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Abstract001

This paper revisits the implementation of Load-002
balancing Loss (LBL) when training Mixture-003
of-Experts (MoEs) models. Specifically, LBL004
for MoEs is defined as NE

∑NE

i=1 fipi, where005
NE is the total number of experts, fi represents006
the frequency of expert i being selected, and pi007
denotes the average gating score of the expert i.008
Existing MoE training frameworks usually em-009
ploy the parallel training strategy so that fi and010
the LBL are calculated within a micro-batch011
and averaged across parallel groups. However,012
a micro-batch for training billion-scale LLMs013
typically contains very few sequences, leading014
to the micro-batch LBL being almost at the015
sequence level, and the router is pushed to dis-016
tribute the token evenly within each sequence.017
Under this strict constraint, even tokens from a018
domain-specific sequence (e.g., code) are uni-019
formly routed to all experts, thereby inhibiting020
expert specialization. In this work, we propose021
calculating LBL using a global-batch to loose022
this constraint. Because a global-batch contains023
much more diverse sequences than a micro-024
batch, which will encourage load balance at025
the corpus level. Specifically, we introduce026
an extra communication step to synchronize fi027
across micro-batches and then use it to calcu-028
late the LBL. Through experiments on training029
MoEs-based LLMs (up to 42.8B parameters030
and 400B tokens), we surprisingly find that the031
global-batch LBL strategy yields excellent per-032
formance gains in both pre-training perplexity033
and downstream tasks. Our analysis reveals034
that the global-batch LBL greatly improves the035
domain specialization of experts.036

1 Introduction037

In recent years, the Mixture-of-Experts (MoE)038

framework (Szymanski and Lemmon, 1993;039

Shazeer et al., 2017) has become a popular tech-040

nique to scale the model parameters up (Jiang et al.,041

2024; Dai et al., 2024; Liu et al., 2024a; Yang et al.,042

2024). For instance, Mixtral-8x22B (Jiang et al.,043

2024) (141B), Deepseek-v3 (Liu et al., 2024a) 044

(671B) and MiniMax-01 (Li et al., 2025) (456B) 045

reach a scale of hundreds of billion parameters 046

while maintaining affordable training and inference 047

efficiency. Typically, standard MoE comprises a 048

router network and a group of parallel expert mod- 049

ules. Given a set of inputs, the router distributes 050

each input to its corresponding experts condition- 051

ally and sparsely. Then, the outputs from individ- 052

ual experts are aggregated based on the importance 053

weight that the router assigned to the expert. 054

One critical factor for training MoE-based mod- 055

els is encouraging the router to assign input to ex- 056

perts in a balanced manner (Fedus et al., 2022; 057

Zoph et al., 2022; Qiu et al., 2024a). The reasons 058

are twofold: (1) effectiveness: if the router continu- 059

ally prioritizes some experts during training, these 060

experts will get more updates than others and will 061

soon dominate that MoE layer, finally resulting in 062

parameter redundancy issue (Shazeer et al., 2017; 063

Wang et al., 2024); (2) efficiency: training and de- 064

ploying large-scale MoE-based models often re- 065

quires the Expert Parallel, where different experts 066

will be in different parallel groups to process their 067

inputs. Then, their outputs will be gathered and 068

aggregated. In this case, the imbalanced expert uti- 069

lization would heavily slow the forward process. In 070

light of these two points, previous works training 071

MoEs generally employ an auxiliary loss, called 072

Load-balancing Loss (LBL), to encourage the bal- 073

anced routing decision (Shazeer et al., 2017). 074

Nevertheless, in most open-source MoE 075

training frameworks like Deepspeed-MoE (Liu 076

et al., 2024a), Tutel (Hwang et al., 2023), 077

Megablocks (Gale et al., 2023) and Megatron- 078

Core (Shoeybi et al., 2019), the LBL is calculated 079

at the micro-batch level, which, as we will soon 080

empirically demonstrate, negatively affects the per- 081

formance and expert specialization of MoE-based 082

LLMs. Specifically, during large-scale MoE train- 083

ing, each micro-batch usually contains only up to 084
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(a) Ablation of Balance Scope (b) Expert Frequency for Micro-Batch Balance (Left) and Global-Batch Balance (Right)

Figure 1: The impact of the balance batch on different methods (a) and expert specialization (b). (a) When only micro-batch
level load balance is used, both methods based on LBL and auxiliary loss free approaches perform significantly worse than
global-batch balance. (b) When only micro-batch balance is used, there is no significant difference in the selection frequency of
different domain data, and the selection frequency of different experts within the same domain is essentially the same. With
global-batch balance, there is a noticeable difference in the selection frequency of experts on different domain data, and within
the same domain, there are experts with high selection frequency (marked in blue).

