d∥r∥2

dt
=

n

2
b⊤

dβ

dt
= −r⊤Sr − γ

n
r⊤X(Q1(t) +

ε

n
Q2(t) +

ε2

n2
Q3(t)). (S.41)

Using the inequalities (S.22 ,S.23 ,S.26 ), we have

n

4

d∥r∥2

dt
≤ −λ∗

min∥r∥2 + γC∥r∥2. (S.42)

where we take the lower bound of the smallest eigenvalue as λ∗
min = mint,γ,ε λmin(S(t)). By taking

a sufficiently small γ such that γ < 3λ∗
min/(4C), we obtain

∥r(t)∥2 ≤ ∥r(0)∥2 exp(−λ∗
mint/n), (S.43)
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from Grönwall’s inequality. Since L(w(t)) = ∥r(t)∥2/(4n), we obtain global convergence. In
addition, we have∫ ∞

0

ds∥r(s)∥2 ≤ ∥r(0)∥2
∫ ∞

0

ds exp(−λ∗
mint/n) = n∥r(0)∥2/λ∗

min. (S.44)

This gives the upper bound R̄. Similarly, we obtain R by taking the lower bound of (S.41 ) and
using Grönwall’s inequality. Thus, instead of assumption (iii), we can apply Assumption A.2 in the
transformation from (S.27 ) to (S.29 ).

Note that S(t) is known as the neural tangent kernel in the lazy regime and its positive definiteness is
straightforward (Woodworth et al., 2020). Although there is no proof of the positive definiteness in
the rich regime, we observed it in numerical experiments and the assumption A.2 seems rational.

A.3 DERIVATION OF PROPOSITION 4.2

We obtained the upper bound of αF -GR (in other words, the lower bound of Ψ) from the term of Ψ1.
In some cases, Ψ0 gives us complementary insight.
Proposition A.3. Under the same assumptions as in Theorem 4.1, for sufficiently small ε and γ,

αF -GR ≤ α0 ◦ exp(−γc+O(γ2) +O(ε2)), (S.45)

where the exponent c is a non-negative variable given by c = n−2
∫∞
0

(X⊤(Xβ(s)− y))2ds.

Proof. Ψ0 is non-negative by definition and written as

Ψ0 =

∫ ∞

0

(X⊤(Xβ(s)− y))2ds. (S.46)

In addition, we have Ψ1 ≥ O(γ) from Lemma A.1. Therefore, we have Ψ ≥ Ψ0 +O(γ) +O(ε2).
Substituting this into (S.7 ), we obtain the result.

Remark on an average of c: Note that c may depend on ε and γ because it is given by the integral
of training dynamics. It seems hard to obtain a concrete value of this integral. Instead of evaluating
each entries of c, let us analyze the average value of c, that is, ∥c∥1/d =

∑d
i=1 ci/d. This approach

gives us some insight into a typical value of the exponent c:

∥c∥1/d =
1

d

∫ ∞

0

r(s)⊤(XX⊤)r(s)ds (S.47)

≥ 4n

d
λmin(XX⊤)R. (S.48)

A similar evaluation has been used in the analysis of SAM (Andriushchenko & Flammarion, 2022).

A.4 HESSIAN

The MSE loss of the diagonal linear network has the following Hessian:

H =
1

n

(
diag(X̃⊤r) + 2diag(w)X̃⊤X̃diag(w)

)
. (S.49)

At the interpolation solution,

H =
2

n
diag(w)X̃⊤X̃diag(w). (S.50)

B DERIVATION OF THEOREM 5.1

It is straightforward to derive this theorem. Consider the time step t satisfying L(θt) < b and
L(θt+1) > b. The update rule is given by

θt+1 = θt + η∇θL(θt), (S.51)
θt+2 = θt+1 − η∇θL(θt+1). (S.52)
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Taking the summation, we get

θt+2 = θt − η(∇θL(θt+1)−∇θL(θt)) (S.53)

= θt − η2
∇L (θt + η∇L (θt))−∇L (θt)

η
. (S.54)

Similarly, for L(θt) > b and L(θt+1) < b, we have

θt+1 = θt − η∇θL(θt), (S.55)
θt+2 = θt+1 + η∇θL(θt+1). (S.56)

and get

θt+2 = θt + η(∇θL(θt+1)−∇θL(θt)) (S.57)

= θt − η2
∇L (θt)−∇L (θt − η∇L (θt))

η
. (S.58)

C EXPERIMENTS

C.1 COMPUTATION OF LEARNING WITH GR

C.1.1 PSEUDO-CODE AND IMPLEMENTATION

In the experiments on benchmark datasets, we computed the GR term in each mini-batch of SGD
update. The pseudo-code for F-GR is given in Algorithm 1. The double backward computation is
implemented as shown in Listing 1.

