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ABSTRACT

Recent advancements in Large Language Models (LLMs) have transformed mo-
tion generation models in embodied applications such as autonomous driving and
robotic manipulation. While LLM-type motion models benefit from scalabil-
ity and efficient formulation, there remains a discrepancy between their token-
prediction imitation objectives and human preferences. This often results in be-
haviors that deviate from human-preferred demonstrations, making post-training
behavior alignment crucial for generating human-preferred motions. Post-training
alignment requires a large number of preference rankings over model generations,
which are costly and time-consuming to annotate in multi-agent motion generation
settings. Recently, there has been growing interest in using expert demonstrations
used in the pre-training phase to scalably build preference data for alignment.
However, these methods often adopt a worst-case scenario assumption, treating
all generated samples from the reference model as unpreferred and relying on ex-
pert demonstrations to directly or indirectly construct preferred generations. This
approach overlooks the rich signal provided by preference rankings among the
model’s own generations. In this work, instead of treating all generated samples as
equally unpreferred, we propose a principled approach that leverages the implicit
preferences encoded in expert demonstrations to construct preference rankings
among the generations produced by the reference model, offering more nuanced
guidance at a lower-cost. We present the first investigation of direct preference
alignment for multi-agent motion token-prediction models using implicit prefer-
ence feedback from demonstrations. We apply our approach to large-scale traffic
simulation and demonstrate its effectiveness in improving the realism of gener-
ated behaviors involving up to 128 agents, making a 1M token-prediction model
comparable to state-of-the-art large models by relying solely on implicit feedback
from demonstrations, without requiring additional human annotations or incurring
high computational costs. Furthermore, we provide an in-depth analysis of pref-
erence data scaling laws and their effects on over-optimization, offering valuable
insights for future investigations.

1 INTRODUCTION

The recent advances in Large Language Models (LLMs) (Achiam et al., 2023) have significantly
impacted the design of motion generation for embodied tasks such as autonomous driving (Seff
et al., 2023; Philion et al., 2024), robot manipulation (Brohan et al., 2023), and humanoid locomo-
tion (Radosavovic et al., 2024). Formulating motion generation as a next-token prediction task not
only provides a unified framework for modeling sequential decision-making tasks but also provides
opportunities for leveraging pre-trained LLMs for more cost-effective training and leveraging the
common-sense reasoning capabilities inherent in these models (Tian et al., 2024). However, despite
the remarkable progress, robots relying on these large token-prediction models do not automatically
become better at doing what humans prefer due to the misalignment between the training objective
and the underlying reward function that incentivizes the expert demonstrations. This discrepancy
underscores the challenge of ensuring that motion models trained with next-token prediction are
effectively aligned with expert-preferred behaviors.
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Figure 1: Direct preference alignment from occupancy measure matching feedback for realistic
traffic simulation. DPA-OMF is a simple yet effective alignment-from-demonstration approach
that aligns a pre-trained traffic simulation model with human preferences. It leverages the implicit
preferences encoded in expert demonstrations to construct preference rankings among generations
sampled from the reference model, and updates the model. The gray dotted lines above the motion
token prediction model indicate the reference model’s motion token distributions at each prediction
step, and the orange lines represent the probabilities after the alignment process. ât denotes agents’
action tokens sampled from the predicted distribution P(at; c, ât−1) during inference time, c denotes
the scene context representation (more details in Section 3.1).

Preference-based alignment has emerged as a crucial component in LLM post-training stage,
aiming to reconcile the disparity between the next-token prediction objective and human prefer-
ences. Among various frameworks, direct alignment algorithms (e.g., direct preference optimization
(Rafailov et al., 2024b)) are particularly appealing due to their simplicity of training and computa-
tional efficiency. Specifically, direct alignment algorithms collect preference rankings from humans
over model generations and directly update the model to maximize the likelihood of preferred behav-
iors over unpreferred ones. However, in complex embodied settings, such as joint motion generation
across hundreds of agents, obtaining such preference data can be very challenging. Human anno-
tators must analyze intricate and nuanced motions, which is a time-consuming process, making the
scalability of direct alignment methods difficult in these scenarios.

While soliciting rankings from experts provides explicit preference information, we argue that ex-
pert demonstrations used in the pre-training phase inherently encode implicit human preferences,
which can be reused to align a pre-trained motion generation model in a cost-effective and effi-
cient way, beyond their role in supervised pre-training. Recently, Alignment from Demonstrations
(AFD) (Li et al., 2024; Sun & van der Schaar, 2024; Chen et al., 2024b) has emerged as a valu-
able technique for automatically generating preference data using existing expert demonstrations,
allowing preference alignment to scale at a low cost. However, previous methods typically assume
a worst-case scenario: treating all generations from the reference model as unpreferred, and rely-
ing on expert demonstrations to directly (Chen et al., 2024b) or indirectly (Sun & van der Schaar,
2024) construct preferred generations. This assumption overlooks the rich signals provided by the
preference rankings among the generated samples from the reference model, which can offer more
nuanced guidance than simply treating all generated samples as unpreferred.

Instead of treating all generated samples as equally bad, we propose leveraging the implicit pref-
erences encoded in expert demonstrations to construct preference rankings among the generations
produced by the reference model, offering more nuanced guidance at a lower-cost.

Our approach draws inspiration from inverse reinforcement learning (Abbeel & Ng, 2004; Ho &
Ermon, 2016), where alignment between a generated behavior and the expert demonstration is mea-
sured through occupancy measure matching. We propose Direct Preference Alignment from Oc-
cupancy Measure Matching Feedback, DPA-OMF, a principled approach using optimal transport to
define an implicit preference distance function. This function measures the alignment between a
generated sample and the expert demonstration through occupancy measure matching in a seman-
tically meaningful feature space, and is then used to rank the generated samples according to their
alignment with expert demonstrations, producing more nuanced preference data at scale to align the
motion generation model (Figure 1).

