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ABSTRACT

Domain generalization addresses the out-of-distribution problem, which is chal-
lenging due to the domain shift and the uncertainty caused by the inaccessibility
to data from the target domains. In this paper, we propose variational invariant
learning, a probabilistic inference framework that jointly models domain invari-
ance and uncertainty. We introduce variational Bayesian approximation into both
the feature representation and classifier layers to facilitate invariant learning for
better generalization across domains. In the probabilistic modeling framework,
we introduce a domain-invariant principle to explore invariance across domains
in a unified way. We incorporate the principle into the variational Bayesian lay-
ers in neural networks, achieving domain-invariant representations and classifier.
We empirically demonstrate the effectiveness of our proposal on four widely used
cross-domain visual recognition benchmarks. Ablation studies demonstrate the
benefits of our proposal and on all benchmarks our variational invariant learning
consistently delivers state-of-the-art performance.

1 INTRODUCTION

Domain generalization (Muandet et al., 2013), as an out-of-distribution problem, aims to train a
model on several source domains and have it generalize well to unseen target domains. The major
challenge stems from the large distribution shift between the source and target domains, which is
further complicated by the prediction uncertainty (Malinin & Gales, 2018) introduced by the in-
accessibility to data from target domains during training. Previous approaches focus on learning
domain-invariant features using novel loss functions (Muandet et al., 2013; Li et al., 2018a) or spe-
cific architectures (Li et al., 2017a; D’Innocente & Caputo, 2018). Meta-learning based methods
were proposed to achieve similar goals by leveraging an episodic training strategy (Li et al., 2017b;
Balaji et al., 2018; Du et al., 2020). Most of these methods are based on deep neural network back-
bones (Krizhevsky et al., 2012; He et al., 2016). However, while deep neural networks have achieved
remarkable success in various vision tasks, their performance is known to degenerate considerably
when the test samples are out of the training data distribution (Nguyen et al., 2015; Ilse et al., 2019),
due to their poorly calibrated behavior (Guo et al., 2017; Kristiadi et al., 2020).

As an attractive solution, Bayesian learning naturally represents prediction uncertainty (Kris-
tiadi et al., 2020; MacKay, 1992), possesses better generalizability to out-of-distribution exam-
ples (Louizos & Welling, 2017) and provides an elegant formulation to transfer knowledge across
different datasets (Nguyen et al., 2018). Further, approximate Bayesian inference has been demon-
strated to be able to improve prediction uncertainty (Blundell et al., 2015; Louizos & Welling, 2017;
Atanov et al., 2019), even when only applied to the last network layer (Kristiadi et al., 2020). These
properties make it appealing to introduce Bayesian learning into the challenging and unexplored
scenario of domain generalization.

In this paper, we propose variational invariant learning (VIL), a Bayesian inference framework that
jointly models domain invariance and uncertainty for domain generalization. We apply variational
Bayesian approximation to the last two network layers for both the representations and classifier by
placing prior distributions over their weights, which facilitates generalization. We adopt Bayesian
neural networks to domain generalization, which enjoys the representational power of deep neural
networks while facilitating better generalization. To further improve the robustness to domain shifts,
we introduce the domain-invariant principle under the Bayesian inference framework, which enables
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us to explore domain invariance for both feature representations and the classifier in a unified way.
We evaluate our method on four widely-used benchmarks for cross-domain visual object classifica-
tion. Our ablation studies demonstrate the effectiveness of the variational Bayesian domain-invariant
features and classifier for domain generalization. Results further show that our method achieves the
best performance on all of the four benchmarks.

2 METHODOLOGY

We explore Bayesian inference for domain generalization. In this task, the samples from the target
domains are never seen during training, and are usually out of the data distribution of the source
domains. This leads to uncertainty when making predictions on the target domains. Bayesian in-
ference offers a principled way to represent the predictive uncertainty in neural networks (MacKay,
1992; Kristiadi et al., 2020). We briefly introduce approximate Bayesian inference, under which we
will introduce our variational invariant learning for domain generalization.

2.1 APPROXIMATE BAYESIAN INFERENCE

Given a dataset {x(i),y(i)}Ni=1 of N input-output pairs and a model parameterized by weights θ
with a prior distribution p(θ), Bayesian neural networks aim to infer the true posterior distribution
p(θ|x,y). As the exact inference of the true posterior is computationally intractable, Hinton & Camp
(1993) and Graves (2011) recommended learning a variational distribution q(θ) to approximate
p(θ|x,y) by minimizing the Kullback-Leibler (KL) divergence between them:

θ∗ = argmin
θ

DKL

[
q(θ)||p(θ|x,y)

]
. (1)

The above optimization is equivalent to minimizing the loss function:

LBayes = −Eq(θ)[log p(y|x,θ)] + DKL[q(θ)||p(θ)], (2)

which is also known as the negative value of the evidence lower bound (ELBO) (Blei et al., 2017).

2.2 VARIATIONAL DOMAIN-INVARIANT LEARNING

In domain generalization, let D = {Di}|D|i=1 = S ∪ T be a set of domains, where S and T denote
source domains and target domains respectively. S and T do not have any overlap with each other
but share the same label space. For each domainDi ∈ D, we can define a joint distribution p(xi,yi)
in the input space X and the output space Y . We aim to learn a model f : X → Y in the source
domains S that can generalize well to the target domains T .

