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Abstract

The rapid growth in the size of Large Lan-
guage Models (LLMs) poses significant chal-
lenges for deployment, particularly in resource-
limited environments. To address this issue,
we propose Neuron Summary (NS), a novel
approach for compressing LLMs by construct-
ing compact and condensed representations of
the weights in their linear layers. Given that
these layers contribute the most to the overall
model size, NS offers an effective method to
reduce the model size and computational costs
while maintaining strong performance in down-
stream natural language processing tasks. Our
compressed model, NSNet, substitutes each lin-
ear layer in an LLM with an NS-Linear layer,
where the weights are represented using NS.
The transition from a pre-trained LLM to NSNet
is achieved through regression-based initializa-
tion, followed by knowledge distillation to pre-
serve the original model’s capabilities. Extensive
experiments on compressing various LLMs, in-
cluding DeBERTaV3-base and Llama-2, demon-
strate that NS significantly outperforms exist-
ing compression methods across multiple tasks,
such as natural language understanding, ques-
tion answering, and text generation. Addi-
tionally, NS is complementary to other com-
pression techniques, such as quantization and
layer-wise parameter sharing, enabling further
reduction in model size while maintaining com-
petitive performance. The code of NSNet is
available at https://anonymous.4open.
science/r/NSNet-D6B8/.
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1. Introduction

Large language models (LLMs) have achieved state-of-the-
art performance across a wide range of natural language
processing (NLP) tasks, including classification, transla-
tion, and generation (Devlin et al., 2018; Liu et al., 2019;
He et al., 2020; Radford et al., 2019; Brown et al., 2020).
However, these performance gains come at the cost of sub-
stantial computational and memory overheads, primarily
due to the vast number of parameters in modern LLMs.
To alleviate this issue, numerous compression strategies
have been developed, including pruning (Frantar & Alis-
tarh, 2023; Ma et al., 2023a), quantization (Lin et al., 2024;
Zhao et al., 2024; Dettmers et al., 2022), and knowledge
distillation (Gu et al., 2024; Magister et al., 2023; Jiang
et al., 2023; Huang et al., 2022; Qiu et al., 2024).

Among these methods, low-rank approximations, par-
ticularly those based on singular value decomposition
(SVD) (Yuan et al., 2023; Hsu et al., 2022; Wang et al.,
2024), have emerged as effective tools for reducing param-
eter count while maintaining compatibility with pretrained
weights. These approaches are hardware-agnostic and can
be integrated with other techniques such as pruning and
quantization (Cheng et al., 2017). Additionally, parame-
ter sharing has proven to be another powerful means of
model size reduction by reusing weights across different
layers (Dehghani et al., 2019; Takase & Kiyono, 2021; Hay
& Wolf, 2024; Wang et al., 2025).

Despite these advances, existing methods primarily exploit
redundancy between layers, overlooking significant redun-
dancy within individual linear layers themselves—where
most LLM parameters reside (e.g., 90.8% in BERT (De-
vlin et al., 2018), 98.0% in Llama-2-7B (Touvron et al.,
2023c)). To address this gap, we introduce Neuron Sum-
mary (NS), anovel compression method that captures intra-
layer redundancy by representing each linear layer as a
shared 1D structure. Substituting all linear layers with
their NS counterparts yields NSNet, a compact network that
maintains the architecture of the original model. We further
propose a regression-based initialization strategy to con-
struct NSNet from a pretrained LLM, followed by knowl-
edge distillation to fine-tune performance alignment.
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Contributions. Our contributions are summarized as fol-

lows:

First, we propose a new model compression method, Neu-
ron Summary (NS), which encodes the weights of linear
layers using a compact and learnable 1D representation. A
given LLM is transformed into an NSNet by replacing its
linear layers with NS-Linear layers, each parameterized by
a corresponding NS vector. To initialize NSNet from pre-
trained LLMs, we design a novel initialization mechanism
based on linear regression. To maintain task accuracy, we
further apply knowledge distillation to align NSNet’s out-
puts with those of the original model.

Second, we demonstrate that NS significantly outperforms
existing compression techniques across multiple popular
LLMs—including DeBERTaV3-base (He et al., 2021),
BERT-base (Devlin et al., 2018), Llama-2-7B, and Llama-
2-13B (Touvron et al., 2023c)—on natural language under-
standing, question answering, and text generation tasks. As
shown in Figure 3 and Figure 2 in Appendix A.7, NSNet
consistently achieves faster inference and smaller model
size while matching or exceeding the accuracy of com-
peting baselines. Moreover, NS can be seamlessly com-
bined with other compression techniques such as quanti-
zation (Lin et al., 2023) and inter-layer parameter shar-
ing (Wang et al., 2025), enabling further gains in efficiency,
as demonstrated in Table 4 (Appendix A.3.1) and Figure 2
(Appendix A.7).

2. Related Works

2.1. Compression of Large Language Model without
Parameter Sharing

LLM compression aims to reduce model size and latency
without degrading performance, using techniques such as
distillation, pruning, and quantization. Distillation trains
a smaller student model to replicate a larger teacher’s be-
havior (Gu et al., 2024; Huang et al., 2022; Magister et al.,
2023; Jiang et al., 2023). Pruning removes unnecessary
weights or neurons (Frantar & Alistarh, 2023; 2022; Sun
et al., 2024; Ma et al., 2023a), either structurally or un-
structured, while quantization reduces parameter precision
to enhance hardware efficiency (Zhao et al., 2024; Ashk-
boos et al., 2024; Lin et al., 2024; Xiao et al., 2023).

SVD-based compression offers tunable compression ratios
without retraining (Golub et al., 1987; Lv et al., 2023; Wu
et al., 2023). However, it struggles with outlier activa-
tions in LLMs. Enhancements include FWSVD, which
uses Fisher information but is costly (Hsu et al., 2022);
LoSparse, which combines low-rank and sparse compo-
nents (Li et al., 2023); ASVD, which targets sensitive chan-
nels (Yuan et al., 2023); and SVD-LLM, which incorpo-
rates a whitening matrix to better handle outliers (Wang

et al., 2024).

2.2. Compression of Large Language Model with
Parameter Sharing

Weight sharing compresses LLMs by reusing parameters
across layers, inspired by RNNs. Universal sharing applies
a single set of weights to all encoder/decoder layers (De-
hghani et al., 2019), while other methods share attention
and feedforward weights separately (Reid et al., 2021), or
selectively across specific layers (Takase & Kiyono, 2021).
Sharing attention scores also reduces redundancy (Xiao
etal., 2019; Bhojanapalli et al., 2021). Dynamic Tying uses
reinforcement learning to decide sharing strategies during
training (Hay & Wolf, 2024). These methods can be com-
bined with SVD-based approaches. For example, Basis
Sharing shares SVD basis vectors across layers for more
efficient compression (Wang et al., 2025).