We present the first investigation of direct preference alignment for multi-agent motion token-
prediction models using implicit preference feedback from demonstrations. We apply our approach
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to large-scale realistic traffic simulations and demonstrate its effectiveness in improving the realism
of generated behaviors involving up to 128 agents, making a 1M token-prediction model comparable
to state-of-the-art large models by relying solely on implicit feedback from demonstrations, without
requiring additional human annotations or incurring high computational costs.

Contribution. In this work, we consider the problem of efficient post-training alignment
of a token-prediction model for multi-agent motion generation. We propose Direct Prefer-
ence Alignment from Occupancy Measure Matching Feedback (DPA-OMF), a simple yet
principled approach that leverages the expert demonstrations to generate implicit preference
feedback and significantly improves the pre-trained model’s generation quality without ad-
ditional human preference annotation, reward learning, or complex reinforcement learning.
To the best of our knowledge, our work is the first work that demonstrates the benefits of
preference alignment on large-scale multi-agent motion generation models using implicit
preference feedback from demonstrations, and provides detailed analysis on preference data
scaling laws and their effects on preference over-optimization.

2 RELATED WORKS

Scaling alignment using AI feedback. Previous works have proposed leveraging synthetic AI feed-
back to scale preference data in LLM applications, either from a single model (Bai et al., 2022; Lee
et al.; Mu et al.), an ensemble of teacher models (Tunstall et al., 2023), or through targeted context
prompting, where the model is instructed to generate both good and bad outputs for comparison
(Yang et al., 2023; Liu et al., 2024). Unfortunately, these frameworks are not directly applicable to
embodied contexts, such as autonomous driving, due to the absence of high-quality, open-source,
and input-unified foundational models. What makes input-unified foundational models especially
challenging is that different embodied models often use incompatible input modalities or features,
making it difficult to transfer feedback across models effectively.

Alignment from expert demonstrations. Alignment from Demonstrations (AFD) has emerged
as a valuable technique for automatically generating preference data using expert demonstrations,
enabling preference alignment to scale effectively. For example, Chen et al. (2024b) fine-tunes a
pre-trained reference model in a self-play manner, where the optimized model maximizes the log-
likelihood ratio between expert demonstrations and self-generated samples. However, this method
treats all model-generated samples as unpreferred, overlooking the valuable information embedded
in the preference rankings among those samples. Additionally, it suffers from bias introduced by
the heterogeneity of the preference data: since the preference data are drawn from two different
sources (human vs. optimized model), the discrimination objective may emphasize the differences
between models rather than focusing on the key aspects that truly evaluate the quality of the gen-
erated behaviors. To address the heterogeneity issue, Sun & van der Schaar (2024) proposes using
expert demonstrations to first fine-tune the reference model through supervised learning, creating
an expert model. Then, samples generated by the fine-tuned expert model are treated as positive
examples, while samples from the initial model are treated as negative examples to construct a pref-
erence dataset. While this approach helps mitigate the heterogeneity problem, it requires training
an additional expert model, and there is no guarantee that all generations from the expert model
will consistently be superior to those from the initial model. Unlike previous works, our approach
constructs preference rankings among the generations produced by the reference model, effectively
addressing the heterogeneity issue while providing more nuanced guidance at a lower cost.

Motion alignment via divergence minimization. Adversarial imitation learning (IL) aims to align
the behavior of the learning agent with expert demonstrations by minimizing the Jensen-Shannon
divergence between the agent’s action occupancy measure and that of the expert (Ho & Ermon,
2016; Song et al., 2018). These methods jointly train a policy model and a discriminator: the policy
model is trained to imitate expert demonstrations, while the discriminator is trained to separate the
generated samples from the expert demonstrations and informs the policy model. Additionally, ad-
versarial training is known for its instability and high computational cost (Kodali et al., 2017; Yang
et al., 2022), making it particularly problematic in post-training alignment, where stability and com-
putational efficiency are crucial. Similar to adversarial IL, we employ occupancy measure matching
to assess the alignment between generated samples and expert demonstrations. However, our ap-
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proach differs by using preference rankings over the generated samples to inform the alignment
process, rather than relying on a signal learned from separating all generated samples from expert
demonstrations. Our approach provides more informative guidance while also being significantly
more computationally efficient and more suitable for post-training alignment.

Preference alignment for realistic traffic simulation. Preference-based alignment has recently
been used to enhance the realism of traffic generation (Cao et al., 2024; Wang et al., 2024b). How-
ever, these previous works rely on Reinforcement Learning with Human Feedback (RLHF) as the
alignment approach and learn rewards from low-fidelity simulator data. In contrast, our work seeks
to improve traffic generation models without the need for reinforcement learning or explicit reward
learning. Instead, we utilize an implicit preference distance derived from real human demonstrations
to guide the alignment, and demonstrate improvements in a much larger scale.