thousands of tokens and, thus, only a handful of se-085

quences. Therefore, the micro-batch LBL is almost086

calculated at the sequence level. Suppose a micro-087

batch contains some domain-specific sequences (i.e.088

code and math), the micro-batch LBL still pushes089

routers to distribute these domain-specific tokens090

to all experts evenly, introducing an overly strict091

constraint and may hurt the model performance.092

In this work, we propose calculating the LBL at093

the global-batch level by synchronizing the expert094

selection frequency across all parallel groups and095

then computing the LBL. According to the Fig. 1096

(a), the global-batch LBL significantly enhances097

model performance (approximately 0.1 in pre-098

training PPL and 2 in benchmark scores). Fig. 1099

(b) showcases that the domain specialization only100

clearly emerges when trained with the global-batch101

LBL. Despite the improved performance and en-102

hanced specialization, we also demonstrate that the103

model performance effectively increases with the104

global batch size (Section 4.2). Our further ablation105

studies verify that introducing more diverse train-106

ing tokens instead of more training token numbers107

is the main contributor to performance gains (Sec-108

tion 5). Besides, because the expert selection fre-109

quency is just an expert-number-dimensional vec-110

tor, our method introduces less than 3% latency un-111

der appropriate configurations and achieves more112

performant and interpretable models.113

In summary, we investigate the challenges asso-114

ciated with the LBL in training MoEs. By introduc-115

ing global-batch LBL, we achieve improved perfor-116

mance and foster expert specialization. We believe117

this advancement addresses an essential limitation118

in existing MoE training, offering a novel perspec- 119

tive for MoEs model optimization. Though mainly 120

experimenting with language-based tasks, we hope 121

our work could pave the way for training stronger 122

and more specialised MoEs in various domains. 123

2 Preliminary 124

2.1 Mixture-of-Experts 125

MoEs consist of several parallel modules (the ‘ex- 126

perts’) and a router that assigns weights to each 127

expert for a given input. (Szymanski and Lem- 128

mon, 1993; Shazeer et al., 2017). Combined with 129

the transformer layer (Vaswani, 2017), the most 130

common approach is to introduce a set of paral- 131

lel feed-forward networks (FFN). Suppose there 132

are NE experts, denoted as Ei, i ∈ [1, NE ]. The 133

router g followed by a softmax function maps the 134

input x to a score distribution over the experts, 135

softmax(g(x)) ∈ RNE . Typically, for each input, 136

only topK experts with the highest scores are acti- 137

vated and used. Given x ∈ Rh, the output y ∈ Rh 138

is the weighted sum of the outputs from all experts: 139

y =
∑

i∈NE , gi∈topK(g(x))

gi(x)Ei(x) (1) 140

2.2 Load-balancing Loss 141

The Load-balancing Loss (LBL) in training MoE 142

models is a regularization technique that encour- 143

ages balanced expert utilization (Fedus et al., 2022). 144

Without the LBL, the model tends to concentrate 145

its updates on a limited subset of experts, lead- 146

ing to a severe imbalance in expert utilization. To 147

address this issue, LBL penalizes the router if it 148
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routes excessive tokens to a few particular experts.149

