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Abstract

Recent work has proposed novel data augmentation methods to improve adversarial robustness
of deep neural networks. In this paper, we re-evaluate such methods under a common
framework and through the lens of different metrics that characterize the augmented manifold,
finding contradictory evidence. In particular, our extensive empirical analysis involving 5
data augmentation methods, tested with 10 augmentation probabilities, shows that: (i) novel
data augmentation methods proposed to improve adversarial robustness only improve it
when combined with classical augmentations, like image flipping and rotation; (ii) novel data
augmentation methods even worsen adversarial robustness if not combined with classical
augmentations; and (iii) adversarial robustness is significantly affected by augmentation
probability, conversely to what claimed in recent work. We conclude by discussing how
to rethink the development and the evaluation of novel data augmentation methods for
adversarial robustness.

1 Introduction

Data augmentation (DA) is a widely-used technique that applies randomly constructed transformations on
the input data to increase the diversity and size of the training set. The underlying rationale is that for better
generalization and performance of machine learning (ML) algorithms, more data is needed (Schmidt et al.,
2018; Nakkiran et al., 2020; Rebuffi et al., 2021). More specifically, it has been shown that DA can have a
regularization effect for some combinations of augmentation and ML methods, including regression (Bishop,
2007), kernel methods (Dao et al., 2019), and deep learning (Chen et al., 2020). Additional potential positive
effects of DA consist of reducing dataset bias (McLaughlin et al., 2015), improving accuracy (Ciregan et al.,
2012; Krizhevsky et al., 2012), and enhancing algorithmic fairness (Sharma et al., 2020).

Furthermore, Rebuffi et al. (2021) have shown that newly-proposed heuristic DA methods like MixUp (Zhang
et al., 2017), CutMix (Yun et al., 2019), ManifoldMixUp (Verma et al., 2019), and CutOut (DeVries & Taylor,
2017), as well as generative DA methods like Diffusion Models (Ho et al., 2020) are able to improve adversarial
robustness, namely, the ability of the model to withstand adversarial examples (i.e., maliciously-perturbed
inputs aimed to mislead classification) (Dalvi et al., 2004; Szegedy et al., 2014). However, all these approaches
have been tested in combination with classical augmentations (e.g., rotation, flipping, color-jittering), and
using a fixed fraction of augmented samples (i.e., a fixed augmentation probability choice).

It thus remains an open question to understand whether the claims made in previous work hold. For this
reason, we first formulate the following two working hypotheses, based on empirical evidence from prior work.

Hypothesis 1. Newly-proposed heuristic and generative DAs increase adversarial robustness besides
classical augmentations (DeVries & Taylor, 2017; Guo et al., 2019; Verma et al., 2019; Yun et al., 2019;
Nakkiran et al., 2020).
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Hypothesis 2. The percentage of augmented samples does not significantly influence generalization and
adversarial robustness (Krizhevsky et al., 2009; DeVries & Taylor, 2017; Guo et al., 2019; Verma et al.,
2019; Yun et al., 2019; Nakkiran et al., 2020).

In this work, we shed light on these questions by first reviewing and categorizing DAs, as well as the conditions
under which these DAs have been tested (Section 2). We then propose a unifying framework to re-evaluate
such augmentation techniques through the lens of different metrics that characterize the augmented manifold,
aiming to verify the aforementioned claims (Section 3). Our evaluation framework consists of three main
components: (i) a performance-vs-robustness analysis of DAs, which allows us to decouple the impact
of heuristic, data-driven, and classical augmentations on adversarial robustness, as well as to understand
how different augmentation probabilities affect it; and two additional metrics named (ii) decision-function
roughness, and (iii) data-augmentation spuriousness, which provide additional insights on how DAs impact
adversarial robustness.

Our extensive empirical analysis, involving 5 DA methods tested with 10 different augmentation probabilities,
shows contradictory evidence with respect to previous studies (Section 4). In particular, we find that:

1. both novel heuristic and generative DA methods claimed to improve adversarial robustness only
improve to a significant level, when combined with classical augmentations;

2. novel DA methods even worsen adversarial robustness if not combined with classical augmentations;

3. and adversarial robustness is significantly affected by augmentation probability, conversely to what
claimed in recent work.

We conclude the paper by discussing why we believe that our findings are relevant towards designing novel DA
methods for adversarial robustness (Section 5). The main reason is that the reported contradictory evidences
from prior work demand for the adoption of a proper evaluation framework and a common benchmark for
DA methods, especially when it comes to evaluating their adversarial robustness, and we firmly believe that
our work provides an important first contribution in this direction.