3 DIRECT MULTI-AGENT MOTION GENERATION PREFERENCE ALIGNMENT
WITH IMPLICIT FEEDBACK FROM DEMONSTRATIONS

3.1 MULTI-AGENT MOTION GENERATION AS A NEXT-TOKEN PREDICTION TASK

We assume access to a set of expert demonstrations, De, where each example consists of a joint
action sequence ξ = {a0, . . . ,aT } and a scene context representation c. The joint action sequence
represents the behaviors of N agents over a generation horizon T , conditioned on the given scene
context c. Each joint action at time step t is a collection of action tokens for all N agents, denoted
as at = (a1t , . . . , a

N
t ). Following Seff et al. (2023), our learning objective is to train a generative

model parameterized by θ, which maximizes the likelihood of the ground truth joint action at time
step t, conditioned on all previous joint actions and the initial scene context:

max
θ

E(ξ,c)∼De

[
ΠT

t=0πθ(at|a<t; c)
]
, (1)

where πθ(at|a<t; c) := P(at|at−1, . . . ,a0; c). We denote the model trained with the token pre-
diction objective as the reference model πref . Note that the optimal solution of (1) is the same as
seeking a policy π that minimizes the forward Kullback-Leibl (KL) divergence to the expert pol-
icy: minθ KL(πθ||πe). Consequently, the resulting policy tends to exhibit mass-covering behavior
(Wang et al., 2024a), making it prone to deviating from the expert’s true policy, which necessitates
post-training alignment.

3.2 IMPLICIT PREFERENCE FEEDBACK FROM DEMONSTRATIONS

In this section, we introduce our approach to leveraging expert demonstrations for scalable construc-
tion of preference feedback. The key idea is to define an implicit preference distance function that
measures the alignment between a generated sample and the expert demonstration using occupancy
measure matching. This distance is then used to rank the samples generated by the reference model,
forming the basis for constructing preference feedback.

With the reference model pre-trained using the next-token prediction objective (1), we can construct
a rollout (a generated motion sampled from the model) set, Dπref , in which each example contains
a set of K rollouts, {ξ1, . . . , ξK}, sampled from the reference model, and the associated scene
context c. We aim to find a preference distance function d that approximately measures the similarity
over a triplet (ξi, ξj , ξk): We treat ξi as an anchor, then if the preference distance between ξi and
ξj is smaller than that between ξi and ξk, ξj is more similar to the anchor than ξk: d(ξi, ξj) >
d(ξi, ξk) =⇒ ξi ≻ ξj ≻ ξk.

Fundamental work in IRL (Abbeel & Ng, 2004) advocates for using occupancy measure match-
ing to assess the alignment between the policy induced by a recovered reward function and human
demonstrations. If the policy’s occupancy measure closely matches that of the human, the recovered
reward function is considered better aligned with the human’s true preferences. Building on this in-
sight, we leverage the Optimal Transport (OT) method (Villani et al., 2009) as a principled approach
to define an implicit preference distance function that measures the alignment between a rollout and
the expert demonstration. We then use this preference distance to rank rollouts from the reference
model to construct the preference dataset. OT has been successfully used to measure alignment be-
tween behaviors in prior single-agent reinforcement learning works (Xiao et al., 2019) with the key
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difference in our work being used in multi-agent settings to fine-tune a generative model without the
need for reinforcement learning (see Q4 in Appendix A for more details).

Rollout occupancy measure. Let o = {ot}Tt=0 represent a sequence of scene observations ob-
tained by rolling out a joint action sequence ξ in the initial scene c over T time steps. The empir-
ical occupancy measure associated with (ξ, c) is a discrete probability measure defined as ρ(ξ,c) =
1
T

∑T
t=0 δΦ(ot), where δΦ(ot) is a Dirac distribution centered on Φ(ot) = [ϕ(o1t ), . . . , ϕ(o

N
t )]. Here,

ϕ is a feature encoder that maps each agent’s information into a feature vector. Intuitively, the
rollout occupancy measure represents the distribution of features visited by the generation policy
throughout the generation horizon.

Implicit preference distance. Optimal transport measures the distance between two discrete prob-
ability measures by solving the optimal coupling µ∗ ∈ RT×T that transports a rollout occupancy
measure, ρ(ξs,c), to the expert occupancy measure, ρ(ξe,c), with minimal cost. Instead of computing
the scene-level optimal coupling, we compute the agent-level optimal coupling and then aggregate
them for computing the scene-level alignment, assuming the generative model only generates the
behaviors of pre-defined agents but not insert nor remove agents from the scene. Specifically, for
each agent i, we compute optimal coupling between agent i’s empirical occupancy measure induced
by the sampled rollout ξi and agent i’s empirical occupancy measure from the demonstration ξie by
minimizing the Wasserstein distance the two:

µi,∗ = argmin
µ∈M(ρ(ξie ,c)

,ρ(ξis ,c)
)

T∑
t=1

T∑
t′=1

c
(
ϕ(oit,s), ϕ(o

i
t’,e)

)
µt,t′ . (2)

where M(ρ(ξis ,c), ρ(ξie ,c)) = {µ ∈ RT×T : µ1 = ρ(ξis ,c), µ
T1 = ρ(ξie ,c)} is the set of coupling

matrices and c : Rn ×Rn → R is a cost function defined on the support of the measure (e.g., cosine
distance) with n being the dimension of the feature. This gives rise to the following distance that
measures the alignment between a rollout and expert demonstration:

d(ξs, ξe; c) =

N∑
i=1

T∑
t=1

T∑
t′=1

c
(
ϕ(oit,e), ϕ(o

i
t’,e)

)
µi,∗
t,t′ . (3)

We use this implicit preference distance function to build pair-wise preference rankings using the
rollouts from Dπref and construct the preference dataset Dπpref . Each example in Dπpref contains Npref

pairwise comparisons, (ξ+ ≻ ξ−)1,...,Npref , along with the associated scene context c.