The fundamental problem in domain generalization is to achieve robustness to domain shift between
source and target domains, that is, we aim to learn a model invariant to the distributional shift be-
tween the source and target domains. In this work, we mainly focus on the invariant property across
domains instead of exploring general invariance properties (Nalisnick & Smyth, 2018). Therefore,
we introduce a formal definition of domain invariance, which is easily incorporated as criteria into
the Bayesian framework to achieve domain-invariant learning.

Provided that all domains inD are in the same domain space, then for any input sample xs in domain
Ds, we assume that there exists a domain-transform function gζ(·) which is defined as a mapping
function that is able to project xs to other different domains Dζ with respect to the parameter ζ,
where ζ ∼ q(ζ), and a different ζ lead to different post-transformation domains Dζ . Usually the
exact form of gζ(·) is not necessarily known. Under this assumption, we introduce the definition
of domain invariance, which we will incorporate into the Bayesian layers of neural networks for
domain-invariant learning.

Definition 2.1 (Domain Invariance) Let xs be a given sample from domain Ds ∈ D, and xζ =
gζ(xs) be a transformation of xs in another domain Dζ , where ζ ∼ q(ζ). pθ(y|x) denotes the
output distribution of input x with model θ. The model θ is domain-invariant if,

pθ(ys|xs) = pθ(yζ |xζ), ∀ζ ∼ q(ζ). (3)
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Here, we use y to represent the output from a neural layer with input x, which can either be the
prediction vector from the last layer or the feature vector from the convolutional layers.

To make the domain-invariant principle easier to implement, we then extend the Eq. (3) to an expec-
tation form:

pθ(ys|xs) = Eqζ [pθ(yζ |xζ)]. (4)

Based on this definition, we use the Kullback-Leibler divergence between the two terms in Eq. (4),
DKL

[
pθ(ys|xs)||Eqζ [pθ(yζ |xζ)]

]
, to quantify the domain invariance of the model, which will be

zero when the model is domain invariant. As in most cases, there is no analytical form of the domain-
transform function and only a few samples from Dζ are available, which makes Eqζ [pθ(yζ |xζ)]
intractable. Thus, we derive the following upper bound of the divergence:

DKL

[
pθ(ys|xs)||Eqζ [pθ(yζ |xζ)]

]
≤ Eqζ

[
DKL

[
pθ(ys|xs)||pθ(yζ |xζ)

]]
, (5)

which can be approximated by Monte Carlo sampling.

We define the complete objective function of our variational invariant learning by combining Eq. (5)
with Eq. (2). However, in Bayesian inference, the likelihood is obtained by taking the expectation
over the distribution of parameter θ, i.e., pθ(y|x) = Eq(θ)[p(y|x,θ)], which is also intractable in
Eq. (5). As the KL divergence is a convex function (Nalisnick & Smyth, 2018), we further extend
Eq. (5) to an upper bound:

Eqζ
[
DKL

[
pθ(ys|xs)||pθ(yζ |xζ)

]]
≤ Eqζ

[[
Eq(θ)DKL

[
p(ys|xs,θ)||p(yζ |xζ ,θ)

]]]
, (6)

which is tractable with the unbiased Monte Carlo approximation. The complete derivations of
Eq. (5) and Eq. (6) are provided in Appendix A.

In addition, it is worth noting that the domain-transformation distribution q(ζ) is implicit and in-
expressible in reality and there are only a limited number of domains available in practice. This
problem is exacerbated because the target domain is unseen during training, which further limits the
number of available domains. Moreover, in most of the domain generalization databases, for a cer-
tain sample xs from domain Ds, there is no transformation corresponding to xs in other domains.
This prevents the expectation with respect to qζ from being directly tractable in general.

Thus, we resort to use an empirically tractable implementation and adopt an episodic setting as in
(Li et al., 2019). In each episode, we choose one domain from the source domains S as the meta-
source domain Ds and the rest are used as the meta-target domains {Dt}Tt=1. To achieve variational
invariant learning in the Bayesian framework, we use samples from meta-target domains in the same
category as xs to approximate the samples of gζ(xs). Then we obtain a general loss function for
domain-invariant learning:

LI =
1

T

T∑
t=1

1

N

N∑
i=1

Eq(θ)
[
DKL

[
p(ys|xs,θ)||p(yit|xit,θ)

]]
, (7)

where
{
xit
}N
i=1

are from Dt, denoting the samples in the same category as xs. More details and an
illustration of the domain-invariant loss function can be found in Appendix B.

With the aforementioned loss functions, we develop the loss function of variational invariant learning
for domain generalization:

LVIL = LBayes + λLI. (8)

Our variational invariant learning combines the Bayesian framework, which is able to intro-
duce uncertainty into the network and is beneficial for out-of-distribution problems (Daxberger &
Hernández-Lobato, 2019), and a domain-invariant loss function LI, which is designed based on pre-
dictive distributions to make the model generalize better to the unseen target domains. For Bayesian
learning, it has been demonstrated that being just “a bit” Bayesian in the last layer of the neural
network can well represent the uncertainty in predictions (Kristiadi et al., 2020). This indicates that
applying the Bayesian treatment only to the last layer already brings sufficient benefits of Bayesian
inference. Although adding Bayesian inference to more layers improves the performance, it also
increases the computational cost. Further, from the perspective of domain invariance, making both
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the classifier and feature extractor more robust to the domain shifts also leads to better performance
(Li et al., 2019). Thus, there is a trade-off between the benefits of variational Bayesian domain in-
variance and computational efficiency. Instead of applying the Bayesian principle to all the layers of
the neural network, in this work we explore domain invariance by applying it to only the classifier
layer ψ and the last feature extraction layer φ.