3. Formulation of Neuron Summary for
Linear Layers

We introduce the Neuron Summary (NS), which serves as a
compact representation of the neurons within a linear layer,
as described in Section 3.1. Following that, we present the
procedure for compressing a LLM, which entails replac-
ing every linear layer in the original model with an NS-
Linear layer and encoding the weights of each original lin-
ear layer as a compact NS. A model consisting of these NS-
Linear layers, referred to as an NSNet, is initialized from a
pre-trained LLM following the approach described in Sec-
tion 3.2. Finally, in Section 3.3, we introduce a fine-tuning
method based on knowledge distillation, specifically devel-
oped to preserve the strong performance of the NSNet after
the compression and initialization steps.

3.1. Neuron Summary (NS) for Linear Layers: the
NS-Linear Layer

In a conventional linear layer, the weight matrix W €
RPoutxDin hag the out dimension Dy, which is also the
number of neurons of this linear layer, and Dj,, is the size of
the input. Throughout this paper, we use neurons to denote
the rows of the weight matrix W in the linear layer. The to-
tal number of parameters of the linear layer is D;y, X Doyt
To compress this parameter space, we compress all the neu-
rons in a one-dimensional vector called Neuron Summary
(NS), denoted as S. Let r € (0,1) denote the compression
ratio, which is the ratio of the number of parameters of the
compressed model to that of the original model. As a re-
sult, the length of S, is L = | Dip X Doyt X 7. Each neuron
is assigned a segment of Dj,, elements in the NS, and these
segments overlap to enable weight sharing.

Elements of the neurons are extracted from the NS with a
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def forward(self, x):

# $L$ (int): Length of the neuron summary.
# D_in (int): Input dimension.
# D_out (int): Output dimension.

# Calculate the start indices of the neurons in
the NS vector

- self.start_indices = self.calculate_start_indices(

L, D_in, D_out)

# Fetch the neurons form the NS vector
weights = [self.neuron_summary[idx:idx + self.D_in
]

for idx in self.start_indices]

# Construct the weight matrix

-- weight_matrix = torch.stack(weights, dim=1)

# Perform the matrix multiplication
output = torch.matmul(x, weight_matrix)

return output

(b)

Figure 1: (a) Illustration of the weight sharing across the weights of different neurons using Neuron Summary (NS) in a
NS-Linear layer. The red and yellow dots represent the naturally shared weights of the two neurons extracted from the NS.
(b) Pseudocode of the forward function of a NS-Linear layer. ‘calculate_start_indicies’ is a function that calculates the start

indices of the neurons in the NS vector. The start index for the i-th neuron is 1 + (¢ — 1)s, where s = |

fixed stride s, which determines the spacing between the
segments. The stride is computed as s = L%j The
weights of the ¢-th neuron are extracted as a contiguous
segment starting from position 1+ (¢—1)sin S. As aresult,
the weights of the i-th neuron are Sy (;_1)s:(i—1)s+D;, fOr

i€{1,2,..., Dout}.

The NS replaces the conventional weight matrix. During
forward propagation, the elements for all neurons are dy-
namically reconstructed into a matrix W of size Dy X
D;y,. The rows of W are populated by extracting overlap-
ping segments from S. The linear layer then computes its
output as y = xW T, where x is the input. Figure 1 (a) il-
lustrates the weight sharing across the weights of different
neurons using NS. Figure 1 (b) presents the pseudocode
of the forward computation where the weight matrix of a
linear layer is reconstructed from the NS. Despite the re-
duction in parameters, the linear layer operates in the same
manner as the traditional implementation of a linear layer.
Such a new linear layer with a NS is termed a NS-Linear
layer. A deep neural network with all its linear layers re-
placed by the NS-Linear layers is called a Neural Summary
Network, or NSNet.

3.2. Initialization of the NSNet From a Pre-Trained
LLM

To train LLMs for natural language processing tasks, ex-
isting works typically first pre-train the models, such as
BERT (Devlin et al., 2018) and LLaMA (Touvron et al.,
2023a), on large-scale corpora (He et al., 2020; Touvron
et al., 2023c) to learn general language representations.
These pre-trained LLMs are then fine-tuned on specific
downstream tasks, such as natural language understanding
on GLUE (Wang et al., 2019), question answering tasks
on SQuAD (Rajpurkar et al., 2016b), and language gener-

D)
ation on WikiText (Merity et al., 2016). To obtain com-
pact LLMs with reduced model sizes, model compression
methods, such as the SVD decomposition (Li et al., 2023;
Yuan et al., 2023) and the parameter sharing (Hay & Wollf,
2024; Wang et al., 2025), have been employed to compress
LLMs. To maintain the competitive performance of these
compressed models on downstream tasks, existing works
either fine-tune the compressed models on the downstream
tasks during the compression process (Li et al., 2023) or
perform the fine-tuning after completing the compression
process (Yuan et al., 2023).

To apply NS to compress the LLMs for downstream natural
language processing tasks, we follow the same protocol as
existing works by first compressing the pre-trained LLMs
with NS and then fine-tuning the compressed models on
the downstream tasks. To compress the pre-trained LLMS
with NS, we replace each conventional linear layer in the
model with the NS-Linear layer described in the previous
subsection, whose weights are represented as NS. The pre-
trained model does not have NS vectors in their linear lay-
ers. Furthermore, it would be very time-consuming and
resource-demanding to pre-train the NSNet model. To this
end, we propose a novel NS initialization method which
initializes a NSNet from an off-the-shelf pre-trained model.
Such initialized NSNet is used as the pre-trained NSNet
for the subsequent tasks. We note that a carefully designed
fine-tuning process with knowledge distillation described
in Section 3.3 is employed to ensure the compelling perfor-
mance of the NSNet for downstream tasks.

In the NS initialization method, we initialize the weights
of all the NS-Linear layers by solving a regression prob-
lem that minimizes the mean squared error (MSE) between
the weight matrix reconstructed from the NS and the origi-
nal weight matrix for each layer. Let M be the number of
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linear layers in the original model. Given the weight ma-
. (m)
trix W™ ¢ RPou D" from the m-th linear layer in

the pre-trained model, and the NS vector Stm) ¢ RL(M,
the weights for the ¢-th neuron in the NS-Linear layer

are reconstructed as w."™ = §™ (m)
v 14 (i—1)s(m):(i—1)s(™) + D,
for every i € {1,2,. C()Z?} The reconstructed

weight matrix wWm) for the m-th layer is formed by

stacking these neuron-specific weights by W =
(m). A(M) & (m)

Wy ;W ,...,WD(m)]

The objective is to minimize the reconstruction error be-

tween W (™) and the original weight matrix W ("), which

—~ 2

is computed by £(S) = %fo:l HW(m) — W(m) HF =

M DI Nl (m 112
L S W - wi|

)’ where ||| and |||,
denote the Frobenius and ¢2-norms, respectively, and wgm)
represents the i-th row of W ("), The weight matrix W (™)
can be either the weights of a linear layer in Section 4.2
for compression of Llama models, or the low-rank parts (U
and V) of its low-rank decomposition W™ ~ UV by
SVD based compression such as (Li et al., 2023) in Sec-
tion 4.1 for compression of the Bert models.