3.3 DIRECT PREFERENCE ALIGNMENT VIA CONTRASTIVE PREFERENCE LEARNING

Using the automatically constructed preference dataset Dπpref , we apply a multi-agent extension of
the contrastive preference learning algorithm (Hejna et al., 2023), combined with reference policy
regularization, to directly fine-tune the reference model:

max
θ

E(ξ+,ξ−,c)∼Dpref

− log
exp

∑
t γ

tα log
πθ(a

+
t |a+

<t,c)

πref(a
+
t |a+

<t,c)

exp
∑

t γ
tα log

πθ(a
+
t |a+

<t,c)

πref(a
+
t |a+

<t,c)
+ exp

∑
t γ

tα log
πθ(a

−
t |a−

<t,c)

πref(a
−
t |a−

<t,c)

 . (4)

4 EXPERIMENT DESIGN

Realistic traffic scene generation. We validate our approach in the large-scale realistic traffic scene
generation challenge (WOSAC), where the model is tasked with generating eight seconds of realistic
interactions among multiple heterogeneous agents (up to 128) at 10 Hz, based on one second of past
observations (Montali et al., 2024). The WOSAC challenge uses a realism metric to evaluate the
quality of the traffic generation model. The realism of a generative model is defined as the empirical
negative log likelihood of the ground truth scene evolution under the distribution induced by 32
scene rollouts sampled from that model (binned into discrete histograms).

Token prediction model and preference dataset construction. We use the MotionLM model
(Seff et al., 2023) as our generation model (1M trainable parameters) (more details in Appendix C)
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Figure 2: Alignment visualization. The heat map visualizes the optimal coupling between a gener-
ated traffic simulation and the ground truth scene evolution. More peaks along the diagonal indicate
better alignment between the behaviors (i.e., a smaller preference distance). The traffic simulation
with a small preference distance (left) shows behavior that is well-aligned with the ground truth,
while the simulation with a larger distance (right) exhibits inconsistencies, such as the pedestrian’s
generated motion colliding with an oncoming vehicle.

and first train it using the next-token prediction objective on the Waymo Open Motion Dataset for
1.2M steps to obtain a reference model. For each training example, we sample 64 rollouts from
the reference model and rank them using the preference distance function. The 16 closest rollouts
are treated as preferred samples, while the 16 farthest are considered unpreferred, constructing 16
comparisons per example. Following previous work on learning rewards for autonomous driving
(Sun et al., 2018; Chen et al., 2024a), we use features that capture the modeled agent’s safety, com-
fort, and progress to encode the agent’s state information at each time step when building the rollout
occupancy measure, including: [collision status, distance to road boundary, minimum clearance to
other road users, control effort, speed]. When solving the optimal transport plan (2), we use the L2
cost between features with the following weights: [10, 5, 2, 1, 1]. These features are also used to
encode the agent’s state in the realism metric. It is important to note that the preference distance is
not the same as the realism metric. The preference distance measures the alignment between a roll-
out and the expert demonstration, whereas the realism metric assesses the likelihood of the expert
demonstration given all the rollouts.

5 RESULTS

5.1 ON THE VALIDITY OF THE IMPLICIT PREFERENCE DISTANCE FUNCTION

In this section, we qualitatively and quantitatively investigate if the implicit preference distance
reflects the behavior alignment (i.e., smaller distance means more aligned behavior).

Realism

Figure 3: Relationship between the
WOSAC realism of selected traffic sim-
ulations and their group-averaged dis-
tance from the expert demonstration.

Qualitative example. In Figure 2, we present a qual-
itative example illustrating how the coupling matrix re-
flects the behavior alignment between generated traffic
simulations and expert demonstrations. Traffic simula-
tions with smaller preference distances exhibit behavior
more closely aligned with the expert demonstrations. Ad-
ditional qualitative examples can be found in the Ap-
pendix D.

Baseline. To quantitatively evaluate our preference dis-
tance function in a controlled experiment, we conduct a
post-selection analysis, where we select sampled traffic
simulations from the reference model and analyze the re-
lationship between the realism of these samples and their
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group-averaged distance to the expert demonstration. We use the Average Displacement Error
(ADE) (L2 distance between a sampled traffic simulation and the expert demonstration) as a base-
line, which is a commonly used distance for evaluating trajectory generation performance in au-
tonomous driving.

Experiment setup. We control the distance to the expert demonstration, and measure the realism
of the selected sampled traffic simulations. Specifically, we first sample 128 traffic simulations
from the pre-trained reference model, rank them using the candidate distance (ADE or preference
distance), and then select traffic simulations as the final model output using a sliding window of
size 32. For example, model variant 1 outputs the top 32 ranked traffic simulations, model variant 2
outputs simulations ranked from 2 to 33, and so on. We then measure the corresponding WOSAC
realism of each model variant to study its relationship to each candidate distance metric.

Results. In Figure 3, we illustrate the relationship between the WOSAC realism of selected traffic
simulations and their group-averaged distance from the expert demonstration. We observe that ADE
is informative in reflecting behavior alignment only up to a certain point: initially, as ADE decreases,
the realism improves. However, once the traffic simulations reach a reasonable level of realism,
further reductions in ADE do not result in significant improvements in the realism. In contrast, the
preference distance function correlates more strongly with the realism and demonstrates a better
effective range when using the same reference model. This highlights its effectiveness in measuring
the alignment between a generated traffic simulation and the expert demonstration.

5.2 ON THE VALUE OF PREFERENCE ALIGNMENT

In this section, we compare our approach with various post-training alignment methods to demon-
strate its effectiveness. Our experiments focus on evaluating the impact of two factors: 1) different
feedback signals, and 2) the alignment approach.

SFT-bestOA–pref. 

SFT-bestOA–unpref. 

DPA-OMF–Pref. 

DPA-OMF–Unpref.

Train steps (x100)

−
 𝐥

𝐨
𝐠

 [
ℙ

𝝃
𝒔

]

Figure 4: The log-likelihood of pre-
ferred/unpreferred rollouts from the ref-
erence model when using DPA-OMF
versus SFT-bestOA for alignment.