In this case, the LBayes in Eq. (2) becomes the ELBO with respect to ψ and φ jointly. As they are
independent, the LBayes is expressed as:

LBayes = −Eq(ψ)Eq(φ)[log p(y|x,ψ,φ)] + DKL[q(ψ)||p(ψ)] + DKL[q(φ)||p(φ)]. (9)
The above variational inference objective allows us to explore domain-invariant representations and
classifier in a unified way. The detailed derivation of Eq. (9) is provided in Appendix A.

Domain-Invariant Classifier To establish the domain-invariant classifier, we directly incorporate
the proposed domain-invariant principle into the last layer of the network, which gives rise to

LI(ψ) =
1

T

T∑
t=1

1

N

N∑
i=1

Eq(ψ)

[
DKL

[
p(ys|zs,ψ)||p(yit|zit,ψ)

]]
, (10)

where z denotes the feature representations of input x, and the subscripts s and t indicate the meta-
source domain and the meta-target domains as in Eq. (7). Since p(y|z,ψ) is a Bernoulli distribution,
we can conveniently calculate the KL divergence in Eq. (10).

Domain-Invariant Representations To also make the representations domain invariant, we have

LI(φ) =
1

T

T∑
t=1

1

N

N∑
i=1

Eq(φ)
[
DKL

[
p(zs|xs,φ)||p(zit|xit,φ)

]]
, (11)

where φ are the parameters of the feature extractor. Since the feature extractor is also a Bayesian
layer, the distribution of p(z|x,φ) will be a factorized Gaussian if the posterior of φ is as well.
We illustrate this as follows. Let x be the input feature of a Bayesian layer φ, which has a factor-
ized Gaussian posterior, the posterior of the activation z of the Bayesian layer is also a factorized
Gaussian (Kingma et al., 2015):

q(φi,j) ∼N (µi,j , σ
2
i,j) ∀φi,j ∈ φ⇒ p(zj |x,φ) ∼ N (γj , δ

2
j ),

γj =

N∑
i=1

xiµi,j , and δ2j =

N∑
i=1

x2iσ
2
i,j ,

(12)

where zj denotes the j-th element in z, likewise for xi, and φi,j denotes the element at the position
(i, j) in φ. Based on this property of the Bayesian framework, we assume that the posterior of our
variational invariant feature extractor has a factorized Gaussian distribution, which leads to an easier
calculation of the KL divergence in Eq. (11). Note that with the domain-invariant representations, z
in Eq. (10) corresponds to samples of the feature representation distributions: zs ∼ p(zs|xs,φ) and
zt ∼ p(zt|xt,φ).

2.3 OBJECTIVE FUNCTION

The objective function of our variational invariant learning is defined as:
LVIL = LBayes + λψLI(ψ) + λφLI(φ), (13)

where λψ and λφ are hyperparameters to control the domain-invariant terms. We adopt Monte Carlo
sampling and obtain the empirical objective function for variational invariant learning as follows:

LVIL =
1

L

L∑
`=1

1

M

M∑
m

[
− log p(ys|xs,ψ(`),φ(m))

]
+ DKL

[
q(ψ)||p(ψ)] + DKL[q(φ)||p(φ)

]
+ λψ

1

T

T∑
t=1

1

N

N∑
i=1

1

L

L∑
`=1

DKL

[
p(ys|zs,ψ(`))||p(yit|zit,ψ(`))

]
+ λφ

1

T

T∑
t=1

1

N

N∑
i=1

1

M

M∑
m=1

DKL

[
p(zs|xs,φ(m))||p(zit|xit,φ(m))

]
,

(14)
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where xs and zs denote the input and its feature fromDs, respectively, and xit and zit are fromDt as
in Eq. (7). The posteriors are set to factorized Gaussian distributions, i.e., q(ψ) = N (µψ,σ

2
ψ) and

q(φ) = N (µφ,σ
2
φ). We adopt the reparameterization trick to draw Monte Carlo samples (Kingma

& Welling, 2014) asψ(`) = µψ+ε
(`)∗σψ , where ε(`) ∼ N (0, I). We draw the samples forφ(m) in

a similar way. In the implementation of our variational invariant learning, to increase the flexibility
of the prior distribution in our Bayesian layers, we choose to place a scale mixture of two Gaussian
distributions as the priors p(ψ) and p(φ) (Blundell et al., 2015):

πN (0,σ2
1) + (1− π)N (0,σ2

2), (15)

where σ1, σ2 and π are hyperparameters chosen by cross-validation.

3 RELATED WORK

One solution for domain generalization is to generate more source domain data to increase the prob-
ability of covering the data in the target domains (Shankar et al., 2018; Volpi et al., 2018). Shankar
et al. (2018) augmented the data by perturbing the input images with adversarial gradients gener-
ated by an auxiliary classifier. Qiao et al. (2020) proposed a more challenging scenario of domain
generalization named single domain generalization, which only has one source domain, and they
designed an adversarial domain augmentation method to create “fictitious” yet “challenging” data.
Recently, Zhou et al. (2020) employed a generator to synthesize data from pseudo-novel domains to
augment the source domains, maximizing the distance between source and pseudo-novel domains
as measured by optimal transport (Peyré et al., 2019). Another solution for domain generalization is
based on learning domain-invariant features (D’Innocente & Caputo, 2018; Li et al., 2018b; 2017a).
Muandet et al. (2013) proposed domain-invariant component analysis to learn invariant transfor-
mantions by minimizing the dissimilarity across domains. Louizos et al. (2015) learned invariant
representations by variational autoencoder (Kingma & Welling, 2014), which introduced Bayesian
inference into invariant feature learning. Dou et al. (2019) and Seo et al. (2019) tried to achieve a
similar goal by introducing two complementary losses, global class alignment loss and local sam-
ple clustering loss, and employing multiple normalization methods. Li et al. (2019) proposed an
episodic training algorithm to obtain both domain-invariant feature extractor and classifier.