To compute LBL for a batch of tokens, we con-150

sider the fraction of tokens fi routed to each expert151

Ei and the total routing probability Pi allocated to152

the expert Ei. The LBL is calculated as the sum153

of the product of fi and Pi across all experts NE ,154

normalized by the number of experts:155

LBL = NE

NE∑
i=1

fi · Pi. (2)156

By minimizing the load-balancing loss, the model157

is encouraged to distribute the considered tokens158

more evenly among the experts, ensuring that each159

expert receives a fair share of updates during train-160

ing. This helps maintain a balanced utilization of161

experts and prevents the entire model from collaps-162

ing into only activating just a few experts.163

However, when employing data parallelism and164

model parallelism strategies, each parallel group165

(e.g., one GPU) only contains data from very lim-166

ited domains. Existing MoE frameworks (Shoeybi167

et al., 2019; Gale et al., 2023) only utilize the in-168

formation of Pi and Fi within every single parallel169

group to calculate LBLs and then average them:170

LBLmicro =
1

NP

Np∑
j=1

(NE

NE∑
i=1

f j
i · P j

i ), (3)171

where NP is the number of parallel groups and172

f j
i , P

j
i are the frequency and probability in parallel173

state j. This loss requires the model to achieve174

load balance within each parallel group, thus we175

call it LBLmicro. However, supposing one parallel176

group (one micro-batch) contains data from spe-177

cific domains, the router is still pushed to distribute178

inputs uniformly to all experts, thereby preventing179

specialization. This situation is even more common180

regarding LLMs pretraining. Because to control the181

training data distribution, one micro-batch is usu-182

ally packed with sequences from one specific do-183

main, and a global-batch consists of micro-batches184

sampled from different domains according to par-185

ticular data recipes (Ding et al., 2024; Yang et al.,186

2024). So the micro-batch balancing will hinder187

the MoE model from allocating data from specific188

domains to specific experts, which also partially ex-189

plains why most MoE models only observe token-190

level expert routing patterns rather than expert-level191

selections. (Jiang et al., 2024; Xue et al., 2024).192

3 Method 193

This section introduces how to turn the micro-batch 194

LBL into global-batch LBL by allowing different 195

parallel groups to synchronize their expert select 196

frequencies. We then discuss the scenario in which 197

the number of compute nodes is limited and the 198

sum of micro-batches is smaller than the global 199

batch size. In such cases, we propose using a buffer 200

to store the synchronized expert select counts at 201

each gradient accumulation (GA) step to approxi- 202

mate the global batch LBL. 203

Synchronizing expert selection frequency across 204

parallel groups. Thanks to the format of the 205

LBL in Eq.3, we can synchronize fi across parallel 206

groups to get f̄i for the global batch. This allows 207

the global averaged LBL to be equivalent to the 208

LBL computed from statistics in the global-batch: 209

LBLglobal = NE

NE∑
i=1

f̄i · P̄i (4) 210

= NE

NE∑
i=1

f̄i · (
1

NP

Np∑
j=1

Pj) (5) 211

=
1

NP

Np∑
j=1

(NE

NE∑
i=1

f̄i · P j
i ) (6) 212

Communicating fi ∈ RNE avoids the communi- 213

cation overhead of directly transmitting the token- 214

expert selection matrix and the expert selection 215

scores (with a shape of tokens numbers × experts 216

numbers). 217

Using a buffer to approximate the Global-Batch 218

LBL. When training LLMs, the global-batch size 219

is often up to 103. When each micro-batch size is 220

less than 101, due to the limited number of compute 221

nodes, the sum of all micro-batch sizes is smaller 222

than the global-batch size, thus gradient accumula- 223

tion (GA) is often used. Therefore, we introduce 224

a buffer to store synchronized ci, the expert i’s 225

selection count across micro-batches in one GA 226

step. Then, the information in the buffer is used to 227

calculate the current fi at each GA step. After com- 228

pleting the GA, the buffer is reset. The complete 229

algorithm is shown in the Alg. 1 in the App. A.2 . 230

Through this accumulation process, fi approaches 231

f̄i with gradient accumulation steps, approximating 232

LBLglobal with limited compute nodes. 233
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Table 1: Performance of different balance methods and Balance BSZ. ‘LBL’ refers to using LBL, and Aux Free refers to the
auxiliary loss free method (Wang et al., 2024). ‘LBL+sync’ means synchronizing expert selection frequency across parallel
groups in 3. ‘LBL+sync+buffer’ means further using a buffer to expand the Balance BSZ in 3.

Balance Method Balance BSZ Hellaswag MMLU GSM8k C-eval Avg PPL

MoE-3.4A0.6B (Train 120B Tokens, Global Batch Size 512)

LBL 4 62.81 41.63 13.57 41.87 8.167
LBL+sync 32 63.58 42.08 15.01 41.58 8.062
LBL+sync 512 63.75 43.48 15.31 44.95 8.038
Aux Free 4 61.99 41.30 12.43 43.53 8.521
Aux Free 512 63.51 42.74 14.18 45.03 8.080

MoE-3.4A0.6B (Train 400B Tokens, Global Batch Size 1024)

LBL 4 67.21 48.97 21.30 49.02 7.347
LBL+sync 128 68.08 49.02 28.81 49.12 7.214
LBL+sync 512 68.32 49.84 25.40 51.59 7.198

LBL+sync+buffer 128 68.18 49.59 24.94 50.37 7.199

MoE-15A2.54B (Train 400B Tokens, Global Batch Size 1024)

LBL 16 75.69 59.99 48.07 64.38 5.778
LBL+sync 512 76.96 60.78 54.28 64.31 5.603

MoE-43A6.6B (Train 120B Tokens, Global Batch Size 512)

LBL 8 75.2 54.98 42.08 57.06 5.862
LBL+sync+buffer 128 75.94 57.30 46.32 57.98 5.779

4 Experiments234

4.1 Experimental Setups235

Model Architecture and Training Settings We236

conduct experiments on three sizes of MoE mod-237

els: (1) 3.4B total parameters with 0.6B activated238

(3.4A0.6B); (2) 15B parameters with 2.54B acti-239

vated (15A2.54B), and (3) 43B parameters with240

6.6B activated (43A6.6B). Each model utilizes the241

fine-grained expert (Dai et al., 2024) and shared242

experts (Rajbhandari et al., 2022; Dai et al., 2024)243

methods. Specifically, the 3.4A0.6B model em-244

ploys 64 experts with top4 activated and 4 shared245

experts, while the 15A2.54B and 43A6.6B models246

use a setting of 160 experts with top4 activated and247

4 shared experts. All models default to using soft-248

max gating and z-loss. The auxiliary loss weights249

follow previous works (Zoph et al., 2022). To avoid250

the impact of token drop for different methods, we251

use the dropless routing strategy (Gale et al., 2023).252

In the 3.4A0.6B setting, we also implement the aux-253

iliary loss free (with sigmoid gating) method (Wang254

et al., 2024). We train the models on 120B and255

400B high-quality tokens, encompassing multilin-256

gual, math, and general knowledge content. A257

sequence length of 4096 is used, with global-batch258

sizes of 512 and 1024 for the 120B and 400B train-259

ing settings, respectively, comprising 60k and 100k260

training steps. We use the term Balance BSZ to261

indicate the number of tokens considered when262

calculating the expert selection frequency.263

Evaluation We mainly test the zero-shot capabil-264

ities on four popular benchmarks, including En-265

glish, Hellaswag (Zellers et al., 2019), general 266

knowledge MMLU (Hendrycks et al., 2020), math 267

GSM8k (Cobbe et al., 2021), and Chinese profi- 268

ciency C-eval (Huang et al., 2024). Given that 269

benchmarks that are evaluated with accuracy have 270

certain random factors, for more detailed analysis, 271

we mainly refer to the PPL on held-out test sets, 272

which include SFT-EN, EN-Literature, SFT-Code, 273

SFT-Math, SFT-ZH, ZH-Law, ZH-Literature, and 274

SFT-Other from different domains. 275

4.2 Main Results 276

Global load balance boosts model performance. 277

In this section, we compare the performance of 278

using micro-batch and global-batch loss. The 279

3.4A0.6B models are trained only with data paral- 280

lelism and a micro-batch size 4. If fi is synchro- 281

nized among the 8 GPUs on the same node, the 282

Balance BSZ is 32. When training with 16 nodes 283

and synchronizing across data parallel groups, the 284

Balance BSZ can reach 512. From the first part 285

of Tab. 1, it can be seen that as the Balance BSZ 286

increases, all metrics consistently improve. For the 287

aux-free method, we also compare the results under 288

micro-batch and global-batch conditions and find 289

the latter is much more better. For the 3.4A0.6B 290

model trained on 400B tokens, we compare the re- 291

sults when the Balance BSZ could only reach 128 292

due to the limited compute nodes with the results 293

of using a buffer to approximate the global-batch. 294

The latter’s performance is closer to the results 295

with a Balance BSZ of 512 and significantly better 296

than 128, proving that introducing a buffer can ap- 297
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proximate the global-batch when nodes are limited.298