2 Data Augmentation Methods

In this section, we present background in DA and review related works. We first discuss different DA
techniques, starting from the classical approaches, like rotation or cropping, in vision. Afterwards, we describe
heuristic augmentations, that are domain independent, like mixing several samples from a dataset. Next,
we discuss data-driven augmentations which are based on learning strategies such as generative models. To
conclude the section, we review existing works that connect DA with adversarial robustness.

Classical Augmentations: Incorporating domain knowledge of experts in models by using DA has been
one of the main approaches to improve performance and non-adversarial robustness. From the early days
of deep learning, simple geometrical transformations have been utilised as data augmentation with great
success Krizhevsky et al. (2012). For example, in the vision domain, horizontal flipping, random rotations,
as well as slight change in brightness, contrast and saturation of natural images were used. In particular
the latter simulate different camera angles and lighting conditions which are known to preserve the main
characteristics of the data w.r.t. the task at hand (Krizhevsky et al., 2009; He et al., 2016).

Heuristic Augmentations: The design of classical DAs requires domain knowledge and deep understanding
of the task and data at hand. Several efforts have been made in order to introduce DAs based on more
general heuristics that are domain or task independent, as opposed to classical augmentations. For example
MixUp (Zhang et al., 2017) is a heuristic-based augmentation that creates new samples by linearly combining
existing data and their labels, resulting in better generalisation and improved adversarial and non-adversarial
robustness. CutOut (DeVries & Taylor, 2017) instead removes certain areas of the input in order to create
new samples, and thus increases classification performance and resilience against missing data. CutMix (Yun
et al., 2019) combines the two previous heuristics, and generates new data by mixing cut-out regions into
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Figure 1: Robustness vs. Performance. First column: risk under attack (L2,PGDϵ = 0.1) VS. misclassification
risk. Second column: risk under attack (L∞,PGDϵ = 1

255 ) vs. misclassification risk. First row: CIFAR10.
Second row: CIFAR100.

existing samples, which improves out-of-distribution generalisation. Finally, Manifold-MixUp (Verma et al.,
2019) not only mixes data and labels, but does so on the intermediate representations of the neural network.
Manifold-MixUp leads to increased adversarial and non-adversarial robustness and generalisation.

Data-Driven Augmentations: Another perspective on DA is to use existing data to learn suitable
transformation strategies. Generative models such as GANs (Goodfellow et al., 2014), VAEs (Kingma &
Welling, 2013), and Denoising Diffusion models (Ho et al., 2020) have recently been popular models for
DA (Antoniou et al., 2017; Bowles et al., 2018; Child, 2020; Nakkiran et al., 2020). However, Rebuffi
et al. (2021) have shown that the latter diffusion models are more successful in terms of generalisation
and adversarial robustness. In addition to generative models, other data-driven approaches exist. For
example Augerino (Benton et al., 2020) learns affine transformations from data within the borders of robust
augmentations. Another example is AutoAugment (Cubuk et al., 2018), where reinforcement learning is used
to fine-tune augmentation hyperparameters.

DA and Robustness: The relation between DA and adversarial robustness is subject of ongoing research.
We attempt to provide an overview in Table 1. Many recently-proposed heuristic and data-driven DAs were
shown to increase adversarial robustness (Zhang et al., 2017; Verma et al., 2019; Yun et al., 2019; DeVries &
Taylor, 2017). However, at the same time, there are inductive biases in these studies. In all cases, the studied
DA

1. is combined with classical augmentations,
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Table 1: DA approaches and their effect on robustness and accuracy. For each DA, we report whether it is
shown to improve (↑), worsen (↓), or not affect (−) clean accuracy (Acc.), and robustness (Rob.) to attacks
(ADV, either FGSM or PGD), corruptions (COR) or deformations (DEF). We also report if the proposed DA
is combined with classic augmentation (cls), adversarial training (AT), and the augmentation probability
(P) used, where ’lin’ denotes the linear strategy used by CutMix to increase the augmentation probability
throughout training.

Reference DA Rob. Acc. cls P AT
Zhang17

M
ix

U
p

(h
eu

ris
tic

) ↑ ADV ↑ ✓ 1.
Verma19 ↑ ADV ↑ ✓ 1.
Verma19 ↑ ADV ↑ ✓ 1.
Yun19 ↑ ADV − ✓ 1.
Guo19 − ↓ ✓ 1.
Rebuffi21 ↓ ADV − ✓ 1. ✓

Yun19
C

ut
M

ix
(h

eu
ris

tic
)

↑ ADV ↑ ✓ lin
Rebuffi21 − ADV − ✓ lin ✓
Hendrycks19 ↓ COR − ✓ lin

Devries17

C
ut

O
ut

(h
eu

ris
tic

)

− ↑ ✓ 0.5
Hendrycks19 ↓ COR − ✓ 0.5
Rebuffi21 ↑ ADV − ✓ 0.5 ✓

Rebuffi21

G
en

(d
at

a.
) ↑ ADV ↑ ✓ 0.9 ✓

Nakkiran20 − ↑ ✓ 0.9

Verma19

M
an

(h
eu

.) ↑ ADV ↑ ✓ 1.
Verma19 ↑ DEF ↑ ✓ 1.