Algorithm 1 Learning with F-GR

Input: mini-batches{B1, ..., BK}
1: while SGD update do
2: if i-th mini-batch then
3: ∆L ← ∇L(θ;Bi)
4: θ′ ← θ + ε∆L
5: ∆L′ ← ∇L(θ′;Bi)
6: ∆R← (∆L′ −∆L)/ε
7: θ ← θ − η(∆L+ γ∆R)
8: end if
9: end while

1 ...
2 loss.backward(create_graph=True) #backpropagation of original loss
3 loss_DB = (gamma/2)*sum([torch.sum(p.grad**2) for p in model.parameters()

]) #computing GR term
4 loss_DB.backward() #backpropagation of GR term
5 optimizer.step()
6 ...

Listing 1: Implementation of DB in PyTorch.

C.1.2 EVALUATION ON THE NUMBER OF MATRIX MULTIPLICATION

We represent an L-layer fully connected neural network with a linear output layer by Al = ϕ(Ul),
Ul = WlAl−1 for l = 1, ..., L. We define the element-wise activation function by ϕ(·) and weight
matrix by Wl. For simplicity, we neglect bias terms. Note that we have multiple samples A0 (within
each minibatch) as an input and WlAl requires a matrix-matrix product. Therefore, the forward pass
requires L matrix multiplication. Next, let us overview usual backpropagation on the forward pass
{A0 → A1 → · · · → AL}. We can express the backward pass as Bl = ϕ′(Ul) ◦ (W⊤

l+1Bl+1), where
the backward signal Bl corresponds to ∂L/∂Ul (l = 1, ..., L− 1). Then, the backward pass requires
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L−1 matrix-matrix multiplication between weights W and backward signals B. In addition, we need
to compute the gradient ∂L/∂Wl = BlA

⊤
l−1 for ∇L and this is also a matrix-matrix multiplication.

Alter all, we need 3L− 1 matrix multiplication for∇L.

Finite difference computation: ∇L(θ′) requires the same number of matrix multiplication as the
normal backpropagation. Therefore, ∇L̃ requires 6L − 2. For a sufficiently deep network, this is
∼ 6L.

Double Backward computation: Let us denote ∂L/∂Wl by Gl. Figure 2 represents the forward
pass for computing the gradient of GR. Note that the upper part of this graph, i.e., {A0 → A1 →
· · · → BL → · · · → B1}, is well-known in double backpropagation of ∇B1 for the input-Jacobian
regularization. As explained in Drucker & Le Cun (1992), the computation of ∇B1 is equivalent to
apply backpropagation to this upper part of the graph. GR requires additional L nodes for Gl. Note
that when we have a forward pass with matrix multiplication, its backward computation requires
two matrix multiplications. That is, when a node of the forward pass S is a function of the matrix X
given by X = UV , we need to compute ∂S/∂U = (∂S/∂X)V and ∂S/∂V = U(∂S/∂X) in the
backpropagation. In addition, we do not need to compute the derivative of A0. After all, we need
2× (3L− 1)− 2 = 6L− 4 for the∇R. Since we also compute the gradient of the original loss∇L,
we need 9L− 5. For a sufficiently deep network, this is ∼ 9L.

C.2 DETAILS OF EXPERIMENTAL SETTINGS

Figure 1: We trained MLP (width 512) and ResNet on CIFAR-10 by using SGD with GR. We set
batch size 256, momentum 0.9, initial learning rate 0.01 and used a step decay of the learning rate
(scaled by 5 at epochs 60, 120, 160), γ = ε = 0.05 for GR. We showed the average and standard
deviation over 5 trials of different random initialization.

Figure 3: (a) We trained the 4-layer MLP and ResNet-18 on CIFAR-10 by using SGD with GR.
We trained the models with various hyper-parameters ε = {10−5, 5 × 10−5, ..., 0.5, 1} and γ =
{10−4, 2× 10−4, 5× 10−4, 10−3, ..., 1, 2, 5}. The other settings are the same as in Figure 1. We set
batch size 128, weight decay 0.0001, and used no other regularization technique or data augmentation.

Figure 4: We generated synthetic data by xi ∼ N (µ1, σ2I) and yi ∼ N (⟨β∗, xi⟩ , 0.01). β∗ is
k∗-sparse with non-zero entries equal to 1/

√
k∗. We set d = 100, n = 50, µ = σ2 = 5, γ = 0.02

and initialization α0,i ∼ N (0, 0.01). We trained the models by the discrete time update with a small
learning rate η = 0.001. We showed the average of 25 trials with different seeds. We trained the
models until the training loss L became lower than 10−8.