Recently, meta-learning based techniques have been considered to solve domain generalization prob-
lems. Li et al. (2018a) proposed a meta-learning domain generalization method which introduced
the gradient-based method, i.e., model agnostic meta-learning (Finn et al., 2017), for domain gen-
eralization. Balaji et al. (2018) address the domain generalization problem by learning a regular-
ization function in a meta-learning framework, making the model robust to domain shifts. Du et al.
(2020) propose the meta variational information bottleneck to learn domain-invariant representations
through episodic training.

To the best of our knowledge, Bayesian neural networks have not yet been explored in domain gen-
eralization. Our method introduces variational Bayesian approximation to both the feature extractor
and classifier of the neural network in conjunction with the newly introduced domain-invariant prin-
ciple for domain generalization. The resultant variational invariant learning combines the represen-
tational power of deep neural networks and variational Bayesian inference.

Similar to our proposal, CCSA by Motiian et al. (2017) also aligns representations across domains
in the same class. Specifically, CCSA utilizes an L2 distance between deterministic features while
we exploit Bayesian neural networks to learn domain-invariant representations by minimizing the
distance between domain distributions. Theoretically, minimizing the distance between distributions
incorporates larger inter-class variance than minimizing distance of deterministic features. More-
over, we apply our variational invariant learning to both the feature extractor and the classifier, while
CCSA only considers an alignment loss on the feature representations.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

We conduct our experiments on four widely used benchmarks in domain generalization:

5



Under review as a conference paper at ICLR 2021

PACS (Li et al., 2017a) consists of 9,991 images of seven classes from four domains - photo, art-
painting, cartoon and sketch. We follow the “leave-one-out” protocol in (Li et al., 2017a; 2018b;
Carlucci et al., 2019), where the model is trained on any three of the four domains, which we call
source domains, and tested on the last (target) domain.

Office-Home (Venkateswara et al., 2017) also has four domains: art, clipart, product and real-
world. There are about 15,500 images of 65 categories for object recognition in office and home
environments. We use the same experimental protocol as for PACS.

Rotated MNIST and Fashion-MNIST were introduced for evaluating domain generalization in
(Piratla et al., 2020). For the fair comparison, we follow their recommended settings and randomly
select a subset of 2,000 images from MNIST and 10,000 images from Fashion-MNIST, which is
considered to have been rotated by 0◦. The subset of images is then rotated by 15◦ through 75◦ in
intervals of 15◦, creating five source domains. The target domains are created by rotation angles
of 0◦ and 90◦. We use these two datasets to demonstrate the generalizability by comparing the
performance on in-distribution and out-of-distribution data.

For all four benchmarks, we use ResNet-18 (He et al., 2016) pretrained on ImageNet (Deng et al.,
2009) as the CNN backbone. During training, we use Adam optimization (Kingma & Ba, 2014)
with the learning rate set to 0.0001, and train for 10,000 iterations. In each iteration we choose
one source domain as the meta-source domain. The batch size is 128. To fit memory footprint, we
choose a maximum number of samples per category per target domain to implement the domain-
invariant learning, i.e. sixteen for PACS, Rotated MNIST and Fashion-MNIST datasets, and four
for the Office-Home dataset. We choose λφ and λψ based on the performance on the validation set
and their influence is summarized in the new Fig 3 in Appendix C. The optimal values of λφ and
λψ are 0.1 and 100 respectively. Parameters σ1 and σ2 in Eq. (15) are set to 0.1 and 1.5. The model
with the highest validation set accuracy is employed for evaluation on the target domain. All code
will be made publicly available.

4.2 ABLATION STUDY

We conduct an ablation study to investigate the effectiveness of our variational invariant learning
for domain generalization. The experiments are performed on the PACS dataset. Since the major
contributions of this work are the Bayesian treatment and the domain-invariant principle, we evaluate
their effect by individually incorporating them into the classifier - the last layer - ψ and the feature
extractor - the penultimate layer - φ. The results are shown in Table 1. The “X” and “×” in the
“Bayesian” column denote whether the classifier ψ and feature extractor φ are Bayesian layers or
deterministic layers. In the “Invariant” column they denote whether the domain-invariant loss is
introduced into the classifier and the feature extractor. Note that the predictive distribution is a
Bernoulli distribution, which also admits the domain-invariant loss, we therefore include this case
for a comprehensive comparison.

In Table 1, the first four rows demonstrate the benefit of the Bayesian treatment. The first row (a)
serves as a baseline model, which is a vanilla deep convolutional network without any Bayesian
treatment and domain-invariant loss. The backbone is also a ResNet-18 pretrained on ImageNet. It
is clear the Bayesian treatment, either for the classifier (b) or the feature extractor (c), improves the
performance, especially in the “Art-painting” and “Sketch” domains, and this is further demonstrated
in (d) where we employ the Bayesian classifier and feature extractor simultaneously.