Baseline. We compare DPA-OMF against (1) DPA-
ADEF, which constructs preference rankings using ADE
as the distance function to rank traffic simulations sam-
pled from the reference model, then fine-tunes the refer-
ence model using (4); (2) SFT-bestOA, which selects the
top 32 ranked traffic simulations, measured by the prefer-
ence distance, from the reference model and uses them
as new labels for supervised fine-tuning, aiming to di-
rectly distill the preference into the reference model; (3)
SFT-bestADE, similar to SFT-bestOA but use the ADE
to pick the top ranked samples;(4) We also list the per-
formance of SOTA models that are typically much larger
with sophisticated designs. We use the same reference
model for post-training alignment and fine-tune for 200k
steps in all experiments.

Results. We present the quantitative evaluation of each
method’s realism and trajectory L2 error in Table 1. DPA-
OMF significantly outperforms all baselines in terms of alignment between the generated traffic
simulations and the expert demonstrations, while the baselines struggle to improve—and in some
cases, even degrade (DPA-ADEF and SFT-bestADE)—the realism. Interestingly, SFT-bestOA
does not seem to improve the realistic metric too much although it is using the same preferred
traffic simulations as learning signals just like DPA-OMF. Figure 4 sheds more light on this. In
Figure 4, we show the negative-loglikelihood of both preferred traffic simulations and unpreferred
traffic simulations from the reference model when using DPA-OMF and SFT-bestOA to align the
model. We can see that the likelihood of preferred traffic simulations is increasing and the likelihood
of unpreferred traffic simulations is decreasing when using DPA-OMF to align the model, while
the likelihood of unpreferred traffic simulations is increasing when using SFT-bestOA to align the
model. This may be due to the fact that both the preferred and the unpreferred samples are from the
same distribution. This demonstrates the importance of explicitly considering the negative signals
when aligning the model. In Figure 5, we present a qualitative visualization of the generated traffic
simulations from each approach. We sample 64 rollouts from each model and display the most likely
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Expert

SFT-bestADE 

DPA-OMF(Ours) Ref. motionLM

DPA-ADEF SFT-bestOA 

collisiondid not turn 

collision

did not turn 

Expert

SFT-bestADE 

DPA-OMF(Ours) Ref. motionLM

DPA-ADEF SFT-bestOA not enough 
lateral gap

did not yield did not yield

did not yield

Figure 5: Traffic simulation generation visualization. Our approach produces traffic simulations
that are more closely aligned with expert demonstrations, while baseline models generate simula-
tions that are only partially aligned or misaligned (highlighted in red texts).

generation. Our approach produces traffic simulations that are more closely aligned with expert
demonstrations, whereas the baseline models generate simulations that are only partially aligned or
misaligned. While our approach improves the reference model through cost-effective preference
alignment, it still falls short a bit compared to some SOTA methods. We provide more discussions
in Q3 of Appendix A.

Method Kinematic ↑ Interactive↑ Map compliance↑ Composite realism↑ minADE↓
MotionLM (1M reference model) 0.417 0.778 0.815 0.721 1.398
DPA-ADEF 0.393 0.780 0.812 0.714 1.379
SFT-bestADE 0.406 0.773 0.816 0.715 1.392
SFT-bestOA 0.410 0.781 0.826 0.723 1.428
DPA-OMF (ours) 0.415 0.786 0.867 0.739 1.413
BehaviorGPT(Zhou et al., 2024) (3M) 0.433 0.799 0.859 0.747 1.415
Trajeglish(Philion et al., 2024) (35M) 0.415 0.786 0.867 0.721 1.544
SMART(Wu et al., 2024) (102M) 0.479 0.806 0.864 0.761 1.372

Table 1: Realism of difference methods. Our approach improves the realism of the reference model
(shaded in grey) without requiring additional reward learning or reinforcement learning.

On importance of the features. Despite the OT-based preference score’s effectiveness in measuring
the alignment between a generated traffic simulation and the expert demonstration, the relationship
between the OT-based preference score and human preference is not strictly monotonic. This re-
lationship heavily depends on the features used to compute the feature occupancy measure. We
consider a set of features commonly used in IRL research to compute the preference distance (de-
scribed in Section 4). In Table 2, we present an ablation study analyzing the effect of each feature
on the effectiveness of the approach. Although the best performance is achieved when all features
are active, it is interesting to note that using only the collision status when computing the preference
distance for model alignment still leads to improvements. We hypothesize that this is because the
reference model already performs reasonably well in generating behaviors but lacks awareness of
collisions. However, when using only the progress or comfort feature to compute the preference
distance, both the realism (due to an increased collision rate) and ADE regress. This highlights the
importance of using a comprehensive set of features to accurately characterize driving behaviors.
Further discussions on the limitations and potential solutions can be found in Q1 of Appendix A.
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Features Kinematic Interactive Map compliance Composite realism minADE
Collision only 0.389 0.788 0.833 0.724 1.527
Progress only 0.421 0.760 0.812 0.710 1.483
Comfort only 0.411 0.744 0.820 0.705 1.581
Full 0.415 0.786 0.867 0.739 1.413

Table 2: The effect of each feature on the effectiveness of the approach.