Figure 5: We trained ResNet-18 on CIFAR-10 by SGD with flooding (b = 0.05). The setting is the
same as in Figure 1. We computed the gradient norm R by the average of mini-batches in each epoch.
We showed the average and standard deviation over 10 trials of different random initialization.

18



Under review as a conference paper at ICLR 2023

Figure S.1 : Training dynamics in ResNet-18 on CIFAR-10. Learning with F-GR is much faster in
wall time.

C.3 ADDITIONAL EXPERIMENTS

C.3.1 TRAINING DYNAMICS

Figure S.1: This figure shows the trajectories of the original training loss L during the training. Its
setting is the same as in Figure 1. We observed that learning with F-GR could make the loss decrease
faster than DB in the sense of convergence rate (i.e., the number of epochs). This means that the loss
converges even faster in wall time.

C.3.2 GENERALIZATION PERFORMANCE

Figure S.2: To see the difference among algorithms in more detail, we show test accuracy along ε
axis with a fixed γ of the grid search shown in Figure 3. Each line represents the average and standard
deviation over 5 trials of different random initialization. We fixed γ = 0.5 for MLP and γ = 0.05
for ResNet-18. This means that the objective function is the same among different algorithms.
Nevertheless, the eventual performance is different. For a large ε, F-GR achieves the higher test
accuracy than DB beyond one standard deviation. For such a large ε, F-GR also performs better than
B-GR.

MLP ResNet-18

Figure S.2 : Test accuracy shown in Figure 3 along ε axis with a fixed γ. We fixed γ = 0.5 for MLP
and γ = 0.05 for ResNet-18.

Figure S.3: This figure shows an additional experiment of the grid search shown in Section 3.3. We
did experiments on a different architecture and dataset, that is, ResNet-34 on CIFAR-10. The result is
consistent with those in Figure 3. Learning with F-GR achieves the highest accuracy for large ascent
steps. B-GR performs much worse for them. In addition, the highest accuracy of F-GR is better
than that of DB. The best test accuracy was (F-GR,B-GR,DB) = (59.9, 58.6, 59.5)± (0.5, 0.4, 0.5).
From this experiment, we can see that the result of the finite difference computation with small ε does
not necessarily coincide with that of DB. We observed that the training dynamics showed instability
for too small ε. This would be attributed to numerical instability. The important point is that F-GR
shows better accuracy than DB for large ascent steps.
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F-GR B-GR DB

Figure S.3 : Grid search on learning with different GR algorithms in ResNet-34 on CIFAR-100. The
color bar shows the average test accuracy over 5 trials. Gray dashed lines indicate γ = ε.

Table S.1: We trained WideResNet-28-10 (WRN-28-10) with γ = {0, 10−4, 10−3, 10−2, 10−1}. For
F-GR and B-GR, we set ϵ = {0.001, 0.01, 0.1}. We computed the average and standard deviation
over 5 trials of different random initialization, and reported the best average accuracy achieved over
all the above combinations of hyper-parameters. F-GR performs better than DB and B-GR beyond
one standard deviation in most cases. We used crop and horizontal flip as data augmentation, cosine
scheduling with an initial learning rate 0.1, and set momentum 0.9, batch size 128, and weight decay
0.0001.

Table S.1 : Test accuracy of WRN-28-10 shows that F-GR performs better. We trained the models
with/without data augmentation (DA).

WRN-28-10
CIFAR-10 CIFAR-100

w/o DA w/ DA w/o DA w/ DA

F-GR 92.1± 0.2 96.1± 0.1 71.3± 0.3 80.7± 0.2

B-GR 91.9± 0.1 95.9± 0.1 71.1± 0.5 80.2± 0.2

DB 91.7± 0.2 95.9± 0.1 70.3± 0.2 80.3± 0.4

C.3.3 DIAGONAL LINEAR NETWORK

Figure S.4: We trained DLNs with various ε and γ in the same setting as in Figure 4. The black
circles in the figure show the cases of the lowest test error. The best test error was (F-GR,B-GR) =
(10−1.37, 10−1.16) and F-GR performed better.

F-GR B-GR

Figure S.4 : Learning of diagonal linear networks with GR. The color bar shows the average test loss
over 10 trials. Training dynamics exploded in the gray area.
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C.3.4 FLOODING METHOD

Figure S.5: This figure confirms at which epoch the training loss started to get close to the flood
level. The experimental setting is the same as in Figure 5. The blue line shows a flip rate, that is, the
ratio of how many times the training loss gets smaller than the flood level during each epoch. Around
the 10-th epoch, the training loss started to reach the flooding level and the gradient norm also started
to decrease.

Figure S.5 : Flip rate of flooding with b = 0.05.
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