2. and is tested on only one augmentation probability choice (mostly 0.5, sometimes 1.0, and occasionally
a fixed linearly increasing regime) is used.

In some works, DA is even further combined with adversarial training, i.e., including adversarial examples
into the training set. Consequently, it is not clear which factor is really contributing to improve or degrade
adversarial robustness, and to what extent. In this work, we overcome this limitation by proposing a
comprehensive framework that properly assesses robustness of DAs. Our framework decouples the effect of
each of the aforementioned factors, and highlights the real impact of newly-proposed heuristic and data-driven
DAs on adversarial robustness.

3 Evaluating Data Augmentation for Adversarial Robustness

In this section, we first introduce the learning setup and notation (Section 3.1), and then present our evaluation
framework consisting of three main components: (i) performance-vs-robustness analysis of DAs, which aims to
decouple the effect of heuristic, data-driven, and classical augmentations, along with different augmentation
probabilities, on robustness and performance (Section 3.2); (ii) decision-function roughness (Section 3.3),
and (iii) data-augmentation spuriousness (Section 3.4), which aim to provide additional insights on how DAs
impact adversarial robustness.

3.1 Learning Setup and Notation

Throughout this work, let X be a random variable on a probability space (X , A, P ) with sigma algebra A
and input space X ⊂ Rd, e.g. images, and denote by P the probability measure of X. Further, let l : X → Y
be a labeling function to a finite set Y ⊂ N of labels, e.g. {1, . . . , c}. Given a class F of functions f : X → Y
and a sample S = ((x1, l(x1)), . . . , (xs, l(xs))) ∈ (X × Y)s with x1, . . . , xs independently drawn from PX , the
problem of risk minimization is to find a function f ∈ F with low misclassification risk (Cucker & Smale,
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2002), written formally as

R(f, l) := P (f(X) ̸= l(X)). (1)

One successful method for solving problems of risk minimization is to perform Stochastic Gradient Descent
(SGD) based on some parametric function class F of neural networks (LeCun et al., 2015).

In many practical tasks, risk minimization can be improved by applying so-called data augmentation techniques.
In this work, we call a random function A : (X × Y)s →

{
X × Y : X × Y → Rd

}r a data augmentation,
if it maps the sample S to some vector A(S) = (X1 × Y1, . . . , Xr × Yr) of independent random variables
X1 × Y1, . . . , Xr × Yr with measure PX1×Y1 on X × Y such that the marginal measure PX1 dominates PX ,
i.e. such that the sample S is included in the augmented sample S̃ observed from the random variable A(S).

As discussed in Section 2, prior works reported that training on augmented samples leads to models with
lower adversarial risk, when compared to models obtained without data augmentation. One classical measure
for adversarial risk is the risk under corrupted inputs (Mansour & Schain, 2014; Attias et al., 2018):

Rcor(f, l, ϵ) := P (∃ x ∈ Bϵ(X) : f(x) ̸= l(X)), (2)

with Bϵ(x) := {x′ ∈ Rd | ∥x′ − x∥ ≤ ϵ}. One common approach to approximate equation 2, which we follow
in Section 3.2, is to apply adversarial attacks on test samples to compute the empirical expected risk. Another
measure for adversarial risk is the prediction-change risk (Szegedy et al., 2014), i.e., the probability that a
sample is classified differently within the given ϵ-ball:

Rpc(f, ϵ) := P (∃ x ∈ Bϵ(X) : f(x) ̸= f(X)). (3)

We will propose a new approximation for equation 3 in Section 3.3.

3.2 Performance-vs-Robustness Analysis

We introduce here our performance-vs-robustness analysis. The underlying idea is to separately evaluate the
impact on performance and robustness of newly-proposed heuristic and data-driven augmentations against
classical augmentations. Furthermore, we incorporate the analysis of a range of augmentation probabilities.
The goal is to understand whether such newly-proposed heuristic and data-driven augmentations are really
responsible for improving adversarial robustness and performance, or to which extent, instead, classical
augmentations contribute to that. Moreover, we also aim to evaluate how using different augmentation
probabilities affect performance and robustness.

To this end, we propose to look at two axes at once: 1) the classification error, and 2) adversarial vulnerability.
We first evaluate each newly-proposed heuristic and data-driven DA without using any classical augmentation,
and then in combination with classical augmentations, using different augmentation probabilities. A DA
technique is retained useful if it pushes the corresponding point towards the origin of this plot (i.e., towards
reducing both classification error and adversarial vulnerability). As we will see in the experimental section,
some of the newly-proposed heuristic and data-driven DAs, which were originally meant to improve robustness
and performance, do worsen them instead.