5.3 PREFERENCE SCALING

One of the key advantages of DPA-OMF is its ability to leverage expert demonstrations to auto-
matically construct preference rankings without requiring additional human annotations, making it
highly scalable. In this section, we evaluate the performance of DPA-OMF as we scale the number
of preference rankings. In Figure 6(left), we show the relationship between the aligned model’s
performance and the average number of preference rankings per training example (e.g., a value of
4 indicates that the dataset used for alignment is four times larger than the original training set).
Interestingly, we observe that a small amount of preference feedback not only fails to improve the
model but actually degrades it. However, as the number of preference rankings increases, the align-
ment objective begins to demonstrate its effectiveness. We hypothesize that this degradation is due
to preference over-optimization, which we explore further in the next section.

8 160.5
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Figure 6: [left - preference scaling]: Performance of the alignment under different preference train-
ing data sizes. The gray line represents the performance of the reference model; [right - preference
over-optimization]: The trade-off between the policy drift and the fine-tuning performance gain
under various preference data sizes

.

5.4 PREFERENCE OVER EXPLOITATION

Preference over-optimization has been studied in the context of LLMs for both online methods (e.g.,
RLHF) and direct preference alignment methods (Tang et al., 2024; Rafailov et al., 2024a). In this
section, we investigate this phenomenon in the context of multi-agent motion generation. While
previous research has focused on the impact of preference over-optimization across different model
sizes, our study examines its effects with varying data sizes.

Goodhart’s law states that “when a measure becomes a target, it ceases to be a good measure”
(Goodhart & Goodhart, 1984). In our case, this effect manifests when there is insufficient feedback,
causing the model to over-optimize an incomplete preference signal. Following (Tang et al., 2024),
we examine this effect by measuring the KL divergence between the reference model and the fine-
tuned model at various preference data sizes during the alignment process. KL divergence quantifies
how much the optimized policy deviates from the reference model’s policy during preference learn-
ing, and can be interpreted as the optimization cost incurred by the alignment. In Figure 6 (right),
with little preference data (e.g., 0.5 rankings per training example), the optimized policy drifts away
from the reference but degrades performance. As we scale the preference data, the same policy drift
budget results in better performance, though further increases in the KL budget eventually reduce
performance. Nevertheless, this investigation shows that scaling preference data can mitigate the
effects of preference over-optimization and highlights the importance of doing so in a cost-effective
manner.
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6 CONCLUSION

In this work, we consider the problem of efficient post-training alignment of a token-prediction
model for multi-agent motion generation. We propose Direct Preference Alignment from Occu-
pancy Measure Matching Feedback, a simple yet principled approach that leverages expert demon-
strations to generate implicit preference feedback and improves the pre-trained model’s generation
quality without additional human preference annotations, reward learning, or complex reinforcement
learning. We presented the first investigation of direct preference alignment for multi-agent motion
token-prediction models using implicit preference feedback from demonstrations. We applied our
approach to large-scale traffic simulation and demonstrated its effectiveness in improving the realism
of generated behaviors involving up to 128 agents, making a 1M token-prediction model comparable
to state-of-the-art large models by relying solely on implicit feedback from demonstrations, with-
out requiring additional human annotations or incurring high computational costs. Additionally, we
provided an in-depth analysis of preference data scaling laws and their effects on over-optimization,
offering valuable insights for future investigations.
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Reproducibility Statement. To enhance the reproducibility of our research, we have provided a
detailed explanation of our motion generation model and its source in Appendix C. Additionally, we
have thoroughly described the calculation of preference distance in Section 3.2 and the process of
constructing our preference dataset in Section 4.
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A MOTIVATING QUESTIONS

Inspired by the appendix of (Karamcheti et al., 2023), in this section, we list some motivating ques-
tions that may arise from reading the main paper.

Q1. The features used when computing the preference distance are manually designed, what are the
benefits and limitations?

The alignment between generated agents’ behavior and expert demonstrations requires measuring
the distance between their occupancy measures in a semantically meaningful feature space. In this
work, we use manually designed features that are well-validated and widely used in the autonomous
driving industry. This allows us to conduct controlled experiments and evaluate the performance of
our approach using proven, effective features. Additionally, in industry settings, it is often necessary
to align a pre-trained motion model to specific criteria during post-training, such as progress. Using
semantically meaningful features enables efficient and effective alignment for such cases. While
encoding the generated traffic simulation into a learnable feature space could potentially provide
more information and improve the informativeness of the preference distance, it also risks introduc-
ing spurious correlations (Zhang et al., 2020) and requires additional tasks to train the encoder to
extract valuable features. Recent work (Tian et al., 2023) proposes to use human input to explicitly
calibrate the feature space learning process to reduce the risk of learning spurious correlations, but
the proposed method is only validated in simple simulation settings. We are excited to explore this
direction in future work to further enhance the performance of our approach.

Q2. The preference distance can better reflect the alignment between a generated motion and the
expert demonstrations, can it be used to directly train the motion model end-to-end and provide
better results?

In this work, we focus specifically on LLM-type token-prediction models, as they are becoming
the backbone of motion models in various embodied tasks. These auto-regressive models typically
use a teacher forcing training scheme for efficiency, which is not naturally compatible with the
preference distance. While it is possible to use preference distance as a loss signal to train the
auto-regressive model, this approach introduces additional complexity in the training pipeline and
significantly increases computational cost, as it requires solving the optimal transport problem at
each step.

Q3. Why the performance is still worse than SOTA methods even with preference alignment?

In Table 1, while the aligned model underperforms compared to some state-of-the-art (SOTA) mod-
els, we believe this is primarily due to the architecture and capacity limitations of the reference
model. We anticipate that applying our approach to larger SOTA models would result in signifi-
cant performance improvements, as our method provides more nuanced alignment and could fully
leverage the capabilities of more advanced architectures.

Q4. What makes the paper different from previous works that use optimal transport based reward
for robot behavior learning via RL?