The benefit of the domain-invariant principle for classifiers is demonstrated by comparing (e) to (a)
and (f) to (b). The settings with domain invariance consistently perform better than those without it.
A similar trend is also observed when applying the domain-invariant principle to the feature extrac-
tor, as shown by comparing (g) to (c). Overall, our variational invariant learning (h) achieves the best
performance compared to other variants, demonstrating its effectiveness for domain generalization.
Note that the feature distributions p(z|x) are unknown without Bayesian formalism, leading to an
intractable LI(φ). Therefore, we do not conduct the experiment with only the domain-invariant loss
on both the classifier and the feature extractor.

To further demonstrate the domain-invariant property of our method, we visualize the features
learned by different settings of our method in Table 1. We use t-SNE (Maaten & Hinton, 2008)
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Table 1: Ablation study on PACS. All the individual components of our variational invariant learning
benefit domain generalization performance. More comparisons can be found in Appendix D

Bayesian Invariant PACS
ID ψ φ ψ φ Photo Art-painting Cartoon Sketch Mean

(a) × × × × 92.85 75.12 77.44 75.72 80.28
(b) X × × × 93.89 77.88 78.20 77.75 81.93
(c) × X × × 92.81 78.66 77.90 78.72 82.02
(d) X X × × 93.83 82.13 79.18 79.03 83.73
(e) × × X × 93.95 80.03 78.03 77.83 82.46
(f) X × X × 95.21 81.25 80.67 79.31 84.11
(g) × X × X 95.15 80.96 79.57 79.15 83.71
(h) X X X X 95.97 83.92 81.61 80.31 85.45

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 1: Visualization of feature representations. The eight sub-figures correspond to the eight
settings in Table 1 (identified by ID). Colors denote domains, while shapes indicate classes. The
target domain (violet) is “art-painting”. The top row shows the Bayesian treatment enlarges the
inter-class distance for all domains, considerably. The bottom row, compared with the top-row
figures in the same column, shows the domain-invariant principle enlarges the inter-class distance in
the target domain by reducing the intra-class distances between the source and target domains.

to reduce the feature dimension into a two-dimensional subspace, following Du et al. (2020). The
visualization is shown in Fig. 1. More visualization results are provided in Appendix E.

Figs. 1 (a), (b), (c) and (d) show the baseline, Bayesian classifier, Bayesian representations and
both Bayesian classifier and representations, demonstrating the benefits of Bayesian inference for
learning domain-invariant features. The Bayesian treatment on both the classifier and the feature
extractor enlarges the inter-class distance in all domains, which benefits the classification perfor-
mance on the target domain, as shown in Fig. 1 (d). Figs. 1 (e), (f), (g), (h) are visualizations of
feature representations after introducing the domain-invariant principle, compared to the upper row.
Comparing the two figures in each column indicates that our domain-invariant principle imposed on
either the representation or the classifier further enlarges the inter-class distances. At the same time,
it reduces the distance between samples of the same class from different domains. This is even more
apparent in the intra-class distance between samples from source and target domains. As a result,
the inter-class distances in the target domain become larger, therefore improving performance. It is
worth noting that the domain-invariant principle on the classifier in Fig. 1 (f) and on the feature ex-
tractor in Fig. 1 (g)) both improve the domain-invariant features. Our variational invariant learning
in Fig. 1 (h) therefore has better performance by combining their benefits.
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Table 2: Ablation with two variational invariant layers in the feature extractor on PACS. Bayesianφ′
and Invariant φ′ denote whether the additional variational invariant layer in the feature extractor has
a Bayesian property and domain-invariant property. More Bayesian layers benefits the performance
while excessive domain-invariant learning harms it.

Bayesian φ′ Invariant φ′ Photo Art-painting Cartoon Sketch Mean

× × 95.97 83.92 81.61 80.31 85.45
X × 95.69 83.28 82.06 81.00 85.51
X X 95.72 82.33 81.10 80.67 84.96

We also experiments with more layers in the feature extractor, see Table 2. “Bayesian φ′” and
“Invariant φ′” denote whether the additional feature extraction layer φ′ has the Bayesian property
and domain-invariant property. The classifiers have both properties in all cases in Table 2. The first
row is the setting with only one variational invariant layer in the feature extractor. When introducing
another Bayesian learning layer φ′ without the domain-invariant property into the model, as shown
in the second row in Table 2, the average performance improves slightly. If we introduce both
the Bayesian learning and domain-invariant learning into φ′, as shown in the third row, the overall
performance declines a bit. One reason might be the information loss in feature representations
caused by the excessive use of domain-invariant learning. In addition, due to the Bayesian inference
and Monte-Carlo sampling, more variational-invariant layers leads to higher memory usage and
more computations, which is also one reason for us to apply the variational invariant learning only
to the last feature extraction layer and the classifier.

Table 3: Comparison on PACS. Our method achieves the best performance on the “Cartoon” domain,
is competitive on the other three domains and obtains the best overall mean accuracy.