We measure the performance of models by estimating the misclassification risk in equation 1 of a model f for
a set of test samples S̃ := ((x′

1, l(x′
1)), . . . , (x′

s, l(x′
s))) by

R̂(f, S̃) := 1
s

s∑
i=1

1[f(xi) ̸= l(xi)], (4)

where 1[a ̸= b] = 1, e.g. if the label disagrees, and 1[a ̸= b] = 0 otherwise or if the label agrees. We measure
the adversarial vulnerability of models by estimating the risk under corrupted inputs in equation 2. For
estimating equation 2 we rely on an adversarial attack. More concretely, we compute an adversarial example
for an input x0 ∈ X using Projected Gradient Descent (PGD) (Madry et al., 2017) as follows:

xt = Πϵ

(
xt−1 + α sgn(∇xL(f(x), l(x)))

)
, (5)
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Figure 2: Decision-function roughness vs. Robustness. First column: decision-function roughness vs. risk
under attack (L2, PGDϵ = 0.1). Second column: decision-function roughness vs. risk under attack (L∞,
PGDϵ = 1

255 ). First row: CIFAR10. Second row: CIFAR100.

where L : Y × Y → R is a loss, α > 0 is the step-size and Πϵ is a projection from the inputs X into the
ball Bϵ(x), and ϵ > 0. 1 We then approximate equation 2 by the misclassification risk R̂(f, S̃) on the
sample S̃ := ((xt

1, l(x1)), . . . , (xt
s, l(xs))) where xt

1, . . . , xt
s are the adversarial examples computed by applying

equation 5 t times. We call R̂(f, S̃) the risk under attack (RUA).

3.3 Decision-Function Roughness

We introduce here a measure for decision-function roughness that connects adversarial vulnerability with the
shape of the decision surface learned by the model. In particular, models showing a rougher decision surface
are expected to be more vulnerable to adversarial examples. We aim to evaluate adversarial robustness beyond
classical estimates of the risk under attack (equation 2). We propose a new estimate for prediction-change
risk equation 3, the decision-function roughness. On a high level, decision-function roughness is related to
the shape of the decision surface of a classifier which is known to influence generalization (Arpit et al., 2017;
Jin et al., 2020) and evasion robustness (Lyu et al., 2015; Cisse et al., 2017; Sokolic et al., 2017; Cohen et al.,
2019).

Existing, similar measures use dimensionality reduction to apply noise (Shu & Zhu, 2019), and are based
on Gaussian noise (Forouzesh et al., 2021), or rely on Gaussian noise to estimate the Jacobian of the
classifier (Novak et al., 2018). Our estimate of equation 3 is instead based on uniform noise. Due to the

1We refer to the ϵ and α used in PGD as PGDϵ and PGDα
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phenomenon of concentration of measure (Donoho, 2000), for high dimension d the Lebesgue measure λ in
a ball B

(d)
r of radius r is concentrated at its surface. That is, for any δ > 0, we have limd→∞(λ(B(d)

r ) −
λ(B(d)

r−δ))/λ(B(d)
r ) = 1 given any Lp-norm (p ∈ [1, ∞]) we take. As the dimension d in most applications is

high, the concentration of measure effect motivates to approximate equation 3 by sampling only from the
shell ∂Bϵ (points at distance ϵ from the center of the ball) instead of sampling from the full ball Bϵ. By
considering only the points on the boundary ∂Bϵ of the ball Bϵ, we introduce the measure of decision-function
roughness on a sample S̃ := ((x′

1, l(x′
1)), . . . , (x′

s, l(x′
s))) by

r̂(f, S̃, ϵ) := 1
s

s∑
i=1

1
n

n∑
j=1

1[f(x′
i) ̸= f(yij)] , (6)

where yi1, . . . , yin are uniformly drawn from ∂Bϵ(x′
i). Note that r̂(f, S̃, ϵ) ≈ Rpc(f, ϵ) for sufficiently high

dimension d and sample size s. In a nutshell, the rougher the decision function, the less robust is the model
at point x0.

3.4 Data-Augmentation Spuriousness

To gain a better understanding on how DA affects robustness, we measure spuriousness as the fraction of
the augmented data having their closest neighbor in a spurious set. We use the set of non-robust features
described by Ilyas et al. (2019), which are spurious features generated using activations of a non-robust model.
These are features that are highly predictive, yet meaningless for humans. These features, however, are
exploited in adversarial example crafting. To put the spuriousness in perspective, as an additional dimension
we also use robust features, which represent robust characteristics in the data space, and provide distance of
augmented data to the robust features.