The optimal transport method has been used to generate reward signals by measuring the distance
between a rollout and expert demonstrations in single-agent RL settings (Xiao et al., 2019; Luo et al.,
2023; Tian et al., 2023). In contrast, our work focuses on post-training alignment of multi-agent
motion token-prediction models using expert demonstrations. To overcome the overly conservative
assumption in previous works, which treat all model-generated samples as unpreferred, we leverage
optimal transport to construct preference rankings among sampled rollouts. While it is feasible to
convert the preference distance into per-step rewards and align the model using RLHF, this approach
would require significantly more computational resources, as optimal transport must be solved in a
multi-agent setting at every RL step. We are excited to explore the compute-performance trade-off
between using preference distance in direct alignment versus RLHF in future work.

Q5. Why is using expert demonstrations as the preferred samples in preference learning less infor-
mative compared to constructing preference data using the generated samples?

The expert demonstrations are first used to fine-tune the model with (1), thus the likelihood of
expert demonstrations are already much higher than the sampled generations from the model. If
using expert demonstrations as preferred samples and all the sampled generations as unpreferred
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samples in preference alignment, the contrastive loss can be improved but this will further suppress
the likelihood of the samples overall.

B EXTENDED RELATED WORKS

Motion generation as next-token prediction. Motion generation has traditionally been approached
using one-shot prediction techniques, where the entire motion sequence is generated in a single for-
ward pass conditioned on scene information (Nayakanti et al., 2023). However, these approaches
often struggle with modeling long-term dependencies and maintaining temporal coherence between
actions. Next-token prediction framework — where each subsequent token is predicted based on
the previously generated ones — has proven highly successful in language modeling (Achiam et al.,
2023). Similar to language, human or robotic motion unfolds as a series of continuous actions over
time, with each movement serving as a “token” that depends on prior movements. Next-token pre-
diction provides a natural autoregressive framework for generating these sequential actions, mak-
ing it a powerful tool for motion generation in domains such as autonomous driving (Seff et al.,
2023; Philion et al., 2024), robot manipulation (Brohan et al., 2023), and humanoid locomotion
(Radosavovic et al., 2024). In our work, we explore the use of next-token prediction for multi-agent
motion generation. However, unlike previous approaches, we focus on aligning a pre-trained motion
generation model with human preference.

Alignment of Large Language Models using preference feedback. Next-token prediction opti-
mizes for local coherence between individual tokens but often lacks long-term consistency between
the generated sequence and the ground truth. This misalignment between the training objective and
the human internal reward function, which governs their behavior, can lead to suboptimal outcomes
and even safety-critical motions in embodied settings. To address this misalignment, both online
and offline methods have been developed to better align large language models (LLMs) with human
values using preference feedback. One prominent online approach is Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022), which fine-tunes the model by first learning a re-
ward model and then using reinforcement learning to optimize the generative model’s behavior to
maximize the learned reward. However, this two-phase approach introduces significant complex-
ity to the alignment process and incurs substantial computational costs. As an alternative, offline
methods—often referred to as direct alignment methods (Rafailov et al., 2024b)—bypass the reward
learning step by directly optimizing the model to maximize the margin between the log-likelihood
ratio of preferred samples and that of unpreferred ones. While offline methods have demonstrated
empirical efficiency and are often more favorable compared to online methods (Tunstall et al., 2023),
collecting preference feedback remains time-consuming and difficult to scale. This challenge is
especially pronounced in embodied settings, where human annotators must analyze intricate and
nuanced multi-agent motions, making the process even more labor-intensive.

C MOTION GENERATION MODEL

We follow the MotionLM architecture to implement our multi-agent motion generation model (Seff
et al., 2023).

Our model utilizes an early fusion network as the scene encoder to encode multi-modal scene inputs.
The scene encoder integrates multiple input modalities, including the road graph, traffic light states,
and the trajectory history of surrounding agents. These inputs are first projected into a common
latent space through modality-specific encoders. The resulting latent embeddings for each modality
are then augmented with learnable positional encodings to preserve spatial and temporal relation-
ships. The augmented embeddings are concatenated and passed through a self-attention encoder,
which generates a scene embedding for each modeled agent. These scene embeddings are subse-
quently used by the autoregressive model, via cross-attention, to predict the actions of each agent..
An agent’s action token is obtained via discritizing acceleration control into a finite number of bins
(169) and a joint action token denotes the collection of all agents’ action token in the scene. Please
refer to Section App.A of (Seff et al., 2023) about the bins used for tokenization.
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𝑑 𝜉𝑒 , 𝜉𝑠 = 1.57𝑑 𝜉𝑒 , 𝜉𝑠 = 0.49 𝑑 𝜉𝑒 , 𝜉𝑠 = 3.28

Expert

Aligned MisalignedPartially aligned

𝑑 𝜉𝑒 , 𝜉𝑠 = 4.27𝑑 𝜉𝑒 , 𝜉𝑠 = 1.12

Expert

Partially aligned MisalignedPartially aligned

𝑑 𝜉𝑒 , 𝜉𝑠 = 1.59

Figure 7: Alignment visualization. The heat map visualizes the optimal coupling between a gener-
ated traffic simulation and the ground truth scene evolution. More peaks along the diagonal indicate
better alignment between the behaviors (i.e., a smaller preference distance).

D QUALITATIVE EXAMPLES OF PREFERENCE DISTANCE

In Figure 7, we show qualitative examples that illustrates how the coupling matrix reflects the be-
havior alignment between generated traffic simulations and the expert demonstrations. We see that
traffic simulations with smaller preference distance demonstrate more aligned behavior compared to
the expert demonstration.