As training the 15A2.54B and 43A6.6B models299

requires using model parallelism strategies, we em-300

ploy expert parallelism for both models, allowing301

a micro-batch size of 2 and 1 per GPU, respec-302

tively. We compared the results of synchronizing303

fi within the same machine and across all data par-304

allel groups, as shown in the last two parts of Tab. 1.305

It is evident that increasing the Balance BSZ also306

significantly improves larger models.307

Global load balance encourages expert special-308

ization. We further analyse the selection fre-309

quency of each layer’s experts across different do-310

mains using held-out PPL test sets. Specifically,311

we record the selection frequency for each expert312

for each domain. In Fig. 1, we compare the ex-313

pert selection distributions under SFT-Code, SFT-314

Math, and EN-Literature for models trained with315

micro-batch balance and global-batch balance. It316

can be observed that (1) with micro-batch balance,317

most of the selection frequency is the same un-318

der EN-Literature, and only a few experts have319

slightly higher frequencies under SFT-Code and320

SFT-Math, yet none exceed 0.15. This aligns with321

existing analysis about MoE specialization: mod-322

els using default LBL hardly exhibit domain-level323

specialization and only show token-level specializa-324

tion (Jiang et al., 2024; Xue et al., 2024). (2) In con-325

trast, with global-batch balance, more pronounced326

high-frequency experts emerge, with many experts327

in SFT-Math having frequencies exceeding 0.2.328

This confirms that global-batch balance is more329

conducive to domain specialization.330
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Figure 2: The performance of MoE-3.4A0.6B trained on
400B tokens with different Balance BSZ.

Model performance increases with Balance BSZ.331

To further illustrate the impact of Balance BSZ,332

we control the micro-batch size, synchronization333

scope, and number of devices in training the 334

3.4A0.6B model on 400B tokens, and plot the test 335

PPL from a Balance BSZ of 2 (micro-batch size 336

2, without any synchronization for expert selec- 337

tion frequency) to 512 as shown in Fig. 2. As the 338

Balance BSZ increases, the test PPL consistently 339

decreases, with an overall decrease of 0.185 from 340

2 to 512. It is also noticeable that the improvement 341

rate slows down after increasing to 128, and the 342

result of adding the buffer is very close to that of 343

512. This indicates that synchronization and buffer 344

mechanisms can bring significant improvements 345

compared to micro-batch in MoE training across 346

various computing node scales. Additionally, we 347

supplement experiments by increasing the activa- 348

tion from top4 experts to top6 experts under the 349

micro-batch condition and found that the improve- 350

ment brought by a 50% increase in activated expert 351

FLOPs is even less than the improvement from 352

increasing the Balance BSZ from 2 to 8. Further- 353

more, expanding the Balance BSZ is efficient since 354

the additional overhead from synchronization and 355

buffer is much less than that from increasing the 356

number of activated experts and FLOPs. 357

5 Analysis 358

Table 2: Ablation of the number of tokens and distributional
bias for computing LBL on MoE-3.4A0.6B .

LBL type Hellaswag MMLU Avg PPL

120B Tokens, Global Batch Size 512, Micro Batch Size 4

Micro 62.81 41.63 8.167
Global 63.75 43.48 8.038
Shuffle 63.57 43.37 8.041

400B Tokens, Global Batch Size 1024, Micro Batch Size 2

Micro 67.22 48.77 7.383
Global 68.32 49.84 7.198
Shuffle 68.43 49.68 7.214

Ablation Study on Token Numbers and Token 359

Distributional Bias As aforementioned, one pos- 360

sible factor for global-batch LBL to outperform 361

micro-batch LBL is that the latter pushes the router 362

to achieve sequence-level balanced expert utiliza- 363

tion, which may be overly stringent. However, 364

another naive assumption is that the LBLglobal in- 365

volves more tokens to estimate the expert selection 366

frequency, thus reducing the variance and ame- 367

liorating the MoE training. To verify, we intro- 368

duce an ablation setting: Shuffle LBLmicro. Specifi- 369

cally, when calculating LBL, we first synchronize 370

the token-expert score matrix G (with a shape of 371

number of tokens × number of experts), where 372

Gij = 1 if the token i selects the expert j, other- 373
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Figure 3: The LBL curve for MoE-3.4A0.6B trained on 400B
tokens under different Balance BSZ, with a zoom-in of the
last 15k steps shown below.