3.3. Fine-Tuning the NSNet via Knowledge Distillation

Although the NSNet is initialized to approximate the pre-
trained LLM, an inevitable performance gap exists between
the initialized NSNet and the pre-trained LLM due to inher-
ent approximation errors. To reduce the performance gap,
we propose to further fine-tune the initialized NSNet us-
ing knowledge distillation. The fine-tuning process aims to
align the prediction of the NSNet with that of the original
pre-trained LLM by knowledge distillation, ensuring that
the NSNet retains the knowledge and capabilities of the
pre-trained model while benefiting from its reduced model
size.

Knowledge distillation involves transferring knowledge
from a larger pre-trained teacher model to a smaller com-
pressed student model. In this context, the off-the-shelf
pre-trained LLM is the teacher model, and the NSNet is the
student model. Given an input x, the goal is to minimize
the discrepancy between the outputs of the teacher and stu-
dent models. The overall loss function for fine-tuning with
knowledge distillation consists of two components, which
are a distillation loss and a supervised loss. The overall loss
function is given by Line-une = Ladisin + ALrask, Where X is
a scale factor that balances the distillation and supervised
loss terms.

The distillation loss aligns the output distribution of the
student model, NSNet, with that of the teacher model,
the pre-trained LLM. By using predicted probabilities

over the vocabulary from the teacher model as the
soft targets, the distillation loss encourages the student
model to mimic the behavior of the teacher model. Let
D = {(xi,y:)}Y, represent the dataset containing
inputs x; and corresponding ground-truth outputs y;.
The distillation loss is computed using the Kullback-
Leibler (KL) divergence between the softmax outputs
of the teacher and student models, that is, Lggn =

va L T2KL (softmax (z(tea)/r) || softmax (Z(»Sm)/7'>>

where 2" and z{"™ are the output probability distribu-
tions of the ¢-th training data for the teacher model and
the student model, respectively, computed at a temperature
T> 1

The supervised loss ensures that the student model main-
tains high performance on the downstream tasks by min-
imizing the discrepancy between the model predictions
and the task-specific ground-truth labels. The supervised
loss can take different forms depending on the nature of
the task. The supervised loss is computed by Ly =
+ Zfil L (ys, zl(-sm)), where /- represents a task-specific
loss function. For instance, {7 corresponds to the KL-
Divergence for tasks such as sentence classification or nat-
ural language generation, while it takes the form of the £2-
norm for semantic similarity measurement tasks.

4. Experiments

We evaluate the proposed Neuron Summary (NS) for com-
pressing two different categories of LLMs, which are the
Bert models (Devlin et al., 2018; He et al., 2021) and the
Llama models (Touvron et al., 2023b;d). The evaluation
results on the Bert models for the natural language under-
standing and the question answering tasks are presented in
Section 4.1. More empirical and theoretical results are de-
ferred to the appendix. The evaluation results on the Llama
models are presented in Section A.2 of the appendix. We
compare NS with competing baselines for compressing the
Llama models on the language generation task. We per-
form comprehensive ablation studies in Section A.3 of the
appendix. In Section A.3.1, we study the performance of
NS when combined with quantization methods. In Sec-
tion A.3.2, we study the performance of NSNet with dif-
ferent parameter sizes. Ablation study on verifying the ef-
fectiveness of the NS initialization method is performed in
Section A.3.3. Additional experiment results are deferred
to Section A of the appendix. In Section A.5, we compare
NSNet against pruning-based methods for compressing the
Llama models. In Section A.6, we compare NSNet with
LoSparse without using models compressed by LoSparse
as the original model. In Section A.7, we combine NS and
the compression method that shares parameters across dif-
ferent layers for enhanced compression. In Section A.8, we
assess the performance of the Llama models compressed
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Table 1: Results of Compressed DeBERTaV3-base (He et al., 2021) models on the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019). ‘Ratio’ denotes the ratio of the number of parameters of the models
compressed by the baseline methods to that of the original model. The compression ratio of NSNet is 90% of that of the
baseline models, which applies to all tables in this paper. Results with ‘N.A." indicate the model does not converge as
reported in (Li et al., 2023). The best results on each dataset are shown in bold. These conventions are followed in all the

tables in this paper.

. MNLI RTE QNLI MRPC QQP SST-2  CoLA STS-B
Ratio Method m/ mm Acc Acc Acc/F1 Acc/F1 Acc Mcc P/S Corr
100% | DeBERTaV3-base (He et al., 2021) 90.5/90.6 82.0 94.0 89.5/93.3 92.4/89.8 95.3 69.2 91.6/91.1

ITP (Molchanov et al., 2019) 82.8/82.5 N.A. 87.8 82.0/87.0 90.0/86.4 90.8 49.0 87.4/87.0
20% LoSparse (Li et al., 2023) 84.5/83.8 68.0 88.6 85.0/89.4 90.6/87.2 91.7 50.0 88.6/88.6
Dynamic Tying (Hay & Wolf, 2024) | 84.2/83.2 684 88.8 85.2/89.7 90.5/87.4 91.6 50.8 88.8/88.5
NSNet (Ours) 85.7/84.4 69.9 90.4 86.1/90.7 91.2/88.2 929 52.2  89.7/89.6
ITP (Molchanov et al., 2019) 81.7/81.3 N.A. 85.4 80.5/86.3 89.1/85.2 89.3 45.8 86.8/86.3
15% LoSparse (Li et al., 2023) 83.3/829 669 87.6 83.6/88.0 90.3/87.0 90.4 46.8 87.7/87.3
Dynamic Tying (Hay & Wolf, 2024) | 83.0/82.7 67.1 87.9 84.0/88.2 90.4/86.8 90.6 47.1 87.5/87.5
NSNet (Ours) 84.4/83.8 68.6 88.9 85.2/894 90.8/87.8 91.6 48.6  88.8/88.6
ITP (Molchanov et al., 2019) 79.7/79.6 N.A. 82.3 78.5/84.3 88.3/84.4 88.3 38.0 86.3/86.0
10% LoSparse (Li et al., 2023) 81.7/81.8 66.0 86.1 82.3/87.4 89.5/86.0 89.2 40.0 87.2/87.0
Dynamic Tying (Hay & Wolf, 2024) | 81.5/80.9 66.3 86.8 82.5/874 89.8/86.2 89.4 40.6 87.4/87.5
NSNet (Ours) 82.8/82.6 68.0 87.5 84.0/88.6 90.4/87.0 90.5 42.0 88.3/88.2

by NS by BLEU on the text generation task and prediction
accuracy on the classification tasks. In Section A.9, we
compare NSNet with models compressed by the baseline
methods when fine-tuned under the same settings. Sec-
tion A.10 provides an ablation study on regression-based
initialization and knowledge distillation. In Section A.11,
we demonstrate the scalability of NS on compressing larger
models. A theoretical result analyzing the approximation
error for the NS-Linear layer is in Section A.12. A case
study about the comparison between the texts generated by
NSNet and those generated by the models compressed by
the baseline methods is in Section A.13. Throughout all
the experiments, instead of directly compressing the orig-
inal model by NSNet, we first apply NS to compress the
low-rank weight matrices of the models compressed by the
low-rank compression method, such as LoSparse (Li et al.,
2023) or ASVD (Yuan et al., 2023). The compression ra-
tio of the LoSparse or ASVD used by NSNet is set to be
the same as the compression ratio of the baseline compres-
sion methods. Then NS is applied to compress the low-
rank matrices produced by LoSparse or ASVD with a com-
pression ratio of 90%. For example, the NSNet in Table 2,
where the baseline compression ratio is 50%, actually has
a compression ratio of 90% x 50% = 45%. In Section 4.1,
LoSparse (Li et al., 2023) is used as the low-rank compres-
sion method. In Section 4.2, ASVD is used as the low-rank
compression method. The experiments in this paper are
conducted on the Nvidia A100 GPU.