Photo Art-painting Cartoon Sketch Mean

Baseline 92.85 75.12 77.44 75.72 80.28
JiGen (Carlucci et al., 2019) 96.03 79.42 75.25 71.35 80.51
Epi-FCR (Li et al., 2019) 93.90 82.10 77.00 73.00 81.50
MetaReg (Balaji et al., 2018) 95.50 83.70 77.20 70.30 81.68
MASF (Dou et al., 2019) 94.99 80.29 77.17 71.69 81.04
CSD (Piratla et al., 2020) 94.10 78.90 75.80 76.70 81.38
DMG (Chattopadhyay et al., 2020) 93.35 76.90 80.38 75.21 81.46
L2A-OT (Zhou et al., 2020) 96.20 83.30 78.20 73.60 82.83
DSON (Seo et al., 2019) 95.87 84.67 77.65 82.23 85.11
RSC (Huang et al., 2020) 95.99 83.43 80.31 80.85 85.15
VIL (This paper) 95.97 83.92 81.61 80.31 85.45

4.3 STATE-OF-THE-ART COMPARISON

In this section, we compare our method with several state-of-the-art methods on four datasets. The
results are reported in Tables 3-5. The baseline on PACS (Table 3), Office-Home (Table 4), and
rotated MNIST and Fashion-MNIST (Table 5) are all based on the same vanilla deep convolutional
ResNet-18 network, without any Bayesian treatment, the same as row (a) in Table 1

On PACS, as shown in Table 3, our variational invariant learning method achieves the best overall
performance. On each domain, our performance is competitive with the state-of-the-art and we
exceed all other methods on the “Cartoon” domain. On Office-Home, as shown in Table 4, we again
achieve the best recognition accuracy. It is worth mentioning that on the most challenging “Art” and
“Clipart” domains, our variational invariant learning also delivers the highest performance, with a
good improvement over previous methods.

L2A-OT and DSON outperform the proposed model on some domains of PACS and Office-Home.
L2A-OT learns a generator to synthesize data from pseudo-novel domains to augment the source
domains. The pseudo-novel domains often have similar characteristics with the source data. Thus,
when the target data also have similar characteristics with the source domains this pays off as the
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Table 4: Comparison on Office-Home. Our variational invariant learning achieves the best perfor-
mance on the “Art” and “Clipart” domains, while being competitive on the “Product” and “Real”
domains. Again we report the best overall mean accuracy.

Art Clipart Product Real Mean

Baseline 54.84 49.85 72.40 73.14 62.55
JiGen (Carlucci et al., 2019) 53.04 47.51 71.47 72.79 61.20
CCSA (Motiian et al., 2017) 59.90 49.90 74.10 75.70 64.90
MMD-AAE (Li et al., 2018b) 56.50 47.30 72.10 74.80 62.68
CrossGrad (Shankar et al., 2018) 58.40 49.40 73.90 75.80 64.38
DSON (Seo et al., 2019) 59.37 45.70 71.84 74.68 62.90
RSC (Huang et al., 2020) 58.42 47.90 71.63 74.54 63.12
L2A-OT (Zhou et al., 2020) 60.60 50.10 74.80 77.00 65.63
VIL (This paper) 61.81 53.27 74.27 76.31 66.42

Table 5: Comparison on Rotated MNIST and Fashion-MNIST. In-distribution performance is eval-
uated on the test sets of MNIST and Fashion-MNIST with rotation angles of 15◦, 30◦, 45◦, 60◦ and
75◦, while the out-of-distribution performance is evaluated on test sets with angles of 0◦ and 90◦.
Our VIL achieves the best performance on both the in-distribution and out-of-distribution test sets.

MNIST Fashion-MNIST
In-distribution Out-of-distribution In-distribution Out-of-distribution

Baseline 98.4 93.5 89.6 76.9
MASF (Dou et al., 2019) 98.2 93.2 86.9 72.4
CSD (Piratla et al., 2020) 98.4 94.7 89.7 78.0
VIL (This paper) 99.0 96.5 91.5 83.5

pseudo domains are more likely to cover the target domain, such as “Product” and “Real World”
in Office-Home and “Photo” in PACS. When the test domain is different from all of the training
domains the performance suffers, e.g., “Clipart” in Office-Home and “Sketch” in PACS. Our method
generates domain-invariant representations and classifiers, resulting in competitive results across all
domains and overall. DSON mixtures batch and instance normalization for domain generalization.
This tactic is effective on PACS, but less competitive on Office-Home. We attribute this to the larger
number of categories on Office-Home, where instance normalization is known to make features less
discriminative with respect to object categories (Seo et al., 2019). Our domain-invariant network
makes feature distributions and predictive distributions similar across domains, resulting in good
performance on both PACS and Office-Home.

On the Rotated MNIST and Fashion-MNIST datasets, following the experimental settings in (Piratla
et al., 2020), we evaluate our method on the in-distribution and out-of-distribution sets. As shown
in Table 5, our VIL achieves the best performance on both sets of the two datasets, surpassing
other methods. Moreover, our method especially improves the classification performance on the
out-of-distribution sets, demonstrating its strong generalizability to unseen domains, which is also
consistent with the findings in Fig. 1.

5 CONCLUSION

In this work, we propose variational invariant learning (VIL), a variational Bayesian learning frame-
work for domain generalization. We introduce Bayesian neural networks into the model, which is
able to better represent uncertainty and enhance the generalization to out-of-distribution data. To
handle the domain shift between source and target domains, we propose a domain-invariant principle
under the variational inference framework, which is incorporated by establishing a domain-invariant
feature extractor and classifier. Our variational invariant learning combines the representational
power of deep neural networks and uncertainty modeling ability of Bayesian learning, showing
great effectiveness for domain generalization. Extensive ablation studies demonstrate the benefits
of the Bayesian inference and domain-invariant principle for domain generalization. Our variational
invariant learning sets a new state-of-the-art on four domain generalization benchmarks.
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A DERIVATION

A.1 DERIVATION OF THE UPPER BOUNDS OF DOMAIN-INVARIANT LEARNING

As in most cases the Eqζ [pθ(yζ |xζ)] is intractable, we derive the upper bound in Eq. (5), which is
achieved via Jensen’s inequality:

DKL

[
pθ(ys|xs)||Eqζ [pθ(yζ |xζ)]

]
= Epθ(ys|xs)[log pθ(ys|xs)]− Epθ(ys|xs)

[
logEqζ [pθ(yζ |xζ)]

]
≤ Epθ(ys|xs)[log pθ(ys|xs)]− Epθ(ys|xs)Eqζ [log pθ(yζ |xζ)]

= Eqζ
[
DKL

[
pθ(ys|xs)||pθ(yζ |xζ)

]]
.