wise Gij = 0. Then, we randomly select a batch of374

tokens (without replacing) to calculate the expert375

selection frequency, where the batch size is equal376

to the micro-batch size. In this setting, the random377

batch has the same token numbers as the micro-378

batch and identical token distribution as the global-379

batch, enabling us to tell the difference between380

these two confounders. The results are shown in381

the Tab. 2. We observe that the Shuffle LBLmicro382

achieves similar results as LBLglobal, and outper-383

forms the LBLmicro, verifying the motivation of our384

paper and the assumption about the improvement.385

LBLglobal is a looser constraint than LBLmicro.386

Intuitively, global-batch balance is a looser con-387

straint than micro-batch balance: the former only388

requires that tokens be evenly distributed glob-389

ally, while the latter demands uniform distribution390

within each micro-batch. In Fig. 3, we show the391

loss curves of the two methods using the same load392

balance weight for MoE-3.4A0.6B trained on 400B.393

Additionally, we add the results of switching from394

micro-batch balance to global-batch balance at 10k,395

30k, and 50k training steps. It can be observed396

that (1) after switching to global-batch balance, the397

LBL rapidly decreases to a range close to that when398

the global-batch balance is used from scratch, and399

the final convergence trend is also similar. This400

is because transitioning from a tighter constraint401

(balance within a micro-batch) to a looser one (bal-402

ance within a global-batch) is relatively easy. (2)403

Moreover, if global batch balance is switched to404

micro-batch balance at the 50k step, the originally405

converged load balance first rises to a much higher406
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Figure 4: The language modeling loss curve for MoE-
3.4A0.6B corresponding to Fig. 3

range, then slowly decreases, and the final conver- 407

gence loss is still higher than that of micro-batch 408

balance used from scratch. This indicates that tran- 409

sitioning from a looser constraint to a tighter one 410

can significantly alter the convergence state. 411

Table 3: The impact of changing the Balance BSZ during
training on the final results. Step indicates the step at which
the Balance BSZ is switched.

Balance BSZ Step (/100k) PPL

2 - 7.383
2→512 50k 7.322
2→512 30k 7.297
2→512 10k 7.283

512 - 7.199
512→2 50k 7.373

In Fig. 4, we present the language modeling loss 412

curves. The corresponding test PPL is in Tab. 3. It 413

can be observed that (1) the loss of global-batch 414

balance is over 0.02 lower than that of micro-batch 415

balance, corresponding to the large performance 416

gap between the two as shown in Tab. 3. (2) Switch- 417

ing from micro-batch to global-batch balance re- 418

sults in performance improvements, with earlier 419

switches yielding better outcomes. However, even 420

the switch at the 10k step is inferior to training 421

with global-batch balance from scratch. This aligns 422

with existing findings that router choices tend to 423

become fixed early in training (Xue et al., 2024; 424

Muennighoff et al., 2024b): although increasing the 425

Balance BSZ at any training stage can bring bene- 426

fits, the router trained with micro-batch balance has 427

already saturated very early, thus the gains from 428

switching during training are limited. (3) Switching 429

from global-batch to micro-batch balance degrades 430

performance. 431
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Table 4: Results for different load balance weight.

Balance BSZ LBL weight Hellaswag MMLU Avg PPL

4 0.008 62.81 41.63 8.167
4 0.004 62.95 42.13 8.154
4 0.001 62.97 41.71 8.159

512 0.008 63.75 43.48 8.038

Since micro-batch balance is a tighter constraint432

than global-batch balance, we further test reducing433

the load balance weight of micro-batch balance in434

Tab 4. It can be observed that appropriately re-435

ducing the LBL weight can slightly improve the436

model’s performance, but too small LBL weight437

leads to worse results. This may be due to the438

overly imbalanced distribution affecting expert uti-439

lization. Moreover, the performance of micro-batch440

balance under various LBL weights is inferior to441

that of global-batch balance, further highlighting442

the differences between the two balancing methods.443

Table 5: Performance and speed (seconds per iteration)
in 43A6.6B setting. ‘128+buffer & 8’ means adding
micro-batch balancing loss with Balance BSZ 8.