4.1. Compressing the Bert Models
4.1.1. EXPERIMENT SETTINGS

Following the existing works on compressing the Bert
models (Louizos et al., 2017; Sanh et al., 2020; Zhang et al.,

2022; Li et al., 2023), we do not compress the LayerNorm
and classification head. Throughout all the experiments in
our paper, we set the scale factor A from Lype.qne = as 0.5,
and the temperature 7 from Lgsqn as 2. The compression
ratio r is set to the same value for all the linear layers in
the proposed NSNet. To evaluate the effectiveness of NS
in compressing BERT models, we compare it against Itera-
tive Pruning (ITP) (Molchanov et al., 2019), LoSparse (Li
et al., 2023), and Dynamic Tying (Hay & Wolf, 2024).

4.1.2. NATURAL LANGUAGE UNDERSTANDING

Implementation Details. Following existing works (Li
et al., 2023; Molchanov et al., 2019; Sanh et al., 2020), we
evaluate the performance of the NSNet when compressing
the pre-trained DeBERTaV3-base model (He et al., 2021)
for the natural language understanding task on the Gen-
eral Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019). The GLUE dataset consists
of two single-sentence classification tasks, SST-2 (Socher
et al., 2013) and CoLLA (Warstadt et al., 2019), three sim-
ilarity and paraphrase tasks, MRPC (Dolan & Brockett,
2005), STS-B (Cer et al., 2017), and QQP, and four natu-
ral language inference tasks, MNLI (Williams et al., 2018),
QNLI (Rajpurkar et al., 2016a), RTE (Dagan et al., 2007;
2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
and WNLI (Levesque et al., 2012). Following previous
works (Li et al., 2023), we exclude WNLI in the exper-
iments due to its small dataset size, specialized nature
requiring complex pronoun disambiguation, and perfor-
mance anomalies where simpler models may outperform
advanced ones. For single-sentence classification tasks
such as SST-2 and CoLA, we employ accuracy and the
Matthews Correlation Coefficient (MCC), respectively, to
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measure model performance. For similarity and paraphrase
tasks like MRPC, STS-B, and QQP, we consider both ac-
curacy and the F1 Score to capture the nuances of para-
phrase detection and semantic similarity assessment. In
natural language inference tasks, including MNLI, QNLI,
and RTE, accuracy serves as the primary metric, providing
a clear measure of the model’s ability to correctly infer rela-
tionships between sentences. In MNLI, matched accuracy,
denoted as ‘m’, measures performance on test data from the
same domains as the training set, while mismatched accu-
racy, denoted as ‘mm’, evaluates generalization to unseen
domains.

We select the learning rates of the fine-tuning process for
different tasks from {1 x 107°,2.5x 1075,5x 1075, 7.5 x
107°,1 x 10~*}. AdamW is used as the optimizer. The
batch size is set to 128. The number of fine-tuning epochs
is set to 5.

Results. We compare our method with baseline approaches
across various compression ratios. The results are shown in
Table 1. It is observed that our NS achieves the best per-
formance compared with all competing methods on all the
datasets of GLUE under all compression ratios. For ex-
ample, when the compression ratio of the baseline method
is 20%, the NSNet achieves an accuracy of 69.9% on the
RTE dataset, which surpasses the best-performing baseline,
Dynamic Tying, by 1.5%. In addition, NS also signifi-
cantly outperforms the competing baselines with the small-
est compression ratio of 10%. For example, when the com-
pression ratio of the baseline model is 10%, the NSNet
achieves an accuracy of 68.0% on the RTE dataset, which
surpasses the best-performing baseline, Dynamic Tying, by
1.7%. In addition, we compare the inference time in mil-
liseconds (ms) per sample measured and the model size
(millions of parameters) on the GLUE benchmark using
one Nvidia A100 GPU in Figure 3 of the appendix. It is
observed that NSNet always exhibits faster inference speed
and smaller model size than the competing baseline models
with the same level of performance.

4.1.3. QUESTION ANSWERING

Implementation Details. We evaluate the performance
of the NSNet for performing question answering on
SQuADvl.1, (Rajpurkar et al., 2016a). In SQuADvl.1,
question answering is formulated as a sequence labeling
task, where each token is assigned a probability of being
the beginning or end of the answer span. Exact match
(EM) and F1 are used as the evaluation metric for this task.
Similar to the experiments on the GLUE, we do not com-
press the LayeNorm and the classification layer. Follow-
ing (Yuan et al., 2023) for the fine-tuning of the models, we
select the best learning {1 x 107°,3 x 1075,5 x 10,8 x
10~°}. The fine-tuning is performed by using AdamW as

the optimizer and the batch size is set to 32.

Results. We compare the performance of the NSNet with
models compressed by the competing baselines under dif-
ferent compression ratios. The results are shown in Table 2
of Section A.l of the appendix. It is observed that NSNet
consistently outperforms the competing baseline methods
under all compression ratios. Similar to our results on
GLUE, NS is especially effective with low compression ra-
tios. For example, when the compression ratio of the base-
line model is 10%, NSNet outperforms the best-performing
baseline, Dynamic Tying, by 1.5% in exact match. The su-
perior performance of the NSNet is maintained when com-
pressing the BERT-Basse model. For example, when the
compression ratio of the baseline model is 10%, NSNet
outperforms the best-performing baseline, LoSparse, by
1.3% in exact match.

4.2. Compressing Llama Models

Following existing works (Wang et al., 2025), we evaluate
the effectiveness of Neuron Summary (NS) for compress-
ing the Llama-2 models (Touvron et al., 2023b;d), which
include configurations with 7 billion and 13 billion param-
eters. The evaluation is performed on two datasets, which
are the Wikitext-2 and the Penn Treebank (PTB) (Marcus
et al., 1993). Perplexity is used as the metric to evaluate
the language generative capability of the LLMs. The de-
tailed implementation details and experimental results are
deferred to Section A.2 of the appendix.

5. Conclusion

We introduce Neuron Summary (NS), a novel compres-
sion method that replaces linear layers with NS-Linear lay-
ers, reducing model size while maintaining performance.
The compressed model, NSNet, initializes via regression-
based optimization and fine-tunes using knowledge distilla-
tion. Experiments on various NLP tasks show that NS out-
performs existing compression methods, especially at high
compression ratios. In addition, NS can be combined with
existing LLM compression methods, such as quantization,
leading to even more efficient LLM deployment.