(16)

In Bayesian inference, computing the likelihood pθ(y|x) =
∫
θ
p(y|x,θ)dθ = Eq(θ)[p(y|x,θ)] is

notoriously difficult. Thus, as the fact that KL divergence is a convex function, we obtain the upper
bound in Eq. (6) achieved via Jensen’s inequality similar to Eq. (16):

Eqζ
[
DKL

[
pθ(ys|xs)||pθ(yζ |xζ)

]]
= Eqζ

[
DKL

[
Eq(θ)[p(ys|xs,θ)]||Eq(θ)[p(yζ |xζ ,θ)]

]]
≤ Eqζ

[[
Eq(θ)DKL

[
p(ys|xs,θ)||p(yζ |xζ ,θ)

]]]
.

(17)

A.2 DERIVATION OF VARIATIONAL BAYESIAN APPROXIMATION FOR REPRESENTATION (φ)
AND CLASSIFIER (ψ) LAYERS.

We consider the model with two Bayesian layers φ and ψ as the last layer of feature extractor and
the classifier respectively. The prior distribution of the model is p(φ,ψ), and the true posterior
distribution is p(φ,ψ|x,y). Following the settings in Section 2.1, we need to learn a variational dis-
tribution q(φ,ψ) to approximate the true posterior by minimizing the KL divergence from q(φ,ψ)
to p(φ,ψ|x,y):

φ∗,ψ∗ = argmin
φ,ψ

DKL

[
q(φ,ψ)||p(φ,ψ|x,y)

]
. (18)
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Figure 2: Illustration of the domain-invariant loss in the training phase of VIL. S denotes the source
domains, T denotes the target domains, and D = S ∪ D. x, z and y denote inputs, features and
outputs of samples in each domain. LI(φ) and LI(ψ) denote the domain-invariant loss functions
for representations and the classifier.

By applying the Bayesian rule p(φ,ψ|x,y) ∝ p(y|x,φ,ψ)p(φ,ψ), the optimization is equivalent
to minimizing:

LBayes =

∫
q(φ,ψ) log

q(φ,ψ)

p(φ,ψ)p(y|x,φ,ψ)
dφdψ

= DKL

[
q(φ,ψ)||p(φ,ψ)

]
− Eq(φ,ψ)

[
log p(y|x,φ,ψ)

]
.

(19)

With φ and ψ are independent,

LBayes = −Eq(ψ)Eq(φ)[log p(y|x,ψ,φ)] + DKL[q(ψ)||p(ψ)] + DKL[q(φ)||p(φ)]. (20)

B DETAILS OF DOMAIN-INVARIANT LOSS IN VIL TRAINING

We split the training phase of VIL into several episodes. In each episode, as shown in Fig. 2,
we randomly choose a source domain as the meta-source domain Ds, and the rest of the source
domains {Dt}Tt=1 are treated as the meta-target domains. From Ds, we randomly select a batch of
samples xs. For each xs, we then select N samples

{
xit
}N
i=1

, which are in the same category as xs,
from each of the meta-target domains Dt. All of these samples are sent to the variational invariant
feature extractor φ to get the representations zs and

{
zit
}N
i=1

, which are then sent to the variational

invariant classifier ψ to obtain the predictions ys and
{
yit
}N
i=1

. We obtain the domain-invariant
loss for feature extractor LI(φ) by calculating the mean of the KL divergence of zs and each zit as
Eq.(11). The domain-invariant loss for feature classifier LI(ψ) is calculated in a similar way on ys

and
{
yit
}N
i=1

as Eq.(10).

C ABLATION STUDY FOR HYPERPARAMTERS

We also ablate the hyperparameters λφ, λψ and π on PACS with cartoon as the target domain.
Results are shown in Fig 3 (a), (b) and (c). We obtain Fig 3 (a) by fixing λψ as 100 and adjusting λφ,
Fig 3 (b) by fixing λφ as 1 and adjusting λψ and Fig 3 (c) by adjusting π while fixing other settings
as in Section 4.1. λφ and λψ balance the influence of the Bayesian learning and domain-invariant
learning, and their optimal values are 1 and 100. If the values are too small, the model tends to
overfit to source domains as the performance on target data drops more obviously than on validation
data. In contrast, too large values of them harm the overall performance of the model as there are
obvious decrease of accuracy on both validation data and target data. Moreover, π balances the two
components of the scale mixture prior of our Bayesian model. According to Blundell et al. (2015),
the two components cause a prior density with heavier tail while many weights tightly concentrate
around zero. Both of them are important. The performance is the best when π is 0.5 according to
Fig 3 (c), which demonstrates the effectiveness of the two components in the scale mixture prior.
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Figure 3: Performance on “Cartoon” domain in PACS with different hyperparameters λφ, λψ and π.
The red line denotes the accuracy on validation data while the blue line denotes accuracy on target
data. The optimal value of λφ, λψ and π are 1, 100 and 0.5 respectively.