In order to find the distance of augmented data from the robust and non-robust manifolds, we prepare 3
sets: 1) the augmented set, 2) the set of non-robust features, and 3) the set of robust features. We then find
the closest neighbor for each augmented sample among all these sets, and then calculate the percentage of
augmented samples in robust and non-robust sets as a measure of an approximated distance to their manifolds.
The closeness of augmented samples to such non-robust features is thus an indicator for the existence of
spurious features in augmented data, which could be a cause for increased adversarial risk in models.

4 Experiments

In this section, we put our framework into practice to study DA and adversarial robustness. To this end,
we ran experiments on two datasets (CIFAR10 and CIFAR100) that are ubiquitous and more crucially
consistently used in the previous studies of DA, and evaluated them using our proposed framework. We
assess performance-vs-robustness to address Hypotheses 1 and 2 in Section 4.2.1, decision-function roughness
(Section 4.2.2), and data-augmentation spuriousness (Section 4.2.3).

4.1 Setup

We first describe the setup for the performance-vs-robustness study, continue with the decision-function
roughness setup and conclude with the setup of the data-augmentation spuriousness experiments. We publish
the code of all our experiments.2

Robustness Setup: We test robustness against PGD with L2 and L∞ norms. More specifically, in Figure 1,
we chose a perturbation size that is only large enough to demonstrate differences in adversarial risk of trained
models.3 Results for other configurations are in Appendix B. We further evaluate the following DA methods:
MixUp, Manifold-MixUp (Man), CutMix, CutOut, and a Denoising Diffusion Probabilistic generative model
(Gen). For the latter, we rely on data from Nakkiran et al. (2020) which is only provided for CIFAR10, we

2URL blinded for anonymous submission.
3PGDϵ = 0.1 for L2 norm, and PGDϵ = 1

255 for L∞ norm
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thus are not able to include results on CIFAR100. Finally, we also evaluate a classical approach (dubbed as
classic), which is a random combination of rotation, colour-jitter, and horizontal flipping. We organize the
studied DAs into two groups. The first group consists of MixUp, Man, CutMix, CutOut, and Gen, while the
second group includes classic, and combinations of the previous DAs with classic (dubbed as for example
cls+MixUp). We also vary the probability of augmentation paug ∈ {0.1, 0.2, . . . , 1}, which determines how
many samples are augmented. For each DA method and augmentation probability paug (which was kept
fixed throughout training), we train Resnet18 (Han et al., 2019) classifiers using SGD. We use three random
seeds for initialization and average the performances, as the variance is negligible. More details about our
experimental setup are provided in Appendix A.

Roughness Setup: All used augmentations, parameters and networks are analogous to the previous setup.

Spuriousness Setup: In this experiment, we measure spuriousness for a data-augmentation method,
via the distance of augmented data to the sets of robust and non-robust features. Following Rebuffi et al.
(2021), we sample 10K images from the robust feature dataset (uniformly across classes) and 10k samples
from the non-robust features dataset based on CIFAR-10.4 These 20K images are then passed through the
pretrained VGG network which measures a Perceptual Image Patch Similarity, also known as LPIPS (Zhang
et al., 2018). The resulting concatenated activations are used to compute the top-100 PCA components,
allowing to compare samples in a much lower dimensional space (i.e., 100 instead of 124, 928). Finally, for
each augmentation method, 10K augmented images are sampled from the training set of CIFAR-10, and are
passed through the pipeline composed of the LPIPS VGG network and the PCA projection computed on
the original data. For each sample, we find he closest neighbor in the PCA-reduced feature space and we
determine whether it belongs to the robust or non-robust sets, or to the set of augmented images (self). We
then calculate the percentage of such neighbors for augmented, robust, and non-robust features. A higher
percentage for a set (robust, non-robust) refers to a smaller two-sample distance to this set, and thus, to a
higher similarity to this set.

4.2 Results

We present our results in this section, addressing the two hypotheses with results on performance-vs-robustness;
and then present results on decision-function roughness and finally, data-augmentation spuriousness.

4.2.1 performance-vs-robustness Results

Hypothesis 1: We first investigate whether DAs increase adversarial robustness. In Figure 1, we plot
robustness vs. performance. Compared to the no-augmentation (‘noaug’) baseline (red cross), in the first
group (round markers) the robustness significantly degrades in MixUp (blue), Man (yellow), and CutMix
(green). Robustness further slightly decreases in CutOut (purple) as the augmentation probability increases
(more intense color). Gen (grey) is the only method from the first group that slightly improves robustness.
From the second group (square markers), classic improves robustness by a large margin, in particular when
compared to the other DAs. Concerning classification performance, the first group’s performance increases
for Man (yellow) and CutMix (green). For CutOut (purple), the performance increase is only small; while
performance degrades strongly in Gen (gray) and slightly in MixUp (blue). In the second group, all methods
significantly improve classification performance compared to noaug, with the exception of cls+Gen (grey)
which, using the highest augmentation probability, performs on par with noaug. Finally, all methods show
higher performance and robustness when combined with classic, compared to when applied alone. We further
summarize our results in Table 2, where we summarize increases and decreases from Figure 1. The table
shows how the robustness consistently decreases for group 1 (the DAs alone), but increases for group 2
(classic and combinations therewith). We thus reject hypothesis 1, that other augmentations than classic
increase robustness.