Impact Statement

This paper presents work whose goal is to advance the
field of model compression for Large Language Models by
learnable weight sharing.
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A. Additional Experiment Results

A.1. Question Answering
Table 2: Results of Compressed DeBERTaV3-base and BERT-base on SQuAD v1.1. The exact match (EM) and F1 are
reported in the table below. For example, A/B represents EM/F1.

Ratio 10% 20% 30% 40% 50% 100%
DeBERTaV3-base - - - - - 87.7/93.5
ITP (Molchanov et al., 2019) 709/80.3  75.0/839 782/86.2 80.5/87.5 81.5/89.6 -
LoSparse (Li et al., 2023) 72.9/828  76.8/85.8 80.2/88.0 82.1/89.4 82.3/90.3 -
Dynamic Tying (Hay & Wolf, 2024) | 72.5/82.6  76.4/85.3 80.4/88.0 822/89.2 82.1/90.0 -
NSNet (Ours) 74.0/83.6 77.6/864 81.4/88.8 82.8/89.8 83.0/90.8 -
BERT-base - - - - - 80.9/88.2
ITP (Molchanov et al., 2019) 625/742 66.8/78.0 72.3/824 745/842 76.0/85.1 -
LoSparse (Li et al., 2023) 65.2/768 69.7/804 73.0/829 746/842 75.8/85.1 -
Dynamic Tying (Hay & Wolf, 2024) | 64.7/763 699/803 72.6/824 74.8/84.0 76.0/85.0 -
NSNet (Ours) 66.5/77.6 709/81.4 73.9/83.5 75.6/84.6 76.9/85.6 -

A.2. Compressing Llama Models

Following existing works (Wang et al., 2025), we evaluate the effectiveness of Neuron Summary (NS) for compressing
the Llama-2 models (Touvron et al., 2023b;d), which include configurations with 7 billion and 13 billion parameters. The
evaluation is performed on two datasets, which are the Wikitext-2 and the Penn Treebank (PTB) (Marcus et al., 1993).
Perplexity is used as the metric to evaluate the language generative capability of the LLMs.

Implementation Details. Following existing LLM compression methods (Ma et al., 2023b), we use LoRA fine-tuning
to fine-tune the weights of the compressed LLMs. Details on the LoRA fine-tuning are deferred to Section A.4 of this
appendix. We apply NS to compress the Llama models by replacing all their linear layers with the NS-Linear layers
without SVD compression. The compression ratio r is set to the same value for all the linear layers in the proposed NSNet.
To evaluate the effectiveness of NS in compressing Llama models, we compare it against Adaptive SVD (ASVD) (Yuan
etal., 2023), SVD-based Layer-wise Model Compression (SVD-LLM) (Wang et al., 2024), and Basis Sharing (Wang et al.,
2025).

Results. We evaluate the performance of Llama-2-7B and Llama-2-13b compressed by NS and the competing baselines,
with the compression ratios of the baseline models ranging from 60% to 90% on all the datasets with a step size of
10%. The results are shown in Table 3. It is observed that NSNet compressed from both the Llama-2-7B and Llama-
2-13b consistently outperforms all the competing baselines across all the compression ratios, with even faster inference
speed. More importantly, NSNet exhibits significant advantages over the competing baselines when fewer parameters are
preserved in the compressed models. For instance, when the compression ratio of the baseline model is 60%, NSNet
outperforms the best-performing baseline, Basis Sharing, by 15.37 in perplexity on the PTB dataset, with even faster
inference speed. In addition, we compare the inference time in milliseconds (ms) per sample measured and the model size
(billions of parameters) on the entire GLUE benchmark using one Nvidia A100 GPU in Figure 2. It is observed that NSNet
always exhibits faster inference speed and smaller model size than the competing baseline models with the same level of
performance.

Table 3: Comparison of the perplexity of the models compressed from the Llama-2-7b and the Llama-2-13b on Wikitext-2
and PTB.

Model Dataset Ratio | SVD-LLM (Wang et al., 2024)  ASVD (Yuan et al., 2023)  Basis Sharing (Wang et al., 2025) NSNet (Ours)
90% 727 574 652 5.60
- 80% 8.38 6.86 777 6.14
Wikitext-2 | oz 10.67 10.62 9.69 9.51
Llama2.7h 60% 16.14 19.12 13.62 13.25
90% 382 32.63 2514 19.67
TR 80% 75.55 114.70 60.00 5532
70% 110.28 140.96 97.40 80.26
60% 204.34 272.65 195.95 180.58
90% 504 5.03 547 493
- 80% 6.66 577 5.90 5.62
Wikitext-2 | 07 8.00 7.82 7.96 7.21
60% 10.78 13.18 11.25 10.12
Llama-2-13b 90% 3585 34.03 20.96 19.25
TR 80% 52.06 59.68 42,05 38.42
70% 86.40 79.53 74.36 72.28
60% 110.85 110.65 102.45 95,79
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A.3. Ablation Study
A.3.1. INTEGRATING NS WITH QUANTIZATION

The design of NS is orthogonal to other widely used LLM compression methods, such as quantization. Following existing
works on compressing the Llama models (Yuan et al., 2023), we integrate NS into quantization-based LLM compression
methods that are widely recognized by the community to examine how NS could further enhance their performance. The
evaluation is performed for combing NS with two quantization methods, which are the Round-To-Nearest (RTN) and the
Activation-aware Weight Quantization (AWQ) (Lin et al., 2023). We note that our study focuses on establishing the orthog-
onal property of NS to these basic quantization methods. Future work could extend this investigation to more advanced
quantization techniques and other LLM compression approaches. The results are shown in Table 4. It is observed that
NSNet quantized by both methods can still maintain a reasonably good performance with even less memory consumption,
showing the potential of NS to complement existing quantization-based compression techniques. In addition, we com-
pare the performance of NSNet combined with different quantization methods with Basis Sharing combined with different
quantization methods. It is observed that NSNet sacrifices much less performance than Basis Sharing when combined with
quantization. For example, AWQ increases the perplexity of the model compressed by Basis Sharing with a compression
ratio of 60% by 1.10. In contrast, AWQ only increases the perplexity of the NSNet with a compression ratio of 60% by
0.70.

Table 4: Comparison of the perplexity between Basis Sharing and NSNet when combined with quantization methods for
compressing Llama-2-7b. The evaluation is performed on the Wikitext-2.

Ratio FP16 (Original) INT 8 (RTN) INT 4 (AWQ)

Basis Sharing (Wang et al., 2025) NSNet | Basis Sharing (Wang et al., 2025) NSNet | Basis Sharing (Wang et al., 2025) NSNet
90% 6.52 5.60 6.70 5.62 6.92 5.79
80% 7.77 6.14 7.95 6.18 8.05 6.36
70% 9.69 9.51 9.84 9.53 10.39 9.92
60% 13.62 13.25 13.90 13.32 14.72 13.95

A.3.2. ABLATION STUDY ON THE PERFORMANCE OF THE NSNET OF DIFFERENT MODEL SIZES

We perform a comparative study evaluating the effect of model size on the performance of NS in compressing LLMs. We
evaluate how models compressed by NSNet and the competing baselines perform as the number of parameters decreases.
The comparison is performed on the MNLI task in the GLUE dataset, with compressed models ranging from 20M to
150M parameters. The NSNet is directly compressed from the DeBERTaV3-base by replacing all the linear layers with
the NS-Linear layers. The evaluation results are illustrated in Figure 3 (a). It is observed that NSNet outperforms models
compressed by other methods more significantly as the model size decreases.