Balance BSZ Hellaswag MMLU Avg PPL Speed/s

8 75.20 54.98 5.862 1.55
128+buffer 75.94 57.30 5.779 1.64

128+buffer & 8 75.87 57.00 5.795 1.59

The training efficiency of global-batch balance.444

Because a dropless strategy is employed, the445

FLOPs calculation is identical across different446

methods. However, due to differences in local447

balance conditions, methods using global-batch448

balance may experience local computational imbal-449

ance. To address this, we recorded the speed and450

results of micro-batch balance and global-batch bal-451

ance during the training of the 43A6.6B model in452

Tab. 5. (1) It can be seen that the speed using global-453

batch balance (1.64 s/iteration) is 5.8% slower than454

micro-batch balance (1.55 s/iteration). Further anal-455

ysis revealed that about 1% of this slowdown is due456

to communication overhead within all data parallel457

groups, the remain is due to local expert load im-458

balance under the dropless strategy. Drawing inspi-459

ration from sequence-level LBL, we introduced a460

very low-weighted (1% of the global-batch weight)461

micro-batch balancing loss into the global-batch462

balance at the 20k step and continued training the463

model. We found that (2) adding a small amount464

of micro-batch balancing loss increased the speed465

to 1.59 s/iteration (2.6% slower than the baseline)466

with only a minimal decrease in performance. It467

should be noted that since the computation of LBL468

is independent from other parts of the network and469

takes very little time, it can be overlapped to further 470

reduce the efficiency gap to within 2%. 471

Global batch balance brings interpretable spe- 472

cialization. We further analyze the specialization 473

of models using global-batch balance. In Fig. 5 474

(a), we record the scores assigned to each expert 475

by tokens across different domains and calculate 476

the average of the topK score sums. When all ex- 477

perts are assigned identity scores, the topK sum 478

is illustrated by the uniform baseline (gray dashed 479

line). We can observe: (1) Models using global- 480

batch balance have a higher topK sum. Since the 481

LBL and z-loss in MoE encourage routing scores 482

to be uniform, while only the language modeling 483

loss encourages an increase in routing scores, this 484

suggests that under the global-batch balance, rout- 485

ing is more aligned with the language modeling 486

task. (2) Models using global-batch balance have a 487

larger topK sum in domains where expert selection 488

is more concentrated. For example, in Fig. 5 (b), 489

the high-frequency experts in ZH-Literature are 490

more than those of SFT-EN, especially in layers 17 491

to 24. Correspondingly, in Fig. 5 (a), the topK sum 492

of ZH-Literature in layers 17 to 24 is higher than 493

that of SFT-EN. (3) Models using micro-batch bal- 494

ance have lower topK sums, with little difference 495

across domains, which corresponds to the existing 496

work that current MoE routing is uncertain (Wu 497

et al., 2024). (4) Under global-batch balance, the 498

topK sum of using aux loss free is smaller than that 499

of LBL, but higher than micro-batch balance. This 500

also illustrates that expert specialization promotes 501

the concentration of expert scores. 502

In Fig. 5 (b), we compare the distribution of 503

high-frequency experts across domains. We ob- 504

serve that Chinese domains (SFT-ZH, ZH-Law, 505

ZH-Literature) have many similar high-frequency 506

experts (indicated by the dashed box). Moreover, 507

although both Chinese-related domains and SFT- 508

Code have high-frequency activated experts, these 509

experts hardly overlap. For domains with more 510

general content (such as SFT-EN), there are fewer 511

experts being highly activated. 512

6 Related works 513

Load Balancing Shazeer et al. (2017) introduce 514

the topK sparse activation in MoE (Szymanski and 515

Lemmon, 1993), which tends to elect only a few 516

experts for updates during training without con- 517

straints. Although LBL can alleviate this issue, 518

strict constraints affect model performance. Ex- 519

7



(a) TopK score sum across layers (b) Expert selection frequency across domains

Figure 5: The topK score sums across layers (a), and the distribution of high-frequency experts on different domains
for models using global-batch balance (b). The topK sum of global-batch balance is higher than other methods and
shows a similar distribution of high-frequency experts on closer domains.

pert Choice Routing (Zhou et al., 2022) achieves520

load balance naturally by allowing each expert to521

select tokens based on its load capacity. How-522

ever, it uses the information of the entire sequence523

when allocating tokens, making it non-causal and524

impractical for decoder-only models. Although525

subsequent work adds extra routers and training526

phases to address this, it has only been valuated527

when only using 2 experts (Raposo et al., 2024).528

Wang et al. (2024) proposes the Aux Loss Free529

method, which adds a bias term updated based on530

expert selection frequency to balance expert se-531

lection. However, they don’t emphasize whether532

the expert selection frequency is calculated based533

on micro-batch or global-batch. The subsequent534

work deepseek-v3 (Liu et al., 2024a), concurrent535

with ours, highlights that the expert selection fre-536

quency in Aux Loss Free is based on ‘the whole537

batch of each training step’ and discusses the re-538

sults of using batch-wise LBL and Aux Loss Free539

method, also finding that the two methods yield540

similar results. GRIN (Liu et al., 2024b) proposes541

Global Load Balance Loss Adaptations. However,542

the it mainly introduces this as an advantage of the543

training framework without employing expert par-544

allelism. It doesn’t show the effects of using global545

load balance independently and emphasizes the546

importance and properties of global load balance.547

More discussions can be found in App. A.1.548

Expert Specialization Initially, MoE is designed549

to devide and conquer, allowing different experts550

to specialize strongly for efficient parameter uti-551

lization (Szymanski and Lemmon, 1993; Qiu et al.,552

2024b). With the tight micro-batch balance, most 553

MoE models (Jiang et al., 2024; Lo et al., 2024), 554

even multimodal MoEs (Lin et al., 2024; Team, 555

2024), haven’t exhibited domain-level specializa- 556

tion. Lory (Zhong et al., 2024) calculates expert 557

merge scores for each sequence and merges all 558

experts into a single expert before computing the 559

corresponding sequence. This changes the sparse 560

activation mechanism of MoE and avoids the im- 561

balance issue. Although Lory shows improvements 562

and specialization, its complex mechanism poses 563

challenges for large-scale training. OLMoE (Muen- 564

nighoff et al., 2024a) observes more pronounced 565

specialization compared to Mixtral-8×7B. How- 566

ever, it does not provide a detailed discussion of 567

the factors influencing specialization. 568

7 Conclusion 569

In this work, we identify that the LBL in main- 570

stream MoE frameworks has degraded into micro- 571

batch balance, which imposes an overly tight con- 572

straint. This constraint limits expert specialization 573

and negatively impacts performance. To address 574

this issue, we propose methods based on synchro- 575

nization and buffering to relax micro-batch balance 576

to global-batch balance. We validate these methods 577

across models of various sizes. Through analysis of 578

expert selection under global-batch balance, we ob- 579

serve that it enables domain-level and interpretable 580

specialization. We hope that adopting the global- 581

batch balance will facilitate developing more per- 582

formant and interpretable MoE-based LLMs. 583
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Limitations584

This paper primarily focuses on analyzing the im-585

pact of micro-batch LBL on LLMs during the pre-586

training stage. It does not further investigate its587

effects during fine-tuning or in the vision and multi-588

modality domains. Our analysis of specialization is589

mainly centered on the selection frequency across590

different domains without conducting more rigor-591

ous validation. Relaxing micro-batch LBL can592

introduce some latency. Future work could con-593

sider including more diverse sequences within each594

micro-batch to mitigate this local imbalance.595
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A Example Appendix 755