4Available at https://github.com/MadryLab/constructed-datasets.
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Results 1. We reject Hypothesis 1 by providing examples on two datasets, and using the discussed
data augmentation methods, where an increased robustness is only achieved when the tested method is
combined with classic DA. In other words, when the proposed DA is applied alone, it results in significant
increased adversarial vulnerability.

Table 2: Results for hypothesis 1. We provide the overall trend compared to the baseline (no augmentation)
for each DA, where DAs are divided into two groups, depending on whether they are combined with a classical
approach (w/Cls). We further denote whether robustness (Rob.) or accuracy (Acc.) increase slightly (↑) or
significantly (↑↑), stay the same (−), or decrease slightly (↓) or significantly (↓↓). Finally, we summarize
whether the effect of the augmentation probability (aug.P.) is negligible (−), small (+), or strong (++).

Rob. Acc. aug.P. w/ Cls

G
ro

up
1


MixUp ↓↓ ↓ ++ No
Man ↓↓ ↑↑ + No
CutMix ↓↓ ↑↑ ++ No
CutOut ↓ ↑ − No
Gen − ↓↓ ++ No

G
ro

up
2



classic ↑↑ ↑↑ + No
cls+MixUp ↑ ↑↑ + Yes
cls+Man ↑ ↑↑ + Yes
cls+CutMix ↑ ↑↑ + Yes
cls+CutOut ↑↑ ↑↑ − Yes
cls+Gen ↑ ↑ ++ Yes

Hypothesis 2: We now investigate the hypothesis that the augmentation percentage does not influence
generalization and robustness. We again turn to Figure 1. In the plots, the colored lines (from opaque to
strong) denote the increase of the augmentation probability paug. The plots thus support that paug has a
significant effect on robustness and performance, which is more pronounced when non-classical approaches are
used in isolation. In terms of robustness, compared to a baseline without DA (noaug), increasing the amount
of augmentation paug in the first group (round markers) significantly reduces robustness in MixUp (blue),
Man (yellow), and CutMix (green), and slightly reduces in CutOut (purple). In the second group (square
markers), the augmentation probability has some effect on cls+MixUp(blue) and cls+CutMix(green). This
effect is however weaker than in the first group. In terms of classification performance, compared to noaug
(red cross), increasing the amount of augmentation paug slightly decreases the classification performance in
MixUp, while in CutMix and Man the performance is improved. CutOut slightly improves performance
in comparison to noaug, and Gen significantly increases performance with higher amounts. In the second
group, the augmentation probability has some effect on the combinations of cls+CutMix, cls+Man, and
cls+MixUp. This effect is however weaker than in the first group. The only technique that is overall, or
in both groups, largely unaffected in robustness and performance from the augmentation probability is
CutOut. We summarize these results again in Table 2. In short, the augmentation percentage paug does have
a significant influence on almost all augmentations, but in particular for DAs other than classic and when
applied in isolation.

Results 2. We reject Hypothesis 2 by providing extensive results on several datasets and DAs, demonstrat-
ing the significant effect of the percentage of augmented samples on both generalisation and adversarial
robustness of models, despite the use of fixed augmentation percentage choices in the literature.

4.2.2 Decision-function roughness Results

To investigate the effect of the previously studied DAs on the shape of the decision surface of models, we
compare our decision-function roughness measure with the risk under attack in Figure 2. As before, the two
groups of augmentations exhibit different behavior. For all setups, decision-function roughness has a high
correlation to vulnerability for the methods of the first group in Table 2. This suggests that methods with
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Figure 3: Results for data-augmentation spuriousness as a % of nearest neighbor of augmented data to robust
and non-robust features on CIFAR10.

high decision-function roughness are vulnerable to adversarial attacks. Our result is consistent with related
works (Lyu et al., 2015; Cisse et al., 2017; Sokolic et al., 2017; Cohen et al., 2019) on the relation between the
shape of decision surface and adversarial vulnerability, suggesting that "rough" decision boundaries are key
factors of adversarial vulnerability. In other words, we find that DAs that cause vulnerability, also induce rough
decision function surfaces. Furthermore, DAs such as classic which have shown increased adversarial robustness,
the percentage of augmentation does not significantly affect decision-function roughness. In contrast, DAs
such as MixUp which resulted in reduced robustness are significantly affected by the augmentation percentage.
Hence, such augmentations that cause rough decision functions, are more strongly affected by changes in
augmentation probability.