Table 6: More detailed ablation study on PACS. Compared to Table 1 we add three more settings
with IDs (i), (j) and (k). All the individual components of our variational invariant learning benefit
domain generalization performance.

Bayesian Invariant PACS
ID ψ φ ψ φ Photo Art painting Cartoon Sketch Mean

(a) × × × × 92.85 75.12 77.44 75.72 80.28
(b) X × × × 93.89 77.88 78.20 77.75 81.93
(c) × X × × 92.81 78.66 77.90 78.72 82.02
(d) X X × × 93.83 82.13 79.18 79.03 83.73
(e) × × X × 93.95 80.03 78.03 77.83 82.46
(f) X × X × 95.21 81.25 80.67 79.31 84.11
(g) × X × X 95.15 80.96 79.57 79.15 83.71
(i) X X X × 95.33 81.20 80.97 80.07 84.39
(j) X X × X 95.87 81.15 79.39 80.15 84.14
(k) × X X X 95.39 82.32 80.27 79.61 84.40
(h) X X X X 95.97 83.92 81.61 80.31 85.45

D DETAILED ABLATION STUDY ON PACS

In addition to the aforementioned experiments, we conduct some supplementary experiments with
other settings on PACS to further demonstrate the effectiveness of the Bayesian inference and
domain-invariant loss as shown in Table 6. The evaluated components are the same as in Table 1.
For better comparison, we show the contents of Table 1 again in Table 6, and add three other settings
with IDs (i), (j) and (k). Note that as the distribution of features z is unknown without a Bayesian
feature extractor φ, the settings with LI(φ) and a non-Bayesian feature extractor is intractable.

Comparing (i) with (d), we find that employing Bayesian inference to the last layer of the feature
extractor improves the overall performance and the classification accuracy on three of the four do-
mains. Moreover, comparing (j) and (k) to (g) shows the benefits of introducing variational Bayes
and the domain-invariant loss to the classifier on most of the domains and the average of them.

E EXTRA VISUALIZATION RESULTS

To further observe and analyze the benefits of the individual components of VIL for domain-invariant
learning, we visualize the features of all categories from the target domain only in Fig. 4, and features
of only one category from all domains in Fig. 5. The same as Fig. 1, the visualization is conducted on
the PACS dataset and the target domain is “art-painting”. The chosen category in Fig. 5 is “horse”.

Fig. 4 provides a more intuitive observation of the benefits of the Bayesian framework and domain-
invariant learning in our method for enlarging the inter-class distance in the target domain. The
conclusion is similar as in Fig. 1. From the figures in the first row, it is clear that the Bayesian
framework whether in the classifier ((b)) or the feature extractor ((c)) increases the inter-class dis-
tance compared with the baseline method ((a)). With both of them ((d)), the performance becomes
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(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 4: Visualization of feature representations of the target domain. Different colors denote dif-
ferent categories. The sub-figures have the same experimental settings as the experiments in Table 1
and Fig. 1. Visualizing only the feature representations of the target domain shows the benefits of
the individual components to the target domain recognition more intuitively. The target domain is
“art-painting”, as in Fig. 1. We obtain a similar conclusion to Section 4.2, where the Bayesian infer-
ence enlarges the inter-class distance for all domains and the domain-invariant principle reduces the
intra-class distance of the source and target domains.

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 5: Visualization of feature representations of one category. All samples are from the “horse”
category with colors denoting different domains. The target domain is “art-painting” (violet). The
top row shows Bayesian inference benefits domain generalization by gathering features from differ-
ent domains to the same manifold. The figures in each column indicate domain-invariant learning
reduces the intra-class distance between domains, resulting in better target domain performance.

better. Further, comparing two figures in each column, the inter-class distance is also enlarged by
introducing the domain-invariant principle into the setting of each figure in the first row. VIL ((h))
achieves the best performance by combining the benefits of both the Bayesian framework and the
domain-invariant principle in both feature extractor and classifier.

Fig. 5 provides a deeper insight into the intra-class feature distributions of the same category from
different domains. By introducing the Bayesian inference into the model, the features demonstrate
the manifold of the category as shown in the first row ((b), (c) and (d)). This makes recognition
easier. Indeed, the visualization of features from multiple categories has similar properties as shown
in Fig. 1. As shown in each column, introducing the domain-invariant learning into the model leads
to a better mixture of features from different domains. The resultant domain-invariant representation
makes the model more generalizable to unseen domains.
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We also visualize the features in rotated MNIST and Fashion MNIST datasets, as shown in Fig. 6.
Different shapes denote different categories. Red samples denote features from the in-distribution set
and blue samples denote features from the out-of-distribution set. Compared with the baseline, our
method reduces the intra-class distance between samples from the in-distribution set and the out-of-
distribution set and clusters the out-of-distribution samples of the same categories better, especially
in the rotated Fashion-MNIST dataset.

Baseline VIL

Fashion-MNIST

Baseline VIL

MNIST

Figure 6: Visualization of feature representations in rotated MNIST and rotated Fashion-MNIST
datasets. Samples from the in-distribution and out-of-distribution sets are in red and blue, respec-
tively. Different shapes denote different categories. Compared to other methods, our VIL achieves
better performance on both the in-distribution and out-of-distribution sets in each dataset, and espe-
cially on the out-of-distribution set from the Fashion-MNIST benchmark.
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