A.1 More Related Works 756

Load Balancing Wang et al. (2024) argue that 757

the load balance loss, which is not entirely con- 758

sistent with the language modelling loss, can im- 759

pact model performance. Therefore, they pro- 760

pose adding a bias term updated based on ex- 761

pert selection frequency to balance expert selec- 762

tion without changing routing scores. However, 763

they don’t emphasize whether the expert selec- 764

tion frequency is calculated based on micro-batch 765

or global-batch. The subsequent work deepseek- 766

v3 (Liu et al., 2024a), concurrent with ours, high- 767

lights that the expert selection frequency in Aux 768

Loss Free is based on ‘the whole batch of each 769

training step’ and discusses the results of using 770

batch-wise load balance loss and auxiliary free 771

method, also finding that the two methods yield 772

similar results. In this work, we propose synchro- 773

nizing expert selection and buffering methods that 774

can be easily integrated into existing MoE frame- 775

works, leading to improvements under various com- 776

putational configurations. Our work also provides 777

a detailed analysis of Balance BSZ’s impact on 778

performance and demonstrates that global-batch 779

significantly improves performance by incorporat- 780

ing more diverse domain information. Addition- 781

ally, we show that adding a small amount of micro- 782

batch load balance while using global-batch bal- 783

ance can maintain model performance while reduc- 784

ing latency from local imbalance. Another concur- 785

rent work, Minimax-01 (Li et al., 2025), synchro- 786

nizes expert select frequency within expert parallel 787

groups, primarily aiming to reduce the drop rate 788

of experts when using drop strategies (Fedus et al., 789

2022), without focusing on the impact of different 790

Balance BSZ. 791

GRIN (Liu et al., 2024b) proposes Global Load 792

Balance Loss Adaptations. However, the it mainly 793

introduces this balance method as an advantage of 794

the training framework without employing expert 795
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1 # init buffer for tokens per expert; do not buffer across iteratio
2 self.tokens_per_expert_buffer = 0
3

4 # compute the number of tokens per expert
5 probs = torch.softmax(logits , dim=-1)
6 probs , top_indices = torch.topk(probs , k=self.topk , dim=-1)
7 tokens_per_expert = torch.histc(top_indices , bins=self.num_experts ,
8 min=0, max=self.num_experts)
9

10 # sync the number of tokens per expert across data parallel group
11 if self.config.moe_router_sync_tokens_per_expert_across_dp:
12 with torch.no_grad ():
13 torch.distributed.all_reduce(tokens_per_expert ,
14 group=get_data_parallel_group ())
15 tokens_per_expert = tokens_per_expert / torch.distributed.get_world_size(
16 group=get_data_parallel_group ()))
17

18 # update the number of tokens per expert buffer
19 if self.config.moe_router_buffer_tokens_per_expert:
20 self.tokens_per_expert_buffer = self.tokens_per_expert_buffer +

tokens_per_expert
21 tokens_per_expert = self.tokens_per_expert_buffer
22

23 # compute LBL
24 .....
25 # reset the buffer if optimizer step is called
26 # therefore , the buffer doesn't expand the balance batch beyond global BSZ
27 optimizer.step()
28 if self.config.moe_router_reset_tokens_per_expert_buffer:
29 self.tokens_per_expert_buffer.zero_()

Listing 1: Pytorch style code for synchronizing and buffering tokens per expert

parallelism. GRIN does not present more motiva-796

tion for using global load balance. Additionally, it797

does not show the effects of using global load bal-798

ance independently and emphasizes the importance799

and properties of global load balance.800

A.2 Using a buffer to approximate the801

Global-Batch LBL.802

We introduce a buffer to store synchronized ci, the803

expert i’s selection count across micro-batches in804

one GA step. Then, the information in the buffer is805

used to calculate the current fi at each GA step. Af-806

ter completing the GA, the buffer is reset. The com-807

plete algorithm is shown in the Alg. 1. Through this808

accumulation process, fi approaches f̄i with gra-809

dient accumulation steps, approximating LBLglobal810

with limited compute nodes. We also provide the811

PyTorch implementation in the Listing 1.812

A.3 Global-Batch Balance with Token813

Dropping814

We also test global-batch balance with token drop-815

ping under a capacity factor of 1. We observe816

that the drop ratio is significantly higher than us-817

ing only micro-batch balance. For example, in the818

scenario of selecting 4 out of 160 experts, when819

Algorithm 1 Approximate Global-Batch LBL
1: Initialize an empty buffer for each expert, ci =

0
2: while training continues do
3: for each gradient accumulation step do
4: Add ci with new synchronized selec-

tion counts for expert i
5: Calculate the current fi with ci, i ∈

NE in the buffer
6: end for
7: Optimizer step, clear gradient
8: Reset the buffer with ci = 0
9: end while
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using the default LBL weight and micro-batch bal-820