A.3.3. ABLATION STUDY ON THE INITIALIZATION OF THE NSNET AND THE FINE-TUNING OF THE NSNET

To verify the effectiveness of the proposed novel initialization method and the fine-tuning method of the NSNet, we
perform an ablation study by evaluating the performance of the initialized NSNet without fine-tuning. The ablation study
is performed on the MNLI task in the GLUE benchmark. We perform the evaluation for NSNet compressed from the
DeBERTaV3-base for compression ratios of 10%, 15%, and 20%. The results are shown in Table 5. It is observed that
the initialized NSNet still achieves a reasonable performance on the downstream task without fine-tuning. Moreover,
fine-tuning with the knowledge distillation significantly reduces the performance gaps between the initialized compressed
models and the pre-trained LLMs.

Table 5: Ablation study on the initialization of the NSNet and the fine-tuning of the NSNet. The NSNet without Fine-
tuning denotes the NSNet initialized with the proposed NS initialization method in Section 3.2. The matched accuracy and
the mismatched accuracy are reported in the table below. For example, A/B represents matched/mismatched accuracy.

Ratio 10% 15% 20% 100%
DeBERTaV3-base - - - 90.5/90.6
NSNet without Fine-tuning | 83.0/82.4 81.8/82.2 81.0/81.2 -
NSNet 85.7/84.4 84.4/83.8 82.8/82.6 -
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A.4. LoRA Fine-Tuning Settings for Models Compressed from the Llama-2 Models

LoRA (Hu et al., 2021) optimizes the fine-tuning of LLMs by adding a small set of trainable parameters while the original
model parameters remain frozen. This is achieved by constraining the update of a pre-trained weight matrix Wy to a low-
rank structure, represented as Wy + AW = Wy+ BA, where B € RI*7 A € R™>* and the rank r is significantly smaller
than the minimum of d and k. During training, W is kept static, and gradient updates are applied only to A and B. The
adaptation is applied as h = Wyx + AWz = Wyx + B Az, ensuring that W, and AW = BA are multiplied by the same
input x, and their output vectors are summed coordinate-wise to yield the modified output h. We set the rank adjustment
parameter of LoRA fine-tuning to 8, which determines the rank of the low-rank matrices used for adaptation. The LoRA
fine-tuning scaling factor, which decides the adaptation impact of the fine-tuning, is set to 32.

A.5. Comparison with Llama Pruning Methods

We conduct additional experiments to compare NSNet with pruning-based methods, namely ShearedLLaMA (Xia et al.,
2024) and Minitron (Muralidharan et al., 2024). To ensure a fair comparison, we adopt the same fine-tuning settings for
all methods. Specifically, we apply the same task objective and knowledge distillation from the original model, along with
the LoRA fine-tuning strategy, to the models compressed by ShearedLLaMA and Minitron. Table 6 presents the perplexity
results on Wikitext-2 and PTB datasets across different sparsity ratios. As shown, NSNet consistently achieves lower
perplexity scores than both ShearedLLaMA and Minitron on LLaMA-2-7B and LLaMA-2-13B backbones, under identical
fine-tuning conditions.

Table 6: Perplexity comparison between NSNet and pruning-based methods for LLaMA-2-7B and LLaMA-2-13B on
WikiText-2 and PTB.

Model Dataset Ratio | ShearedLLaMA | Minitron | NSNet (Ours)
90% 6.10 6.24 5.60
- 80% 6.80 6.99 6.14
WikiText-2 | 70, 10.20 10.44 9.51
60% 14.10 13.95 13.25
LLaMA-2-7B 90% 20.45 20.18 19.67
PTB 80% 56.24 57.90 55.32
70% 88.10 85.23 80.26
60% 185.92 187.14 180.58
90% 5.78 548 4.93
o 80% 6.24 6.32 5.62
WikiText-2 | 504, 7.80 7.95 7.21
60% 10.79 10.64 10.12
LLaMA-2-13B 90% 19.05 19.76 19.25
PTB 80% 40.42 39.10 38.42
70% 75.20 77.90 72.28
60% 98.74 99.31 95.79

A.6. Comparison with LoSparse

To ensure a fair comparison with LoSparse (Li et al., 2023), we compress NSNet directly from the original pretrained
models instead of reusing models compressed by LoSparse. We report Exact Match (EM) and F1 scores on the SQuAD
dataset, with each cell formatted as EM/F1. The results are presented in Table 7. It is observed that NSNet outperforms
models compressed by LoSparse consistently across various compression ratios. Furthermore, combining NSNet with
LoSparse yields additional performance gains, achieving the best results in all settings.

A.7. Combining NS with the Compression Method Sharing Parameters across Different Layers

Most existing parameter sharing methods for compressing LLMs reduce the model size by reusing weight matrices across
different layers. Although NS is designed for parameter sharing among neurons within a single layer, it can be seamlessly
integrated with cross-layer parameter-sharing methods to achieve further compression. In this Section, we study the per-
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Table 7: Comparison between NSNet, LoSparse, and their combination on SQuAD under different sparsity levels. Each
cell shows EM/F1 score.

Model 10% 20% 30% 40% 50%

LoSparse (DeBERTaV3-base) 72.9/82.8 76.8/85.8 80.2/88.0 82.1/89.4 82.3/90.3
NSNet (DeBERTaV3-base) 73.7/83.4 77.5/86.2 81.1/88.5 82.6/89.9 82.8/90.8
NSNet + LoSparse (DeBERTaV3-base) 74.0/83.6 77.6/86.4 81.4/88.8 82.8/89.8 83.0/90.8
LoSparse (BERT-base) 65.2/76.8 69.7/80.4 73.0/82.9 74.6/84.2 75.8/85.1
NSNet (BERT-base) 66.2/76.3 70.5/81.0 73.7/83.2 75.3/84.5 76.5/85.4
NSNet + LoSparse (BERT-base) 66.5/77.6 70.9/81.4 73.9/83.5 75.6/84.6 76.9/85.6

formance of NSNet when combined with Basis Sharing. To combine NS with the Basis Sharing, we apply NS to compress
the weight matrices of the models compressed by Basis Sharing. To obtain a compact model with a compression ratio of
ro by integrating Basis Sharing and NSNet, we begin by applying Basis Sharing to reduce the model size by half of the
total intended reduction, resulting in an intermediate compression ratio of 0.5 4 ro/2. Next, we apply NS to compress the
weight matrices in the Basis Sharing model to reach the target compression ratio of ry. For example, to obtain the NSNet
combined with Basis Sharing with a compression ratio of 80%, we first compress the Llama-3 model using Basis Sharing
with a compression ratio of 90% and then compress the weight matrices in the compressed Basis Sharing model with NS.
In our experiments, we use Llama-3 7B as the base model. The comparative performance in terms of perplexity on the
Wikitext-2 dataset is depicted in Figure 2, where models compressed by various methods are compared across compression
ratios from 0.2 to 0.9, with a step size of 0.1. It is observed that combining NSNet with Basis Sharing further enhances
the performance of compressed models of the same size as those compressed by NS or Basis Sharing alone, demonstrat-
ing the promise of combining NS with cross-layer parameter-sharing methods. The performance improvement from the
combination of NS and Basis Sharing becomes increasingly significant as the target model size is further reduced.
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Figure 2: Comparison of NSNet models compressed from Llama-7B against competing baselines. Figure (a) illustrates

the performance under different model sizes, while Figure (b) illustrates the trade-off between the performance and the
inference time.