4.2.3 Data-Augmentation Spuriousness Results

We plot these percentages in Figure 3. The most adversarially vulnerable DAs (MixUp (yellow), CutMix
(green)) are the closest to non-robust features. Furthermore, Gen (violet) and CutOut (orange), which were
in relation to the previous methods less vulnerable to adversarial attacks, are relatively further away from
non-robust features. Finally, the most robust DA, classic (blue), is furthest away from the non-robust features.
Additionally, once combined with classic, the augmented data increases its distance to non-robust features,
which has also been reflected in their robust performance in our previous results. Using the proposed DA
spuriousness, we find that DAs resulting in robust models create samples that are distant to spurious features.
Comparing the distance of augmented data to robust features, which we use to put the distance to spurious
features in perspective, we observe that most augmentations are relatively distant to robust features, in
particular in comparison to their distance with non-robust feature. This result was to be expected, as the
studied DAs do not incorporate adversarial directions in creating augmented samples, which in fact was
leveraged in the generation process of ‘robust features’.

10
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5 Conclusion and Future Work

Recently-proposed heuristic and data-driven DA methods including MixUp (Zhang et al., 2017), CutMix (Yun
et al., 2019), ManifoldMixUp (Verma et al., 2019), CutOut (DeVries & Taylor, 2017), and Diffusion Models (Ho
et al., 2020) have been claimed not only to improve generalization, but also adversarial robustness. However,
they have been tested only in combination with classical augmentations (like image flipping and rotation),
and using a fixed fraction of augmented samples. This questions whether robustness is really induced by the
newly-proposed DA strategies themselves, or it is instead induced mostly by classical augmentations and
specific choices of the augmentation probability. In this work, we shed light on this issue by proposing an
evaluation framework that helps decouple the impact of such factors on both accuracy and robustness, through
the definition of different metrics that characterize the augmented manifold. We re-evaluate recently-proposed
heuristic and data-driven DAs using our framework, and find contradictory evidence when compared to prior
work. In particular, our extensive empirical analysis on the aforementioned DA methods has shown that:
(i) such recently-proposed DA methods only improve adversarial robustness when combined with classical
augmentations; (ii) they worsen adversarial robustness if not combined with classical augmentations; and
(iii) adversarial robustness is significantly affected by augmentation probability. This demands for future
work aimed to rethink not only the evaluation but also the development of novel DA methods for adversarial
robustness, and we firmly believe that our work provides a significant first step in this direction.
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A Experimental Setup

A.1 Training Setup

Image classification experiments are carried out using a ResNet18 He et al. (2016). The ResNet model was
trained using SGD with a momentum of 0.9, and weight-decay with penalty coefficient of 5e − 4, with batch
size of 128. Each classifier was trained for 200 epochs and learning rate schedule was used with initial value
of 0.1, which was reduced twice by a factor of 10 every 80 epochs.

A.1.1 Data Augmentations

MixUp: the mixing parameter λ was drawn from B(1, 1). Manifold-MixUp: the mixing parameter λ
was drawn from B(2, 2). The eligible layers on CIFAR10 was set to S = {0, 1, 2}, while on CIFAR100
S = {0, 1, 2, 3}. CutMix: the mixing parameter λ was drawn from B(1, 1). Bounding boxes have been
randomly chosen for the cutout operation, with cut ratio of

√
1 − λ. CutOut: with 1 hole and the length

of 16 pixel has been used. Classic: is a random combination of Random Cropping, Horizontal Flipping,
Colour jittering, and Random Rotation. Random Cropping is done with the padding of 4 and size of 32.
For Colour jittering, brightness, contrast, and saturation factors have been changed by a random amount
chosen uniformly from [0.75, 1.25]. Gen.: was utilized using samples generated by a Denoising Diffusion
Probabilistic model (Ho et al., 2020) trained on CIFAR10. These samples have been released as CIFAR5M
dataset Nakkiran et al. (2020)5. Due to the computational complexity of DDPM, and lack of availability of
such generated dataset on CIFAR100, we opted to only use Gen. on CIFAR10. When a sample is chosen
to be augmented by Gen., we replace the original sample by a randomly chosen example of the same class
from CIFAR5M. Combinations with Classic: In all combination experiments, in addition to the target
augmentation (e.g, MixUp), samples have been additionally augmented with Classic, with augmentation
probability of 0.5.