ance, approximately 10% of the tokens are dropped.821

However, if global-batch balance is used from the822

beginning, the drop ratio would be around 30%.823

A large number of tokens being dropped leads to824

a significant reduction in FLOPs, which in turn825

makes the result of global-batch balance similar826

to that of micro-batch balance. We recommend827

that if token dropping is to be introduced when828

using global-batch balance, it is best to follow the829

approach described in Sec 5: start with dropless830

training, then add micro-batch balance, and finally831

introduce a certain capacity factor constraint.832

A.4 Expand Buffer Capacity833

A natural question arises: if model performance im-834

proves with the growth of the balance batch, could835

expanding the balance batch beyond the global836

batch size through the buffer mechanism further837

enhance the benefits? Our experiments find:838

(1) When training from scratch, if the buffer re-839

tains the tokens per expert statistics from the past840

three iterations to compute the current LBL, the841

convergence speed of LBL will significantly slow842

down and ultimately fail to converge near 1. We843

think this is because the router changes rapidly in844

the early stages of training, causing the previously845

recorded expert balance statistics to deviate sig-846

nificantly from the actual situation, which in turn847

introduces bias into the calculated LBL.848

(2) In the middle stages of training, if the buffer849

retains statistics from the past two or three itera-850

tions to compute the LBL, the model performance851

is similar to that when using only one iteration’s852

statistics. This observation allows us to approxi-853

mate the results obtained through global communi-854

cation in the current iteration using the statistics855

from the previous iteration, see next part A.5. Con-856

sequently, this approach can reduce the frequency857

of synchronization across data parallel groups.858

(3) Even in the middle stages of training, when859

the buffer capacity is expanded to eight iterations,860

the LBL gradually increases during training, which861

negatively impacts model performance. This indi-862

cates that although the model’s balance situation863

is relatively stable in the middle stages of training,864

using an incorrect LBL can still cause the model to865

gradually deviate from the desired balance.866

A.5 Decrease Synchronization Frequency867

In our large-scale experiments, we observe that868

when the data parallel group is very large (e.g.,869

2048 GPUs), synchronizing tokens per expert at 870

every update step is highly susceptible to cluster 871

performance fluctuations. Specifically, if one node 872

computes more slowly, the entire cluster is delayed 873

while waiting for the synchronization of tokens 874

per expert. Building on our previous experiments 875

with small buffer sizes, we further optimized the 876

synchronization method as follows: 877

Early training phase (approximately 10k itera- 878

tions, within 5% of total training steps): When the 879

LBL has not yet converged, we maintain synchro- 880

nization at every step, and the buffer only records 881

information from the current iteration. 882

Stabilized phase: Once the LBL converges and 883

training becomes relatively stable, we decrease the 884

synchronization frequency. Specifically, we use 885

the expanded buffer in App. A.4 to store the in- 886

formation from the past 2 to 3 iterations (global 887

batches). During each step of the current iteration, 888

we calculate the LBL using locally computed to- 889

kens per expert plus the information stored in the 890

buffer. The local tokens per expert are then up- 891

dated to the buffer. After the current iteration ends 892

(optimizer steps), we synchronize the locally calcu- 893

lated tokens per expert of this iteration in the buffer 894

across the data parallel group to obtain accurate 895

statistics for the iteration. 896

Iteration Transition: The oldest iteration’s in- 897

formation in the buffer is discarded, and the process 898

begins for the next iteration. For the specific imple- 899

mentation, please refer to Listing 2. By reducing 900

the frequency of cross-data parallel group synchro- 901

nization, we can mitigate latency even when train- 902

ing with a large number of nodes. 903
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1 # init buffer for tokens per expert; enable buffering across iteratio
2 _TOKENS_PER_EXPERT = [0]
3

4 # functions
5 def update_tokens_per_expert(tokens_per_expert):
6 global _TOKENS_PER_EXPERT
7 _TOKENS_PER_EXPERT [-1] = _TOKENS_PER_EXPERT [-1] + tokens_per_expert
8 return torch.stack(_TOKENS_PER_EXPERT , dim=0).sum(dim=0)
9

10 def reset_tokens_per_expert ():
11 args = get_args ()
12 global _TOKENS_PER_EXPERT
13 if len(_TOKENS_PER_EXPERT) < args.moe_router_buffer_capacity:
14 _TOKENS_PER_EXPERT.append (0)
15 elif len(_TOKENS_PER_EXPERT) == args.moe_router_buffer_capacity:
16 _TOKENS_PER_EXPERT = _TOKENS_PER_EXPERT [1:] + [0]
17 else:
18 raise ValueError
19

20 def sync_tokens_per_expert ():
21 global _TOKENS_PER_EXPERT
22 temp_tpe = _TOKENS_PER_EXPERT [-1]
23 torch.distributed.all_reduce(temp_tpe ,
24 group=get_data_parallel_group ())
25 _TOKENS_PER_EXPERT [-1] = temp_tpe / torch.distributed.get_world_size(
26 group=get_data_parallel_group ())
27

28 ...
29 # compute the number of tokens per expert
30 probs = torch.softmax(logits , dim=-1)
31 probs , top_indices = torch.topk(probs , k=self.topk , dim=-1)
32 tokens_per_expert = torch.histc(top_indices , bins=self.num_experts ,
33 min=0, max=self.num_experts)
34

35 # locally update the number of tokens per expert buffer
36 if self.config.moe_router_buffer_tokens_per_expert:
37 tokens_per_expert = update_tokens_per_expert(tokens_per_expert)
38

39 # compute LBL
40 .....
41 # reset part of the buffer if optimizer step is called
42 # therefore , the buffer properly expands the balance batch beyond global BSZ
43 optimizer.step()
44 if self.config.moe_router_reset_tokens_per_expert_buffer:
45 # sync only when one iteration is finished
46 # get and buffer tokens per expert for current iteration
47 sync_tokens_per_expert ()
48 # clear old tokens per expert
49 reset_tokens_per_expert ()

Listing 2: Pytorch style code for buffering tokens per expert and only synchronizing at each iteration
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