E QUALITATIVE EXAMPLES DEMONSTRATING THE EFFECTIVENESS OF OUR
APPROACH

In Figure 8, we include more visualizations to demonstrate the performance of our approach. For
each model, we sample 64 rollouts from the model and we show the most-likely one.
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Figure 8: Traffic simulation generation visualization. Our approach produces traffic simulations
that are more closely aligned with expert demonstrations, while baseline models generate simula-
tions that are only partially aligned or misaligned.

F ADDITIONAL RESULT - COMPARISON BETWEEN DPA-OMF AND
ADVERSARIAL PREFERENCE ALIGNMENT FROM DEMONSTRATIONS

In this section, we compare our method with the AFD approach, which treats all samples from the
reference model as negative samples. For each training sample, we construct 16 rankings by sam-
pling 16 generated traffic simulations from the reference model (i.e., both our method and AFD
utilize the same amount of preference data). We measure the WOSAC realism of the fine-tuned
model, the model’s ability to assign higher likelihood to preferred traffic simulations ranked by our
preference distance (measured as classification accuracy), and the minADE. As shown in Table 3,
our approach significantly outperforms the adversarial AFD in all metrics, demonstrating the effec-
tiveness of our method.
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Features Classification accuracy ↑ Composite realism ↑ minADE ↓
Ours 0.84 0.739 1.413
Adversial AFD 0.52 0.720 1.539

Table 3: The comparison between DPA-OMF with adversarial AFD. Our approach significantly
outperforms the adversarial AFD in all metrics.

To further analyze why adversarial preference alignment is less effective, we plot the negative log-
likelihood of expert demonstrations, preferred traffic simulations, and unpreferred traffic simulations
in Figure 9.

Figure 9: The log-likelihood of expert demos and
preferred/unpreferred rollouts from the reference
model when AFD for alignment.

The results reveal that the likelihood of ex-
pert demonstrations is consistently much higher
than that of both preferred and unpreferred
samples throughout the alignment process.
This stems from the pre-training phase, where
expert demonstrations are used to train the ref-
erence model. Moreover, during the preference
alignment phase, the model primarily increases
the likelihood of expert demonstrations while
leaving the likelihood of preferred and unpre-
ferred samples relatively unchanged. This in-
dicates that the model is unable to capture nu-
anced differences between preferred and un-
preferred samples, leading to suboptimal align-
ment performance.

G ADDITIONAL RESULT - BIAS
INTRODUCED BY THE HETEROGENEITY OF THE PREFERENCE DATA

In the previous section, we show that using expert demonstrations as preferred samples and model
generations as unpreferred samples results in increasing the likelihood of expert demonstrations
without significantly affecting the likelihood of either preferred or unpreferred generated samples.
This suggests that the model struggles to associate the features that make expert demonstrations
preferred with the generated preferred samples. To further explore this, we conducted a separate
experiment demonstrating how a discriminative objective using expert demonstrations as positive
samples and model generations as negative samples can lead to spurious correlations.

Figure 10: Spurious correlation introduced by the heterogeneity of the preference data. The
model relies heavily on trajectory smoothness to differentiate between expert demonstrations and
model generations, which can lead to incorrect predictions about preferred behaviors. For example,
in the traffic simulation on the left, the trajectories exhibit zig-zag patterns but demonstrate more
human-like behaviors compared to the simulation on the right. However, the model incorrectly
predicts the likelihood of the left humam-like simulation being preferred by humans as only 0.19
and predicts the likelihood of the right unhumam-like simulation being preferred by humans as 0.88,
highlighting its inability to fully capture nuanced human preferences.
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In this experiment, we trained a discriminator using a contrastive objective to distinguish between
expert demonstrations and model generations. The discriminator achieved a classification accu-
racy of 0.83 on the evaluation dataset, indicating it can reasonably classify motions as either expert
demonstrations or model generations. When the discriminator was used to rank pairs of model-
generated motions, we observed a pattern: motions with zig-zag trajectories are often classified
as unpreferred, while relatively smooth motions are classified as preferred, even when there is
unhuman-like behaviors (e.g., stuck on roads as shown in Figure 10).

This behavior arises because of the heterogeneity of the two data sources: most human demonstra-
tions exhibit smooth motions, while model generations are not constrained by vehicle dynamics.
Consequently, the contrastive objective may incentivize the model to pick up this spurious correla-
tion, prioritizing smoothness over other critical attributes such as staying on the road.

H ADDITIONAL RESULT - THE COST OF QUERYING HUMANS FOR
PREFERENCES IN MULTI-AGENT TRAFFIC GENERATIONS

To quantify the human cost associated with providing preference rankings for multi-agent traffic
simulations, we conducted an Institutional Review Board (IRB)-approved human subject study to
measure the effort required. In this study, we presented paired traffic simulations to participants
and asked them to rank the pairs based on how realistic the simulations were compared to their
personal driving experience. We varied the number of traffic agents in the simulations and recorded
the time needed to provide rankings. Five participants ranked 500 pairs of traffic simulations, and
Table 4 summarizes the time required to complete this task. The results show a clear trend: as the
number of traffic agents increases, the time required for human annotators to rank simulations grows
significantly.

Num. of agents in the scene 1 10 20 40 80
Average time used for ranking [s] 0.7 4.9 9.8 29.4 42.1

Table 4: Average time required for a human to rank traffic sumulations.

Although this study was conducted under time constraints and is not exhaustive, it provides an useful
estimate of the human cost for constructing preference rankings at scale. Specifically, for the pref-
erence data used in our experiments, the estimated average time required for one human annotator
is approximately 633 days. This result underscores the practical challenges of scaling preference
ranking annotations in multi-agent scenarios, motivating our approach to leverage existing demon-
strations to construct preference rankings efficiently.
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