A.1.2 Adversarial Attack Setup

We carry out 4 different untargeted PGD attacks with L2 norm and 4 different untargeted PGD attacks with
L∞ norm. For PGD attacks with L2 norm, we use perturbation sizes of PGDϵ ∈ {0.01, 0.1, 0.5, 1}, and for
PGD attacks with L∞ norm perturbation sizes of PGDϵ ∈ { 1

255 , 2
255 , 4

255 , 8
255 } have been utilized. All attacks

have been conducted with the step size that is 1
5 of the perturbation size (PGDα = PGDϵ

5 ), and with the
number of iterations of 100.

A.2 Implementation

All experiments have been implemented in python using pytorch lib Paszke et al. (2019). The adversarial
attacks are done using the robustness lib Engstrom et al. (2019).

B Extended Results

B.1 Augmentation Probability

We provide a summary for the influence of augmentation probability on robustness and performance for
different augmentations in Table 3. As can be seen, while classic (Cls) and CutOut are less sensitive to the
augmentation probability, MixUp, CutMix demonstrate high sensitivity in both. Also Gen. is more sensitive
in performance and not robustness, while Manifold-MixUp is more sensitive in terms of robustness, and less
sensitive in terms of performance. This trend is similar in cases with, and without combination with classic.

5This dataset is publicly available here: https://github.com/preetum/cifar5m
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Table 3: Extended summary of the influence of augmentation probability on robustness and performance.
Comb. w/ Cls: combined with classic. Man.: Manifold-MixUp. Cls.: Classic. Gen.: generative model.

Performance Robustness
MixUp high high

Si
ng

le

Man. low high
CutMix high high
CutOut low low
Gen. high low
Cls low low
MixUp+Cls low high

C
om

b.
w

/
C

ls

Man.+Cls low high
CutMix+Cls low high
CutOut+Cls low low
Gen.+Cls high low

Table 4: Extended summary of the results. Stress: Prediction-change stress (high indicates adversarial
vulnerability). RUA: Risk under attack (high indicates adversarial vulnerability). Dist. to NRS: Distance
to non.robust set (low indicates adversarial vulnerability). Imp. (Pr): Impact of augmentation probability
on robustness. Perf.: Performance, inverse of misclassification risk. low:↓↓. high:↑↑. medium:↑↓. Man.:
Manifold-MixUp. Gen.: Generative model. Cls: Classic.

Roughness RUA Dist. to NRS Imp. (Pr) Perf.
Cls ↓↓ ↓↓ high low ↑↑
MixUp ↑↑ ↑↑ low high ↓↓
CutMix ↑↑ ↑↑ low high ↑↓
CutOut ↑↓ ↑↑ med low ↑↓
Gen. ↑↓ ↓↓ med low ↓↓
Man. ↑↓ ↑↓ N/A high ↑↓

C Tables

C.1 Distance to Robust and Non-robust Features

Table 5: The percentage of nearest neighbors of the augmented data on CIFAR10, in each set.

Self Robust Features Non-rob. Features
Cls 77.83 8.81 13.36
MixUp 27.47 19.71 52.82
Gen 43.43 17.73 38.84
CutOut 61.84 9.95 28.21
CutMix 16.22 30.13 53.65
Cls+MixUp 85.88 4.83 9.29
Cls+Gen 79.48 8.22 12.30
Cls+CutOut 92.08 3.03 4.89
Cls+CutMix 70.09 14.20 15.71
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Figure 4: Robustness vs. Performance on CIFAR10. first column: risk under attack (L2) VS. misclassification
risk second column: risk under attack (L∞) VS. misclassification risk Perturbation sizes for L2 PGD attacks
are shown in each row: {0.01, 0.1, 0.5, 1}. Perturbation sizes for L∞ PGD attacks are shown in each row:
{ 1

255 , 2
255 , 4

255 , 8
255 }.
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Figure 5: Robustness vs. Performance on CIFAR100. first column: risk under attack (L2) VS. misclassification
risk second column: risk under attack (L∞) VS. misclassification risk Perturbation sizes for L2 PGD attacks
are shown in each row: {0.01, 0.1, 0.5, 1}. Perturbation sizes for L∞ PGD attacks are shown in each row:
{ 1

255 , 2
255 , 4

255 , 8
255 }.
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Figure 6: Decision-function roughness vs. robustness on CIFAR10. first column: roughness vs. risk under
attack (L2) second column: roughness vs. risk under attack (L∞) rows: ϵstress = {0.01, 0.1, 0.5, 1, 2}. PGD
attacks with L2 and L∞ used perturbation size of 0.1, and 1

255 , respectively.
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Figure 7: Decision-function roughness vs. robustness on CIFAR100. first column: roughness vs. risk under
attack (L2) second column: roughness vs. risk under attack (L∞) rows: ϵstress = {0.01, 0.1, 0.5, 1, 2}. PGD
attacks with L2 and L∞ used perturbation size of 0.1, and 1

255 , respectively.
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