In addition, we compare the inference time in milliseconds (ms) per sample measured and the model size (millions of
parameters) on the GLUE benchmark using one Nvidia A100 GPU in Figure 3. It is observed that NSNet always exhibits
faster inference speed and smaller model size than the competing baseline models with the same level of performance.
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Figure 3: Comparison of NSNet models compressed from DeBERTaV3-base against competing baselines. Figure (a)
illustrates the performance under different model sizes, while Figure (b) illustrates the trade-off between the performance

and the inference time.

A.8. Evaluation on Text Generation and Classification Tasks

Following prior works such as ASVD (Yuan et al., 2023), Basis Sharing (Wang et al., 2025), and SVD-LLM (Wang et al.,
2024), we have evaluated the language modeling capabilities of compressed LLaMA models on the Wikitext-2 and PTB
datasets using perplexity in Table 3. To further demonstrate the effectiveness of NSNet, we conduct additional experi-
ments on two other tasks, which are text generation and classification. For text generation, we evaluate the compressed
LLaMA-2-7B models on the Truthful QA dataset (Lin et al., 2022), using BLEU score as the evaluation metric. For clas-
sification, we evaluate model performance on six benchmark datasets, which are OpenbookQA (Mihaylov et al., 2018),
WinoGrande (Sakaguchi et al., 2020), HellaSwag (Zellers et al., 2019), ARC-E (Clark et al., 2018), PIQA (Bisk et al.,
2020), and MathQA (Amini et al., 2019). We report the average accuracy across these six datasets as the final classification
score. All methods are fine-tuned with the same settings as NSNet, using a combination of task-specific objectives and

knowledge distillation from the original model.

Table 8: Evaluation of compressed LLaMA-2-7B models on TruthfulQA (BLEU) and average classification accuracy
across six benchmark datasets.

Task Ratio SVD-LLM ASVD Basis Sharing NSNet (Ours)

90% 0.29 0.25 0.26 0.30

80% 0.28 0.24 0.25 0.29

TruthfulQA (BLEU) 70% 0.25 0.21 0.23 0.27
60% 0.24 0.20 0.20 0.25

90% 0.55 0.52 0.51 0.56

Classification 80% 0.54 0.48 0.49 0.55
70% 0.47 0.44 0.47 0.51

60% 0.42 0.39 0.42 0.45

A.9. Comparison Baseline Models Fine-Tuned under the Same Settings as NSNet

To ensure a fair comparison with baseline methods, we have conducted additional experiments where all models, including
NSNet and the baselines, are fine-tuned under identical settings. We apply both the task objective and knowledge distilla-
tion (KD) to fine-tune each model for the same number of epochs. As shown in Table 9, NSNet significantly outperforms
the baseline methods across all compression ratios for both DeBERTaV3-base and BERT-base backbones, under the same
fine-tuning settings. The results for compressing LLaMA-2-7b and LLaMA-2-13b on WikiText-2 and PTB are shown in
Table 10. It is observed that NSNet consistently outperforms baseline methods across different compression ratios on both

datasets and model sizes.

A.10. Ablation Study on Regression-based Initialization and Knowledge Distillation

We conduct an ablation study to evaluate the impact of the proposed regression-based initialization and knowledge distilla-
tion in NSNet. The experiments are conducted on compressing the LLaMA-2-7B model at a compression ratio of 60%. For
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Table 9: Exact Match / F1 scores comparison for the BERT models compressed under the same fine-tuning settings.

Model 10% 20% 30% 40% 50%

ITP (DeBERTaV3-base) 71.8/81.5 759/848 79.6/87.2 81.3/884 81.8/89.8
LoSparse (DeBERTaV3-base) 73.1/83.0 77.0/86.0 80.4/88.1 82.2/89.4 82.4/90.3
Dynamic Tying (DeBERTaV3-base) 72.9/82.9 76.8/85.6 80.5/88.1 82.2/89.3 82.3/90.2
NSNet (DeBERTaV3-base) 74.0/83.6 77.6/86.4 81.4/88.8 82.8/89.8 83.0/90.8
ITP (BERT-base) 63.1/75.1 68.0/79.5 72.8/827 748/843 76.2/85.2
LoSparse (BERT-base) 65.5/77.0 69.9/80.6 73.1/83.0 7477/84.4 76.0/85.2
Dynamic Tying (BERT-base) 65.2/76.7 70.0/80.7 72.9/82.7 749/84.3 76.1/85.1

NSNet + LoSparse (BERT-base) 66.5/77.6 709/81.4 739/835 75.6/84.6 76.9/85.6

Table 10: Perplexity comparison for the LLaMA models compressed under the same fine-tuning settings.

Model Dataset Ratio | SVD-LLM | ASVD | Basis Sharing | NSNet (Ours)
90% 7.27 5.74 6.52 5.60
o 80% 8.38 6.86 7.77 6.14
WikiText-2 | 0 10.67 10.62 9.69 9.51
60% 16.14 19.12 13.62 13.25
LLaMA-2-7b 90% 43.82 32.63 25.14 19.67
PTB 80% 75.55 114.70 60.00 55.32
70% 110.28 140.96 97.40 80.26
60% 204.34 272.65 195.95 180.58
90% 5.94 5.03 5.47 4.93
o 80% 6.66 5.77 5.90 5.62
WikiText-2 | 0 8.00 7.82 7.96 7.21
60% 10.78 13.18 10.74 10.12
LLaMA-2-13b 90% 35.85 34.03 20.96 19.25
PTR 80% 52.06 59.68 42.05 38.42
70% 86.40 79.53 74.36 72.28
60% 90.85 110.65 102.45 95.79

the ablation without regression-based initialization, each linear layer is initialized by keeping the first 60% of the original
neurons in that layer. As shown in Table 11, the regression-based initialization plays a crucial role in improving the perfor-
mance of the compressed model. Moreover, fine-tuning with knowledge distillation further enhances the performance of
the model initialized with the regression-based method, reducing perplexity from 13.59 to 13.25.

A.11. Scalability of NS for Compressing Larger Models

The proposed NSNet is designed to scale efficiently to larger language models. In addition to our evaluations on 7B and
13B models, we assess the scalability of NSNet by compressing the LLaMA-30B model under the same fine-tuning settings
used for baseline methods. As shown in Table 12, NSNet continues to outperform other compression methods on both the
WikiText-2 and PTB datasets. These results confirm that NSNet remains effective even at the scale of 30B-parameter
models.

A.12. Theoretical Analysis for the Approximation Error of Using NS to Compress a Linear Layer

We denote the neural summary S € R¥ which is used to compresses the weight matrix W € RPoutXDPin of g linear layer.

We use the initialization scheme described in Section 3.2 to find the NS S by minimizing the NS approximation error,
which is the the mean squared error (MSE) between the weight matrix reconstructed from the NS and the original weight

matrix W. To this end, we denote by {x?vi}f)z"l“t the extracted neurons from the NS, and {\)Avi}?:“lut the original neurons in
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Table 11: Ablation study on regression-based initialization and knowledge distillation for NSNet. Evaluation is based on
perplexity on WikiText-2.

Model WikiText-2
LLaMA-2-7B 5.47
NSNet w/o Regression-Based Initialization 18.45
NSNet w/o KD 13.59
NSNet (Full) 13.25

Table 12: Perplexity comparison on LLaMA-30B using WikiText-2 and PTB.

Dataset SVD-LLM ASVD Basis Sharing NSNet (Ours)
WikiText-2 5.60 5.75 5.42 5.14
PTB 19.64 20.12 19.95 18.92

the weight matrix W. We define
Q= {i: S; appears in W; } , ¢; == [€2;] . (D)

That is, §2; is the set of the indices of the reconstructed neurons where the element S; of the NS is an element of at least
one of these reconstructed neurons. We use w;, ; to denote the element of the reconstructed neuron w; which is equal to
S;, and use w; ; to denote the element of w; co-located as w; ;. The NS approximation error used in Section 3.2 is defined
as

Dout
Er(S) = > [w; — will3, )
1=1

which is the sum of the squared ¢2-distance between all the reconstructed neurons {\?Vi}f;ft and the original neurons

{wi}iD:"i” in the weight matrix W. We have the following theorem stating the optimal NS approximation error and its

upper bound.

Theorem A.1. The NS approximation error can be expressed as

K
Err(8) =Y > (wi; —S;)”. 3)

J=1ieQ(j)

Moreover, the optimal NS S* € R¥ which minimizes Err(S) is

S;

. 4)

_ Zteszj Wi,

Cj

with the corresponding minimum NS approximation error being

K
En(8) =Y Y (wi; —S))". ®)

J=1ieQ(j)

Furthermore, we have Err(S*) < ||vec (W) ||§, where vec (W) denotes the vectorization of all the elements of the matrix
W.

Proof. First of all, it can be verified from (2) that the NS approximation error can be expressed as

K
Err(8) =Y > (wi; —S;)%, (6)

i=1ieQ(j)
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which follows from observing that the element S; is equal to all the elements of {w; ;} which in turn are used to

i€
approximate {w; ; },q, -
J

It follows that (6) can be minimized by finding the stationary point of Err(S), and the optimal NS S* € RX which
minimizes Err(S) is

_ Zteslj Wit
s

s , Vje K], (7
J
and the corresponding minimum NS approximation error is
i 2
Err(S*) = Z (wi;—S3)". (8)
Ji=14eQ(j)

It can also be verified that Err(S*) < ||vec (W) Hg, which follows from the definition of the minimum NS approximation
error and (8).

O

A.13. Case Study on the Text Generated by NSNet

Table 13 presents a qualitative case study comparing text generated by NSNet and models compressed by competing com-
pression methods from LLaMA-2-7B at an 80% compression ratio. Given the prompt "What is the responsibility of the
Al assistant?”, each model generates a response for a comparative evaluation of fluency, informativeness, and coherence.
The uncompressed LLaMA-2-7B model produces a verbose yet coherent response with detailed implementation options.
The Basis Sharing model demonstrates simplicity and ease of understanding but lacks technical depth and precision. The
ASVD model performs relatively well, generating content that is both structured and informative, though some redundancy
is observed. In contrast, NSNet achieves the best overall quality by maintaining high fluency, clear semantic structure, and
rich technical content, closely aligning with the original model while using significantly fewer parameters.
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Table 13: Case Study on the Text Generated by NSNet and the Baseline Models Compressed from LLaMA-2-7B. The
input prompt is in bold, and the text following the prompt is the generated sentence. The study is performed for models
with a compression ratio of 80%.

Models Generated Text
LLaMA-2-7B | What is the responsibility of the AI assistant? The responsibility of an Al assistant is to
take care of the basic, repetitive, and administrative tasks. If you don’t have time for these
things, then your Al assistant can do them for you. They can be used to schedule meetings,
set reminders, and even take notes during meetings. There are a few different ways to build
an Al assistant. The first is to use a pre-built solution. These are available from various
companies, including Google, Microsoft, and IBM. They provide a platform for building an
Al assistant and often come with pre-built models. The second way to build an Al assistant
is to use a pre-built framework. These are available from various companies, including
Amazon Web Services and Google Cloud Platform. They provide a platform for building
an Al assistant and often come with pre-built models. The third way to build an Al assistant
is to use a custom solution. This means building an Al assistant from scratch. This can be
done with various programming languages, including Python, R, and C++.
Basis Sharing | What is the responsibility of the AI assistant? An Al assistant is a kind of program that
helps with different activities that a person might need during the day. It can do things like
setting timers, making quick notes, or answering questions that are not too hard. The main
idea is to make life easier by using Al for small actions that take time if done by hand.
People can make Al assistants by using some services online. These platforms already have
the tools, so it’s easier to start. Companies like Amazon and others give these kinds of
services. Another choice is to learn programming and try building one with coding. This
can be more flexible but also more difficult. It depends on what the assistant should do and
how much effort someone wants to put into making it work.
ASVD What is the responsibility of the AI assistant? An Al assistant is designed to support
users by automating a range of administrative and repetitive tasks. These include managing
calendars, sending reminders, answering basic queries, and organizing information. The
goal of an Al assistant is to enhance productivity by reducing the time spent on routine
actions. There are several ways to create an Al assistant. One approach is using pre-
built solutions provided by companies like Google or Microsoft. These tools often include
integrated natural language processing and voice recognition capabilities. Another option
is to use cloud-based Al services or SDKs that allow customization, such as Amazon Lex
or Google Dialogflow. Developers who need more control can also build assistants from
scratch using frameworks and machine learning libraries in Python or other languages.
NSNet What is the responsibility of the AI assistant? An Al assistant is built to help users by
handling routine and administrative tasks automatically. Typical functions include schedul-
ing events, sending notifications, responding to simple inquiries, and organizing digital
content. By offloading these repetitive duties, Al assistants aim to boost user efficiency
and save time. There are multiple ways to develop such assistants. One common method
involves leveraging pre-existing platforms from providers like Google or Microsoft, which
offer built-in support for natural language understanding and voice interaction. Alterna-
tively, cloud-based APIs and SDKs, such as Amazon Lex or Google Dialogflow, allow for
greater customization. For those seeking maximum flexibility, Al assistants can also be
developed from the ground up using programming languages like Python and popular ma-
chine learning libraries.
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